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Chapter 1

Introduction

The P vs. NP conundrum, and similar questions posed by ttiesireomputer science, con-
tain profound mathematical content and carry immediatetjwal importance. Even without
resolution of the main problems, the theory of NP-complessnand more recent extensions
regarding hardness of approximation and pseudo-randanhase been useful companions
for practitioners in the field indicating when problems maytbo hard to solve. Furthermore,
hardness results do not solely have negative implicatiéios.example, the security of most
cryptographic systems used in practice is based on unproasiness assumptions. Also,
through the hardness vs. randomness paradigm, hardnasasctibhs has applications in the
derandomization of algorithms.

However, proving hardness, i.e. proving lower bounds orctimeplexity of explicit func-
tions, has turned out to be extremely difficult. For examplerently we still cannot exclude
the possibility of solvingSAT in linear time on a Turing machine. Traditional techniques
for reasoning about complexity—such as simulation andafiaization—do not seem to be
adequate because of the so called relativization phenofB$p&75]. Recently, researchers
have taken a new approach by studying Boolean circuit coatpleCircuits promise to lend
themselves better to mathematical analysis than Turindimeas because they are static finite
objects, and their analysis is not subject to diagonabmatinstead of proving B NP directly,
the focus in this approach is to prove the stronger resui8Ad does not have polynomial-size
Boolean circuits.

Unfortunately, proving lower bounds on general Booleaewis has turned out to be
even more difficult. Currently, there is no explicit Booldanction in NPU E known to have
super-linear circuit size. The current best-known loweurimbon the size of ag A , vV ,—}-
circuit of an explicit function is B— o(n) [IM02]. Most progress with circuit complexity has
been made by restricting the model. For example, exporidoti@r bounds are known for
constant-depth circuits computing the parity function$8$, Has86, Yao85, Ajt83]. Progress
has not taken place much beyond this low level, e.g. for alkm@v non-uniform T€ might
still contains all of nondeterministic exponential time!eWave a good indication of where
current techniques are lacking, namely, all circuit loweuaids to this date have been obtained
by so-called natural proofs [RR97]. In the presence of psgaddom generators (PRGSs) of
certain hardness, for example in %Ghis type of argument is provably self-defeating. Namely,
proving circuit lower bounds for a given class would yieldtatistical test for breaking PRGs
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2 CHAPTER 1. INTRODUCTION

contained in that class.

Arguably, the most promising approach for obtaining “natunal” proofs is by the in-
volvement of sophisticated concepts from mathematicsarahard in a certain respect. A
promising area for such concepts is algebraic geometryel#kyc geometry has a long history
of development and has many beautiful techniques and deefige It already has a track
record of providing lower bounds, in work by Strassen etB582][Str73b], Bprner, Lo\asz
and Yao [BLY92], and Ben-Or [Ben83].

In order to increase the likelihood of being able to applyealgic techniques, researchers
have considered arithmetical circuits instead of Boolegatuitry. Arithmetical circuits are
circuits built from addition and multiplication gates couatimg a polynomial in the input vari-
ables. An analog to the NP-theory exists in this model in trenfof Valiant’s classes VP
and VNP [Val79a, Br98]. Separation of these classes provides the sameertigdl chal-
lenge as the P vs. NP question. Over fields of characteristio, zinder assumption of
the generalized Riemann hypothesis (GRH), it can be shoan\R = VNP implies that
NC2/poly = PH/poly, and#P/poly = FP/poly [Biir00].

However, in this model the best-known lower bounds for exdiinctions are obtained by
Strassen’s degree method [BCS97]. This method relateszbefkthe arithmetical circuit to
a well-studied algebraic invariant, namely the geometeigrde, of a certain geometric object
obtained from the circuit. Unfortunately, the best possilolwer bound we can prove with
this t%((:h)nique for am-variate polynomial of degree is Q(nlogd), i.e. barely non-linear for
d=n°W),

In order to make further progress, researchers have coedid®ore restricted arithmetical
circuits [SW99, Shp01]. A natural one is the restriction tmstant depth. Contrary to the
Boolean case, for fields of characteristic O (such as the xmumbersC, the real numbers
R, or the rational number®) no non-trivial lower bounds are known. For finite fields the
situation is similar to the Boolean case, and exponentiaétdound are known [GR98].

1.1 ZM>-formulas

In characteristic zero, one of the first non-trivial constdepth models is that oElMx-
formulas, i.e., sums of products of sums of input variabl€sese networks turn out to be
surprisingly powerful. They capture a general form for comimg polynomials via Lagrange
interpolation. For example, the elementary symmetric potigial of degreel in nvariables has
O(n?) ZMx-formula size, a result first noted by Ben-Or (See Chaptelr8)SW99] quadratic
lower bounds are proved in this model, and optimal lower losware obtained for high-degree
elementary symmetric polynomials.

Their technique is based on considering the behaviour ofiidfeer order partial deriva-
tives of a given polynomialf, under restriction to arbitrary affine linear subspacesr &o

polynomial f in variablesxy, o, . .., X,, one can define théth-order partial derivativgddyf with
respect to a multiset of variableé of sized syntactically, with no need for considering a
limiting process. Letting"(f) stand for the set of all sudtith-order partial derivatives of,
the dimension of the linear span of the collection of polyramin 09( ) defines a measure
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of complexity of the polynomiaf. One can generalize this to considering the dimension of
the set ofdth-order partial derivativeafter restrictionto some affine linear spad® which

is denoted by dirj@d(f)|A]. This defines a “progress measure” that is subadditive: riigr a
f,gandA, dim@?(f +g)ja] < dim[9(f)a] +dim[0(g)ja]. Let us sketch one of lower bound
arguments of [SW99].

“Reasonable” estimates can be given that boundafifm’_, Li)a] for a product of linear
formsLy,Lo,...,L,, provided the degreeis “low”. For high degree multiplications this cannot
be done. They are dealt with by cancelling them out by meatigeakstriction to an affine lin-
ear space. Polynomiafsfor which dirr{ad(f)‘A] is “high” for anyaffine linear spacé can be
seen to require large sizé12-formulas by means of a trade-off argument. Namely, if tlaeee
many high degree multiplication gates, the formula mustbgd to start with, but otherwise, it
becomes possible to define a restriction to an affine spasdich is designed to set to zero at
least one input of each high degree multiplication gate.tNsing the subadditivity property
and the “reasonable” bound for low degree multiplicatiotegaand the fact that di[@f’(f)|A]
is high, one obtains a lower bound on teltiplicativesize of the formula foif.

In Chapter 3 we continue the study BF1Z-formula. We wil show a refinement of the
above described partial derivatives technique, which lessals to account for the number of
addition gatesin the formula, rather than just multiplicative size. Takiaircuit size to be
the total number of wires in the circuit, we obtain somewthmwrper lower bounds than the
Shpilka-Wigderson result would imply for a variety of pogmial families.

Also in Chapter 3 we introduce a companion technique for ipgp¥Iz-formula size
lower bounds, which we’ll show to be useful in case the phdigivatives technique fails due
to an a priori low value of dif@?( f)]. Our technique exploits a certaiancellation avoidance
property of polynomials under restriction to affine linepases. The crucial notion is that of
resistanceof a polynomialf. Resistance depends on whettieror more generally whether
some higher order partial derivative bfis non-constant oall affine linear spaces of a given
dimensionk. The smaller this dimensiok, the more resistant the polynomiglis, and the
larger thexMZ-formula size off one observes.

All techniques, those of [SW99] and ours, currently knowndmoving 2MZ-formula, are
limited to proving at best quadratic lower bounds. A majoemproblem is to prove super-
polynomial lower bounds for explicit functions dfi1Z-formula size. Likely candidates to
require exponential size in this model are the determinadiipermanent polynomials. In light
of [Val79a], polynomial-siz&lnz-formulas for either one of these implies that all polyndsnia
in VP have polynomial-size depth 3 formulae. Note that rdgeviulmuley and Sohoni pro-
posed a representation theoretic approach to prove theapemtrequires super-polynomial
arithmetical circuit size [MSO01].

1.2 Restricting the Role of Constants

One of the central mysteries in arithmetic circuit compthexiver infinite fieldsF is the com-
putational power conferred by the ability to use “for freenstants of arbitrary magnitude
and/or precision fronfr. These constants are a major technical obstacle in relatitignetic
complexity to Boolean circuit complexity theory, and recerethods by translation to large
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finite fields (see [Br0O0] after [Koi96]) seem to have limited domain of applioat It is com-
monly observed (e.g. by [Mor73, Cha98, Mul99]) that classiportant algorithms employ
only simple constants. A major exceptionpslynomial interpolationbut even here it seems
that over fields containing the rationals, small constantis @nough bits of precision can be
employed equally as well as large ones.

To probe the significance of (the magnitude of) field constasgveral researchers have
obtained (often asymptotically tight) size lower boundsasithmetical circuits in which a
uniform bound is imposed on constants. Morgenstern [Mopr@}ed that bounded-coefficient
circuits (henceforth, bc-circuits) need s2¢nlogn) to compute the linear transformation for
the Fast Fourier Transform. Chazelle [Cha98] obtainedlaimbiounds for geometric range-
searching problems, while Lokam [Lok01] obtained related-slepth tradeoffs for bc-circuits
computing linear transformations with certain degreesgiflity. More recently Raz [Raz02]
broke through by obtainin@(nlogn) lower bounds for a natural bilinear function, namely
multiplication of two./n x /n matrices. Birgisser and Lotz [BLO3] extended Raz’s ideas to
obtain tightQ(nlogn) bounds on bc-circuits fazyclic convolutionand thence for polynomial
multiplication and related bi-linear functions. These évbounds hold even when the bc-
restriction is lifted forO(n*—¢)-many “help gates.” The natural question is, can one obtain
similar lower bounds without the bc-restriction at all?

We will continue the study of bilinear circuits with boundedefficients. In particular
our focus will be on the cyclic convolution mapping. It candmnputed using the discrete
Fourier transform and its inverse byxdnlogn) size bounded coefficient bilinear circuit, as is
a well-known folkore result. Our goal is to generalize thguanents of [Raz02, BL0O3] to more
general models of computation that allow for more unbouratedfcients.

For this purpose we introduce in Chapter 4 our main bridgotgrept, resulting in a model
whose computational power lies somewhere in between therglesmbounded coefficient and
bounded coefficient models. This is done by allowing cetiagar transformations to be done
by the bilinear circuit at the input free of charge. For ar@hr functionf (X,y), we consider the
orbit of f under the natural “double actios f = {Ax,y.f(Ex, Dy) : D,E € G} of some group
G of n x n matrices. Such actions on multilinear majpike the determinant and permanent
polynomials form the basis of Mulmuley and Sohoni’'s aboventioeed proposal on super-
polynomial (arithmetical or Boolean) circuit lower bour[@4S02]. Note that this model not
only works past the above-mention®n'—¢) limit on “help” gates with unbounded constants,
it also does not constrain the linear circuit complexityDodndE themselves, which may be
as high as quadratic.

We note first that takings to be all of SL,(C), the group of complex matrices of deter-
minant 1, is close to the arbitrary-coefficients case froenstandpoint of lower bounds. This
means, however, that partial progress should furthericesither the matrice®, E or some
other aspect of the circuits. We extend the lower bounds IO when D, E (also) have
boundedcondition number

In Chapters 5 and 6 we will invesigate the scenerio where tagicesD andE are re-
stricted to be diagonal, focusing on the circular convolutbilinear function. Here one is
naturally lead to questions about minors of the n Fourier matrix DF T,. Relations will be
established between our aims of proving lower bounds fodidgonal orbit model and discrete



1.3. DEPTH RESTRICTIONS 5

analogues of théleisenberg uncertainty principlePart of our lower bounds will be derived
from the Donoho-Stark discrete uncertainty principle [RE8vhich gives bounds on the mea-
sure of simultaneous concentration oframectorx and its discrete Fourier transfodf T,x.
As a main result, which will be of independent interest, wé @gtablish a quantative bound
on the expected value of the determinant of certain Randard&fnonde matrices with nodes
on the unit circle in the complex plane. This result is theadu® prove circuit lower bounds.
As a by-product we will deduce also an uncertainty type i@tator the discrete analog of
the band-limited functions. Certain limitations of thigpapach will be probed by considering
results known about the so-called prolate spheroidal wawetions studied in [Sle78].

1.3 Depth Restrictions

Finally, in Chapter 7 we will consider arithmetical cirauaf constant bounded depth (not just
depth 3 as was done with ti€1>-formulas). First we will establish several structuralules
that focus on the relation that exists between arithmetgalits computing a polynomial,
and circuits that compute all of it partial derivatives. Amasogue will be proved of the Baur-
Strassen derivative Lemma [BS82] in which a circuit for aypoimial p is transformed into a
circuit that compute #inear combinatiornof all the partial derivatives op with only constant
factor increase in size. This form of the derivative Lemma the additional advantage that it
truly does not introduce any new constants in the circuiictvis something the Baur-Strassen
Lemma notoriously is known not to satisfy. We will extend soafi the results of [Lok01] to a
particular kind of bounded depth bounded constant "lineanlaination” bilinear formula.

Next, we will consider bounded depth bilinear circuits eitih any kind of assumption
on the magnitude of constants. Circuits of this kind aretrayhthe cutting edge of what one
currently can prove non-trivial , i.e. non-linear, lowernoal for. In [RR03] a weak non-linear
lower bound is proved for the matrix multiplication funatio The proof involves a “super-
concentrator Lemma” to prove the lower bound. We combing ldgrinma with thediscrete
uncertainty principle for cyclic groups of prime ordaas proved by Tao [Tao091], to obtain a
non-linear lower bound for the cyclic convolution bilineaap.
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Chapter 2

Preliminaries

2.1 Background Material

All rings are assumed to be commutative and have a multiplédentity 1. We write[n] as
shorthand foK1,...,n}. We assume familiarity with standard notation for compiexiasses
such as P= Ux=oDTIME ], NP = Uy>oNTIME[n], and so on.

2.1.1 Computational Models

Let R[x1,...,Xy] denote the polynomial ring in variables, ..., x, over a ringR.

Definition 2.1.1. LetRbe aring anci, Xo, ..., X,y be a set of variables. Aarithmetical circuit
over Ris a 3-tuple(G,y,k), whereG = (V,E) is a directed acyclic graph and:V — RU
{X1,X%2,...,%n} U{+, x } is thegate identification functioandk : E — Ris thewire constants
function satisfying:

1. ifin-degregv) =0, theny(v) € RU{x1,X2,...,Xn},
2. ifin-degreév) > 0, theny(v) € {+, x},

The vertices and edges in an arithmetical circuit are cajeggdsandwires Gates with
in-degree 0 are calleidput gates orinputsfor short. All other gates are calledgular gates
For a regular gate, if £(v) = +, thenv is called araddition gate and if(v) = x, vis called
amultiplication gate For a gatev, a wire of the form(u,v) is called annput wire to v and a
wire of the form(v,u) is called armoutput wire from v Note that constants can appear on wires
and as inputs.

Definition 2.1.2. Given an arithmetical circui = (G,y,k) we define thgolynomials com-
puted by ( to be the functiorp: V[G] — R[X1,...,%y] inductively as follows:

1. @(v) =y(v), if vis an input gate,
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2. @(v) = Si_1k(e@)@(v), if vis an addition gate with input wires; = (v1,v), € =
(V2,V),....& = (v,V), and

3. @(v) =[i_1k(&)®(v), if vis a multiplication gate with input wires; = (v1,v), e =
(V2,V),...,& = (Vr,V).

In the above definitiong(v) is called thepolynomial computed by the gate ¥ for a polyno-
mial p € R[xq, X, ..., Xy] there exists a gatec V|G| for which @(v) = p, we sayp is computed
by C.

Thesizeof an arithmetical circuiC = (G,§,n), denoted bys(C), is defined to be the total
number of wires irG. Themultiplicativeandadditivesize of C, denoted bys*(C) ands*™ (C),
respectively are defined by

$'(C) = {(u,v) €E[G]:&(v) = x},

and
s7(C) = {(u,v) €E[G] : §(v) = +}|.

Definition 2.1.3. An arithmetical formula is an arithmetical circuitF = (G,&,n) for which
all regular gates have out-degree at most one. For formthag,size, multiplicative size an
additive size are denoted By ), ¢*(F ), and¢t (F), respectively.

Note that in the above definition we did not provide subtmacand division gates. The
former can be handled in our model using addition gates witlon the second input wire. By
standard robustness results [BCS97], it is not necessangltale division gates for computing
polynomials.

Definition 2.1.4. Let py, p2,..., pm be a collections of polynomials fromR[xy,...,xn]. The
circuit/formula complexity of p over R, denoted bysr(p1, P2, - - -, Pm) and/r(p1, P2, - - -, Pm)
respectively, is the size of a smallest circuit/formula potmg all of p1, p2, ..., pm- FOr multi-
plicative and additive size, these are denoteddfyps, 2, - - -, Pm) andIg (p1, P2, - - - , Pm), With
Oe {x,+}.

In case it is clear from the context which underlying rirgve are working over we will
drop the subscripR in our notation. Sometimes the underlying field matters. &@ample,
over the complex numbeiB, £5(x2 +x3) = 1 witnessed by the formulé + ixz) (x1 — ix2),
but over the real numbefR one hadf, (xf+x§) = 2. Suprisingly however, many results and
properties are independentRf or care only whetheR is finite or infinite, and if so whether
its charateristic is 0, 2, or an odd prime.

We will now define some computational models that satisfyitaadhl restrictions.

2.1.2 2MNZ-formulae
As the main object of study in chapter 3 we have the followirgdel introduced by [SW99]:
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Definition 2.1.5. A 2MZ-formula is an arithmetical formul& = (G,&,n) such that on any
directed pathfus, uz), (U2, uU3), ..., (Um_1,Un) in G there do not exists indicesdi < j <k<m
such thag (u) = &(ux) = x and&(u;) = +.

In other words, &MZ-formula can be thought of as having the following structufest
there is a group of addition gates computing linear form$efihput variables, then there is a
group of multiplication gates that multiply these linearms. Finally there is a last group of
gates that compute linear combinations of these products.

For a collection of polynomialp1, p2,. .., pm: £3.R(P1, P2, .- -, Pm) Will denote the size of
a smalleskl>-formula computings, p2, ..., pm- Similar as before we definfgR andégjR for
multiplicative and addive complexity. Note that in Chaehe underlying ring is assumed to
be an arbitrary field of characteristic O, for example the plaxnumber<C, and we will drop
the R subscript there.

Given azz-formula computing a single polynomiplwith smultiplication gates in some
fixed order, we can write .

p= ZlMi,
1=

d.
Mi =i,

where

and
li,j = Cijax1+Ci,j2X2 + ...+ Ci,j,n¥%n +Ci j 0

Hered; is the in-degree of th&h multiplication gate, and; j x is nonzero iff there is a wire
from x, to the addition gate computinig;. Note thatl; ; is homogeneous of degree 1, i.e.
strictly linear, ifci j o = 0, and is affine linear otherwise. For an affine linear fdrme will
denote its strictly linear part by.

2.1.3 Linear and Bilinear Circuits

Definition 2.1.6. A circuit L = (G,y,K) is called alinear circuit if it has no multiplication
gates, i.e., for each gatey(v) = +, y(v) € R, ory(v) = x; for some variable;. If for no gate
V, Y(V) € R, the circuit is callechomogeneous

For linear circuitskR will be assumed to be a field. In a homogeneous linear cirashe
gate computes a homogeneous linear form : for @geN [G], ¢(g) = a1Xq + a2+ ... + anXn
with & € R An ordered list ofk gates(gi,d2,...,0«) thus define a linear transforma-
tion R" — R¢ given by mappinga = (a1, 8z, ...,an) — (¢(d1)(a),®(g2)(a),...,®(gk)(a). A
k x n matrix A likewise determines a linear transformati®i — R¢ defined by mapping
a= (a,ap,...,an)" — Aa We denote bygi,(A) the minimum size of a linear circuit that
computes this linear transformation.

For bilinear circuits the set of variables is assumed to bditjomed in two set
{X1,X2,..., Xn} U{Yy1,¥2,...,Ym}. We will study the following homogeneous bilinear circuit
model:
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Definition 2.1.7. A homogeneous bilinear circuitis an arithmetic circuitB = (G, y,K) satis-
fying:
1. for each multiplication gate, the polynomialg(v) computed aw is a homogeneous
bilinear form in variablegxy, X2, ..., X0} U{Yy1,¥2,...,Ym}, and

2. noinput gater hasy(v) € R

For a set of bilinear polynomialp1, p2,..., Pk € R[X1,X2,...,Xn,Y1,Y2,-..,Ym|, we de-
note bilinear circuit complexity bg, r(P1, P2, ..., Pk). Similarly as before we define notation
s, s, lb, I, andly for additive/multiplicative circuit/formula size.

Any homogeneous circuit computing a linear transformatddog. can be assumed to
have no multiplication gates. Any homegeneous circuit astng a set of bilinear forms than
therefore wlog. be assumed to a homegeneous bilineartoofciiie structure defined above.

The above models will be considered under restriction o$tamts on the wires to bounded
coefficients. Generally, one could define a (families of)rmted-coefficient circuits ovet or
R by restricting constants on the wires to be have n@¢th). We will adhere to a stricter
definition, with the knowledge that typical results easigngralize tdO(1) size constants:

Definition 2.1.8. A circuit C = (G,Y,K) overC or R is called abounded-coefficierdircuit if
for everye € E[G], In(e)| < 1.

We will use the sub/superscript "bc” to indicate boundedffacient size of polynomials.
For bounded coefficient homogeneous linear circuits lowenls can be obtained through the
following result by Morgenstern:

Theorem 2.1.1 ([Mor73]) Let A be an rx n matrix, then 8 (A) > log, |det(A)|.

We define the discrete Fourier transform mabix T, by
(DFTh)ij = o,
wherew is the primitiventh root of unity, i.e.w = €¥/", Its unitary version we denote
DFT,
Nk
The conjugate transpose of a matfixvill be denoted byA*. A matrix A is calledHermitian

or self-adjointif Ax = A. A matrix is calledunitary if AA* = A*A=1. As indicated above
FnFy = FyFa=1. Alittle elementary linear algebra shows:

|det(DF T,))|? = det(DF T,)det(DF T,,) = det(DF T,,)det(DF T}) = n".

So by Morgensterns result:

Fn:

$C(DFT,) > g log,n,

which is asymptotically tight, given that the circuits foF T, as given by Cooley and Tukey
[CT65] are of sizeD(nlogn) and have bounded coefficients.
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2.1.4 Perturbation Theory

We require the following basic results from perturbatioadty, see e.g. [Bha97]. For vec-
tor X = (X1,%2,...,%) € C", we define itslo-norm by|[x||2 = /3. [Xi|2. Thelz-norm (or
spectral norm of anm x n matrix A is defined by

AX
A2 = max X2
P IXl2

and theFrobenius norms defined by

m n
Al =[5 3 1Al
i=1j=1

An eigenvalueof a complex square marik is a complex numbex for which there exist
a vectorx such thatAx = Ax. For Hermitian matrices all eigenvalues are real numbers. W
denote theth largest eigenvalue of amx n Hermitian matrixA by A;(A), i.e. we have—c <
An(A) <Ap1(a) < ... <A1(A) < o,

Theorem 2.1.2 (Weyl's Perturbation Theorem) Let A and E be Hermitian matrices. Then

max(Aj(A) - Aj(A+ E)| <|El|2

We also need the following theorem.

Theorem 2.1.3 (Hadamard Inequality) For an nx n complex matrix A with columns
a1, a,---,an,

n
det(A)] < [ laill2-
1
Intuitively speaking, for am x n matrix A, |det(A)| is the volume of the parallelipiped
spanned by its columns (or rows). This volume is maximizednaking the columns orthog-

onal, and it can then be computed by just takingrth®oduct of the lengths of these vectors.
This is essentially the content of the above theorem.

2.1.5 Cyclic Convolution

Definition 2.1.9. Thecyclic convolutionxoy of two n-vectorsx = (Xo, X1, - - - ,xml)T andy =
(Yo, Y1,---,¥Yn_1)" is then-vector(z,...,z,_1)" with components

Z= ) XY
i+j=k modn

forO<k<n.
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For example, fon =5, we get

XoYo + X4Yy1 + X3Yy2 + X2Y3 + X1Y4
X1Yo + XoY1 + XaY2 + X3Y3 + X2Ya
Xoy= [ X2Yo+ X1y1 -+ XoY2 + X4Y3 + X3Ya
X3Yo + X2Y1 + X1Y2 + XoY3 + XaYa
X4Y0 +X3Y1 + X2Y2 + X1Y3 + XoY4

When fixingx=a= (ap,...,an_1)", the induced map onis computed by the circulant matrix
Circ(a), which we define by:

aQ a1 - AR A&
a1 a - a3 &
Circ(a) = : : P
-2 an-3 - A an-1
-1 an-2 - a1 Qo

That is, we have that
xoy = Circ(x)y = Circ(y)x.

Convolution can be computed using the Fourier transforepmaing to the following folklore
result:

Theorem 2.1.4 (The Convolution Theorem)For any ac F",
Circ(a) = Fydiag(DF Tha)F,, .

In the above, for a vectot= (x1, X2, ... ,xn)T,

x1 O 0 0
0 % - 0 0
diag(x) = : :
0 0 X1 O
0 0 - 0 x

Through the convolution theorem and using ©@logn) circuits for the Fourier trans-
form, we thus obtain:
soe(xoy) = O(nlogn).
We also find it convenient to consider the “half convolutioi@fined by HCir¢x)y, where
HCirc(a) is the lower-triangular matrix

ag O --- 0 O

a ao ... 0 0
an—2 an-3 a O
an-1 an-2 ai a
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Then xoy can be obtained by adding HCijgy to the inverted vector
HCirc(Xn—1,%n-2,---,X1)(Y1,¥2,--.,Yn-1), Which can be done by bilinear (bc) circuits with
linearly many extra+ gates. Thus lower bounds a@ny extend immediately to HCi(&)y. The
convenience is that HCifg)y is definable by recursion from HCifxy, . .. ,Xn—2) (Y1, - - -, Yn—2),
needing only linearly-many extra binagygates applied tag, yo and elements ofo,...,Xn_1
andvyp,...,¥n—1 and preserving the bilinear format. Namely, zero out tha fadumn
and main diagonal of HCifa), observe that the piece in between is the lower triangle of
HCirc(ay,...,an_2) multiplying the interiorn — 2 elements ofy, and restore the summands
in the first column and main diagonal involving andyp. We use this fact in the proof of
Theorem 4.0.1.

