
Definition : We define a class C in F[x1, x2, · · · ] as follows :

1. xi ∈ C.

2. If p ∈ F[x1, · · · , xn], q ∈ F[y1, · · · , ym] and Var(p) ∩Var(q) = φ then

(a) p+ q ∈ C.
(b) p× q ∈ C.
(c) ∀m ≥ 1 : pm ∈ C.

Definition : If p ∈ F[x1, · · · , xn] then

Jacob(p) ≡
〈
∂p

∂xi

∣∣∣∣ xi ∈ Var(p)
〉

Theorem : If p ∈ C, then Gröbner(Jacob(p)) = Jacob(p).
Proof : The proof is by induction on the structure of the polynomials in C.
[Basis]
If p ∈ C and p = xi then ∂p

∂xj
= 0, if i 6= j, ∂p

∂xi
= 1, if i = j. Clearly Jacob(p) = 〈1〉, which is a Gröbner

basis. So the basis case holds.

[Additive Case]
If p, q ∈ C and Var(p) ∩Var(q) = φ, then if R = p+ q,

∂R

∂xi
=
∂P

∂xi
, if xi ∈ Var(p)

∂R

∂xi
=
∂P

∂xi
, if xi ∈ Var(q)

S

(
∂p

∂xi
,
∂p

∂xj

)Jacob(p+q)

= 0

by Induction Hypothesis as the entries of Jacob(p) are in the basis.

Similarly S
(
∂q

∂xi
,
∂q

∂xj

)Jacob(p+q)

= 0

Further LM
(
∂p

∂xi

)
⊥ LM

(
∂q

∂xj

)
as Var(p) ∩Var(q) = φ

So 〈Jacob(p), Jacob(q)〉 = 〈Jacob(R)〉 is a Gröbner basis.

We split the multiplicative case into two analyses as follows :
[Monomial Case]
If R = xa1

1 · · ·xann then the S-Poly is always zero. Hence Jacob(R) forms a Gröbner basis.

[Multiplicative Case]

If R ∈ C is not a monomial then we can express it as one of the following :

R = (f + g)× h The Var sets are mutually disjoint
R = h× (f + g)
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Let fi = ∂f
∂xi

, hj = ∂h
∂xj

We assume that through the induction the following invariant is also maintained for
the S-Poly.

S(fih, fhj) =
lcm(LM(fih),LM(fhj))

LT(fih)
fih−

lcm(LM(fih),LM(fhj))
LT(fhj)

fhj

= α1f1h+ α2f2h+ · · ·+ αkfkh+ β1fh1 + β2fh2 + · · ·+ βlfhl

Such that

lcm(LM(fih),LM(fhj))
LT(fhj)

fhj = β1fh1 + β2fh2 + · · ·+ βlfhl

We assume R = (f + g)× h,

∂R

∂xi
= fih, if xi ∈ Var(f)

∂R

∂xi
= gih, if xi ∈ Var(g)

∂R

∂xi
= (f + g)h, if xi ∈ Var(h)

Note that these are the entries in Jacob(R), and we have to show they form a Gröbner basis.
Now consider S(fih, (f +g)hj), as Var(p)∩Var(q) = φ, either LT(f) ≺ LT(g) or LT(f) � LT(g). We assume
that LT(f) � LT(g) in the following.

S(fih, (f + g)hj) =
lcm(LM(fih),LM(fhj))

LT(fih)
fih−

lcm(LM(fih),LM(fhj))
LT(fhj)

(f + g)hj ,

( as LM((f + g)hj) = LM(fhj))

=
lcm(LM(fih),LM(fhj))

LT(fih)
fih−

lcm(LM(fih),LM(fhj))
LT(fhj)

fhj −
lcm(LM(fih),LM(fhj))

LT(fhj)
ghj

By Inductive Hypothesis

lcm(LM(fih),LM(fhj))
LT(fhj)

fhj = β1fh1 + β2fh2 + · · ·+ βlfhl

Which implies that

β1gh1 + β2gh2 + · · ·+ βlghl =
lcm(LM(fih),LM(fhj))

LT(fhj)
ghj

as F[x1, · · · , xn] is an integral domain.

Hence S(fih, (f + g)hj)
Jacob((f+g)h)

= 0.

Note that β1(f + g)h1 + β2(f + g)h2 + · · ·+ βl(f + g)hl =
lcm(LM(fih),LM(fhj))

LT(fhj)
(f + g)hj
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so the induction goes through.
Now in the case that LT (f) ≺ LT (g), we have

S(fih, (f + g)hj) =
lcm(LM(fih),LM(ghj))

LT(fih)
fih−

lcm(LM(fih),LM(ghj))
LT(ghj)

(f + g)hj

= LM(fig)
lcm(LM(h), LM(hj))

LT (fi)LT (h)
fih− LM(fig)

lcm(LM(h), LM(hj))
LT (g)LT (hj)

(f + g)hj

= LM(g)
lcm(LM(h), LM(hj))

LT (h)
fih− LM(fi)

lcm(LM(h), LM(hj))
LT (hj)

(f + g)hj

Assuming the polynomials are monic this is true, as LT(f) = LM(f) in that case.

[Ken : Finally this is the case which has to be tackled. Since the other cases are symmetric.]

[Powering Case] If R = pm for some m ≥ 1, we have Jacob(pm) = pm−1(Jacob(p)). Clearly if 〈f〉 is a
principal ideal and I is an ideal for which GI is a Gröbner basis then we have f × GI = 〈f × g|g ∈ GI〉 is
also a Gröbner basis as all the S-Poly are now f × S(gi, gj) where gi, gj ∈ GI which are zero by Induction.
Hence Jacob(pm) is also a Gröbner basis.
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