2.1.6 Families of Polynomials

In general ifl (n) is a strict monotone increasing function on natural numbed = {p, €
R[X1,X2, .., X (n)] }n>0 is @ family of polynomials one can define the (non-uniformnpdexity
as the function defined bg(n) = s(pjn)). For uniform complexity one would requires in
addition the existence of some Turing machine that can ¢éwulgscriptions minimum circuits
for eachn, but in this document we will only consider non-uniform cdexity.

Let S, be the symmetric group. The determinant polynomjghnd permanent polynomial
M, onn? variables are defined by

n

n
Ay = sgn(0) [ % o) M= % Xi o (i)
1 T e " & e

where sgng) is the sign of the permutatiom. Note thatl1, is the same aA, except without
the sign alternations, and these are the same polynomial ieeunderlying field has char-
acteristic 2. Valiant [Val79a] proposed a theory analogmuthe theory of NP-completeness
in which the determinant and permanent play the roles ofilfsasnd infeasible complete
problem. The determinant has polynomial size arithmetoal Boolean circuits. The perma-
nent is strongly suspected not to have polynomial size itg@i either kind [Val79b, Br98].
Raz [Raz04a] recently showed that any multilinear formwmputing the permanent or de-
terminant must have siz&2(°9") . Both A, and I, are expected to require exponential size
in the ZMX-formula model. However, the best-known lower bound forhbfyg and My, is
Q(n*/logn), i.e.,Q(N?/logN) in the numbeN = n? of variables [SW99].

Next we define the elementary symmetric polynomial of degree

$ B Tcz[n] ile_1lXi.

T|=d

Ben-Or observed the surprising fact tt§thasO(n?) size>Mz-formulas, where the constant
in the big-O does not depend a@h This is done as follows. Define the polynomgit) =
NP, (t+x). Observe thag(t) = 35_,SH(X)t"9. We can compute(tp),...,g(t,) for any
given constant...t, in parallel withn+ 1 multiplication gates of degrae Now, from the
Lagrange interpolation formula, it follows that the coeffitt of t"~9, which equalss, is a
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linear combination o§(to) . ..g(t,). Hence we obtain aM3>-formula for S using a total of at
most 31 + 4n+ 1 wires. In [SW99] the following lower bound was obtained

2

65(82) > max(@(" ), Q(nd)), vl < 4n/9.

In light of the Ben-Or upper bound, we see that this is tightfe- Q(n).

2.1.7 Algebraic Geometry
Definition 2.1.10. Let Rbe aring. A subsdtof Ris anideal if,

1. foranyael,forallr e R rael, and

2. foralla,bel,a+bel.

For example, ifas, ..., as are elements dR, then the set of all elements of the foraa; +
..+rsas, withallrj € R, is anideal. Itis called thieleal generated bya. . ., as, and denoted by
ayR+...+asRorjust(ay,...,as). If for an ideal there exist finitely many elememts ... . , as,
such thal = (ay,...,as), then | is calledinitely generatedlt is a fact that the polynomial ring
Fx1,...,Xn] is Noetherianimplying that all its ideals are finitely generated.

Let 1,J be ideals. Observe,nJ is an ideal, and that the set of all elemeats b with
acl,be, is anideal. We denote it biy+ J. More generally, for a family of ideal§ls}scs,
definey ¢sls, to be the set of all sumss . sas, with as € I, as # 0, for only finitely manys.
Letl - J, be the set of all finite sunts; a;b;, with & € I,b; € J, thenl - J is an ideal.

Now letR= F[xy,...,xn]. The setF", of all n-tuples(ay,...,an) with g € F, is called
n-dimensional affine space over Fhe elements df" are calledpoints

Definition 2.1.11. Let | be an ideal irR. Theaffine variety defined by denoted by/(1), is
the subset of tuple&y, ..., a,) € F", such thatf(a, . ..,a,) = 0, for every polynomiaf € 1.

We have the following elementary proposition:
Proposition 2.1.5 For ideals |, J,{Is}scsin R, polynomials f, ..., fs € R,

V(Y sesls) = NsesV (Is).

V(1-J) =V(Huv(J).
V(R=(1))=0.

4. V((0)) = F".

The above Proposition shows that we can define a topologydimensional affine space, by
taking as closed sets all varietieshfi. This topology is called th&ariski topology

Proposition 2.1.6 Let V be a subset of E Then the set of all polynomialsd F[x, ..., %]
such that fay,...,a,) =0, for every point(ay,...,an) €V, is an ideal. This ideal is denoted

by 1(V).
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We would like to define the geometric degree of an affine wariét order to do so we
must introduce the concept of projective space. In theviofig, letR= F[Xo, ..., Xn].

Definition 2.1.12. Let P" be the set of al(n+ 1)-tuples(ay, ...,an) € F"1/(0,...,0), where
we identify pointgap, . ..,an) and(b, ... ,by), if there exista nonzemv e F, such tha& Ab;,
foralli € {0,...,n}. P"is calledn-dimensional projective spac&he equivalence class of a
point (ap,...,an) is denoted byag : ... : an).

A polynomial is calledhomogeneoysf all its monomials are of the same degree. An
ideall € Ris called homogeneous if it can be generated by homogenebysomials. For a

polynomial f € F[xg,...,X,], it homogenizationf" is defined byxgeqf ( ..,%). For an
ideall = (gg,...,0s), its homogenizatioh” is defined to be the |deagl, ,gs).

Definition 2.1.13. Let | be a homogeneous ideal it LetV(l) be the set of poinfag : ... :

an) € P" such thatf (ay,...,a,) = 0, for all homogeneous$ € |. V(I) is called theprojective
variety defined by.IConversely, iV is a subset oP", then the ideal generated by all homoge-
neous polynomial$ € F|xo,...,Xn] that vanish orV, is called thedeal of the variety V and
denoted by (V).

As in affine space, the set of all varieties M forms a topology. We can embed
dimensional affine space inf' via the mapp: F" — P", defined by mapping@ay,...,a,) to
l:a1:...:an

For a homogeneous idehin R, let |) be the set of all homogeneous polynomiald of
of degree, and letRY) be the set of all homogeneous polynomials of degré&) is a vector
subspace oRY). DefineH,(t) = codimension of V) in RY), The functionH, (t) is called the
Hilbert functionof the ideall. We have the following classical result.

Theorem 2.1.7 (Hilbert-Serre, see [BCS97], p. 178)et | be a homogeneous ideal of-R
F[Xo,.--,Xn|, and assume that ¥) is nonempty and of dimension d. Then there exist unique
integers iy, hy, ..., hq, such that the polynomial

d
T)= j;hj(gj)

satisfies t) = H (t), for all sufficiently large t> 0. The uniquely determined polynomial h, is
called the Hilbert polynomial of the ideal I.

Definition 2.1.14. We define thegeometric degreeGDEG(I) of the homogeneous ideglto
be the uniquely determined inted®y of Theorem 2.1.7. The geometric degree of a projective
varietyV is defined as the geometric degred @f).

The above is the classical definition of geometric degreembgective variety found in
algebraic geometry.

Definition 2.1.15. A subsetV of a topological spacX is irreducible, if it is nonempty, and
whenever we can writé = U UW, for setsU andW that are closed iw, then one otJ and
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W must equaly/.

Affine and projectiven-space ar&loetheriantopological spaces, which implies that every
varietyV has a unique decompositidh= V1 U...UVs into irreducible varieties, up to order of
terms. TheV’s are called theomponentsf V. When the field is algebraically closed, for any
ideall, I (V(l)) equals the radical df, defined byy/I = {f | 3n> 0, f" € I}. This gives a 1-

1 correspondence between radical ideals and varietiesdadlé algebra-geometry dictionary.
An ideall is calledprimary, if for everya ¢ I, for everyb with ab e I, it holds thatb" € I, for
somen > 0. An ideall is calledprime, if for everya,b € R, if abe I, thenaorbisinl. In
the algebra-geometry dictionary prime ideals correspoetdith irreducible varieties. Every
ideall can be written as an intersectibr= 11N ... N ls of primary ideals, called thprimary
decompositiorof I, such thaV/(l1) N...NV(ls) is a decomposition o¥(l) into irreducible
components, and with radicalél ; being unique prime ideals.

Definition 2.1.16. For a non-empty affine variety, letVi,...,Vs be the irreducible compo-
nents of the closure af(V) in the Zariski topology. We defifethe affine geometric degree

gdegV) of V by
S
GDEGV)),
2, 5PEe

This can be computed from any iddauch thalV =V(I) by calculating a primary decompo-
sition of I" asl;N...Nls and then summing GDE(GFIJ-) over the factors. By convention we
let gded0) = —1.

Two facts about affine geometric degree:
1. gdegfF") = 1.
2. If f is a polynomial of degred > 1, then gde¢V/ (f)) < deqf).

The main fact we will use about degree is the following fronBBéZzout’s Theorem stated as an
inequality:

Theorem 2.1.8 (cf. [BCS97], p. 181)or affine varieties X and Y, we have that

gdedXnNY) < gdedX)-gdedY).

1Caution to the reader: this differs from [BCS97], def. 8,28.decomposing(V) rather thaV. This makes
the affine case subordinate to the projective case, and &medi1.8 merely specializes the statement in [BCS97].



Chapter 3

Lower Bounds on2l12-formulae

In contrast to the case of Boolean circuit complexityanthmetical circuit complexity we
do not currently have exponential lower bounds (for “ndturaathematical functions) against
constant-depth circuits, or even constant-depth formitasase the underlying field has char-
acteristic zero. Shpilka and Wigderson [SW99] noted thahdower bounds are unknown
even for formulas that are sums-of-products-of-sumsZii& formulas defined in chapter 2.
These formulas have notahlpper-bound powebecause they can carry out forms of La-
grange interpolation, including that needed to computesyinemetric polynomial§ (defined
to be the sum of all degreimonomials inn variables) in quadratic size. This heightens the

contrast because the Boolean majority function, which éagous tcSL”m, requires exponen-
tial size in constant-depth Boolean circuitsg$88]. Thus Mz formulas present a substantial
challenge for lower bounds, as well as being a nice smalésoadel to study.

The multiplicative size/* of an arithmetical formula or circuit with gates of bounded
or unbounded fan-in can be taken as the total fan-in to migltifpon gates. Lower bounds
on ¢* imply lower bounds on the total circuit/formula siZetaken as the number of wires
in the circuit/formula. The best known lower bound for gexterithmetical circuits has re-
mained for thirty years th@(nlogn) lower bound or?* by the “Degree Method” of Strassen
[Str73a] (see also [BS82, BCS97]), which however appliesoime simple functions such as
f(X1,...,%) =X} +...+x3. Shpilka and Wigderson [SW99] proved lower bounds/omf
Q(n?) for & whend = O(n), nZ @ for S with small values ofl, andQ(N?/ polylog(N))
lower bounds for the determinant, with = n?. Of course, many natural arithmetical func-
tions including the permanent [Val79b] are conjecturecetuire exponential size (fdi) for
general circuits, let alonElNMZ ones. Straight counting of equations for monomial coeffitse
show that “generically” functions need exponential sizeowdver, Strassen’s technique has
the limitation thatQ(nlogn) is the best lower bound for a polynomial of total degn€&) in n
variables that it can prove, and the main methods of [SW38hge have a similar limitation of
Q(n?) for M3 formulas. Shpilka [Shp01] gets past this only in some furtiestricted cases,
and also considers a depth-2 model consisting of an anp#kanmetric function of sums. This
barrier provides another reason to study Ifi€& model, in order to understand the obstacles
and what might be needed to surpass them.

In this chapter we prove a shanp lower bound or* for M< formulas for the function

17
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f(X1,...,%) =X +...+ X, computed over the real or rational numbers, and a lower botind
n?/2 over any field of characteristic zero. Note the absenc&p€® notation. These lower
bounds are obtained via a new notion we introduce, namelyesistanceof a polynomial.
A technique is introduced for proving up to quadrafidZ-formula size lower bounds for
polynomial with high resistance.

Next we prove lower bounds on the total complexitior some of Shpilka and Wigder-
son’s functions that are significantly higher (but still spadratic) than their bounds dh
when the degred of the function is small. This is done intuitively by exploig a closed-form
application of the Baur-Strassen “Derivative LemmaZ{dZ formulas, showing that and all
of its nfirst partial derivatives can be computed with only a contstactor increase i and/*
overZZ formulas forf.

3.1 Preliminaries

Let us recall the computational model.2A1%-formula is an arithmetic formula consisting of
four consecutive layers: a layer of input gates, followedabgyer of addition gates, followed
by a layer of multiplication gates, followed by the outputir®¥$ can be assumed to be present
only between consecutive layers. For a polynomidk(p) will denote the size of a smallest
>MZ-formula computingp. Given aZlNZ-formula for a polynomiap, we can write

S
p=i;|\/|i,

d.
Mi = TTiLlij,

where
and

Heredi is the in-degree of thigh multiplication gate (fix any order on the multipicationegs),
andg; j k is nonzero iff there is a wire from to the addition gate computirig;. Note thatl; ;
is homogeneous of degree 1, istrictly linear, if ¢ j o = 0, and isaffine linearotherwise.

3.1.1 Affine Linear Subspaces and Derivatives

An affine linearsubspacd of F" is a set of the forrA =V +w= {v+w:veV }, whereV is
a linear subspace &, andw is a vector inF". The dimension oA is defined to be the vector
space dimension of.

Let X = (x1,...,Xn) be ann-tuple of variables. For any affine subspacave can always
find a set of variableB C X, and affine linear formg, in the variables<'\ B, for eachb € B,
such thatA is the set of solutions ofx, = Iy : b € B}. This representation is not unique. The
setB is called abaseof A. The size/B| always equals the co-dimensionAf

To indicate how one obtains a base, say dim r and letR be ann x r matrix whose
columns form a basis &f. Then

A={RB+w:BecF'}
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Since row-rankR) = col-rankKR) = r, there must be independent rows. L& be anyr x r
submatrix ofR with independent rowsB is taken to be the set of variables corresponding
to rows not inS. Any specified vector of valuea can be obtain for variables iK/B: set

B =S !(a—w). Then the variables iB are determined. Thus the affine linear forlpsre
given byRgp = ReS 1(X/B —w). Denote byRg the rows ofR that are inB, andX /B the
r-vector of variables not iB.

In the following, whenever we consider an affine linear salssg\, we assume we have
fixed some basB of A. Any of our numerical “progress measures” used to prove td@eends
will not depend on the choice of a base. The following notioesdepend on the choice of a
base:

Definition 3.1.1 ([SW99]). Let A be an affine linear subspacefot, and letf € F[xy,...,Xa].
Then therestriction of f to Ais the polynomial obtained fronfi by substitutingly, for the
variablex, for eachb € B, is denoted byfa. If W is a set of polynomials, defing/, =
{fial feW}.

Then we define:

Definition 3.1.2. For polynomialf € F[xy, ..., Xn], define the first order gradient mapping :
F"— F" by

Df(ala"'aaﬂ)k: _(ala"'aan)‘

For linear polynomial = c1x1 + ... + CnXn + Co, we denotd = cixq + ... + chX,. For a seSS
of linear polynomialsS' = {I": h € S}. We have the following proposition:

Proposition 3.1.1 Let S be a set of s polynomials of degree 1 fropuF. ., X,], such that 8
is an independent set. Then the set of common zeroes of Sé&sliakdar of dimension & s.

Proof. LetV be the set of common zeroes®¥ V is a linear space of dimension-s. Since
S'is an independent set, one can conclude there existgh that for all € S, 1(v) = 0. All of
v+V vanishes o for vV €V, 1(v+V) = 1"(v+V) +c=1"v) +1NV) +c=1(v) +I1"V) = 0.
Coversely, if forw, for all | € S, 1(w) = 0, then writingw=w +v. 0=1(w) = (W +V) =
"W + V) +c= 1MW) +1"(v) +c = INW) +1(v) = I"(W), sow €V, sow e v+ V. m

3.2 Resistance of polynomials

We introduce the following notion.

Definition 3.2.1. A polynomial f in variablesxy, X, ..., X, is (d, r, k)-resistantif for any poly-
nomialg(xs, Xz, ..., Xn) Of degree at most, for any affine linear subspaéeof codimensiork,
there exists ath order partial derivative of — g that is non-constant oA.
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For a multiseX of sized with elements taken frorfixs, xo, . .., X, }, we will use the nota-

tion %%f to indicate thedth-order derivative with respect to the variables<inAn elementary
fact is that the order of taking derivatives does not matter.

For polynomials with terms of different degrees, the miduieameter in the definition
might be useful. However, typically in the applications set to be deg) — 1. Convention
will be that when we say a polynomidilis (d,k)-resistanf we meanf is (d,deqd f) — 1,k)-
resistant.

Definition 3.2.2. For a polynomialf (x1, Xz, ..., X,) we define itgesistance factor (f ) by

M(f) = max{—1 . fis (d,k)-resistan}.

We have the following theorem:
Theorem 3.2.1¢5(f) > deg f)u(f).
The above theorem will follow from the following general ués

Theorem 3.2.2 Suppose (x1,X2,...,Xn) is (d,r,k)-resistant, then
k+1

13(f) > (f+1)m-

Proof. Consider a&MZ-formula that compute$. Remove all multiplication gates that have
degree at most. Doing so we obtain &l formula # computingf — g, whereg is some
polynomial of degree at most Say ¥ hass multiplication gates. Write:

f S
—gzi;Mi,

d.
Mi =i,

where
and

The degree of each multiplication gatefnis at least + 1, i.e.d; >r +1, foreach <i <s.
Now select a seb of input linear forms using the following algorithm:

S=0
fori=1tosdo
repeatd + 1 times:
if(3j € {1,2,...,di}) such thaS"U{I;} is a set of independent vectdteen
S=Su{li;}

Let A be the set of common zeroes of the linear formS.iSinceS” is an independent set, by
Lemma 3.1.1A s affine linear of co-dimensiofg < (d+ 1)s.
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Claim 3.2.3 If at a multiplication gate Mwe picked strictly less than-d1 linear forms, then
any linear form that was not picked is constant on A.

Proof. Each linear forni that was not picked had already was in the span &F, for the set
Shbuild up so far. Hence we can write= ¢+ 1" = ¢+ ¥ 4 scqg", for certain scalarsy. Since

eachg” is constant o\, we concludé is constant or. O

We conclude that for each multiplication gate at least ortb@following holds:
1. (d+1) input linear forms vanish oA, or
2. less thar{d + 1) linear form vanishes oA, and all others are constant An

For each multiseX of sized with elements fron{xy, X2, ..., %), thedth order partial derivative

04(f—g)

o (3.1)

is in the linear span of the set

di
{l_llij 1 1<i<sJC{1,2,...,d},[d=d}

J:l
j¢d

Consider I<i <sandJ C {1,2,...,d;} with |J| =d. If item 1 hold for multiplication
gateM;, then

di
M (3.2)
=1
j¢d

vanishes o, since there must be og that vanishes oA that was not selected, given that
|J] = d. If item 2 holds forM;, then (3.2) is constant oA

Hence, we conclude that (3.1) is constantorsincef is (d,r, k)-resistant, we must have
that the codimension dk is at leask+ 1. Hence(d + 1)s> k+ 1. Since each gate iff is of
degree at least+ 1, we get that

kK+1

03 >(r+1)——-:.

3(F) =+
Since ¥ was obtained by removing zero or more multiplication gatesnfazlnz-formula
computingf, we have proven the statement of the theorem. O

To prove lower bounds on resistance, we supply the folloengna that uses the syntac-
tic notion of affine restriction. In certain cases this wil bonvenient.
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Lemma 3.2.4 Over fields of characteristic zero, for any<dr, k > 0, and any polynomial
f(x1,X0,...,Xn), if for every affine linear subspace A of codimension k, tlegists some dth
order partial derivative of f such that

deq ad—f )>r—d+1
0X J1a" ~
then f is(d, r, k)-resistant.

Proof. Assume for every affine linear subspageof codimensiork, there exists somdth
order partial derivative derivative dfsuch that

deq<ad—f> )>r—d+1
X )\~

Let g be an arbitrary polynomial of degreeThen
Fig) _ (@1 o
X Jia  \OX X))
_ <0d_f> _(ad_9>

d
, has degree at least-d + 1, whereas the terré%)

d
The term (%) can have degree
A

|
at mostr —d. Hence deg(

d . . .
d ffg> |A) >r—d+1>1. Since over fields of characterstic zero,

oX

. , . , . : df_
syntactically different polynomials define different mapys, we concludg% must be non-
constant orA. 1

Let us make the following important remark: taking part@d®s not commute with affine

.. o . . d+1
restrictions. For example, it is possible for %ﬁsﬂi to vanish onA, but to have somg% to
be non-constant oA. This appears to be counter-intuitive at first sight, but glay a role in
application.

3.2.1 Applications

We will now prove some lower bounds on tB€1>-formula size of a few selected explicit
polynomials.

Sum of Nth Powers Polynomial

Considerf = 3! ; x". For this polynomial we havelZ-circuits of sizeO(nlogn): for each
variablex; separate use logn repeated multiplications to comput@ and add up the results.
This can be shown to be optimal using Strassen’s degree theBw that method we know
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any circuit for f has sizeQ(nlogn). The following section investigates lower bounds>dms -
formula size forf. The obviousM>-formula has additive size? wires in the top linear layer,
and hasy multiplication gates of degre® We prove that this is essentially optimal.

Lemma 3.2.5 Over fields of characteristic zero, the polynomiak=fy ! ; x" has resistance
factor y(f) > n/2.

Proof. We will show thatf is (1,n— 1)-resistant. Let be an arbitrary polynomial of degree
deqg f) —1=n—1. Lettinggy,...,gn denote the first order partial derivativesgfwe get that
theith partial derivative off — g equal

¢t —gi(xa,..., %)

Note that theg;’s are of total degree at most- 2.

We claim there is no affine linear subspace of dimension gréain zero on whicH
is constant. To show this, it suffices to show thias not constant on any affine line "
Consider an arbitrary affine line, parameterized by a véeiab

X = G +dit,

wherec; andd; are constants for all € [n], and with at least ond; nonzero. Therf’(:;T*ig)
restricted to the line is given by

n(c + dit)nfl —hi(t),

for some univariate polynomialg(t) of degree< n—2. Since there must exisbme isuch
thatd; is nonzero, we know some partial derivative restricted éodffine line is parameterized
by a univariate polynomial of degree— 1, and thus, given that the field is of characteristic
zero, is not constant for 4l O

Corollary 3.2.6 Over fields of characteristic zero, a@y1=-formula for f= S ; x" has mul-
tiplicative size at leasty2.

Proof. By Theorem 3.2.1¢5(f) > deg f)u(f). Applying Lemma 3.2.5, we get th&f(f) >
n%/2. ]

In case the underlying field is the real numberandn is even, we can improve the above
result to prove an absolutely tighf lower bound. We start with the following lemma:

Lemma 3.2.7 Let f =3[! ; X". Over the real numbers, if n is even, we have that for any affine
linear subspace A of dimensionk1, ded f») = n.

Proof. Sincef is symmetric we can assume without loss of generality tratalowing is a
base representation Af

X1 = l1(Xg,. .-, %)
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Xkt2 = |2(X1, R ,Xk)

X = lnok(X1,-- 05 %)

Then
fla=x1+.. X+ 1T+ 10

We conclude thaf|, must include the termj, since eachi has a non-negative coefficient for
the termxy, sincen is even. O

Theorem 3.2.8 Over the real numbers, for even n, abiyiZ-formula for f= S ; x" has mul-
tiplicative size at leasth

Proof. Using Lemma’s 3.2.4 and 3.2.7 we conclude that over the rgabersf is (0,n— 1)-
resistant. Hence, by Theorem 3.2.2 we get #éf) > deq(f)] = n?. O

Let us note thatf = 3 ;X" is an example of a polynomial that, even for lamjehas
relatively few, namely only, partial derivatives. This makes application of the padexiva-
tives technique of [SW99], which we will describe and extenthe next section, problematic.
Conversely, for polynomials that have many partial deives, in a sense to be made more
precise, the technique of [SW99] can be more straightfaivimits application than the re-
sistance technique. The problem of analyzing preciselytwghthe minimal dimension of an
affine linear space on which— g is non-constant can be quite hard for a given polynorhial
and arbitraryg with degree less than def).

Blocks of Powers

Supposa = n? for somem. Consider the th blocks ofm powers” polynomial

m im
f= X,
i;j_(il_llml :

The straightforwar@&lnz-formula for f, that computes each term/block using a multiplication
gate of degree, is of multiplicative sizen®/2. We will show this is tight.

Proposition 3.2.9 The blocks of powers polynomial f defined abov@®jsn— 1)-resistant.

Proof. Consider an affine linear space of codimensionl. For any basB of A, restriction to
A consists of substitution of the— 1 variables irB by linear forms in the remaining variables
X/B. This means there is at least one term/bl8¢ck= ﬂ‘jﬂ(i_l)mlxﬁn of f whose variables
are disjoint fromB. This blockB; remains the same under restrictiorAtoAlso, for every other
term/block there is at least one variable that is not assigoe As a consequencB; cannot
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be cancelled against terms resulting from restrictioA tof other blocks. Hence d¢fja) =
deg f). Hence by Lemma 3.2.4 we have tifais (O,m— 1)-resistant. O

Corollary 3.2.10 For the blocks of powers polynomial f defined abdéf) > nm= n®2.

Proof. Follows immediately from Theorem 3.2.2 and Proposition®.2 O

Alternatively, one can observe that by substitution of daalde y; for each variable ap-
pearing in thath block one obtains from ZMN=-formula # for f a formula forf’ = 3",y
of the same size a&. Corollary 3.2.6 generalizes to show tigtf’) > 1n%2, which implies
o5(f) > 3n%/2,

Polynomials depending on distance to the origin

Over the real numbers2 + x5 + ... + x2 is the Euclidean distance of the poix, Xz, .. ., Xn)
to the origin. Polynomials defined in terms of this distanaa easily be seen to be highly
resistant.

For example, considedr= (X2 + X5 +...+x2)™. On any affine lind in R" the distance to
the origin must vary, which implie$ is non-constant oh. In other words, over the real$,is
(0,n—1)-resistant. Hence by Theorem 3.2.2 we get that

Proposition 3.2.11 Over the real numberg((x2 +x3 + ... +x2)™) > 2mn.

Observe that by reduction this means that theh*power of an inner product polynomial”,
defined byg = (X1y1 +X2Y2+ . .. +Xayn)™, must also hav&lz-size at least@nover the reals
numbers.

Symmetric Polynomials

The special case @D, k)-resistance implicitly appears in [Shp01], or at least ifiassdhat the
sufficient condition of Lemma 3.2.4 is used for the specigkch= 0 in which no derivatives
are taken. For the elementary symmetric polynor§jaf degree > 2 in nvariables Theorem
4.3 of [Shp01] implies, using Lemma 3.2.4, tigtis (0,n— nT*'r)-resistant. Shpilka proves for
r>2,43(S,) = Q(r(n—r)), which can be verified using Theorem 3.2(2(S,) > (r + 1)(n—
ML) = Q(r(n—r)). Forr = Q(n) this yields a tighQ(n?) bound as observed in [Shp01].

3.3 Bounds for +,*-Complexity

The partial derivatives technique of [SW99] ignores theewiof the formula present in the first
layer. In the following we show how to account for them. As sulewe get a sharpening of
several lower bounds, though not éhbut on total formula size. The main idea is to utilize
a closed form of the Baur-Strassen Derivative Lemma as omeleave it forZlN>-formulae.
Let us describe this closed form here.
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Consider &Mz-formula ¥ computing a polynomiagb. Then one can write

S
pzi;Mi,

d.
Mi =TT 415,

where
and

Hered; is the in-degree of th&h multiplication gate, and; j x is nonzero iff there is a wire
from x¢ to the addition gate computinig;. Hence, using the addition and product rule for
partial derivatives, we get for arky

% s di a|i7p di

_ |
0% izlpzl 0% [

=1

i#p

= ; > Cipk |‘| - (3.3)

We need a circuit-gadgé®(z;,2,, . ..,74) that computes altl products ofd — 1 distinct
input variables. Such a gadget can be constructed withQ{ide many wires:

Proposition 3.3.1 For each d> 1, there exists a circuit 21,2y, . .., z4) that consists 08d — 6
multiplication gates and at mo6tl — 12 wires that computes all € 1 products of d- 1 distinct
input variables.

Proof. Let us construcG inductively. Gy(z,2) is taken to consist of just the input vari-
ablesz; andz. Suppose we have constructégd. Let g; be the gate irGy that computes
212p...7Z_1Z4+1...29. Add a new input gate for variabley,;. Add ag gate that multi-
plieszg andzy, 1. Peform the substitutiory = z4 - 4. 1 by replacing each wire going from
Zg to a gate by a wire that goes fromto that gate. For K j < d, gi how computes
212p...Z-1Z4+1...24Z4+1. The gategy computes1z,...z3_1. Hence add a multiplication gate
with input gy andzy and one with inputyy andzy. 1 to compute the products “excludirgg”
and “excludingzy . 1”. We added three multiplication gates and 6 wires in the atid, which
proves the Proposition. O

From the expression given f(% in (3.3), one can thus obtain a circuit that computes

(g—)f;, g—)g,...,g—xﬁ’]) from ¥ by first replacing each multiplication gak4, which has arityd;, by

a gadgeGy, taking inputd 1,lj 2, ...,li . Then add an addition gate for edcbf arity

52"

Gi,p k0
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that compute% according to (3.3). This layer is the mirror image of the lagemputing
the linear formsfu: there is a wire going from variabbe with constant iff there is a wire

with constantc going from the output of théth gadget that excludds; to the gate forg—)g.
(Seen as linear transformations these layers are eaclsdthaspose). We can conclude the
resulting circuit for the partials has twice the number aofesifanning into addition gates, and
by Proposition 3.3.1 has at most 6 times the number of wimnasifig into multiplication gates.
When we utilize the above structural results, it turns oat the partial derivatives/affine
restrictions technique factors through, allowing us tawethe [SW99] result for *-complexity:

Theorem 3.3.2 ([SW99])Let f € F[x1,...,X)]. Suppose for integers, B,k it holds that for
every affine subspace A of co-dimensiodim(dq(f)a) > D. Then

K2
15(f) > min(,

+d));

—~
o X

—to our result for +,*-complexity:

Theorem 3.3.3Let f € F[xy,...,X)]. Suppose for integers B, K it holds that for every affine
subspace A of co-dimensi&nz{‘:1dim[ad(g—;i)m] > D. Then

2
(1) = mint 5. ?d)»

K
d

Comparing the two theorems, we see that the result by ShailkaWigderson provides
a lower bound on multiplicative complexity, while our reisgives a lower bound on thtetal

number of wires. We do get an extra “factdrof additions with thez{‘zldim[ad(g—)z)m] >D

condition compared to just difdq(f) ) > D. Potentially this can lead to improved lower
bounds on thé¢otal size of the formula, better than one would be able to infemftbe lower
bound onmultiplicative complexity of Theorem 3.3.2 alone. We shall see that we cdeed
get such kinds of improvements in the applications sectejavia

We employ the following suite of concepts and lemmas from §8\irectly. We include
proofs for completeness in case they are fairly short.

Definition 3.3.1 ([SW99]). For f € F[x1,...,Xn], let 04(f) be the set of altth orderformal
partial derivatives of w.r.t. variables from{xy,...,Xn}.

For a multiseX of d variables, for any polynomial f, denote tteh derivative off by variables
X by g—;. Then

dq(f) = {% : Xis a multiset ofd variablesc {x1,X2,...,Xn}}.

For a set of polynomialé = {f1,..., i}, let spaifA) = {S!_,cifi | ¢ € F}, i.e. spafA)
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is the linear span oA. We write dimA] as shorthand for difspar{A)|. We have the following
elementary sub-additivity property for the measure[djtf)].

Proposition 3.3.4 ([SW99]) For fq, f2 € F[xq,...,Xy] and constantsicc; € F,

dim[ad(cl fi+co fz)] < dim[ad(fl)] + dim[ad(fz)].

Proof. By the addition rule for (formal) partial derivatives:

aclf1+czf2_0%+ o0fy
X tax T Pax

Hence each basis vectoradg(ci f1 + c2f2) is in the span 08qy(f1) Udg(f2). Since for vector
spacedA andB, dim(sparfAUB)) < dim(A) +dim(B), we get the statement. O

One also needs to bound the growth of gt f)] in case of multiplication. For multipli-
cation of affine linear forms, we have the following two boand

Proposition 3.3.5 ([SW99]) Let M= M, l;, where each;lis affine linear. Then
dim[ag(M)] < (&)

Proof. spanfq(M)) C span{Micgli | SC [m],|§ = m—d}. ]

For a producM = M!_,|; of affine linear forms, we defink" to be the sefl!,... 1" of
strictly linear parts of its input linear forms.

Proposition 3.3.6 ([SW99]) Let M be a product gate wittimM"] = m, then for any d,

dim[3g(M)] < ().

Proof. Letly,ls,...,Inasetof input linear forms for Whic{ig‘, ey Irr},} are independent. Then
any other input linear form; of M is a linear combinatiom; = ay jl1 +agjlo+... 4+ amjIm.
We have

m k
Mzr!h-ﬂ (agjli+agjlo+...+amjlm) = p(ls,l2,...,Im)
L

for some polynomiap(y1,Yo,...,Ym). Hence by the chain rule, and the fact that %\ws a

constant, we can see that the set ofiéitl-order derivatives df1 is contained in the Ilnear span
of

d9p .
{ <0d1y10d2y2.. .admym> . :foranyd; > O withd; +da+...dn=d},

where 4a” is the substitutiony; = l1,y2 = l2,...,Ym = Im. Since there areémjd) ways of
writing d as a sum ofn non-negative integers, we get the result. [l
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Note that for polynomialsfy,..., fs, sparify,..., fs)a = spar{fia,..., fsa), and that
dimWa] < dimW]. Now we modify Proposition 3.3.4 a little to get a result inojily used by
Shpilka and Wigderson in their arguments.

Proposition 3.3.7 (cf. [SW99]) For f1, f, € F[x1,...,X] and constantsigc; € F, and affine
linear subspace A, we have thditn[dq(c1 f1 4 C2 fz)\A] < dim[ad(f1)|A] + dim[ad(fz)‘A].

Proof. By the addition rule for (formal) partial derivative and thetfact that substitution is a
homeomorphism on gets that

ocifi+cf;  0fs o0fs
oX |a “Lox |A+CZ 0X |A

Hence each basis vector ég(c1f1 + C2 f2)|A is in the span oﬁd(fl)muad(fz)m. Since for
vector spaces andB, dim(sparfAUB)) < dim(A) +dim(B), we get the statement. m

Finally, we require:

Lemma 3.3.8 ([SW99]) For every nk,d, and every affine subspace A of co-dimensgiowe
have that

dimda(S) ] = (57%).

Proof. The polynomials® is multilinear, so onlydth-order derivatives with respect tbdis-
tinct variablesD = {x,,X,,...,Xi,} Will be potentially non-zero. LeK be the set of alh
variablesx;. Observe that

05'(X) _
h 2 — Sl 4(X/D).

From [Got66] as used by [SW99] one has that
sparf{S’_4(X/D) : for all subset® c X of sized})

has as basis the set of all multilinear monomials in varell®f degreed. There are(”a'()
such monomials that are unchanged under the restrigiomhich gives the result.
[l

Now we can prove our sideways improvement of Shpilka and figmh's main Theo-
rem 3.1 from [SW99].

Proof of Theorem 3.3.3. Consider a minimum-siz&lNz-formula for f with multiplication
gatesMy,...,Ms. We have that
S
f = ZlMi,
i=

where for 1<i < s,
Mi = M54l

with
i,j = Gi,jaX1 + G,j2X2 + ... + G jnXn + G j 0,
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for certain constants j xk € F. Computing the partial derivative dfw.r.t. variablex, we get

s G

6Xk le |JkIIJ (3-4)

Let
S={i:dimM/ > k}.

If |S| > &5, thenls(f) > d+2 Supposes < gi3. If S= 0, then letA be an arbitrary affine
subspace of co-dimensian Otherwise, construct an affine spatas follows. SinceS|(d+
2) < Kk and since for each € S dim[Mih] > K, it is possible to pickd + 2 input linear forms
lj1,---,j.d+2 of each multiplication gat; with j € S, such that{ljf"l,...,lj-r"d+2|j cShisa
set of|§(d + 2) < K independent homogeneous linear forms. Define

A={x:1ij(x)=0, foranyie S je[d+2]}.

By Lemma 3.1.1, we have that the co-dimensiorAaé at mostk. W.l.o.g. assume the co-
dimension ofA equalsk. For eachi € S d+2 linear forms olM; vanish onA. This implies
that

dim(dg (1) a] = 0.

)

for anyi € S For anyi ¢ S, by Proposition 3.3.6,
M;
d|m[ad( )|A] < ().

LetDyg = dlm[ad( )|A] By Proposition 3.3.7 and equation (3.4),

Hence there must be at leastk- terms on the r.h.s., i.e. there are at least that many wires

d
from xk to gates in the first layer. Hence in total the number of wicethé first layer is at least
zl K+d) (K?d) . D

d

We can apply a similar idea to adapt the other main Theorem [8/\/99]:

Theorem 3.3.9 ([SW99])Let f € F(x1,...,Xn]. Suppose for integers, B,k it holds that for
every affine subspace A of co-dimensiodim(dq4(fa)) > D. Then for every m» 2:

D
M

23(f) > min(km,
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We get:

Theorem 3.3.10Let f € F[Xy,...,X]. Suppose for integers B, k with d > 1, it holds that for

every affine subspace A of co-dimens{orz{‘zldim[ad(g—L‘A)] > D. Then for every n» 2,

D
’(m—l))'

d

I3(f) > min(%Km

Proof. Consider a minimum sizElN-formula for f with multiplication gatedMy, ..., Ms. We

have that <
f= Mi7
2,

d.
Mi = TiLqlij,

where for 1< i < s,
with

If there are¥ multiplication gatesM; of degree greater tham then alreadylz(f) > %Km.
So suppose the numbeof multiplication gates of degree greater thars less tharf, and
enumerate the gates as

M1,Ma, ..., M;
of multiplication gates that have degree greater tmarfrori = 1,2,..., pick two input linear
formsl; 1,li > of Mj, such that for the total collectida 1,11 »,...,lj 1,li » we have that the strictly
linear partd®,,11,,..., 11, 1N, are independent. It might be that at somet, we cannot find

any lj 1 or lj » with Iih1 or Iih2 independent from the previously collected linear formsthiis
case, we just piclq71’ if that one is still independent, and skip to the next indei we can’t
even findl 1 for whichl 1 is independent, we pick no linear form and proceed to the inext

Let A be the zero set of all the collected input linear forms. TAdmas co-dimension at
mostk, by Lemma 3.1.1. Without loss of generality we may assumetkigaco-dimension of
A equalx. Observe that

of s d M;
— = Ci.j k() A 3.5
an|A i;gl I’J’k(|i,j)‘A ( )

Now for a multiplication gatéV; of degree> m, there are three cases: either we picked two
input linear forms oM;, or we picked just one, or none at all. In the first case,

in the r.h.s. of (3.5), for all, j. In the second and third case, we know that for every ihmdt
M; that was not picked,h is a linear combination df"s for lj’s that were picked. Hence

=Y ci(I4) = constant
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Asa consequenc(a,')l"—;)‘A = constantin the r.h.s. of (3.5), for &Jlj. Sinced > 1, in either three
cases, we obtain tha&(:\iﬂ_;m) = 0. For multiplication gateb/; of degree at mosh, Proposition

3.3.5 gives us that di[ﬂd((l'\i"—]!)m)] < (g~ 1), LetDy = dlm[ad(ax |A)] By Proposition 3.3.4,

we see there are at |e:{s¢/([j“—1) terms in (3.5). This implies that there are at least that many
wires fanning out oky. Adding up for all variables, we conclude thatf) > D/(g‘*l). O

3.3.1 Some Applications
2d
In [SW99] it was proved that fod < logn, £5(S%) = Q(@). Note ford = 2, this lower

bound is onlyQ(n). We can apply Theorem 3.3.3 to prove the following strongesel bound
on the total formula size &&9. In particular ford = 2, we get arQ(n%) bound.

2d

Theorem 3.3.11For 1 <d < logn, ¢3($%) = Q("51).

Proof. For any affine subspace A of co-dimensioandd > 2 we have that

Zdlm ad 1 |A] > dim c')d S%d |A an).

The latter inequality follows from Lemma 3.3.8. Applying@drem 3.3.3 we get that

2 n—K 2 n—kK
Setk = in a%1. Then we have that
Nn—K
(4 ) k+d . (n—K)dK-i-d
(ktdy d k+d” d
N 8/9n  4k+d
~ 2/ona’ d
_ 4dnH%K+d
d
49
> —Nnd+l
- 9o
2d
> Nna+L,

2d
Hence (2) is at least migfG g, ndin) = Q("%
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Corollary 3.3.12 £3(S}) = Q(n*/3).

Another function considered in [SW99] is the product of irpeoduct function. For two
inner-products, i.e. @variables, it is defined by

PIP; = (J_Zlaj by)(3 aid)

Note the lower bound in [SW99] oRIPS for the special casd = 2 is Q(n). We can prove
a non-linear lower bound for this function as follows. As &&srwe know this is the first non-
linear lower bound on th&lMNz-formula size otPIPr%.

Setd = 1,k = n?/3. Observe tha% = bidj. Let A be any affine subspace of co-

dimensiork with basisB. At leastn—k varlables in{by,...,bn} are notinB. Symmetrically,

at leastn — k variables in{dy,...,dn} are not inB. So for at least{n — k)? indices (i, j),
2 2

%F;Zh =~ %F;:T‘. These are independent terms, hencel@it®IP7)a] > (n—k)?. Observe the

fact that for anyf (x1,...,X,) and any affine subspaéewe have that

Zdlm ad \A] > dlm[6d+1(f)|A].

n#/3 (n—n?/3)2

i) = Q(n/3). We have proved:

Applying Theorem 3.3.3 we get thaPIP? > min(“5-

Theorem 3.3.13/3(PIP?) = Q(n*/3).

More generally, we can apply Theorem 3.3.10 to obtain img@dogxponent for lower
bounds orPIPY. We define over @ variable sets of siza (superscript indicate different vari-
ables, each variable has degree one):

d n
PIPY = Xyh.
P

Theorem 3.3.14For any constant d> 0, 3(PIPS) = Q(n#1).

Proof. Let f = PIPY. Essentially we have that

of  ipypd-1
0_)(ij =Y,PIPy 7,
where thePIP9—1 must be chosen on the appropriate variable setAlls an arbitrary affine
linear subspace of codimensiganThen

d n f d n

i;jzldlm[ad 1(3—.|A)] = i;gldim[ad_l(yijp|pr?1|A)]

> (dn—k)dim[dg_1(PIPS 1|p)]
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The last inequality follows because at ledst— k of the y-variables are not assigned to with
the restriction toA. From Lemma 4.9 in [SW99] one gets

dim[dg_1(PIP9=Y|5) > nd—1 — 220-1pd=2,
Using Theorem 3.3.10 we get

2 o(rd-1 92d-1d-2
r) 2 min(y, AP )
d-1

Takingk = nﬂ%, one gets for constaxtthat

¢3(PIPY) = Q(nd).

For comparison, in [SW99] one geﬂgPlPﬁ) = Q(na%),

3.4 Conclusion—Possible Further Tools

We have taken some further steps after [SW99], obtaininghbeolately tight (rather than
asymptotically sop? multiplicative size bound for a natural function, and obiag somewhat
higher bounds ont, x-size for low-degree symmetric and product-of-inner-pcidpoolyno-
mials. However, these may if anything enhance the feelioghffSW99] that most of the
concepts being employed may go no further than quadratiofger bounds. One cannot after
all say that a functiorf (xs,...,X) is nonvanishing on an affine-linear space of co-dimension
more tham. The quest then is for a mathematical invariant that scadgerid linear with the
number of degreeé-or-higher multiplication gates in the formula.

One tool that has so far disappointed comes from variousdafthedegreenotion used
by Strassen [Str73a]. The gradient of the sunmtbipowers function, namely the regular
mapping(x’l‘*l, ...,x"~1) hasalgebraic degree g§= (n— 1)" at each of its points in the range,
and likewise the “mapping ideall; — xQ‘l, ...,¥Yn—X2~1) hasgeometric degreén—1)" (see
ch. 8 of [BCS97]), which is the highest possible for a dedmee-1) regular mapping. The
attraction here is that the gradient of a multiplicationegate. of a producty,...,zy, has
algebraic degree onlyjn— 1, although its mapping ideal has exponential geometriceseg
1+ (m—2)2™1 A 3MN3 formula with s multiplication gates of degree and total fan-in
N =5 ,di can be decomposed as a composition of a linear mapFdto FN, then a vector
of multiplications in variablegs, ..., zy, and then a singular linear transformation back fo
A similar decomposition holds for formulas computing thadjent (and higher derivatives) of
the function. If the two linear maps did not affect the algatdegree of the composition, then
by the product rule for degree one would get the inequality

7]

daﬁl (di —1).
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Upon finding a way to dispense with multiplication gates ajrée less than (or degreeo(n)),
similar to what we did in the proof of Theorem 3.3.3, this inality would yield quadratic
lower bounds orf3( f) for a great variety of function$. Unfortunately the linear mao af-
fect the algebraic degree, and the inequality is false.dt taur computer runs have found that
randomZlZ formulas consisting of one *-gate of fandnand some small number of binary
multiplication gates already achieve the maximum possilgebraic degree. It is possible that
deeper uses of algebraic/geometric degree may yield anviarihat scale to exponential size,
but the simple notion’s failure to pass even the quadratestiold is not promising.

Suspiciously absent in current lower bound techniqueszfaE-formulas are random
restriction type arguments, whereas all the resultsHooleanconstant depth circuits of
[Ajt83, FSS81, Yao85, BHs89] proceed using random restrictions. Note that Raz gesna
to use random restritions in conjunction with a partial dsives based technique in his work
on multilinear arithmetical formulas [Raz04a, Raz04b]. In any event, #arch for stronger
mathematical techniques to prove exponential lower boumtthe self-containedllN formula
case continues.
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Chapter 4

Orbit of Bilinear Forms

The seminal motivation of this and the next two chapters reboove a major restriction from
notable recent lower bounds by Raz [Raz02] arioigBsser-Lotz [BLO2]. The work will be
done exclusively over the fiel@ of complex numbers. We are interested in borrowing the
following set of concepts from representation theory, sgeekample [NS82]. Note also the
work by Mulmuley and Sohoni [MS02], who have outlined an aygmh via geometric invariant
theory to showing B- NP and other questions, involving some of the same basiceqpbsi.c

Definition 4.0.1. Let G be a group an be a complex linear spacé {0} and denote by
Linc(X) the set of all linear operato — X. A group representationis a mappindl : G —
Linc(X) such that

1. T(e) = idx, whereidy is the identity operator oK, ande s the identity of the groufs.

2. forallgy,g2 €G,T(9102) = T(g1) o T(g2).

We are interested in the special case whereis taken to be the vector space
C[X0,X1,--.,X—1]m Of homogeneous polynomials of degreein variablesxg,X1,...,Xn_1
over C, and considerindgs to be a group oh x n invertible matrices under multiplication.
Then for invertible matrixE € G, we can define linear transformatidn(E) by mapping
f € Clxo,X1,...,X—1]m according to:

T(E)(f) = f(E"1x).

In other words, for vector of variables= (xg,X1,...,X_1)", mappingT(E) is defined by
performing the substitution

X = (E"1x);. foreachi=0,1,...,n—1,
on the polynomialf. This defines a linear transformation ¥n
(Rf+9)(E™%) = pf(E™™%) +9(E™X),

for any constanfi, any homogeneous polynomidiandg of same degree and invertible matrix
E. It also is a representation, for the identity matriX (1) is the identity map and for any two

37



38 CHAPTER 4. ORBIT OF BILINEAR FORMS

invertible matrice€ andD,

f((DE) !
= f(E'D 'x)
= T(D)f(E™x)
= T(D)oT(E)f.

T(DE)(f) = (DE) "x)
1

For a homogenous polynomiéland group representation Gfas above the set
{f(Ex):EcG)

is called theG-orbit of f. More generally for multi-output polynomial mappings givey a
tuple of polynomialsF = (f1, f2,..., fm) we define thes-orbit of F to be the set

{(f(E7X), f2(E7X),..., fm(E"1X)) : E € G}.

We are interested in proving sweeping lower bounds on thienaetical complexity of all poly-
nomials f (E~1x) that appear in th&-orbit of some explicitly defined polynomidl (or more
generally for a multi-output polynomial mappir¥g), for certain matrix group&. In particular,
we will focus on bilinear multi-output mappings over disjbvariable setgxo, X1, ...,Xn—1}
and{yo,¥1,...,Yn-1}. In that case it is more natural to let two matridesandD act on the
variables separately. We define:

Definition 4.0.2. Let E and D be n x n non-singular complex matrices, and lgt=

(X0,X1,...,%_1)T andy = (Yo,y1,...,¥n_1)" be vectors of variables. Aarbit circuit is the
composition (Ex, Dy), wherel is a bounded-constants bilinear circuit. The size of theudtr
is taken to be the size 6f.

To emphasize, the entries of the matrieesndD above are not restricted to be of norm at most
one. An orbit circuit thus has the potential help ef2nany unbounded constants, although
flowing through only B-many input gates. In Section 4.3 we also consider having :am
matrix at the output gates.

If for a bilinear mappind(x,y) one proves that any orbit circuit that computes it requires
sizes, this means that for any invertibe andD, the polynomialo(E~1x,D~1y) must have
regular circuit size at leass. Namely, from the ordinary circuit:

r(xy)=b(E 'xDly)
we obtain an orbit circuit of sizeby substitution:
[ (Ex Dy) = b(E"'Ex,D~*Dy) = b(x,y)

that compute®. In this sense, any of our results that follow prayenericlower bounds on
entire families of polynomials. Even when we are forced tkenurther restrictions on the
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groupskE andD are taken from, or even drop the entire group concept, anictqussider sets
of matrices, this should be kept in regard. The computaktiomalel may seem increasingly
exotic this way, but from the point of view of provirggnericlower bounds no such objection
holds.

First, any bilinear circuitC can be converted to an orbit circditof the same size with
diagonal matricek andD. If gis a-+ gate withmoutgoing wires with constants,...,cyand
constantgl, e on its incoming wires, then we may takdo be the maximum ofcy,..., |Cm|,
replace eacl; by ¢;/c (which has norm at most 1), and mate ce the new constants on the
incoming wires. Ifg is ax gate, we need only propagatd, e upward. Iterating this from the
outputs up pushes all unbounded constants up to the winestfre inputs. Repeating this one
more time pushes the unbounded constants onto the inputséhees as nonnegative reals,
and they can be the entries BfandD. None of the final constants will be zero unless the
corresponding input was already zeroed out. Thus the oritetwith G = GL,(C), namely
the group of all invertible complex matrices, is no less gahtaan the unbounded-coefficients
case (possibly more so, i andE have high circuit complexity by themselves). Actually, the
above shows that takinG to be the group of all invertible diagonal matrices yields edei
equivalent in power as the unbounded-coefficients caseachye could take the matrices at
the input to be constant multipled of the identity matrix, and multiply by the appropriate
constants less than one to correct for this at the cost ohgadinary addition gates.

Note that in Chapter 6 we will establish some orbits modekEolounds relative to diag-
onal matrices for circular convolution.

Things become more interesting with= SL,(C). If (the function computed byg ignores
inputsxg andyp, then we can create diagonal matri€e& of determinant 1 by taking the first
entry to be ¥K"~! and the remaining entries to g wherekK is the maximum real constant
obtained in the pushing-up process. The tiny entrpiand E gets thrown away while the
large ones feed the bc-circuitleft over from the process. If we insist on attention to fimics
f that depend on all of their inputs, then lower bound techesahhat tolerate two unbounded
“help gates” (not needing thé—¢ allowance in [BL02]) still imply lower bounds in the general
case, withxg andyp becoming the help gates. If we disallow this but “relax” omdrcuits I
by allowing access also to the un-transformed inpgtandyg, we can still prove rigorously
thatSL,(C)-orbit be-circuit lower bounds imply unbounded-coeffidilwer bounds, for half-
convolution and functions with a similar recursion:

Theorem 4.0.1Bilinear circuits C of size s computindCirc(x)y can be converted into “re-
laxed” SLy-orbit circuits ™ of size s+ O(n) computingHCirc(x)y.

Proof. ConvertC to I'p by pushing up constants as before, along with the above d&go
D,E € SLy(R). Now reducd o by zeroing the constants outxifandyp, splicing out gates their
wires connect to. The resulting circuit computes HGUC. .. ,Xn—2) (Y1, ---,Yn—2). Finally use
the free access to the untransformed inpgtandyy to re-create HCir(x)y as above, adding
2n-manyx gates and 2— 1 + gates at the outputs. On produggy; with i > 0, the constark
ony; from D is counter-acted by a constantkLon the wire fromxg, and similarly for products
XiYo. This yields the desired “relaxed” orbit bc-circiiit O
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The significance of the orbit model is threefold. Firstlyisinatural and bridges between
the bounded coefficient and general cases. Secondly, itdetee proof methods of Raz and
Burgisser-Lotz. Thirdly, the orbit model leads to cuttinggedgroblems in Fourier theory, as
we show.

The proofs in [Raz02, BL02] rely on bounding the volume-exgian factor on allr-
dimensional subspaces 6f', for some value = ©(n). Matrices of this form can expand
volume in many of these subspaces by the unbounded fiicfor rather byK"), and it seems
not to matter that the first co-ordinate is crushed 2. We adapt these methods for cases
where we can avoid or contain this problem.

The backbone of our lower bound technique will be the sama §Raz02, BL02]: to
simplify the bilinear circuit into a linear circuit usingetprobabilistic method. The idea is to
fix scalar values = (ap,as,...,ay 1) for x= (Xo,X1,-..,Xn_1) such that the X side” of the
bilinear bc-circuitl”, which computes linear forms sdy(x), ¢2(X), ..., ¢k(X), keeps the values
[01(a)],[¢2(a)l,...,|lk(a)| “reasonably small” while leaving the complexity of the iroeal lin-
ear mapA(yo,...,Yn—1) “high”. Substituting those values at thegates and building them up
additively from bounded constants leaves a bc-linear tikCewomputingA of the same order
of size ad”, hencd™ must obey the size lower bounds known r

Recall we defined theyclic convolution %y of two n-vectorsx,y as above is tha-vector
(20,...,2Zn—1) With components

Z= > XY
i+j=k modn

for 0 <k < n. In terms of circulant matrices:
xoy = Circ(X)y.

Our main focus in this and the next two chapters will be toldith orbit model lower
bounds for this bilinear form. We conjecture:

Conjecture 1. For any twon x n matricesE andD with determinant equal to one, any bounded
coefficient bilinear circuil” with I'(Ex, Dy) = xoy requiresQ(nlogn) gates.

We also believe the statement of the conjecture holds farranp matrices€ andD, but obtain-
ing unbounded constant lower bounds seem hard with knowmigges, whereas the above
conjecture seems to lie within our present reach. The cangds equivalent to asserting that
any bilinear map in th&L,(C) orbit of xoy requires bounded coefficient circuit s@¢nlogn).
One must be careful here, for example one cannot prov&LaiC)-orbit lower bound for the
tri-linear formp(x,y, z) = z' Circ(x)y. Namely there exists a polynomial in tBé&,(C)-orbit of

p that has linear size! By Theorem 2.1.4:

Z' Circ(x)y = Z' Fydiag(DF Thx) Ry

so if we substitute’ := z'F¥, y := Ry, X := Fpx, we get the polynomial

vnZ' diag(x)y = \/ﬁf‘iZiXiYi-
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This polynomial can be computes by a circuit of size+30(log+/n) = O(n), by com-
puting each of the termsx;y;z and add these, and next usi®glog./n) repeated additions
to multiply by /n. The key point in this example is that we are dealing with @lsioutput
circuit. For example, using the repeated addition trick tdtiply n outputs of a circuit by,/n
would cost®@(nlogn) in size, since you have to repeat for each output indiviguall

4.1 Definitions and Background

We next introduce some of the required concepts. We will idproofs for completeness in
case they are short.

4.1.1 Standard Gaussian vectors

A random vectorx € C is calledstandard Gaussiaif the real and imaginary parts of all
components; comprise 2 independent standard normally distributed random vaegbAn
important fact is that if is any unitary transformation, thdfx is again standard Gaussian
distributed, see e.g. [BLO2].

For an r-dimensional linear subspatewe say that a random vectars standard Gaussian
distributed inU if we can writea = Byvi + ... + BrVv;, where is standard Gaussian i@’
and{v; }; is an orthonormal basis faJ. This representation is independent of the choice of
orthonormal basis.

We will use the following two Lemmas from [BL02]. A random valblet is exponentially
distributed with parameted if it has density functionp(t) = et for t > 0, andp(t) = 0
otherwise.

Lemma 4.1.1 ([BLO2]) Let(xq,...,X,)" be standard Gaussian i@". Let f= (fy,..., fy)7 €

C". Then S= fix1 +...+ fXx, is normally distributed with mean 0 and variankté”z. Fur-

2
thermore, T:= % is exponentially distributed with parameter 1. Hence T haamand
variance both equal to 1.

As in [BL0O2], when we say a vectare C" is normal distributed with mean 0, we mean
that the real and imaginary parts of each compogesrte normal distributed random variables
with mean 0.

Lemma 4.1.2 ([BLO2]) Let z= (z,...,z)" be a normal distributed random vector@{ with
mean 0. Define the complex covariance malriof z to be entry-wise expectation of the outer
product zz, i.e. £ = E[zZ]. Then we have

1
Prjz|*- - |z|* > & det(Z)] > >

for some absolute constabit- 0. More preciselyd = 2~ Vv29) with y = %Tfowt_%e*t logtdt,
andg= 1 [°e 2 log’tdt. (Hered is approximately0.02.)
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4.1.2 Mean Square Volume & Matrix Rigidity

Given anm x n matrix A and setd C {1,...,m} of row indices and C {1,...,n} of column
indices, definéy ; to be the matrix of elements with row indexlimnd column index id. We
let Ay stand forA 1 ny andA! for A(1,...m1,- Pervasive in this work will be applications of
the Binet-Cauchy theorem, which states:

Theorem 4.1.3 (Binet-Cauchy Theorem)Let A be an nx n matrix and let B be an sk m
matrix with n> m. Then

defAB) = 5  defA')detB)).
1C{1,2,....n}
[I|l=m

It is well known that the volume of the parallelepiped sublesh by the rows of a matrix
A e C™"Nis given by|detA)|. Morgenstern [Mor73] proved that lodet(A)| is an asymptotic
lower bound on the size of a linear arithmetical circuit witbunded coefficients computing
the linear transformation given . For further lower bounds it is useful to define variations
of volume forr-subsets of then coordinates. The two versions [BLO2, BLO3] of the work
by Burgisser and Lotz refer to two different-v¥olume” notions, and it suits our purposes to
include both, giving them different names.

Definition 4.1.1 ([Raz02, BL0Z2]). GivenA € C™" andr such that I< r < minm,n, define

vol; (A) = m§><(det(A|A|*))1/2, (4.1)
Vol (A) = “Wﬁgr(ldemu)l)- (4.2)

The centerpiece definition in [BLO2, BLO3], however, inve$vtaking the Euclidean norm
rather than the max-norm.

Definition 4.1.2 ([BLO2]). Given A € C™" andr such that 1< r < minm,n, define ther-
mean square volumasy (A) of A by

1/2
msy (A) = (Z|det(A|7J)|2) :

wherel andJ range over alf-subsets 0f 1,2,...,n}.
These definitions are related by:
Lemma 4.1.4 ([BLO2, BLO3], respectively)For A and r as above,

Vol (A) < msw(A) < (MY3(])Y?voli (A), (4.3)
vole(A) < msw(A) < (MY2vol, (A). (4.4)
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Proof. The inequalities given in (4.3) are immediate. For (4.4) Tiseorem 4.1.3. O

An important fact is that mean squar@olume is invariant under unitary transformations.
That is:

Proposition 4.1.5 For m x n matrix A and any unitary matrices d C™™Mand Ve C™",

msy (A) = msy (UAV).

Proof. By the Theorem 4.1.3:

mSV?(A) = Z del(M|,|),

H=r

whereM = AA*. Hence the right-side invariance m&¥) = msy (A), for any unitraryV is
clear:ms¢(AV) = 5 det(N ), for

N = (AV)(AV)* = AVV*A* = AN = M.
For the left-side invariance, it is clear from the definitibiat for any matrixB,
msy (B) = msy (B*).
Hence the left-side invariance follows from the right-sickariance by observing that
msy (UA) = msy ((UA)®) = msy (A*U™) = msy (A*) = msy (A).
L]

So one can express m$m) in terms of thesingular value decompositianf A as folows.
We first define:

Definition 4.1.3. Theith singular valueo;(A) is defined to be
Gi(A) = Ni(AK")YZ,
whereA; (AAY) is theith largest eigenvalue @&fA*.

The singular values of a matrix are non-negative real nusmieecall the following theo-
rem (See e.g. [Bha97]):

Theorem 4.1.6 (Singular Value Decomposition)ror any mx n matrix A, there exist unitary
matrices Ue C™Mand Ve C™", such that

UAV = diag(01,02,...,0n),

whereag1 > 0 > ... > 0, > 0 are the singular values of A.
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Hence by the unitrary invariance of mean-square-volumeave khat
msV(A) = msV(UAV)

= msV(diago1,02,...,0n)

A

= 9(0%,03,...,02),
where§, is the elementary symmetric polynomialmfariables of degree
There is also the following characterization of the singulalues of a matrix (See
[Bha97]):

Theorem 4.1.7 (Courant-Fisher minmax Theorem)Let A be an nx n, matrix then for any
i=212...,n,

oi(A) = max rginO |||ﬁ()|(|||2,
scen
dmS=i /10} 2

where S ranges over all linear subspaces of dimension i.

From this it is immediately clear that for any matix o1(A) = ||A||2. Also one has that
A2 = 0%(A) + 03(A) + -+ GX(A).

As we have remarked above, mss not preserved under transformationsSim(R) (un-
lessr = n). The following theorem states the use of the mean squareneimeasure for
proving lower bounds.

Theorem 4.1.8 ([BL0O2]) For A € C™" and 1 < r < min(m,n), we have that a linear
bounded-constant circuit computing A has size at l&zsmsy (A) — % log(M)(})-

Next we introduce Raz’s notion of geometric rigidity.

Definition 4.1.4 ([Raz02]). Let A € C™" be a matrix with with row vectors;, Ther-rigidity
of Ais defined to be

rig, (A) = min maxdist(a;V),

whereV ranges over all linear subspacesd%, and dista,V) = minycy ||[a— V|2

This notion relates to thevolume measures defined above in the following sense:
Lemma 4.1.9 ([Raz02]) For any r, vo}(A) > rig, (A)".

If one considers an arbitrary topological sorting of theegabtf a bounded coefficient linear
circuit fq, fo,..., fs,then we can think of thé’s defining ans x n matrix A. One can argue that
each gatd; can at most double thevolume:

V0|r(f1, fo,..., fi) < 2-V0|r(f1, fo,..., fi—l),

which implies vo} (A) < 23, for any bounded-coefficient linear circliitcomputingA. Com-
bined with the above Lemma this then gives:
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Theorem 4.1.10 ([Raz02])For A€ C™" andl1l <r < m, every linear bounded-constant cir-
cuit computing A has size at leadobgrig, (A).

We will use the following Lemma from [BL02]. Here fdr,a € C", we think of f as a linear
form via f(a) = f*a.

Lemma 4.1.11 ([BLO2]) Let fy,..., fx be linear forms andL < r < n. Then there exists a
linear subspace U oE" of dimension r such that fora U standard Gaussian, we have that

Primax|fi(a)| < 2(vVIn4k)rig, (f1,..., ()] >

NI

4.2 Well-Conditioned Orbit Circuits

In this section, we will consider orbit circuifS(Ex, Dy) for which matricesE andD arewell-
conditionedin the following traditional sense.

Definition 4.2.1. The condition number(E) of a non-singular matrixE is defined to be

the ratio gigg of its largest and smallest singular value. This is the saméa product

IIE||2- ||[E7Y|2 (see [GvL96]). We will fix some absolute constaqt and stipulate that a
well-conditionedmatrix E hask (E) < Kj.

Let us remark that well-conditioned matrices miat form a group. Unitary matrices have
condition number 1, and do form a group. That the resul{Bb®2, BLO3] carry over to orbits
under unitary matrices follows immediately on theside” because the image of a standard-
Gaussian vector under unitary transformation is standaxgs&an, and on theg Side” because
unitary transformations preserve mskor bounded condition number, thgside” needs only
the following easy proposition:

Proposition 4.2.1 For any two nx n matrices A and B where B has determinant equal 1, for
anyl<r < n,ms\¥(AB) > K(B) “ms\(A).

Proof. Applying Theorem 4.1.6, ld8 =UDV be the singular value decomposition®fThen
ms\?(AB) = msV¥(AUDV) = ms¥(AUD). So the general case reduces to the case whBere
is diagonal with real entries. So assuBe- diag(by,...,bn). Observe that eadh > k(B) 1.
Hence

mMsV(AB) = I ;|detAB); ;|2
= 21 5[] Ibjl?| detA 52
Ll

> K(B)_2r2| 7\]| detA ,J|2
= K(B)"ZmsV(A).
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O

However, the % side” needs more care that the deviation from standard @augsstribu-
tion incurred in going fronx to Exdoes not disturb the statistical machinery by too much. The
crux of the matter lies in the following generalization of @thma in [BLO2].

Lemma4.2.2Letl <r <n, andlet E and D be an » n complex matrices with determinant
1 that are well-conditioned. Let U be a linear subspace ofatision r, and let a be standard
GaussianinU. Then

. 1 1
Prisis (Circ(E)D) > 5rlogn—cn] > .
where ¢ is some absolute constant.

Proof. By Theorem 2.1.4, we can write
Circ(Ea) = Fadiag(Ao, . .., An—1)F L,

where
(Ao,..-,An_1)" =DFTLEa

A By invariance of mean-square-volume under unitary t@msétion, we get that

Leta:ﬁ

msV(Circ(Ea)) = msv(diago,...,An-1))

~ ZJI;!]P\HZ
= anJI;!I|GJ'|27

whereJ ranges over all subsets §1, ..., n} of sizer. By definition of standard Gaussian, we
can writea =V 3, whereV is ann x r matrix with orthonormal column vectoxs, ..., v, andf3
standard Gaussian . LetW = F,EV. Thena = F,Ea= FR,EV[3 = W.

For a subsed of {1,...,n} of sizer, let W; be the sub-matrix 0¥V consisting of rows
indexed byJ, and leta; = (cxj)jTeJ. Observe thati; = Wj3. The covariance matrix alj is
given by

2 = E[oyaj]
= EMIBR"W;]
= WE[BB" Wy
= WjWj.

The last line follows becausp is standard Gaussian distributed. We get tha{Xjet
|detW;)|2. Applying Theorem 4.1.3 yields that

Z | detw; | = detW*W) = detV*E*EV).
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n-1

We claim now that defV*E*EV) > Kl_2r ", wherek; > 0 is a global constant. To prove
the claim, observe that in terms of singular valog€V) we have

r

detV*E*EV) = _rloi(EV)z.

By Theorem 4.1.7:
or(EV) = min ||EVX|2.

[IX][2=1
SinceV has orthonormal columns, farwith ||x||2 =1, ||V X||2 = 1. So for anyx,

IEVX|2 > min [[EZ|2 = on(E).

l1Z|2=1

For the matrixe we have .

1=def{E*E) = rloi(E)z,

and by well-conditioning th igg < K1, Wherek; is an absolute constant. Hence we conclude
that

_n-1

or(EV) >0n(E) >k ",

and hence that
—2rnl

de(V*E*EV) >k~ ",

thus proving the claim.
Hence we conclude that there exists akstich that

—ornl o
detWs)[* >k~ " (1)

Applying Lemma 4.1.2 to the vectaor;, we get that with probability greater th%rthat

[/ail* 28 detz) = 8%, 7yt

le

whered is an absolute constant. Hence

pn=l o Y
n (p) 1an6rK12r2 n

ms\?(Circ(Ea)) > N8k, -
Hence by Proposition 4.2.1,
ms\¢(Circ(Ea)D) > n'8'k, 42",

Hence applying Theorem 4.1.8 we get:
$¢(Circ(Ea)D) > logmsy(Circ(Ea)D) —log (?)

r
> élogn—cn,
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wherec is an absolute constant. O

Combining the above lemma with Lemma 4.1.11 in the same nmaami@ [BLO2] yields
the main theorem of this section.

Theorem 4.2.3 Any orbit circuitl” (Ex, Dy), where E and D have determinant equal to 1 and
are well-conditioned, computing cyclic convolutiomyxmust have(nlogn) gates.

Proof. Let '(Ex, Dy) be an orbit circuit computingoy. Fixr = %n. Canceling the ma-
trices E and D, we get thatl (x,y) computes Cir(E~x)D~ly. Let fy,..., fx be the lin-
ear forms computed by the circuit In(x,y). in the variables,...,X,. To be precise, if a
gate computes;xj + ... + CnXn, then it corresponding linear form as a vectof(ds, . . . ,cn)T.
Let R=rig, ,(f],...,f]). Observe thaE~! andD~! have determinant 1 and are well-
conditioned as well. By Lemmas 4.2.2 and 4.1.11, there®aisa € C" such that:

1. s(Circ(E~*a)D~1) > 3rlogn— cn, for absolute constar and

2. max|fi(a)| <2vIn4kR

Leta = max | fi(a)|. Thenl (a,y) computes the linear mapping CiEeta)D~1. Asin [BL0Z],
we can make this circuit into a bounded-constant lineauifuy:

1. replacing each multiplication with(a) with a multiplication by 2~1f;(a), and

2. multiplying each output witl§ using at most lo¢f) additions and one scalar multipli-
cation of absolute value at most 2.

Letting S(I') denote the size df, we thus obtain a bounded-constant linear circuit that has
at mostS(I") + nloga < S(I') + nlog(2v/In4kR) gates computing CifEta)D~1. We can
assume < n?, and by the rigidity bound of Theorem 4.1.10:

Sr)>L(ff,.... 1) > (n—r)logR—n. (4.5)

So we obtain the inequality
S(I) +nlog(2v4neR) > 2 logn—cn,
which together with (4.5) yieldS(I') = Q(nlogn). O

To summarize, the main idea in the above proof is that the éwonlas show the existence
of a valuea to fix for x, so that simultaneously the values of the linear fofata), .. ., /k(a) are
manageably small and the bc-complexity of the resultingdimmap iny is high. The values
¢1(a),...,¢(a) are small enough that the linear circuit obtained from thegiwal bilinear bc-
circuit " by plugging them in and deleting th& Side” can be converted into a linear bc-circuit
adding not too many gates, leading to the conclusionltheself must have been large.



4.3. ORBIT CIRCUITS WITH EXACTLYN MULTIPLICATION GATES 49

4.3 Orhbit circuits with exactly n multiplication gates

In previous sections we explained why it is still difficultppoove super-linear lower bounds on
SLy(C)-orbits of natural functions, but we obtained such lowerrmtswhen the matrices have
bounded condition number. Now we show that if we resfricd have onlyn multiplication
gates, then a tigh2(nlogn) lower-bound on the complexity of cyclic convolution apgliéor
arbitrary matrices irSL,(C) acting not only at the inputs but also at the outputs. ketenote
the entry-wise product of vectors, i.@ x b); = a;bj, for eachi.

Theorem 4.3.1For any0O< € < % for all but finitely many n, for any g n matrices CD, E
such that
E(Cxx Dy) = Circ(x)y,

one of the following conditions must hold:
1. |detC)| or |detD)| is at least #*%%), or
2. |defE)|is at least A".

We note that such a circuit exists, via Theorem 2.1.4. Thefprorks by showing that up to
movable factors this representation is essentially unique

Proof. Given that the range dfirc(x)y equalsC", we note that the matri€ must be non-
singular. For K k< n—1, define am x n matrix VK by

(V)ij = (G Di)kj,

for0<i,j <n-—1, whereC; andD; denote theth row of C andD, respectively. Now we note
some elementary lemmas:

Lemma4.3.2For 0 <k, j <n—1, (EVK); = €. j mod n Where e denotes the ith standard
basis vector, andEV¥); denotes the jth column of BV

Proof. (EV¥); = E(Vf), where

Vf = ((C¢Doj,-- - (Cg_an—l)kj)T :

For eachi, (CiTDi)kj is the coefficient of the termyy; computed at multiplication gate
since there we compute polynomid;ix)(Djy). HenceE(VX) equals then-vector of coeffi-
cients(ry,...,rn), wherer; equals the coefficient ofy; in (Circ(x)y)i, which in turn equals

€+j modn- [

Lemma4.3.3For0<k<n-1,

vk = E~Ushift(l,k mod B,
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where Ishiftl i) is the matrix obtained by wrap-around shifting the columhtlay i steps to
the left.

Proof. Using Lemma 4.3.2, we get that

k :
EV® = € modn:€:1modn: -+ »&:n—1 modn = IShift(l,k modn)
SinceE must be invertible, we get the Lemma. [

Lemma 4.3.4 For 0< k < n— 1, VK = Ishift(vk-1 modn 1),

Proof. Using the fact thalshift(AB,i) = A-Ishift(B,i) and Lemma 4.3.3 we get that
Ishift(vk-1MOdn 1) _ |shift(ELshift(l,k — 1 modn), 1)
— E lshift(Ishift(l,k — 1 modn), 1)
= E~Yshift(l,k modn)

= VK
L]
Lemma 4.3.5For 0<i < n-1, the matrix qTDi is a circulant matrix with
(G Di)st= (G Di)g 4 modn,t+1 modn’
forall 0<st<n-—1
Proof. Consider arbitrary & s,;t < n—1. Then using Lemma 4.3.4 we get:
(CiT Di)st = Vi
- Vi;llrpn%%nn
= (C'Di)s_1 modnt+1 modn:
L]

Proposition 4.3.6 All entries of C and D must be nonzero.

Proof. Suppose on row of C there is a zero entry. The@) D; has one of its rows all zero.
By Lemma 4.3.5 this implies thﬁiTDi has all entries zero. This means the output ofithe
multiplication gate is always zero. Hence the output of tineudt is strictly contained irC",
which is a contradiction. For example, foe= e, Circ(x)y = ly. By symmetry, we conclude
that alsoD must have all entries nonzero. O



4.3. ORBIT CIRCUITS WITH EXACTLYN MULTIPLICATION GATES 51

Lemma 4.3.7 For 0 <i < n-—1, there exists an nth root of unity f such that®x j <n—1,
Cij=1fC, 1modn» and
Dij = fDi,j+1 modn-

Proof. Observe that if somé satisfies the above, thd! = 1. Fix 0<i <n—1. Let us use
the short=hana; andd; for the entriesCi; andD;j, respectively, and we drop the madn
the subscript, assuming all indexing is done nmody Lemma 4.3.5 for ang andt, and any

numberl, csdk = cs_diy. Fixt =0 andl = —1. Since all entries of andD are non-zero, we
get for anysthat

G dn—1

Csy1 o

Let f = %1, For0<j<n-1,
do

fc i C C
j+1 = j+1=Cj.
j Cii1 ] j

Similarly we get for any &< | <n-—1, that

which implies the statement for tti®;’s of the Lemma, and note the multipliéris indeed the
same foiIC andD. O

The above Lemma tells us that for each rowhere is a root of unityf and nonzera;
andb; so thatC; = (&, fa;,..., f"ta), andD; = (b, fbj,..., f"1b;). Itis not to difficult to
see that these multiplier must be distinct for different soiamely, if fori # |, rowsi and
j use the same multiplier, th&ly = ACj andD; = &Dj, for certain scalard andé¢. But then
(Cix)(Diy) = A&(Cix)(Diy). In other words théth andjth multiplication gate are restricted to
be some fixed scalar multiple of each other. Hence the inpHtitoof dimension less tham,
hence the output of the circuit has dimensiom, which is a contradiction.

So the full set{a’,w,...,w" 1} with w = e”M/M js used. Without loss of generality we
assumaV is used for rowi. Hence we get

C =diagay,...,an—1)DFTy
D = diagbo,...,bn—1)DFTh. (4.6)

From (4.6), and the fact the@tiTri :0<i <n-1}is alinearly independent set withequal
theith row of DFT,, we obtain:

Proposition 4.3.8 The set of polynomialgCx x Dy); : 0 <i < n—1} is linearly independent.
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The above proposition tells us that there is exactly oneimBtisuch thate(Cx x Dy) =
Circ(x)y. It can be verified that the matrix

1

1 1
E — DFT*diag——,...,— ).
n n g(aobo anflbnfl)

works, via Theorem 2.1.4.

We now complete the proof of this section’s main theorem. Let=
diag(agbo, . ..,an_1bn 1), dc = |detdiag(ay,...,a,-1))|, anddp = |detdiag by, ...,bn 1))|.
Then|detA)| = dcdp. Fix 0< £ < 1/2. If dc > n~"¢/2+1/4) ‘then

|det(C)| = dc| det( DFT,,)| = den™2 > n(1/4-¢/2),

Similarly if dp > n—"¢/2+1/4) then|detD)| is at leasn"(%/4-¢/2) Otherwise|detA)| is at
mostn—"(E+1/2) This implies that detE)| is at leasne™. O

As a corollary to the above theorem we get the following:

Corollary 4.3.9 For any nx n matrices E, D and F with determinant equal to 1, any orbit
circuit FI(Ex,Dy) with exactly n multiplication gates computii@jrc(x)y must have size at
leastQ(nlogn).

Proof. Let My andMy be the linear maps computed at the input in thendy variables, re-
spectively, and lei, be the linear map of the circuit at mapping the values frontigiidation
gates to output. These are all maps fr@hto C". By Theorem 4.3.1 one of the three linear
mappings, call i, of the output circuit must have determinant of absoluteeait leash™ 6.

The mapM can be written as a product of a determinant-1 matrix thas e@& count towards
the circuit size, and another matfikthat is computed by gates. Hence using Theorem 2.1.1,
the number of gates to computeis at least log"/6 = Q(nlogn). O

The above corollary implies a lower bound on bounded-caefftccomplexity (when re-
stricted ton multiplication gates) of the entire biline&L,(C)-orbit of the mapping Cirx)y.
Namely we have:

Corollary 4.3.10 For any two nx n matrices E and D in S|(C), the size of a bounded-
coefficient circuit with n multiplication gates computi@grc(Ex)Dy must beQ(nlogn).

4.4 Orbits of ZNZ- Formulae

In this section we extend our lower bounds from chapter Il formulas with arbitrary
linear transformations at the inputs. These linear transétions might themselves requiné
formula size. More precisely, we consider orbit circuitdtedf formC(EX), whereE € GL,(C)
andC is azlNx-formula. To emphasize, constants on wires are unresiritiet /3( f) denote
the smallest number of wires ford1%-formulaC for which there exists invertible matri
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such thatC(Ex) = f. RegularzlnZ-formula size, that is fixind to be the identity map in the
above, is denoted bg(f).

We refer to [SW99] for definitions and basic results used enftilowing. In addition, let
us note that for polynomia and affine subspacdeof codimensior, we can represerfis by
a substitutionf (Bx+ b) for some matrixB of rankn—k and vectob. For a set of polynomials
T, dim[{t(Bx+b) : t € T}] is the same for aB of equal rank and fixed vectdx

Lemma4.4.1Let g€ Clys,...,Yn] and let Ec GL,(C). Suppose f = g(Ex). If it holds that
for every affine subspace A of codimensigrdim(dq(f)a) > D, then also for every affine
subspace B of codimensigndim(dq(g) g) > D.

Proof. Suppose there exists affine subspBad codimensiork such that dir{ﬂd(g)‘B)] <D.
LetS=09(g), S(EX) = {S(Ex) : s€ S} andT = d9(f). Observe thal C sparfS(Ex)). Suppose
restriction toB is represented by substitutigBx+ b). E~1B is also affine of codimensiox,
and by the remark before this lemma,

dim(0(f)g-15] = dim[{p(E~'Bx+E~'b) : p€ T}]

Since{p(E~1Bx+E~b) : pc T} is contained in the span &Bx-+ b), we obtain a contra-
diction. 0

Theorem 4.4.2Let f € C[xy,...,%n|. Suppose for integers B, K it holds that for every affine
subspace A of codimensi@ndim(dq1(f)ja) > D. Then

K2 D

03(f) > mln(d+2, (Hd)).
d

Proof. Supposef = C(EXx), whereC is a2z formula withIz(f) many wires and is some
invertible matrix. Write Letg = C(y). Observe that by Lemma 4.4.1 we have to any affine
of codimensiork,

Zldlm ad ‘A] > dim[0q1(9)a] > D. 4.7)

LetMy,...,Msbe the multiplication gates &. We have thag = S ; M;, where for 1<i <s,
M; = Nl with deg(l; ) = 1 andd; = indegM;). Write | j = ¢i j1y1 +Cij2y2 + ... +
Ci,j,nyn+Ci j 0. Computing the partial derivative gfw.r.t. variableyy we get:

ag S 4 M;
-9 4.8
oy 2 2 O (4.8)

Let S= {i|dim(M[") > k}. If |§ > g5, thenl(f) > d+2 SupposéS < g%5. If S=0, then
let A be an arbitrary affine subspace of codimensiorOtherwise, we havd +2 < K. Itis
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possible to pickd + 2 input linear formdj s,...,lj 412 of each multiplication gaté; with

J €S such that{ljh’l,.. d+2|] € S} is a set of at moskt independent homogeneous linear
forms. DefineA = {y|l;, ,( ) 0,i€ §je[d+2]}. We havecodim(A) < k. Wlog. assume
codim(A) = K. For each € S d+2 linear forms oM; vanish orA. This implies that

dlm(ad(M

I )ja) =0.
ij

Fori ¢ S, by Proposition 2.3 in [SW99],

dlm(ad(M

T )|A) (§+d)'
i

LetDy = dlm(ad(a—g)‘A) By equation (4.7)5;_, Dx > D. By Proposition 2.2 of [SW99] and
equation (4.8),

M
Dy < dim(a
k > % Im( d(llj
Gi,j k70

)IA)-

Hence there must be at leasty- terms on the RHS, i.e. there are at least that many wires

from yi to gates in the next Izdiyer. Hence in total the number of wioeamning out from the
inputs ofC is at leasty"_; (K%r) > (K—Eor). O
d d
We compare the above with Theorem 3.3.3 and Shpilka and \Wigdis Theorem 3.3.2.

Let us define
Pak(f)= min  dim[dqy(f)a]
codima)=k

Lemma 4.4.1 implies that for in the GL,(C)-orbit of g, i.e. f = g(EX), for some non-singular
matrix E, thatpq «(f) = pa k(g). However, it does not hold in general is that

min dim[dq( = min dim[dq( )
codima)=k <Z 4G > codima)=k <Z 4G )

This is the reason that we lose the “potential extra facton’adrising from the summation
in theorem 3.3.3. Theorem 4.4.2 comes very close in itsra@této Theorem 3.3.2. The
only essential difference is the condition da( f ) a] versus dindg1(f)a]. We will give an
example in the applications that shows how this enablesriaioecases for our Theorem 4.4.2
to outperform Theorem 3.3.2.

4.4.1 Lower Bounds

Theorem 4.4.3For 1< d < logn, (3(S9) = Q("F4).
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Proof. By Lemma 4.14 in [SW99] we have that for any affine subspace éodimensiork
andd > 0,

dim(9a41(S*7%)a) = (§,1)-
Applying Theorem 4.4.2 we get that

0/ 2d+2 K2 (Sli)
I > min(——
2 n—K
_ min(K 7(d Jn—K—d— 1)
d+27(Ktdy  d+1
K2 (§)n—2
> min 4.
= m (d+2 (g+d) d+1)) (4.9)
subject to the conditiofd + 1) < K. Setk = % 4:2. Then we have that
(g )n—2« - (n—K)dn—ZK
(Krdyd+1 = ‘k+d’ d+1
8/9n  4n—2K
> (e
d_N—2K
— g
d+1
2d+2
S nd+z
—od+1
2d+2 2d+2 %d%g
Hence (4.9) |satleastr’r(g‘dﬁ ) = Q%) O

Recall the product-of-inner-product polynomial:

PIP; = (glajbj)(i;qdi)

We prove:
Theorem 4.4.4 (3(PIP?) = Q(n*/3).

Proof. Setd = 1,k = n?3. Observe tha%?ﬁ = bidj. Let A be any affine subspace of codi-

mensionk with basisB. At leastn—k variables in{by,...,b,} are not inB. Symmetrically,

at leastn — k variables in{dy,...,dn} are not inB. So for at least{n — k)? indices (i, j),
2 2
%Z:Zh ~ %F;:ZT‘. These are independent terms, hence(diPIP5) ) > (n—K)%. Applying

Theorem 4.4.2 we get th&(P1P2) > min("", %) = Q(n%/3).

O
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The above is an example, where the different conditions ofidji(f) ] > D versus
dim[0g+1(f)ja] > D in the statements of Theorems 3.3.2 and 3.3.3 matter. Recalpre-
vious remark that [SW99] yields only a trivi&(n) lower bound for this polynomial. More
generally, we have the productainner products:

d n

PIPd = _rl(_z ab),
=1 j=1

for vanablesa'l,b'] with i, j € {1,...,n}.

2d

Theorem 4.4.5 For constant d> 2, /3(PIPY) = Q(nd+1).

Compare with?}(PIPY) = Q(nd%) in [SW99], which for the special cast= 2 even
becomes trivial.

Theorem 4.4.6 £5(Z" Circ(x)y) = Q(n?).

Proof. Let f =z Circ(x)y. Aply Theorem 3.3.3 fod = 1. Sinceal(g—zfi) contains all variables
X1,--.,%n, We conclude d"@l(az' )|al is at leash —k for any affineA of codimensiork. Hence

|3(f) > min(k?/3, "), Takingk = n?/3 yields(3( ) = Q(n*3). O

Note thatz" Circ(x)y can be computed i®(nlogn) size using a bounded constamz Mz
circuit, and also note that theorem 3.1 and 3.2 of [SW99] enelered useless for this poly-
nomial, because the dimension of the set of first partialsadgm the dimension of the set of
second partials is jugd(n).

We cannot prove a non-linear lower bound §¢z" Circ(x)y), because there exist a polyno-
mial in the orbit ofz" Circ(x)y that hasO(n) ZMz-formula size! Namely, separately in each set
of variables, appDF T L tox, Fy toy andF; ! to z. By theorem 2.1.4 Cirx) = Fpdiag(A\) Rt
for A = DF T,x. Hence we get' F;1Circ(DF T, 1x)Fry = z" diag(x)y"

The above is an example of a polynomial where the extra falftmr obtained by the
summation in Theorem 3.3.3 matters: {iga{ f)|a] = O(n), butz,d|m[al( )] > n(n—«), for
any affineA of codimensiork. This polynomial also provides us with a counter -exampkhéo
claim that for anyf = g(EXx),

min dim[dq( = min dim[dq( .
codimaA)=k <Zi 4G > codimaAa)=k <Zi (o )

If this were true, we could prove equally strong lower boufatsthe ZMZ-orbit model as
obtainable with Theorem 3.3.3 for requbrn Z-formulas. However, this does not hold, and we
had to weaken Theorem 3.3.3 somewhat, resulting in its ggalbeorem 4.4.2.

As a last application, we define
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Definition 4.4.1. Ford > 1, define the linear-sum of the producttbfix n matricesx?,. .., Xd
to be the polynomial
LMMg = 3 51 & (XE- X2, X9);;

We prove the following lower bound:

Theorem 4.4.7 For constant o> 1, /3(LMMaqg1) = Q(n4_a%).
Proof. Rewrite

B W2 2d-+1
LMMag1 = Z Bigizd41%i0,i1 Xi1,i2 - - 'Xi2d,i2d+1'

i07"'7i2d+le{17"'7n}

Consider fixed indice§,...,iog+1. Taking(d+ 1)-order partial with respect to the variables

2041 - -
Xio g X iz 1 Xing iy, Of LMM2g 1 yields the monomial

2 2d
g,z 1Xi1,ipXiz,ia -+ Xing_1,i00°

Consider an arbitrary affine subspak®f codimensiork. Since in each matrix there are at

leastn® — k unassigned variables when doing the substitution correipg to restriction ta,

we conclude that there are at leést — )3+ choices for the indices, which produce a partial

derivative that is not altered by restrictingAo Since each choice yields a different partial we

conclude dindgy1(LMMag1)(a] > (n? —K)%4F1). Takingk = N7 in Theorem 4.4.2 yields
the theorem. ([

4.5 Remarks

As a stepping stone towards proving lower bounds for unbedmdnstant circuits, we defined
a computational model that allows for more unbounded cotsthan previously considered
in the literature (e.g. see [BL02]), but that does this in sonoderated sense. The model also
serves the dual purpose of investigating the computaticoralplexity of all that is present in
theG-orbit of a given bilinear map, for various matrix groupsinder consideration. Given that
taking G = GL,(C) results in a model that is at least as powerful as the unbaloodlestants
case, the next natural thing we attempted was to lift the aandubstitutation technique of
[BLO2, Raz02] to theSL,(C)-orbit model.

This turned out to be hard because of two conflicting issuesadly, there is the apparent
requirement in the random substitution technique to séfectandom input from aubspace
U of some dimensioan with € < 1, which seems to be about the only way to make the outputs
of the linear forms on which substitution is performed “ir@aably” bounded. Provided that
is true, they can be replaced by “few enough” repeated auditiand this way a reduction
to the (well understood) linear case is achieved. Unifylmg modus operandi of the restric-
tion technique with the wild zoo of ill-conditioned matricpresent irSL,(C) is problematic.
Geometrically speaking only-dimensional volumes retain the same volume under suck-tran
formation, but any lower dimensional volumes can be antilgratretched or squashed. In any
configuration of the argument we considered this becomessae i Either the mgwolume of
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the larget linear form one reduces to is negatively impaatecattempting to salvage this, the
outputs of linear forms on which one performs substituticmib:behaved, or vice-versa.

We did manage to show that techniques from [BL02, Raz02]icoatto stand while al-
lowing the circuit to have for free at the inputs linear tfamsations inSL,(C) that have
condition numbe©O(1). In particular unitary matrices present no problem. We atsmaged
to show our desired result of proving &{nlogn) size SL,(C)-orbit model lower bound for
circular convolutiorassuming only n multiplication gates are used

We considered orbits in conjunction wiBlf1>-formulas. The fact that lower bounds for
x-complexity are maintained unaltered under such an exdensirivial. Interestingly enough,
we showed things also carry through when counting additaiesyat the inputs.

In the next two chapter we will focus obL,(C)-orbits, that is allowing for free arbi-
trary diagonalmatrices of determinant one at the inputs. Also these nestigan be arbitrary
ill-conditioned, and hence will still provide a formidalgeoving ground. The effect of their
ill-conditioning on the desired lower bound argument hogrewill be a little bit less unruly.
We first will make an exposition of the complexity theoressues that are involved in inter-
lude Chapter 5, outlining the global structure of the loweuhd proof we are going to pursue.
Then in Chapter 6 we will set up a framework that allows forgmrous attack on the involved
problems. Using Fourier analysis, in particular involvengliscrete variant of theleisenberg
uncertainty principle we will be able to establish some lower bounds for the cacabnvo-
lution bilinear map. We will also establish a results abamdom Vandermonde matrices, and
derive a circuit lower bound from that. Finally, some lintibes will be explored using result
know about the asymptotic eigenvalues of phelate matrix[Sle78].



Chapter 5

Diagonal Orbits

Our aim is to extend the arguments in [Raz02, BLO2] with rddarthe number of unbounded
constants allowed in the circuit, and to give lower boundgwtire orbitsf (Dx,Ey), wheref

is a natural bilinear function like matrix multiplicatiorr convolution, andD, E are matrices
of unit determinant. We begin with the very special case wlkers the identity and is a
diagonal matrix. Handling this case is not sufficient, buirings out connections to major
matrix problems about minors, in case of convolution abbetdiscrete Fourier matriRF T,.
Accordingly, in this chapter and the next, we focus on cicof the form

rn(xl‘ dg_]a . 7Xn'dlr]]7y17y27' .. 7yn)7
where{l}n=0 is a family of bounded-coefficient bilinear circuits and
{Dn — (d:rf,drz-], cen ,drq)}n>0,

is a family ofn-tuples satisfying that for any,

n
ingx

These circuits compute bilinear mappings in the set of tem{xy,x,...,x,} and
{y1,¥2,...,Yn}. As done before for orbit circuits, for circuit size we onlgunt the size of
M. In other words, the constant do not count against the size. They can be considered
unary helper gates

In this chapter we lay out the complexity theory side of thedobound strategy. The next
chapter attacks the mathematical problems involved, atatbleshes some lower bounds, and
also indicates some limitations of the taken approach.

5.1 Strategy and Conditional Result

As in [BLO2, Raz02], one of the inputs is going to be fixed by stants (we fixy), thereby
reducing the bilinear case to a question about linear ¢gc@ncey is fixed, the outputs of the

59
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linear forms iny output constants that are used at the multiplication gatbsese multiplica-
tions with constants can be replaced by performing repeadédions. In a way to be made
more precise later, one can only do this, if the outputs ofittear forms in they variables are
“reasonably” bounded. If this is true, only few repeateditoiad will be needed, leaving the
blow-up in size of the circuit limited. Also, witk fixed, the circuit computes a linear transfor-
mation in thex variables. If one manages to fyxso that the resulting linear map has provably
high complexitywhile at the same timleaving blow-up in size caused by the repeated addition
to be limited, one would conclude the original circuit muavé been of “high” complexity.
For the purpose of bounding the magnitude of the linear fomten fixingy, we prove the
following lemma.

Lemma 5.1.1 Given kx n matrix F computed by b.c. linear circuiit with n inputs and k
outputs, for allo < | < n, there exists UWC C" of co-dimension | such that for allaU
3s(I)+3n

max |(Fa)i| < |la||,-272+2 .
max|(Fal | < |alz

Proof. By the min-max charaterization of singular values (Theo#ein7)

on(F)= min ||Fal|2.
lall=1

If on(F) < 1, addn gates to the circuit that make a copy of the inputs. We obtaincait '’
of at mosts(I") 4+ n gates computing B x n matrix G with ,(G) > 1 andk’ > n.
ConsiderG*G. Using Theorem 4.1.3 (Binet-Cauchy), we get that

!
defG'G)= Y [defGr)[* < <k>223<r’>.
T=n n
The last inequality follows from Morgenstern’s Theorem.2.1So

de{G*G) < ok 52s(I”) < 233(”) < 23s(N)+3n,

Also n
det{G*G) = ﬂ“i(G)z-

For arbitrary 0< 1 < n,

011(G) ! < 'l_!ci(G)
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3n
S00,1(G) < 25" By Theorem 4.1.7 (Courant-Fisher-Weyl min-max)

0.1(G)= min max ||GX||».
1+1(6) coolim(U):lunitxeu|| l2

Hence we conclude that there existsC C" of co-dimensior such that for all unik € U,

3s(M)+3
max |(Fx)i| < max |(GX)i| = ||GX||e < ||GX|, < 2 772 .
1<i<k 1<i<k
The statement of the lemma now follows by linearity. O

We compare the above with the proofs of Lemma 4.1 in [Raz02]&mma 4.2 in [BLO3].
There the definition of rigidity is used to obtain a subspaddeom which selecting aandom
inputayields a bound on the magnitudesked with high probability. We obtain a subspade
such thafor all unita € U these magnitudes are bounded, alas with a slightly weakerdo
Namely, a standard Gaussian vector innan| dimensional vector space has expected norm
vn—1, but this factor crucially gets dampened in [BLO3] and [RzINevertheless, Lemma
5.1.1 will suffice for our purposes. We have the following ditional theorem:

Theorem 5.1.2Let {D, = (d,d3,...,d}) }n>0 be a family of n-tuples satisfying that for any
N, ML, d" = 1. Suppos€ln}n=o is a family of bounded-coefficient bilinear circuits suchtth
for all n,

rn(xl ’ dg_lv <o Xn dr?ay) = TCirC(y)'

Let
Ih={i: 0<i<n-—1withd"<1},

and define, = |I|. If for everyd > 0, there exists ad<> 0 so that for all but finitely many n,
for any affine linear space U of codimensipﬁj, there exists & U with ||a||> = 1 such that
Circ(a) has ant,, x £, minor M with rows }, with

|de1(M)| > 276nlogn7
then there existg > 0 such that for infinitely many n,
s(Fn) > ynlogn.

Let us first make some preliminary remarks. Suppose that eénatbovel, = Q(n).
This means there exists an<0gp < 1 so that for all but finitely many, ¢, > gon. In
this case we think of the that are larger than 1 as help gates as in [BL02]. There are at
most (1 — go)n many such help gates. Currently known techniques can 3lreaddle this
amount of undbounded constants. Namely, Theorem 6.4 of ZBtdlls us that in this case
s('n) = Q(nlogn). The question we like to address is whether we can manageatonth
n—o(n) many unbounded constants in the circuit. This situatiosearivith?,, = o(n) in the
above.
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Proof. (of Theorem 5.1.2)Wlog. we assume afl” values are distinct. (If this is not true
make infinitismal perturbations of thd' and addn gates to correct these again.) For each
letiyp,...,inn be such that

d’

n n n n
i, <Gip, <diy n<1<dj, 5 <...<d

Inn*

In case
n

lo d” =o(nlogn
gj_|;|+l ljn ( g )7

then we can replace the constants which are bigger than 1unyded constant repeated addi-
tions. This takes at mogﬁ‘:énﬂlogd{}n = o(nlogn) additional gates. Hence we would obtain
a family of regular bounded-coefficient bilinear circuitssize s(I'y) + o(nlogn) computing
xT Circ(y), but such a family must have sif&nlogn) by [BL02]. Hence we would conclude
S(I'n) = Q(nlogn).

So assume that there isda> 0 such that for infinitely many, [}, ,dff > 229",
This implies that for infinitely manw,

In
I_Ld{; < 27onlogn, (5.1)
L

Let us consider some large enouglfior which (5.1) holds, and let us drop the sub and
superscipts on our variables.

We are going to perform the following substitution on thecait. Setx;; = 0 for all j > ¢
and substituteqj = Zj/dij otherwise. This yields a bounded coefficient bilinear dgirofisize
no bigger thars(I"), and it computes

(z1,...,z)diag(d *,...,d; )M,

whereM is the/ x n minor of Cirqly) corresponding to rows,.

Now setr =n— L%J, wherek is the constant that is assumed to exist by the statement of

the theorem foé. Let fq,..., fx be the linear forms iy of I'. Lemma 5.1.1 provides us with a

linear subspace of dimensiomn — L%J such that for any unia er U , we have that

< 3s(I'n) +3n
~ 2[4/ko| +2

For any unita € U and any? x ¢ minor Mg of Circ(a) with rows| we can obtain fronf, a
bounded coefficientnear circuit computing theC™ — C™ map

log miax| fi(a)] (5.2)

(Zla s 7Zm)diaqd'_l ’dizl)MC)a

FRERER

by removing the outputs not correspondingMe and replacing multiplications witlfy(a) by
fi(a)/n and correcting this by adding at modbgp repeated additions at the output gates,
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wherep = max | fi(a)|. Hence the number of gates we added is at most

tlogmaxfi(a)] < (30n) + 30
|

2|¢/ko) +2
< ko3s(In) +3nko
< 4kos(Mn).

So the size of the resulting b.c. linear circuit is at md&b +1)s(I"). However, by the condition
of the theorem, and given thatis assumed to be large enough, the above can be done for a
minor Mg for which

|det(Mo)| > 2~ 3"loan,

This means that 5
| det(diag(d; ™, .., d; H)Mo)| > 22M°9",

TEEERE

However, by Morgenstern’s bound (Theorem 2.1.1) any bodmraefficient circuit com-

puting diagd; *,...,d; )Mo then requires at leagnlogn gates. Hencs(I"n) > g2nlogn.

5.2 Finding good minors

Using the notation of Theorem 5.1.2, and given our prelimimreamark, we see that we are
essentially left with establishing the following conditio

(Condition I) For every family{l, C {0,1,...,n—1} }n>0 with £, = |In| = 0(n), and every
0 > 0, there exists & > 0 so that for all but finitely manwy, for any affine linear spadg of
codimension & |, there exists € U with ||a||2 = 1 such that Cir(a) has ar¢,, x £, minor M
with rows|,, wit

| dEI(M)| > 276nlogn-

By our preliminary remark, we know the conclusion of the tteso is true for/, = Q(n),
without need to establish anything further. So actuallyclamplete coverage of all cases, we
would want to establish the condition for functiofsthat arenot Q(n), but we are already
going to be content with the weaker theorem that would rdsoh satisfing condition | for

n=o0(n).

Let us remark the setg and the subspace(d)mentioned in the condition aselversarial
in nature, they are determined by a hypothetical orbit dif@r circular convolution of size
o(nlogn), that we are trying to show does not exist. Hence the unilersantification over
these quantities in the statement of condition I.

Given that Theorem 2.1.4 allows us to write

Circ(a) = Fydiag DF Tha)F;,
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it is no supprise that condition | is related to finding minofOF T, on a given set of rowk,
that have “reasonably” large determinant. We state:

(Condition Il) For every family{l, C {0,1,...,n— 1} }~o With ¢, = |In| = o(n), and
everyd > 0, there exists &, > 0 so that for all but finitely many, for any L%J columns
Jy € {0,1,...,n— 1}, there exists arf,, x £, minor M of DFT, with rows I, and columns
disjoint fromJ, with

|d61(|\/|)| > 276nlogn-
Theorem 5.2.1 If Condition I holds, then so does Condition II.

Proof. Suppose Condition | holds. Lét, C {0,1,...,n—1}}n-0 be given, and defing, =
|In|]. Assume that, = o(n), Letd > 0 be given. We want to argue it is now possible to select a
ko > 0 so that for any family

{Jn C {07 17 N e 1}}n>07

with |J,| = L%J, for all but finitely manyn, there existg,, x £, minor M of DF T, with rows|,
and columns disjoint frond, with

| det(M)| > 2—6n|ogn-

For eacn, defineU,, to be the subspace of vectaror which (Fnv); = 0 for all j € J,. This
subspace has dimensian- [J,| =n— L%J. By condition I, for anyd’ > 0,there existsg > 0
so that, providedh is large enough, we have uritc U, such that Cir¢a) has a square minor
M with rowsl,, such that

|det(M)| > 2-Fnloan, (5.3)
Let Q(a) = Circ(a)Circ(a)*. Using Theorem 2.1.4 write
Q(a) = DFTrdiag(Aol?, A1l [An-1|*)DF Ty, (5.4)

whereA = Fy(a). Note that]|A||]2 = 1.
Using Theorem 4.1.3 (Binet-Cauchy Theorem) and (5.3) we get

defQ(@in) = > |detCirc(a);, g2 > 2 2nlogn, (5.5)
IS=¢n

where in the sunsranges over all subsets of sigeof {0,1,...,n—1}. Also using Theorem
4.1.3 and now using (5.4) we can write

defQ(@)i, 1) = > [det(DF T g |_L|?\s|2- (5.6)
|S=tn sC

Sincel|A||2 = 1, for anySof size/n, Tss|As|? < 1. Using the arithmetic-geometric mean

inequality, we then get
1
Asf? < ().
L=,
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By our choice olU, the only terms in (5.6) that are possibly non-zero are tliosthose sets
Sthat avoidJy, namely|‘|ses|)\s|2 is zero for all others. Combining (5.5) and (5.6) we get that
there exists some s8disjoint fromJ, which has

|de1(DFT|[]‘7S)|2 I—L|}\S|2 > 2726’nlognfn'
se

and hence )
|deI(DFT|:75)|2 > 2726 nlognfngﬁn‘

The above holds for any > 0, so withd chosen small enough we get that

2—26 nlogn—ngﬁn > 2—6n|ogn,
This way we see Condition Il is satisfied, provided Condititvolds. O

In other words Condition Il is a necessary condition for Bsaing Condition I. In Chap-
ter 6 we will see that Condition Il would also be a sufficienhdition for obtaining Condition
|. However, now that we have extracted the more fundamentadm of finding minors on the
Fourier matrix, let us have a look at some issues that ardévesion establishing Condition .

As it turns out, Condition Il is too strong to satisfy farbitrary families of rows{In}n-0
and columngJ,}n-0. TO give an example of what can happen, suppoiea square. Then
it can be seen that anyn x y/n minor of DF T, that has rows which are multiples ¢fn and
avoids columns that are multiples ¢ is singular. For example, letting = €2™/°, DF Ty is
given by:

1 1 1 1 1 1 1
W 0 o W W W o

PFRPRPRPPPPRPRPRPPR
€, 8888 8¢€

&

&

€,

&

&

&

&

Selecting rows 0, 3 and 6:

and then removing columns 0, 3 and 6:

1 1 1 1 1 1
W W 0 W W WP

W W W W W Wl



66 CHAPTER 5. DIAGONAL ORBITS

leaves a matrix with only two different kinds of columns, sty & x 3 minor of it will be
singular. More generally, whenever= ¢ -k, any ¢ x £ minor with rows Qk, 2k, ..., (¢ — 1)k

and columns avoiding,®,2¢,..., (k— 1)¢ can be seen to be singular. Consequently, one can
observe that fof, = w(,/n) condition Il does not hold. In the next chapter we will thereftry

to establish weaker versions of condition I, and derivegwemed) diagonal orbit lower bounds
therefrom. The final lower bound theoremwe will arrive atjielderiving some mathematical
results that are interesting in their own right, is the faflog result:

Main Result 5.2.1 Let {Dn}n~0 be a unit helper family, and suppo$En}n~o is a family of
bounded-coefficient bilinear circuit such that for all n,

Mn(xe-df,..., % df,y) = X" Circ(y).
Define h = |DnN(0,1)|. We have that

1. Iflh= O(n%), then there existg > 0 so that $I',) > ynlogn, for infinitely many n.

2. Ifly= O(n%) and {Dn}n>0 is asympotically contiguous, then then there exjsts0 so
that §T,) > ynlogn, for infinitely many n.

3. Iflh=Q(n), then gIy) = Q(nlogn).

In the above, a family{Dn}n~0 Where eactD,, is ann-tuple of distinct positive real num-
bers(dy,...,dp) such thaf]i’; d" = 1 s called aunit helper family If for all but finitely many
n, the entries irD, of value less than one are contiguous (in the circular semse}ay that
{Dn}n>0 is asymptotically contiguoudn other words, the theorem proves a lower bound for
orbit ciruits of the formT™ (Dx,y), whereD is diagonal and with unit determinant, but with some
further restrictions on how many helper constants are lems dbne, and how they are located
relative to eachother.

Curiously, in the above theorem it is not the unbounded e@msthat form a problem, but
rather the seemingly innocent ones that are less than oneh tte circuit could have supplied
itself without problem. Note that the above theorem impiieg we can handle, without further
assumptions, ang — o(,/n) many unbounded constants. At its most extreme this allows fo
n— 1 unbounded constants in the circuit, balanced againsigdessmall helper constant that
makes the product of all helper constants equal to one. Tipsaves theen many allowed
unbounded constants for fixed< 1 from [BLO2]. Although it must be said that we have strict
requirements on where the constants are located in theitciazud we have the requirement
that their product is one. [BL0O2] has neither of these adddl restrictions. Of course lifting
the latter requirement puts one in the arena of the genetaunded constants case, which,
even for linear circuits, now has been a standing open pmolsi¢heoretical computer science
for over 35 years.
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5.3 Symmetry properties of circular convolution

We refer to [Hun80] for the group theoretical notions usedhim following. A curiousity is
that in Chapter 4 we managed to lift the results of [BL02], astmthers, to orbit circuits of
the form[ (Upx,U1X), whereUp andU; are unitary. This includes the case where the free maps
are permutation matrices. However, Theorem 5.2.1, or os#iel its proof, is incompatible
with any such generalization. Of course, the two conditioha unitaryand diagonal matrix
together, leave only the identity matrix, but more can bd.ddamely, there is a certain lack of
symmetry in circular convolution map. In the following & be the group of permutations on
n-vectors. We think of eactt € S, to be a bijectiont: Z,, — Z,, whereZ, = {0,1,...,n—1}

is the additive group of integers modulo

Definition 5.3.1. Call a permutationt € S, retrievableif there exist permutations andro in
S, such that

TR[T(X)Circ(Ty (y))] = XCirc(y).

for n-vectors of variableg = (xg, X1, ..,%_1) andy = (Yo,Y1,---,¥n-1)".

In other words, a permutation is retrievable if applicatodiit to then-vector of variables can

be undone by applying a permutation to tirgectory, and applying one to the result vector
obtained by convolution of the permutedandy vectors. Elementary reasoning yields the
following:

Theorem 5.3.1 For any n, the retrievable permutations form a group, and guecisely those
permutationm: Z,, — Z,, for which there exists ly € Z, with g relatively prime to n such that
for each ie Z,

(i) = b+ gi.
Proof. See Appendix B. [l

The retrievable permutations form a subgr@®aof S, of size at mosh? — n, hence there
are in general vastly more unretrievable permutations tietmevable ones. So the circular
convolution map enjoys nice symmetry properties, but, geshunexpectedly, is not “all sym-
metric”.

We conclude that for any > 3, it is not in general possible to undo a permutation orxthe
variables by permuting thevariables, and then permuting the final result vector. If coeld
do this, then one could easily convert any circuit computig Circ(y) into one computing
xCirc(y). Namely, simply permuting thg variables at the inputs and the outputs of the circuit
with the Ty and T, that work for 1, and one is done. By taking inverses, this would mean
that for anyrt, any circuit forxCirc(y) can be converted into a circuit computingx)Circ(y).
Perfoming this conversion on an orbit circuit

I (x1d1,%2, ..., Xadnyy) = XCirc(y),
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we would get a circuif’ such that

[ (1) 01, X 2) - - - » Xy I, Y) = XCire(y).

which means we have a circuit’ with

r”(den—l(l),den—l(z), R ,Xndn—l(n),y) = XCirC(y).

In other words we would have a means of permuting the helpestaats on the variables.
This would then allow us to at least establish item 2 of Theose2.1 without the contiguity
requirement.

From the above we conclude that one cannot in general coa@rtuit for 11(X) Circ(y)
into one computingkCirc(y) by permuting they-inputs and outputs. However, something
weaker would suffice for our purposes. Namely, if for everynpatation 1t there exists a
reductionthat converts a circuit fort(x)Circ(y) into one forxCirc(y), using onlyo(nlogn)
additional circuit hardware, then one would obtain the saorelusion of establishing item 2
of Theorem 5.2.1 without the contiguity requirement. It @ alear whether this can be done.

5.4 Contiguity and Chordal Product

Given that we cannot establish Condition Il in general, oatural scenario to consider is
whether we can establish Condition Il in case thd,gistcontiguous. Here we mean contiguous
in the modular sensen— 1 and 0 are adjacent. In other wordg,s contiguous if and only
if it is of the form {b+r modn:i <r < j}, for certain integerd,i and j. Establishing this
weaker condition, would yield us a diagonal orbit lower badior more restriced orbit circuits
for which the helper variables that are less than 1 appearcastagguous block, i.e. are all
adjacent (again in the circular sense).
It is not hard to see that w.l.0.g. we can assume then jltainsists of rows A, ...,/ —1
of DFT,. All ¢,y x £, minors M with these rows are Vandermonde matrices of favin=
V (w1, wy,...,wy,) Where thew's arenth roots of unity. Using the determinant formula for a
Vandermonde matrix, we have thatet{M)| = CP(w,wy,...,wy,), where we define for any
finite setP = {p1, p2,..., Pk} of points on the unit circle in the complex plane thelrordal
product
CP(P)= i — Pil-
(P) 1<|I:!<k|pl Pl

Let Q = {wp,wy,...,wn_1} be thenth roots of unity. Condition Il now becomes:

(Condition 11'") For ¢, = o(n), and everyd > 0, there exists &, > 0 so that for all
but finitely manyn, for any L%J many roots of unityd, C Q, there existe, roots of unity
X1,X2, ..., X, € Q\ Jn such that

CP(X1,%2, ..., Xe,) > 2—onlogn,

Without the presence of the set of “off-limits” poinds the CP(x1,Xo,...,Xy,) IS max-

imized atﬁf{‘/ 2 by selecting the/,, points with equal separation between adjacent points on
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the circle. Namely, Wlog. we select tigth roots of unity. HenceCP(x1,Xo,...,X,) =

|detDFT,,)| = Ef,”/z. By the Hadamard Inequality (Theorem 2.1.3), this is theimarm mag-
nitude of the determinant of ary; x ¢,, matrix with unit entries.

The above means for example that fgr= O(,/n) it will be simple to satisfy Condition
II’. Say/, < dy/n, for some constard > 0, for all large enougin. For simplicity lets assume
that ¢, dividesn. Selectingky so thatL%J < d—lzén ensures that of th§n sets of/, equally

spaced points, sincﬁn > %ﬁ > d—lzﬁn, there must exist at least one that contains no off-limit
point fromJ,.

As we will see, we can actually establish condition Il far= O(+/n), so there is no need
for a contiguity requirement in this case at all. For genékak= o(n) there is no such simple
argument as we described above. We are faced with the folipprioblem:

Problem. For some larg®, consider the séd = { o, wy,...,wn_1 } of all nth roots of unity
on the unit cirlce in the complex plane. [RIC Q be a given set of roots that are “off-limits”.
For anyt, what is the optimal strategy to selgctoots of unityw,, w,, ..., w, € Q\ R that
maximizesCP(w,, Wi,, . - . ,wi,) ?

Related to this question, what s&#n the above provide the worst-case scenario? That is:
Problem. For anyk,/, for what kind of set®k C Q of sizek is

maxCP(S)
SCQ/R
IS=¢

minimized, and what is this min-max value ?

We have some indication that s&dhat are contiguous provide this worst-case scenario,
but the question is related to some standing open probler@89Pthat turn out to be supris-
ingly hard to solve, as we will discuss in the next chapter.

For establishing item 2 of Theorem 5.2.1 we consider a ramzkastrategy: pick thé,
points uniformly at random from the collection of pointstthae allowed. This strategy works
fairly well. It enables us to get out desired lower boundfee O(n¥/4).

For ¢, = nf, with € a constant arbitrarily close to 1, we give evidence thatetheno
strategy at allthat enables us to satisfy Condition. IMe will give evidence that Condition
II” cannot be satisfied, even foe= 4/5+ 6, whered > 0 is constant. We do so by employing
what is known about the asymptotic spectrum of the discnetiafe spheroidal wave functions
[Sle78].
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Chapter 6

Uncertainty Principles & Matrix Games

The Heisenberg uncertainty principls quantum mechanics is widely known, even to the
extent of having had a cultural impact. The principle is aotleen derivable from the axioms
of quantum mechanics, and expresses the inherent impagsibisimultaneously knowing,
to arbitrary precision, certain complementary obsenabienature. For example, one cannot
simultaneously, through measurement, determine bothdbitign and velocity of some given
elementary patrticle to arbitrary precision.

Physical interpretation aside, the uncertainty princgde be expressed quite generally
as a mathematical statement about operators in a Hilberesta Following [Sel01, SHO5],
say # has inner product denoted Hy,-) and norm||-|| = (-,-)/2. For a linear operator
A: H — H we denote its domain b$p(A). Define thenormalized expected value of A with

respect to fe D(A) by
Af f

and thestandard deviation of A with respect taof/
oa(f) = [[(A—Ta(f)) f].

The uncertainty principle relates the standard deviatwingvo operatorsA and B to their
commutatofA, B|, which is defined apA, B| = AB— BA. An operatofA is said to be symmetric
if (Axy) = (x,Ay) for everyx,y € D(A).

Theorem 6.0.1 (Uncertainty Principle, see [SHO5]Let A and B be symmetric operators
some Hilbert spacé/. Then

forall f € D(AB) N D(BA).

For the Hilbert spack?(R) of all square integrable functiorfs: R — C, with inner prod-
uct defined by

(t,9)= [ 1(g0x

71
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the above implies the following classic uncertainty staetrabout the measures of concentra-
tion of a functionf € L?(R) and its Fourier transforn : R — C, defined by

flw) = /0:0 f(x)e™dx

Namely we have that
Theorem 6.0.2 (see [SHO5]Let f € L?(R) with || f|| = 1. Let

xa= [ XT(9Pdx

wa= [ alf(w)?dx
Ax:/ (X—Xa)2| f (x)|2dx and

Aw:/m (0— )| f () |Pdco.

Then
AxAw > 11/ 2.

The above shows that for a functidn R — C one cannot simultaneously localiZeand
its Fourier transforn to arbitrary extent: the smaller standard deviattonof f, the larger
the standard deviatiofiw of f must be. Going back to physical interpretation briefly, iis th
scenariof could be thevave functiorof some particle (in one dimension, at some fixed time),
in which case one obtains the probability of detecting thdigla by square integration of the
wave function. The position of the particle is a random Ja@daand the quantity, is the
expected location of the particlAx is the standard deviation of this position random variable.
As it turns out,f is the wave function imomentum spacéhat isw, andAw are the average
and standard deviation of the momentum of the particle. Tdstipn and momentum arise
from probablity distributions as one can witness them idityey carrying out some large
number of identically prepared experiments. The abovesgliveits on how much one can
narrow down simultaneously the deviations for position amanentum.

There are severals settings in which one can observe thetamtg phenomena. The
above scenario is “continuous-to-continuous”, i.e. therifer transform (and its inverse)
move functions between continuous domains. Donoho an#t §2889] investigated several
“discrete-to-discrete” analogues of the above uncestagiation. That is, fon-vectorx and its
discreteFourier transfornx = DF T,%, they considered as measure of localization the support
supx), which is the total number of non-zeroesxfThey also defined a more quantatively
subtle notion ok-concentration of a vectoron a set of indice3 C {0,1,...,n—1},which is
defined as thé,-norm ofx restricted tol . For these two measures they proved inequalities in
the spirit of Theorem 6.0.2, showing the limits on the simoéous concentration achievable
for any fourier pain(x,X).

Uncertainty relations of the kind obtained by [DS89] aresely related to properties of
minors of the Fourier matribDFT,. For proving lower bounds in the orbit model for the
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circular convolution bilinear mag' Circ(y), precise quantative statements about these minors
regarding the magnitude of their determinant is exactlytweaneed, as we saw in Chapter 5
with Conditions | and Il expressed there.

In the following sections we will express particukufficientconditions for yielding orbit
model lower bounds in terms of certajamesplayed on theDFT, matrix. These games
are taking the place of Conditions | and Il of Chapter 5, bubhgighis linguistic tool will
conveniently suppress some of the lengthy quantifier atems in our statements we would
otherwise have.

To outline the idea, the games are played between a playamreadiversary. The adversary
chooses a set of rov®and a set of columnS. Then the player tries to select a minorf Ty,
with rows R avoiding column<C in order to maximize the determinant. We will establish
connections between the existence of certain good stegtdégr these games to uncertainty
type relations in the “discrete-to-discrete” setting. VW then use this to prove Theorem
5.2.1.

For the first item of this theorem we will involve an uncertgirelation proven in [DS89].
Unfo/rtunately, this argument breaks down, for reasonscatdd in Chapter 5, fof,, beyond
o(n*/?).

In order to establish some further results, we make furtesumptions on the constagit
present at the inputs. In case they are asymptotically gootis, we can press on the statement
of our theorem for largef,, up to O(n3/4). Namely, in this case it will turn out that for lower
bounds it is sufficient for the player to win the more relaxetsion of the Fourier matrix game
in which it is assumed that the set of roR$he adversary chooses in contiguous. In this case,
determinants of Vandermonde matrices will play a role.

The problem becomes the following: with some numbef the nth roots of unity being
disallowed by the adversary, how do we selecbther roots of unityxs, Xo,...,Xm in order
to maximize the determinant of the Vandermonde matiix;, Xz, ..., Xm) supported by those
points? We will show a randomized strategy for the playet ihaufficient for proving orbit
model lower bounds in which we can tolerate upO(n3/4) roots being disallowed by the
player. In order to achieve this result we prove a lower boondhe expected value of the
determinant of the Vandermonde matxXxy, X, ...,Xm) With nodes on the unit circle. This
result is interesting in its own right, and may have furthgplecations.

One application we give, is an uncertainty-type relation dadiscrete analogue of the
bandlimited functions. In the continous setting, a functio: R — C is called bandlimited if
there exist€) € R such thatf (w) = 0 for all |w| > Q. For bandlimited functions more intricate
details are known about simultaneous concentratiof afd f than the standard uncertainty
principle. See for example [Sle78] for a study in the “contins-to-discrete” domain.

Interestingly enough, [Sle78] will also give us some intlmas on the limits we can expect
with our taken approach. Desirable would be to find playeatsgies that can toleratny
¢ = o(n) number of roots being disallowed by the adversary. Someatidin is that the worst-
case scenario is when the adversary chooses these rootsdotigpious. When he/she does,
we have some indication that there is no good strategy fopltneer (in a sense which we will
make more precise later) onée= Q(n*5log/°n).
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6.1 Minor Games on Matrices

Definition 6.1.1. We define the circulant game CIRC-Gang,k,B) to be the following
single-round game against an adversary agent:

Adversary: selects a linear subspadec C" of co-dimensiork andl dis-
tinct rowsry,ro,...,rn € {0,1...,(n—1)}.

Player: selectsac U with ||al|2 =1, and selects drx | minorM of Circ(a)
with rowsry,ro,...,... 1.

Result: The player wins if and only ifdetM)| > B.

Related to the above game is the following game orlxRd,, matrix:

Definition 6.1.2. We define the Fourier matrix game DFT-Gamg, k, B) to be the following
single-round game against an adversary agent:

Adversary: selects| distinct rowsry,rp,...,r and k distinct columns
C1,Cp,...,CiN{0,1,...,(n—1)}.

Player: selects ahx | minorM of then x n Fourier matrixDF T, with rows
ri,ro2,...,r and columns disjoint fromgs, cy, . . ., Ck.

Result: The player wins if and only ifdetM)| > B.

We define DFT-Ganién, |, k,B) and CIRC-Gamgn, |, k, B) to the same games as above,
but with the relaxation that the adversary can choose om$yasg@owsR that are contiguous in
the cyclic senseR= {b+imodn:0<i <I|—1} for somebase point b

For the contiguous circulant game it is immediately obvitheg we can assume without
loss of generality that the adversary chooses any particalatiguous seR of our preference,
since for any two chosen se§ andRy, the matriceCirc(a)r, andCirc(a)g, just differ by
a cyclic shift. We can make the same assumption wlog. for trmiguous Fourier game.
Namely, for anyl columnsC = {cj,¢z,...,¢ } and two contiguous sef®; andR, with base
pointsb; andb, respectively, we have that

DFTRLC = DFTRZ’C . diag((urcl, (A)rcz, e ,(Drc' ),

wherer = by — by, andw = /" Hence| de{DF T, c)| = |det DF Tr,c)|-

We begin by proving a generalization of the phenomena wekkdtin Chapter 5 with the
DF Tg example: for this matrix, any 8 3 minor with rows 0, 3, and 6 and columns avoiding O,
3, and 6 is singular. In general we have the following:

Theorem 6.1.11f n =1 -k, then the adversary has a winning strategy for DFT-Ganylek, 0).
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Proof. A winning strategy for the adversary is to take rows
ri = ki,
fori=0,1,...,(l —1), and columns
ci=li,

fori=0,1,...,(k—1).
Let A be thel x n minor of DF T, with rowsro,ry,...r_;. Therth columnA, of A equals
(L,a",a?,...,al-U")T wherea = e7k = e . Hence for any,

A=A, modn:
With columns I, 2l,..., (k— 1)l disallowed, there are therefore orly 1 distinct columns in
the remaining set, so ary | minor of A that avoids the disallowed columns will be singular.

O

Corollary 6.1.2 If n is a square, then the adversary has a winning strategy for
DFT-Gamén, /n,/n,0).

So ifn=1-k, there is not much honour to achieve in general for the plaget comes to
playing DFT-Gamén, |, k;-). This will also have a negative impact on the general lowemiolo
result we are trying to prove, as we will see. Itis the reasby w Theorem 5.2.1 for item 1 we
stated a limitation of, = O(nl/z). In casek- | < nhowever, this pathetic case does not apply,
and the player does have a non-trivial strategy. k=drbelown, perturbation theory kicks in,
and by applying the Binet-Cauchy Theorem one can guaranésexistence of a minor with a
“reasonable” lower bound on the magnitude of its deterntindfe have the following result:

Theorem 6.1.3 The player has a winning strategy for DFT-Gamg, k,B), provided k| < n,

and 12
B< (n— kl)'/2<n|_k> .

Proof. Suppose the adversary choosesws R andk columnsC. LetN ={0,1,...,n—1}.
LetA=DFTgn/c andB= DFTrc. Then
AA" =nl - BB*

Both AA* andBB* are Hermitian, so by Theorem 2.1.2 (Weyl's Perturbationorem), pro-
vided||BB*||2 < n, for eachi, theith eigenvalue\j(AA*) > n—||BB*||2. We can write

BB" = ;cici*,
ic

whereg; is the ith column oDF Trn. Since||cic/||2 < ||ci||3 = |, then by subadditivity of the
¢>-norm, ||BB*||2 < kl. Hence
det(AA") > (n—kl)".
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By Theorem 4.1.3 (Binet-Cauchy Theorem)

detf AA¥) = detAr )|
efAA") ;_l| elArs)|

Hence we conclude there exiSsf sizel such that

N
|detDF Trg| > (n—kl)'/2<” | k) .

(|

For our lower bound results for circular convolution, weuig good strategies not for the
Fourier matrix game, but rather for the circulant matrix garfrortunately, these two games
are closely related. In one direction we have the followimgptrem:

Theorem 6.1.41f the adversary has a winning strategy for DFT-Gamg,r,B), then it has
a winning strategy for CIRC-Gane |,r, (”Tr)n*'?B). The same statement holds with Game
replaced by Gante

Proof. Let R andC be the sets of rows andr columns of the adversary’s winning strategy
in the fourier matrix game. Then for the circulant game theeashry chooses the sRtfor
the rows, and takeld to be the subspace of vectorgor which (F,v); = 0 for alli € C. This
subspace has dimensian-r.

Say the player picks uné € U, and sayT is the set of columns of the minor he chooses.
Using Theorem 2.1.4 write

_ 1 . «
Circ(a) = %DFTndlag()\)DFTn,
whereA = Fy(a). Then||A|[2 = 1.
Using Theorem 4.1.3 (Binet-Cauchy Theorem) we can write:

detCirc(a)rT) = Z (rL)\s)dei(DFTR,s)dei( DFTST).

|S=I se

1
/N
Since||A||2 = 1, for anyS of sizel, Ts|As| < V1. Using the arithmetic-geometric mean
inequality, we then get
1
|)\S| < (_) )
L=

and note that there are at most r nonzerao\s because of the choice bf. By Theorem 2.1.3
(Hadamard inequality) we then have

det-L 0P T < (V.

1
n

3
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Since defDFTrs) < B for any S disjoint fromC and[]icsAi = O for all other setsS, we get
[detCirc(a)rT)| < > (==

that
n—r
B—':( >n'/ZB.
si%eo v o T

This proves the statement for the regular versions of theegahie statement for both
versions of the relaxed game can be verified analogously. O

From this we see that the same pathetic casek- | arises for the circulant game. In this
situation again there is not much glory to achieve for thgglaNamely, we have:

Corollary6.1.5If n = | -k, then the adversary has a winning strategy for
CIRC-Gamén,l,k,0). In particular, the adversary can win Circ-Garfre/n,/n,0) in
case nis a square.

We can also prove a relation between the circulant and Fogaime in the reverse direc-
tion. The following lemma yields a way for the player to tranhis strategy for the Fourier
game to the circulant game. The strategy for the player sxdhse is to use some randomiza-
tion: given the subspadég that the adversary selects, the player selects a standarssi@a
vector inU. Given that the player has a “good” strategy for the Fouriatrim game, this will
combine to be a good strategy for the circulant game as well.

Theorem 6.1.6 For any nr,| with | +r < n, if the player has a winning strategy for
DFT-Gamén,l,r,B), then the player has a winning strategy for CIRC-Gamkr,B’), where

5 _ 86|/2

(M4 (n—r)
and 3 is a constant approximatel.02. More preciselyd = 2-VvV29) with y =

%Tfé”t*%e*‘ logtdt, ande= 3 5’ e 2 log?tdt. The same statement holds with Game replaced
by Gamé.

Proof. Suppose the adversary chooses subspagkedimensiomn —r and a set of rowsRin
the circulant game.

Consider standard Gaussian randomly selegteglU, then\ = F,ais also standard Gaus-
sian.

Write A = Aa, whereA is ann x (n—r) matrix that has orthonormal columns that span
FaU, anda is standard Gaussian @'~". Apply Theorem 4.1.3 (Binet-Cauchy):

|det{AR)|? = detA*A) = 1
|R|=n—r

Hence there exists a sBtof n—r rows with | det Ag)|? > (P)fl. Since the player can win
DFT-Gamén,1,r,B), let T be a subset dR such that

|detDFTrT)| > B.
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Note that detAtA}) > (1) ~1. Namely detArAL) = def MM*), whereM is obtained by adding

r
n—r —1I rows toAt which are orthonormal and orthogonal to the span of the rdws oSince

each rowr of A has||r||2 < 1 we must have thadetM)| > |detAg|. That is, theldetM)| is
the maximum determinant one can get by appendirg — | rows of norm at most 1 to thie
rowsAT.

The matrixAt At is the covariance matrix of centered Gaussian ve@idr-t. By Lemma
4.1.2, with probability greater tha%1we have that

-1

n
A2 > & det(ATA%) > 8 < >
ig r

whered is a constant approximately@®. More precisely, Lemma 4.1.2 givés= 2~ (Y+v29)
with y = %{fé”t_%e*t logtdt, andg= 3 [ e~ 2 log?tdt.
Now let us bound the norm of the vector We have that

E[|[Al[2] = Ellla|[5] = (n—r)E[jaz|’] = 2(n—r).

The last equality follows from Lemma 4.1.1. By the Markovduoality,
5 1
PH| A3 < 4(n—1)] > 3.

From the above we conclude there must exist a vexctold such that if we lel = Fna, then
||A||3 < 4(n—r) and simultaneously

M= <?> -

Say the player choosas= ﬁ which is unit. Theorem 2.1.4 (Convolution Theorem) imglie

Circ(d') = DFTpdiag(\)F,,
whereN' = F,@. Let D = Circ(&')Circ(a’)*. Then
D = DF Tdiag(|Ap|?, [A1[%,- .., [N, _4|%)DF T
Using Theorem 4.1.3 (Binet-Cauchy), we can write

delDrr) = 5 ([ M)Ide(DFTrs)?
EENIS

v

(_n [A{|?)|det DF Tr7) |2

B23
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Applying Binet-Cauchy once more, we have that

detDrr) = ¥ |detCirc(&)rs)|%.
&=

Hence there existS such that
le/Z
(M4 (n—r)"

|det(Circ(a)rs)| >

This is the minor that the player chooses.

The above argument goes through in case of playing the aargigames. In this case
the R chosen by the adversary is contiguous, so it suffices for ldgepto invoke its winning
strategy for DFT-Ganién, |,r, B) instead, to get the result.

O

As we can see in the above Lemma 6.1.6, there is some loss thrésholdB by which
the player can win the game. In our application in sectionf@&ever, it will turn out that
this loss is ignorable as a lower order term in our estimalbss gives us the convenience of
focusing on the more fundamental notion of playing the gam#he Fourier matrix.

6.2 Random Vandermonde Matrices

We are going to employ the probabilistic method to show thistemce of good strategies
for playing the contiguous Fourier matrix game. For the igudus Fourier matrix game the
essential question becomes:

Problem. For some larg®, consider the séd = { o, wy,...,wn_1} of all nth roots of unity
on the unit cirlce in the complex plane. LRIC Q be a given set of roots that are “off-limits”.
For anyl, what is the optimal strategy to selgctoots of unityw,, w,,...,w, € Q\ R that
maximizes the Vandermonde determinant:

|(‘0is_(’qt| ?
1<s<t<t

Related to this question, what s&#n the above provide the worst-case scenario? That is:
Problem. For anyk,/, for what kind of set®k C Q of sizek is

minimized, and what is this min-max value ?
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6.2.1 Related Work

The above two questions are related to the following. Suppos D := {0,1,...,n—1}.
What setsR minimize ||[DFT{'g|[2 ? If we letM = DFT{'gr andN = DFTT“D\R, then
MM* +NN* =nl.

So using the Weyl Perturbation Theorem,|[DFT{g|[2 < K we get that each eigenvalue
Ai(NN*) > n—K, and consequently thadet NN*)| > (n—K)!, where? = |T|. Then applying
Theorem 4.1.3 one gets that there existd ar¥ minor of N with determinant of magnitude
at Ieast(n \R|) Donoho and Stark considered thppositequestion of which set§ andR

maximlze||DFTT”’R| |2. They define the “index-limiting” operatd#z = diag(1r), where k is
the Q 1-valuedn-vector that is 1 precisely for all indices R and the “frequence-limiting”
operatoPr = F;diag(1r)Fn. Note that|PrPr||2> = ||[DF Tt gr||2. They conjecture:

Conjecture 2 ([DS89]). For interval T and setR with |R| - |T| = n, ||PrPr||2 is maximized
whenR s also an interval.

Potentially, maximizing|DFT{'g||2 yields the converse effect of forcinglefNN*)| to
be small, although one cannot directly conclude this froeRerturbation Theorem. Forcing
|detNN*)| to be small also depresses the value

maxCP(9), (6.1)

SCO\R

§=¢
whereCP(S) is thechordal product of Swhich we defined in Section 5.4 by

CP(S = Ip—q|.

So as answer to the second problem above, it appears pkatisbthe bad seithat minimize
(6.1) are wherR is chosen to be an interval, i.e.Rfis a set of indices that is contiguous in the
modular sense. Computer runs seem to corroborate thisadéan the analysis that follows
suchRindeed seem to form the major difficulty.

Also related to our work, is the question of the conditionoig Vandermonde matrix. For
real numbersq,ro,...,ry, the Vandermonde matri(ry,ro,...,r,) infamously can be highly
ill-conditioned [Gau75]. For Vandermonde matrices wittdas in the complex plane, where
the nodes are arranged to be nicely spread out the situatiobecbetter. Ferreira [Fer99] gives
some bounds for Vandermonde matrices with nodes on theitcié i the complex plane that
show the matrix can be quite well conditioned provided théasoare spread around the cirle
evenly.

We should also mention the powerful work done by Camdes, Rogndnd Tao [CRTO4].
They prove that for any of S|zeO(|Ogn) if one selects the s&by independently choosing
for each columrk to be inSwith probability t, wheret is some fixed constant, then with high
probability forM = DF T s the determinant d@¥IM*) is “not to small”. Unfortunately, their
moment methodpproach is not robust against the adversariaRset points to avoid. At a
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critical juncture in their proof they rely on tleancellation propertyf the roots of unity, which
states that for any not divisible byn we have

n-1
2,9~
i=

wherew is any primitiventh root of unity. The presence of the $&tmakes that not all roots
appear with equal probability, indeed some may appear withgbility 0. Consequenctly, after
taking expectations and doing a brute force applicatioh®friclusion-exclusion principle, not
all roots of unity are guaranteed to appear in the final exwaso be cancelled. Hence the
attempt to adapt their proof to our situation breaks dowrenSaeore holistically, since their
proof makes no assumption abdutexcept on its size, the presence of theRetust make
their proof break down, because of the phenomena we skeichiee introduction. Recall for
example we observed thatrfis a square, then there exist s&€tandR of size/n that make
any minor singular with that has roWsand that avoids columr®. The question is whether
we can do better by assuming tfats contiguous. We will now turn to this question.

6.2.2 Randomized Selection Strategy

We first prove an estimate on a particular sum that is invoimege analysis.
Define the In-of-chord length functiof(t) = In|1— €', fort € R\ {k2m: k€ Z}. Straight-
forward geometry gives us:

f(t) = %In(Z—Zcost),

which can be rewritten using the relation$i= 1= as

t t
f(t) =In2sin= =In2+In|sin=|.
0 5=In2:+In|sinz|
We will also consider a discretized version of this functiamich per abuse of notation will
also be denoted b¥. It will be clear from the context, whethéris referring to the discrete or
continuous function.

Lemma 6.2.1 Lete(t) = In|t| — f(t). Then for any t witht| < 1,

t2
0 t —.
<£()<12

Proof. First of all for anyt, f(t) =In|1—€'| < In|t|. We thus see tha(t) is non-negative. For

t € (0,2m), we have for the error functiog(t) =In|t| — f( )=1In S‘tll] Fort >0, sint >t — %.

So on this intervalg(t) < In—3 =—In(1— ) For >3 24 <X< 24, IN(1+x) > x—%. So for

52
O<t<1],

t2 t4 t2

t I T

0<e(t) <54+ 152 1>
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The lemma follows by symmetry df(t) and Injt|. O

Lemma 6.2.2 Let n> 7, and letw = €™/". Define the discrete function(d) = In|1 — 9],
ford=12,...,n—1. Then

s 2
f(d)>2—-In2— .
dzl (B =2-I2" 30

Proof. Using the fact (see e.g. [RW04], p. 182, equation 55) that
m2 o Tt
/ In(sinx)dx= —=1n2,
0 2
we get that
2n 21 t
/ f(t)dt — 2n|n2-|—/ Insin=dt
0 0 2
ot
- 2T[In2-|—2/ Insin-dt
0 2
™2
= 2Trln2+4/ Insinxdx
0

= 0.

Forj=0,1,,...,n—1, define intervalj = [j 2%, (j + 1) 2. By the above,
n—-1 n—-1 21
2—”dz f(d) — 2—”dz f(d)—/ f(t)dt
n = n = 0
(n-1) %"

_ 2/2ﬂn t)dt 4+ ;fd—/zn/n ftdt.  (6.2)

We will approximatef (t) by Int for t close to 0, and estimate the error incurred by this to
bound the first two terms of (6.2). Using Lemma 6.2.1 , prodide> 7,

211 211 2n ¢
>|n— —¢g(— - .
f(1) >In - g( n) >1In T3

and

21/n 21/n
/ f)dt < / Intdt
0 0
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Hence (6.2) is at least

2"| 2_"_@_4_’32_” 4_" 2_””1 d_/”l)

= 21/n

2, n 4m 2w 2n"t (-
S+ T 3n3+ndzzf(d)—/2n/n f(t)dt. 6.3)

We will now bound the last two term in the above expressiont usefirst consider the case
whenn s even.

2m 2f (d —/zn:nl) f(tydt — Z%T:Z:f(d)—zzz/ldf(t)dt

f(t)dt >

n/2

_ dz d)+ f(n+1- d]—zdi/f

_ :f d)+ f(d—1)] 2;/f
n/21

- _dz +fd+1]—2dZ/

_ n:%l(zr:[[f(d)+f(d+1 2/ (6.4)
=1

Since for 1< d <n/2—1, f(t) is strict monotone increasing, we know that

@+ e+ ]-2 [ fod> -t @+ 1 - )L

Hence (6.4) is at least

2_’_[n/271 211 n
Fdzl [f(d)—f(d+D)] = —[f(1)—f(5)]
> Z:Un%n 3"22 In2).

Hence (6.2) is at least
A—2min2 4

n 33
Hence we conclude that in casés even, that

o 2
>2—-In2— —.
dZlf(ol) >2-In2- =
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Let us now consider the case whers odd. Then

(n-1)Z

—dzzf (d) —/m £(t)dt
_ %[:izf(d)—:il/ldf(t)dt

o, n+1,  2n™ 272
= ST 3 @+ fni-d)-2 5 /Idf(t)dt—/l(nl)/zf(t)dt

n—-1
7 -1

~1)/ i1
_ 2—"f(i1)—/ dz d)+f(d—1)]-2 F(t)dt
n 2 ln-1)2 = =1 7/l
_ 2”f(nH) / dt+—%7 d)+ f d+1]—2n : l/
2 (”—1)/2 CZ CZ
—1
1
_ 2—"f(il)—/ (t)dt + dz d)+ f(d+1)] 2/ (6.5)
n 2 '(n—l)/z

Since for 1<d < (n—1)/2—1, f(t) is strict monotone increasing, we know that
%’T[f(d)+fd+1 / dt>——f(d+1)—f(d)].

Hence (6.5) is at least

n-1_4
2

2, n+1 2n
) - /(n1 - d)—f(d+1)] =

2, n+1 1

21 n—
) - /(nl)/zf(t)dt+7[f( y-f(7) =

—/ fOdt+ (1) >
l(n-1)/2 n

2 2
am, 2n i 2,
n n  3n?
and so we obtain the same bound asrtli®even case. O

Lemma 6.2.3 Let n> 7, and letw = €?™/". Define the discrete function(d) = In|1 — w?],
ford=12,...,n—1, then

n-1

f(d <2In— 2+In2
Cgl (d) 21 et Jr583212
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Proof. Forj=0,1,,...,n—1, define interval; = [j%", (j+1) ZW"]. As in the proof of Lemma
6.2.2 we can write:

%’Tif(d) - 2%TZZif(d)—/Oznf(t)dt

2Trn -t (n—1)20
— 2/ (H)dt + 2 dz £(d) —/ f(t)dt, (6.6)

2r/n

providedn > 7, we have by Lemma 6.2.1 that

21/n 21/n
/ fydt > / Int — g(t)dt
0 0

> [tint—t)2V"—

Hence (6.6) is at most

21 M. n 4n 2 2nct (-1
)+ n'”E+F+W+WdZ2f(d)_/2n/n F(t)dt. 6.7)

We will now bound the last two term in the above expressiont usefirst consider the case
whenn s even. As in the proof of Lemma 6.2.2 we can write

_dzz d—/zn/n Cfhdt = > (F[f(d)—l—f(d-kl)]—z/ldf(t)dt). 6.8)

Since for 1< d <n/2-—-1, f(t) is strict monotone increasing, we know that

@@ y-2 [ fo< a1

Hence (6.8) is most

oWt 21, N
S RUCERCES R UG
= 2%T[InZ—f(l)]
Hence (6.6) is at most "
4, n 41 1 2
Mot (143N + Faaas
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Hence we conclude that in casés even, that

n-1

f(d <2I— 2+In2
dz n2++n +583212

Let us now consider the case wheis odd. As in Lemma 6.2.2 we can write

nl)
—dz £(d) —/ F(t)dt
D 2n/n
2 1 71,
T, N+
= 7 / (t)dt + d)+ f(d+1)] 2/ . (6.9)
()~ e dz dt)

Since for 1<d < (n—1)/2—1, f(t) is strict monotone increasing, we know that

2:[f(d)+f(d+1 Z/f dt<2—[f(d+1)—f(d)]

Hence (6.9) is at most

n-1
2

2, n+1 2m
) - /(n1 -2 d)— f(d+1) =

T - /(n_l)/zfa)dw%[f(l)—f(”21>1 -

Hence we obtain the same bound asriligeven case. O

We now turn to the main result in this section. Given that ia tontiguous version of
the Fourier matrix game it does not really matter which blotkows the adversary chooses,
we will focus on playing the game on the filstnany rows. In this case any selected minor
will be a Vandermonde matrix. In order to show existence obadgminor that avoids the
set of columns chosen by the adversary, we will considec8efga random such minor, and
evaluate the expected value of its determinant.

More precisely, for complex numbezg, z;, ...,z _1, denote bW =V (z,21,...,7_1) the
| x| Vandermonde matrix defined b = ziJ for0<i,j <I-1, we have that:

Theorem 6.2.4 Forany nand|rwith0<r < Zandl+r <n, LetN= {w¥k=0,1,...,n—1},
wherew = €¥/", Let R be an arbitrary subset of N of size r. Consider the msa# picking
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{29,...,7-1} C N\R uniformly at random among all subsets ofRof size |. Then for the
Vandermonde matrix &=V (2o, 21, ...,7_1) we have

(n-2)(;) 2re (2 rire

Elinjdetv]] = (n—r)(n—r—l)(z_I 2_3n2) (n—r)(n—r—l)(r ne ! +W)
Proof.
Elin|detv]] = E[In[]lz—z]]
i<]
= E[} Inz —7]]
i<]
= iZJE[In|zi—zj|] (by linearity of E)
= <|2>E[In|zo—zl|] (by symmetry.

Letn = E[In|zy — z1]]. We can write the following expression for

n= z z Prizo= pandz; =q]In|p—q.
PEN\RGEN\R a#p

Since{zy,z;} is uniform among 2-subsets B\ R, for any p # q,

-1
Prl(z0 = p andz; = q) or (0 = g andz; = p)] = (|N;R|>

Since the event§zy = pandz; = q] and [(Zp = gandz; = p| are disjoint and have equal
probability, we can conclude that[Pm = pandz = g = 3(MR) ™ o — r——- Define

f(k) =In|1—wK|, fork=1,2,...,n—1, and letx correspond to the characteristic function of
N\R. Thatisx(i) = 1if i € N\R, and O otherwise. We have

1

. In|p—q|
(n—r)(n—r—1) peg\Rqu\zRv#p
1 n-1 n-1 i j
_ X i X j Injw —w
(n—r)(n—r—1) i;jzozﬁéi rn |
n-1n-1 ' i+d
— X()x(i4+d modn)in|w — ™
(n— sz
n-1n-1

= x()x(i +d modn)In|1— o
e BB amsonni
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= = ancnzlx (i+d modn)f(d)

1 .
= 0 dZlf(d) i;x( )X (i +d modn)

(n—r)y(n—r—

1 n-1
- (n—r)(n—r—1) dglf(d)c(d)

where we define

c(d) = IrE:)((i)x(i +d modn).

i=
Now for anyd,

= 3 X()x(i+d modn) > n—2x,

since for fixedd, the number of indicesfor which at least one of(i) andx(i +d modn) is
zero is at most2 Also we have that

(nz:c(d) = :Z:nZix (i4+d modn)
n—1
- i;xm 3 X(i+d modn)
n-1

= 3 xm-

= (n—r)2
So

n 1
dz c(d)=(n—=r)?>—(n—r)=n’—2rm+r2—n+r.
=1

Sincec(d) is always at least — 2r, define an “excess” functiog(d) by
e(d) =c(d) — (n—2r).
The total excess equals

n-1 n-1
e(d c(d )(n—2r)=r?—r.
=1 =1

We get that

n—-1 n-1

(glf(d)c(d) Czlf (n—2r)]
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= (n—2r)2§1f(d)+:ilf(d)e(d)
> (n—2r)(2—|n2—— +de

where the last line follows from Lemma 6.2.2.

Note that for anyd, c(d) < n—r, and thus 0< e(d) <r. We know thaty j~; Lf(d)e(d)
is smallest if the total exces& —r is placed at much as possible at places WHEE[B is the
smallest. By the concavity df, one can conclude that in cases odd,

n—1 (r=1)/2 n-1

(Zf(d)e(d) > dz f(d)r+ z f(d)r
=1 =1 d=n—"51

AV
S
=)
S—
N
-
=
SN—
oY
—

> [tlnt—t——]oT {by Lemma 6.2.}

(r—1m 1r(r—1)°%m

= r(r—21)In —(r—1r— % 2

4
r2|nr_T[_r2_ r—TlZ’
n 36n

v

and in case thatis even,
n—1 r/2 n—1

de(d)e(d) > de(d)r+ Y f(d)r
=1 =1 d=n+1-1

rm (r=2)m

n n n
rE[/ f(t)dt+r2—/ F(t)dt+

v

m

= / Int — g(t dt+2/ Int—s(t)dt

211

rn t3 m rn 3 (=2m
E[tlnt_t_3_6] o —ltint—t——], " {by Lemma 6.2.}

4
P22 r—Ti
n 36n

v

v
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Hence we finally conclude that

(n—2r)(3) e, (2)

rm
(n—r)(n—r—l)(z_lnz_ 3n2) (n—r)(n—r—1)

21, N 2
r<ln—+r —
( rnJr +36n2)

E[IndetvV] >

O

As a special case it can be verified that the statement of €he6t2.4 is also valid with
r = 0. In this case there are no roots of unity to be avoided. Coetbwith Lemma 6.2.3 we
get:

Corollary 6.2.5 For any n and any I< n, Let N be the set of nth roots of unity. Let

{20,...,7_1} C N be a uniformly at random selected subset of size |. Therh®oiMander-
monde matrix V=V (29,2, ...,7_1) we have that

|
E[ln|detV)|] = CDn(%)
where

218
2—1 2——< <2|— 2+1In2
n 37 () n2 +24+1In +5832’12

Proof. Following the initial steps of the proof of Theorem 6.2.4 fee 0 one obtains

Efln|detV)[] = () dz f(d).

Applying Lemma’s 6.2.2 and 6.2.3 gives the result. O

Let us note however that in this case one knows the expectaed vé the determinant
exactly:

Proposition 6.2.6 For a random Vandermonde matrix V selected as in Corollag/%.we
have that B|detV)[2] = n' (")

Proof. Let M be the set of all x | minors ofDF T, withrows Q1,...,1 — 1. By Binet-Cauchy
(Theorem 4.1.3):
S |de(v)]?=n
vVeM

Hence for a uniformly at random selectéd=r M we have thaE[|detV)|?] = n (’l‘)*l. O

Theorem 6.2.4 gives us a strategy for winning the contigweusion of the Fourier matrix
game, which in turn using Theorem 6.1.6 yields a strategwfoning the contiguous circulant
game. This strategy will be the basis for the circuit loweutds we will prove in Section 6.5.
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Corollary 6.2.7 For any nand any,lr with 1 <r < & and I+r < n, the player has a winning
strategy for DFT-Ganign, |, r,€%), provided
(n—2r)(3) e, (2) réme

(n—r)(n—r—l)(2_|n2_3n2) (n—r)(n—r—l)(r In—+r +W)

C<

Proof. Recalling our remark after definition 6.1.2, we can assuntle wss of generality that
the adversary chooses rows= {0,1,...,1 —1}. Any | x| minor of DFT, with rowsRis a
Vandermonde matrix. L&E be the set of columns the adversary chooses. Theorem 6v2s! gi
a lowerbound orE[In|detM)|] for randomly selectedl x | minor M of DFT, with rows R
avoiding column€. There must exist least one mindf that has IndetM’)| > E[In|detM)]].
So the player chooses such a minor, for which we then havetiner lbound on the absolute
value of its determinant as stated in the corollary. O

Let us express the above hiding some of the constants fordateenience:

Corollary 6.2.8 For any nand any Ir with 1 <r < R and I+r <n, the player has a winning
strategy for DFT-Gamign,|,r, B) for some B where

2 |22

O~z log?)

B>2

6.3 Discrete Uncertainty Principles

In this section we will establish a relation between the ma@mes and various known discrete
uncertainty relations. Let us begin with an alternativeobravhich is new to our knowledge,
of the Donoho-Stark discrete uncertainty principle.

Definition 6.3.1. For ann-vector f, define the support of to be the seL(f) = {i: fj # 0}.

The size of the support of a vectdris a crude measure of the amount of localization of a
vector. Analogous to the Heisenberg uncertainty prin¢igie can prove that for this measure
a vectorf and its Fourier transfornf cannot both be arbitrarily narrowly localized. More
precisely, one has:

Theorem 6.3.1 ([DS89])For any n-vector £ 0,
[supe(f)| - |sup f)| > n, (6.10)

wheref = F.f is the discrete Fourier transform of f.
Proof. Consider an arbitrary Fourier transform péit f) with f = F,f andf 0. Since

Circ(f) = v/nF diag( f)F,

we have that A
supp f) = rank(Circ(f)).
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Let R be the maximum number of zeroes following a non-zero entry(im the cyclic sense).
ThenR > Wnﬂf)\ —1.

Namely, if this were not the case then, imagine partitiortimg entries off as follows.
Start at an arbitrary nonzero position. $et 1. If there are no other zero positions then
B; equals this position. Otherwise, IBt be this position together with all the zero positions
that follow it (in the cyclic sense). Repeat this processtfa nexti. We obtain this way
B1,By,...,Bisuppf) that partition alln entries off. By the above then, for eadh [Bj| <

|UB|| < |SUpF(f)| |SUpp:f)|

This is a contradiction, becauB@, B2, ..., Bisupp¥)| partition then entries off.
The above implies the fir®+ 1 rows of Cirg f) are independent, because they contain a
square submatrix that is upper triangular (modulo cyliétshiHence ran{Circ(f)) > R+1>

n
TSUPAT* [
Interestingly enough, divisibility properties nfplay an important role in the analysis. For
example, Tao showed that in casis prime the inequality (6.10) can be significantly improved

The proof relies on the well-known fact that for prirpeéhe discrete Fourier transform matrix
DFTp is regular.

Definition 6.3.2. An n x n marix A is calledregular if any square submatrix oA is non-
singular.

Theorem 6.3.2 For prime p, DF T, is a regular matrix.

The first proof of this fact is attributed to Chebdiarwho proved it in 1926 (see [SJ96]).
Although typical proofs of this fact are field theoretic irtuwa, Tao gives a proof by elementary
means. Once one has established this fact the following egmdved quite readily:

Theorem 6.3.3 ([Tao91]) For prime p, for any nonzero p-vector f and its Fourier tremsh
f = F,f we have that A
sup( )|+ [supg f)| > p+ L.

Proof. Letk = p— |supg f)|. There arek zeroes inf. Letl € {0,1,...,p— 1} be the indices
of these zeroes. Supposepd f)| <k. LetJC{0,1,...,p—1} be a set of sizk that contains
all indices of non-zero entries d¢f We have that

(DFT") fs = (DFTpf) =0,
but f; # 0 sincef # 0. This is a contradiction sindBF'I'l'f’J is non-singular. Hencesupg f)| >
— [supr(f)]. [

Actually, in the above proof we only used the fact tBdt T, is a regular matrix, so more
generally we have:
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Theorem 6.3.4 Let A be an rx n regular matrix and consider pair(sf, fi= Af)where f#£0.
Then

sup(f)| +|supg( f)| > n+1.

For the Fourier matrix game this fact immediately implies:

Proposition 6.3.5 For any prime p, and any+ k < p, the player has a winning strategy for
DFT-Gamép,l,k,0).

In what follows, we will establish relations between our magames and uncertainty type
relations. We will show that we can turn a refinement of the @maStark uncertainty relation
into a game strategy, and also provide a tranferral in thgerse direction. The game strategy
obtained this way later will be used to prove our main loweunrmbtheorem for orbit circuits.
We also show that the strategy obtained in Corollary 6.2V gigmes us an uncertainty type
relation. This uncertainty relation will be for a discreteabogue of band-limited functions.
We define:

Definition 6.3.3. An n-vector f is calledl-index-limitedif supp(f) C {b+imodn:0<i <
| — 1}, for some numbelp.

In other words a vectof is I-index-limited if its support is contained in a contiguowet n
the modular sense) of site

Let us start by making some preliminary observations abaodgx-limited vectorsf in
conjunction with the support-size notion of localizatioim the next section we will turn to
a more precise localization measure thsupg f)|. For index-limited vectors one can easily
prove a strengthening of the uncertainty inequality (6.1} following the same top-level
idea used to prove Theorenf3a.

Theorem 6.3.6 For any n-vector f£ 0 that is |-index-limited,
Isupp(f)| > n—1,

wheref = F.f is the discrete Fourier transform of f.

Proof. Consider arbitrary Fourier transform pdif, f) and letT = {b+imodn: 0<i <
| — 1} be a contiguous set of indices containing stidp Suppose|supgf)| < n—1.
Then we can find a sé= {s1,%,...,5} of sizel so thatﬁ = 0 for eachi € S, In
other wordsDFTgt fr = 0 with fr # 0. So DFTst is singular. HoweverDFTst =
diag(w™P, 2P, ... WPV (w™, w2, ..., w%), thatis a (nonsingular) diagonal matrix multiplied
with a (nonsingular) Vandermonde matrix, and is hence mujdar. O

Forl << n-2,/n+1, the above guarante¢supp f)| + Isup f)| >> 2,/n, whereas
Theorem 6.3.1 can only guarantsepg f)| + |supg )| > 2y/n.
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6.3.1 Uncertainty relations imply game strategies

We now turn to a less crude measure of localization than tppati of a vector. Following
[DS89]:

Definition 6.3.4. An n-vector f is e-concentratedn a sefl of indices if

/z |fi|2§€.
i¢T

Theorem 6.3.1 can be refined to

Theorem 6.3.7 ([DS89])For any n-vector f with)| f||2 = 1 that iser-concentrated on a set T
and f = F,f beingeq-concetrated on a s&€?, we have that

IT|-1Q| > n(1— (e1 +£q))2 (6.11)

Note that in [BM99] it is claimed that the inequality (6.1h)the statement of the theorem
can be improved to
]9
n

S ) > (1— (e1 +£q)),
whereS(x) is defined a§(x) = %Si(x) - 1—1Tsin(x), and whereSi(x) is the sine-integral function:
Si(x) = J& Sintq.

Counter-examples can be given to this claim for amndu with tu = n by takingT =
{0,u,2u,...,u(t—1)} andQ = {0,t, 2t,...,t(u—1)}. It is well know [DS89] that the indicator
for T transforms to the indicator @ when taking the Fourier tranform. In other words, there
exist a Fourier transform pairf, f) with f 0-concentrated off and f 0-concentrated of.
HoweverS(1) < 1, so the above would claim this is impossible. We have beablerio verify
the original intent of the claim, and the authors have nqioaded to our queries.

Let us now use Theorem 6.3.7 in order to obtain a “fairly” getéhitegy for playing the
Fourier matrix game. This will be the basis for proving pdtihe bilinear circuit lower bounds
in section 6.5. For certain types of circuits Theorem 6.3IVlv not be strong enough. This
is where the game strategy obtained in Corollary 6.2.7 camesrom this game strategy we
will also be able to derive strengthened uncertainty retegifor index-limited vectors.

Theorem 6.3.8 For any |,r with Ir < n and I4+r < n, the player has a winning strategy for
DFT-Gamén,l,r,B). for any

~1/2

B< (vn—Vir) <n,_r>

Proof. Suppose the adversary chooses a set of Rwafsizel and set of column¥ of sizer.
Let M be the minor of, with rowsR and columng . By Theorem 6.3.7, for any unit vectdr
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that is O-concentrated oh, f= F.f is eg concentrated oR, where

r

ep>1—4/—.

R= n
MlJ2 = max [Mal]; < |/
l|all2=1 n

Let N be thel x (n—r) minor of K, corresponding to rowR and columns not ifT. Since
NN*+MM* =1, A is an eigenvalue dfiM* if-and-only if (1 —A) is an eigenvalue ol N*.
The singular values d¥l are the square roots of the eigenvalue®df*. Hence we conclude
the smallest singular value bdfis at least

Ir

o2(v/AN) > v/n— VIr.

Hence

and hence that

Therefore

det(%NN*) > (vn—VIir)2.

By Theorem 4.1.3,

1
def=NN") =y  |detDFTrg).
n IS—IST=0

Hence we conclude there exists a mimdt with rows R and columns avoiding that has
determinant at least

~1/2
|dei(My)| > (vA— Vi) <”|—r> |
O

Actually, Theorem 6.1.3 yields a slightly stronger strgtdgan the above theorem. For the
types of lower bounds we will prove in Section 6.5 the slighinerical differences will turn
out to be immaterial.

6.3.2 Games strategies imply uncertainty relations

Winning strategies against the adversary for the Fouridrixngame are useful for yielding
discrete uncertainty relations. Similarly, winning ségies against the adversary in the con-
tiguous Fourier matrix game imply uncertainty relationsifalex-limited vectors. The stronger
the player’s strategy, the stronger the uncertainty kaha obtained.
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Lemma 6.3.9 Suppose the player has a winning strategy for DFT-Gamiek, B). Then for
any set T of size | and any s@tof size r with r<k, if a unit n-vector f with Fourier transform
f = F,f is er-concentrated on T, thehis eg-concentrated oM with

€Q > (l_ET)W

Proof. Consider an arbitrary Fourier transform pgi f ) with f ey-concentrated on arbitrary
setT of sizel. T ={b+imodn:0<i<I|—1} Consider arbitrary set of indice3 of size
r with r < k. By the definition of the Fourier matrix game and using factFT, is a
symmetric matrix, there exists< | minorV of DFT, with columnsT rows avoidingQ such
that

|det(V)|2 > B2,
Since

|detV)|2 = defVV*) = I_|‘im (VV*) = -rLGi V)2,

we conclude that the smallest singular vatyé/) > E‘B*_1 Being a minor of unitary matri¥,,
1

ol(%V) <1, so001(V) < v/N. So

1 B
0|( —/

%V) >

By the min-max characterization of singular values givefireorem 4.1.7 we have for any
| x I matrix A that
[IAX]]2

A) = )
A = 00 2

Hence

B
V)Ifrll2> (1—&1) =7

" 1 1
Ifallo > | V(o> 01( 7 T

NG

6.3.3 An uncertainty relation for index-limited vectors

Let us generalize the notion of an index-limited vector takweith our e-concetration notion
of localization:

Definition 6.3.5. An n-vector f is callede, l-index-limitedif there existsgy with ||g||2 < € such
that f — g is I-index-limited.

Anolgously to Theorem 6.3.6 one would hope to be able to ingiitheorem 6.3.7 when
restricting to index-limited vectors. For example, it stibloe possible to obtain lower bounds
on concentration for sét andQ with |T|-|Q| > n when dealing with index-limited vectors,
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eventhough Theorem 6.3.7 is trivialized beyond this rageomplete analysis of this problem
is still open. In order to make steps towards this goal, uSiogllary 6.2.7 we now give an un-
certainty type relation that does manage to express naalttower-bounds on concentration
for scenarios wherfl | - |Q| > n.

Lemma 6.3.10 Suppose the player has a winning strategy for DFT-Gdmé, k, B). Then for
any unit n-vector f that ig, l-index-limited and any se® of size r with r< k, f = Fyf is
€n-concentrated oM with
B
gq > (1— :»:)nl/2 €.

Proof. Consider an arbitrary Fourier transform péir, f) and letT = {b+imodn:0<i<
| — 1} be a contiguous set of indices containing sufpp g) with g some vector with|g||2 < &,
and||f||2 = 1. Consider arbitrary set of indic&€3 of sizer with r < k. By definition of the
relaxed Fourier game and the fact that the Fourier matriynsnsetric, there existisx | minor
V of DF T, with columnsT and rows avoiding2 such that

|det(V)[? > B2,

1

Similarly as in the proof of Lemma 6.3.9 we get for the smakssgular valueo, of ﬁv,

1 B

o (
Let Q' be the rows o¥/. Write

(Faf)or = (Fa(f — ) + FaQ)y = %vu g+ (P9

By the min-max characterization of singular values giverThgorem 4.1.7 we have that
1 1 B
IIﬁV( 97)ll2> Gl(f T =0gll2> (1-8) 7.
Sincel|(Fhg)qr|| < €, we get by the triangle inequality that

B
||fQ’||2>(l E) n'/2 —¢&

SinceQ' is disjoint fromQ we concludef is eq concentrated of with g > (1— a)nl—Ej2 —E.
(|

We now state our uncertainty relation for index-limited taes.

Corollary 6.3.11 Suppose f is a unit n-vector thatdd-index-limited with Fourier transform
f = Fyf. Then for any sef of size r with r< ,—”T and |+r <n, f is eg-concentrated o with

o> (1—¢)—75 —¢,

/2
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where

rir

m-20)() o () |
36n2”"

- (n—r)(n—r—l)(2_|n2_3n2)_ (n—r)(n—r—1)

n
(r?In HT+r2+

Proof. This following immediately from the player strategy as show exist in Corollary
6.2.7 and applying Lemma 6.3.10. O

The lower-bound on concentration @nis fairly weak, but we should stress this bound is
given for any conceivable s€l, not just contiguous ones. It is conceivable that the boamd c
be significantly improved by directly analyzing thenorm of random Vandermonde matrices
instead of their determinant.

AssumingQ to be contiguous should make even further improvementsitgessThis
would qualify for doing the discrete analogue of the work elby Slepian [Sle78]. A first step
has been taken by Grunbaum [B4], but this still remains to be a major open problem.

Our theorem still yields non-trivial lower bounds on conitation in case bothr >> /n,
which is a breaking point for typical straightforward cdhtions. For example, Theorem
6.3.7 yields a trivial lower-bound afp > 0 in cas€T|- |Q| > n, even if|T| is assumed to be
contiguous.

6.4 The Circulant Game' - an ad hoc strategy

We will consider an ad-hoc strategy for winning the contigsigersion of the circulant game.

Definition 6.4.1. A vector spacaJ C C" is ¢,|-flat with respect to given orthonormal basis
Ug,Us,...,Un 1 if for every nonzerox € U, writing X = zir‘;ola;ui, there exists € {0,1,...,n—
1} such that

11
&l <ellxll2+ (|ai—j modnl 3] modn|)-
=)

In the following, if the basis is omitted when using this défom, it is understood we are
considering flatness with respect to the standard basissgbadJ is note, |-flat, we say it is
g,l-bumpy and in this case any nonzero veckog U violating the above inequality is called
ang,l-bumpy vector

If for vector X, we have thafx| > €||x||2 and the previous or next— 1 positions are 0,
we sayx has apuree, |-halfoump Analogously to the above we define a vector spgade be
purelye, |-half-flat if it contains no pure, |-half-bumpy vectors.

Bumpiness is a projective notion in the following sense:

Proposition 6.4.1 If x is ang,l-bumpy vector then so &, for any nonzerd € C. The same
holds with “bumpy” relpaced by “purely half-bumpy”.



6.4. THE CIRCULANT GAME - AN AD HOC STRATEGY 99

Lemma 6.4.21fU C C"is purelyg, I-halfoumpy, then there exists unietd, such that for any
contiguous set of | rows R, there exists a contiguous setatihans T, such that

|detCirc(x)rT)| > €'

Proof. Consider any unit purelg, [-half-bumpy vectorx in U, which exists by Proposition
6.4.1. Writex = (X, X1,...,X—1) W.I.t. the standard basis. Without loss of generality agsum

that for somd, |ci| > € and|ci7j modnl =0, for j =1,2,...1 — 1. Also wlog. assum® =
{0,1,...,1 -1}. LetT = {i,i+1,...,i+1—1}. LetM = Circ(x)r T. ThenM is upper triangular
with x; on the diagonal, spdet(M)| = |xi|' > €. O

Lemma 6.4.31fU C C"is g,I-bumpy, then there exists a unit vectoeXJ such that for any
contiguous set of | rows R, there exists contiguous set diihmas T, such that

|det(Circ(x)rT)| > €'

Proof. Consider any unig,|-bumpy vectorx in U, which exists by Proposition 6.4.1. Write
X = (Xo,X1,...,Xn—1) W.r.t. the standard basis. Without loss of generality agstirat for some

i, G| > €+Z|j;11|0i_j modnl @nd also wlog. assun®R= {0,1,...,I —1}. LetT = {i,i+
1,...,i+1—1}. LetM = Circ(x)r 7. M hasx; on all diagonal entries, so using the Greshgorin
disc theorem (see e.g. [Bha97]), for each eigenvalugM)| > [xi| — z'j;ll|xi_j modnl +
%} modnl > & O

Definition 6.4.2. Let
1. p(n,l,k) =inf{e: YU C C" of co-dimensiork that is¢,|-bumpy}, and
2. p'(n,1,k) =inf{e: YU C C" of co-dimensiork that is purelye, |-half-bumpy}.

The above defines an interesting notion in its own right, kith wvegards to the circulant
matrix games we immediately get:

Theorem 6.4.4The player has winning strategies for Circ-Gaifrel,k,B'), where B=
max(p(n,|,K),p'(n,1,k)).

Proof. Suppose the adversary chooses a sétrofvs R and subspace ¢ C" of dimension
n—k. Then we know that is at leasip(n,l,k),I-bumpy. Hence by Lemma 6.4.3 the player
can choosa € U and contiguous set of rows so that deCirc(x)rT) > p(n,I,k)'. Also we
know thatU is at leastp(n,l,k)’-half-bumpy. Hence by Lemma 6.4.2 the player can choose
x' €U and contigous set of rowE' so that defCirc(x)r /) > p'(n,1,k)". ]

Proposition 6.4.5 For any nk, I with | —1 < n—k, p’(n,k,1) > 2-"-1,
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Proof. Consider arbitrary) of co-dimensiork. We can add — 1 equations of the formg =
Xi_1="...=X_|+2 = 0 to define a subspat¥ of U of nonzero dimension. Pick a unite U’.
For purpose of contradiction assume thas 2-"*'~1 |-flat. This meangx;, 1| < 2-"*-1,
Xi 2| <277 etc.. so

n-I n—I
[[X]|2 < Z)|Xi+k+l modnl < Y ==Ltk < pml-Lon-l41_q) o q
K= Ko

which is a contradiction. O

6.5 Bilinear Circuit Lower Bounds

In this section we prove orbit lower bounds in the speciakdhs free maps are diagonal with
respect to the standard basis and of determinant equal 1.

6.5.1 Strong asymptotic strategies

Definition 6.5.1. Let I, be a function with g, < n. We say that the player hasaong asymp-
totic winning strategy for the relaxed (or regular circuldmgame with respect tg | if for every

0 > 0 there exists & > 0 such that for all but finitely many, the player has a winning strategy
for Circ-Gamé(n, In, | 'o], 273109 "or Circ-Gamén, I, | i |,2-9"1°9"), respectively.

Similarly we define the notion of a strong asymptotic winnstgtegy for the Fourier
matrix game and its relaxed version. We have shown there walys of transferring strategies
in both directions between the Fourier matrix game and tloelleint game (Theorems 6.1.6 and
6.1.4). Some loss in the strength of the strategies wasviedpbut when considering strong
asymptotic strategies this loss is inconsequential. Ngmed have the following theorem:

Theorem 6.5.1 Let ¢, be a function with/, = O(%). The player has a strong asymptotic
strategy for winning the circulant game with respecttaf and only if it has a strong asymp-
totic strategy for winning the Fourier game w.r4,. The same statement hold for the relaxed

versions of both games.

Proof. Suppose the player has a strong asymptotic strategy ¥rfor winning the Fourier
matrix game. So for everdp > 0, there exists & > 0, such that for all but finitely many, the
player can win

DFT-Gamén, ¢, L%” |,27%nlogny

By Theorem 6.1.6 this means the player can win

Circ-Gamén, ¢y, L%”J ,2-%onlogn . Gy
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where withd ~ 0.02 being the absolute constant of Theorem 6.1.6, the latsff@ is given
by
6€n/2

\/(L%J)Mn(n_ LZT?J)
To summmarize for some constant 0, we have that for angp > 0, there existg, such
that for all but finitely manyn, the player can win

270,

Circ-Gamén, /, L%J , 2~ donlogn—cn)
This implies he/she has a strong asymptotic winning styategwinning the circulant game
with respect td,.
For the converse direction, suppose the player does notareasymptotic winning strat-
egy for the Fourier matrix game w.r#,. So there exists &> 0 such that for an¥, there are
infinitely manyn, for which the adversary can win

DFT-Gamén, L%“ |,2-9nlogn)

Then by Theorem 6.1.4, the adversary can win

Circ-Gamén, 4y, L’Z—k“ |,2-nlogn. gy,

where we can crudely bound the loss-fadtdy
n
F <n— L?J) n—tn/2 — 20(n).
n

To summarize, there exist a constant 0 and a constad > 0, such that for alk, for infinitely
manyn, the adversary can pidl rows and a subspate of dimensiom — L%J, such that any
¢y x £y minor M of Circ(a) with rows as determined by the adversary has

|dei(M)| < 2—6n|ogn+cn'

So for anyd' that is infinitisimally smaller tha, providedn is large enough one gets a straight
|det(M)| < 2-9n109n hound. This implies the player does not have a strong asytioteategy
for the circulant game w.r.t,.

The statement for there relaxed versions of the games haolalise our “transfer” Theo-
rems 6.1.6 and 6.1.4 hold with both regular games replaceddiyrelaxed versions. O

6.5.2 Main Result

Definition 6.5.2. A family {Dn}n~0 Where eacld, is ann-tuple of distinct positive real num-
bers(dy,...,dp) such that]’,d" = 1 is called aunit helper family. If for all but finitely
manyn, the entries irD,, of value less than one are contiguous (in the circular sense}ay
that{Dn}n-0 is asymptotically contiguous
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Lemma 6.5.2 Let/,, be a function satisfying, = O(,/n). Then the player has a strong asymp-
totic winning strategy for the circulant game w. .

Proof. Letd > 0 be given. Say, < c,/n for all large enougm. Setk = 4¢®>. By Theorem
6.3.8 the player can win DFT-garfre/,, L%J ,B) with

B ~1/2
oim (e (" Y

Then applying Theorem 6.1.6 we obtain a strategy for win@irg-gamén, ¢y, L%J ,D) with
1 n—LEn/kJ>1/2 . n o\ 2 B
D> (= nf"( ghn/2 n— | fn/k|) /2,

wheree is a constant approximately@®. This is certainly at least2"'°9" for any § > 0,
providedn is large enough. O

Lemma 6.5.3 Let /, be a function satisfying,, = O(n3/4). Then the player has a strong
asymptotic winning strategy for the relaxed circulant gamet. /y,.

Proof. Let & > 0 be given. Lek be a constant to be determined later. By Corollary 6.2.8,
providedn is large enough, the player has a winning strategy for DF&én, ¢, L%J ,B) for

Zzn Zn kn
B > Ze(ﬁfkizz IOgT)

Now applying Theorem 6.1.6, we obtain a strategy for winr@ig-gamén, £, L%J ,D) with

2
n

o(f— i, logkt) 42( N vz tn/2
D> 27 niew i e <Len/kJ> (0= LK™

wheree is a constant approximately@®2. We see that it is possible to delarge enough to
makeB at least 297997 for all large enoughn. O

Theorem 6.5.4Let {Dp}n~0 be a unit helper family, and suppog€,}n-o is a family of
bounded-coefficient bilinear circuits such that for all n,

Ma(x1-df, ..., % di,y) = X Circ(y).
Definel, = |DnN(0,1)|. We have that
1. Ifty= O(n%), then there existg > 0 so that $I'n) > ynlogn, for infinitely many n.

2. If by = O(n%) and {Dy}n-0 is asympotically contiguous, then then there exystsO so
that §Ty) > ynlogn, for infinitely many n.
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3. If¢h = Q(n), then gM,) = Q(nlogn).

Proof. Let us first prove the third item. Suppoge= Q(n). Hence there exists agp with
1> go > 0 so that for all but finitely many, £, > gon. In this case we think of thd" that are
larger than 1 as help gates as in [BL02]. There are at iffosteg)n many such help gates.
Theorem 6.4 of [BLO2] yields tha(I'n) = Q(nlogn).
Let us now focus on the first two items. For eaxlietiy,,...,in, be such that
d? <d <...<d

l1n |2n Inn*
In case
log |_| dn = o(nlogn),
j=fn+1
then we can replace the constants which are bigger than 1unyded constant repeated ad-
ditions. Which takes at mogg‘:&1+llogdir]?n = o(nlogn) additional gates. Hence we would
obtain a family of regular bounded-coefficient bilinearcaits of sizes(I') + o(nlogn) com-
puting x" Circ(y), but such a family must have sif(nlogn) by [BL02]. Hence we would
concludes(l'n) = Q(nlogn). In this case we can see that both item 1 and 2 of the theorem are

satisfied.
So assume that there i$a- 0 such that for infinitely mang, 17, , ; df > 20nlogn_ This

ljn
implies that for infinitely many, J
I‘Ld{;n < 2-nlogn, (6.12)

Let us consider some large enoughor which (6.12) holds, and let us drop the sub and
superscipts on our variables.

We are going to perform the following substitution on thecait. Setx;; = 0 for all j > ¢
and substituteqj = Zj/dij otherwise. This yields a bounded coefficient bilinear agtrofi no
size no bigger thag(I"), and it computes

(z1,...,z)diagd L, ....d" M,

1 7 le
whereM is them x n minor of Cirly) corresponding to rows:= {iy,...,is}.

Now setr =n— L%J, wherekp is a constant to be determined later. Ilfgt..., fx be the
linear forms inyof I'. Lemma 5.1.1 provides us with a linear subspaae# dimensiom — L%J
such that for any unib g U , we have that
< 35(Mn) +3n

~ 2|4/ko)+2
We think of the subspadé and the sel as chosen by the adversary.

For any unitb € U and any/ x ¢ minor Mg of Circ(b) with rows| we can obtain froni,
a bounded coefficierinear circuit computing theC™ — C™ map

(z1,-..,z)diag(d ", ..., d )Mo,

log miax| fi(b) (6.13)
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by removing the outputs not correspondingMp, replacing multiplications withfj(b) by
fi(b)/u, and correcting this by adding at madbgp repeated additions at the output gates,
wherep = max | fi(b)|.

Hence the number of gates we added is at most

_ 3s(I'n) +3n
?log miax| fi(b)| < giztﬁ/koJ - < ko3s(In) 4 3nky < 4kos(I ).

So the size of the resulting b.c. linear circuit is at mdgsg).

So provided the player has a strong asymptotic strategyimgnstrategy with respect to
¢y, for the circulant game, we know a constégtan be chosen such that there exist brdtU
andMg with

|det(Mo)| > 2~ 3"logn,

and if we know in addition thdtis contigious, then only a strong asymptotic winning stysite
for the relaxed circulant game is required for the same fiaits would imply that

|detdiag(dL, .., dY)Mp)| > 25m09",

g 0

However, by Morgenstern’'s bound any bounded coefficientcudir computing

diag(d; *, ..., d; *)Mo then requires at leagnlogn gates. Hence(I") > 1§-nlogn.

T
In caseln = O(n%), we know that the player has a strong asymptotic winningegsaw.r.t.
¢/, for winning the circultant game by Lemma 6.5.2, which essdigs item 2 of the theorem.
In caseln = O(n%), we know that the player has a strong asymptotic winningegsa
w.r.t. ¢, for winning the contiguous circulant game, by Lemma 6.5.8 p®vided the helper
family is asymptotically contiguous the deis contiguous, and this establishes item 3. ]

The model of computation that we are considering is adnijtterotic, but it should be
noted that the model allows for up to— 1 unbounded constants, which is more thanghe
unbounded constants the help gates technique in [BLO2] gea@ handle, whereQ e < 1
cannot depend on. We do have a strong restriction on where the unbounded aatsstan
appear in the circuit, and there is the restriction of theadpict being at mos®(1). As we
observed before, the orbit model has computational poweestere in between the general
unbounded-coefficient model and the bounded-coefficietaindHowever, it seems unlikely
that the model we consider is as powerful as the general unawalicoefficient case in which
the helper constant}’s are unrestricted.

Stepping away from the orbit model, what Theorem 6.5.4 &ésteds with respect to the
standard bounded-coefficient model of computation is argéfmver bound for entire families
of bilinear mappings, that appear in ti$,(C)-orbit of the circular convolution mapping.
Namely, the following corollary is immediate:

Corollary 6.5.5 Let{Dn}n>0 be a unit helper family, and defirfg = |Dn N (0,1)|. If ¢, satis-
fies one of:

1. Iflh= O(n%), or
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2. Ifty = O(n%) and{Dn}n>0 is asymptotically contiguous, or
3. If 6, =Q(n),

then for any family of bounded-coefficient bilinear cire{if }n~0o that computes

{XTCirC(d1y17 d2y27 oo adnYn)}n>Oa

there existy > 0 so that for infinitely many n,(§,) > ynlogn.

Both in Theorem 6.5.4 and its Corollary 6.5.5 a knowledge igapresent, informally
speaking, for,, in betweerO(n%4) andQ(n). In Section 6.6 we will give some evidence that,
at least in our framework, we will not be able to close this.gHipe analysis involvediscrete
prolate spheroidal sequencesd their remarkable eigenvalue properties. First however
will generalize Theorem 6.5.4 to two-sided orbits.

6.5.3 Two-Sided Diagonal Case

So far we have focused attention on diagonal orbit circuitsvhich only one side, which
w.l.0.g. was assumed to be tkeide, has helper constants. We now generalize Theores 6.5.
to the scenario in which we have helper constants on botk émely-side. Obviously in this
more general case we will observe an analogous “knowledgé-@s is present in Theorem
6.5.4, e.g. as it comes to dealing with that are notO(,/n). We will show however that,
provided we have on both of the input sides of the circuit ainthe favorable situations that
we did manage to handle before, then we can still estableshltgn lower bound.

Definition 6.5.3. Call a unit helper family{Dn}n~0 goodif for ¢, = |DyN (0,1)| one of the
following holds:

1. 4= 0O(y/n), or
2. lg= O(n3/4) and{Dn}n>0 is asymptotically contiguous, or
3. for somee > 1/2, for all but finitely manyn, ¢, > en.

We have the following theorem:

Theorem 6.5.6 Let {Dn}n~0 and {En}n-0 be unit helper families that are both good, and
suppos€ln}n>o is a family of bounded-coefficient bilinear circuits suchttfor all n,

rn(Xl'dEa---,Xn'drqa 1'e?_7"-ayn'enn) = XTCirC(y)'

Then there there exisys> 0 such that for infinitely many n{E,) > ynlogn.
Proof. Let/,=|DnN(0,1)|. For eacn, Letiqp,...,inn be such that

an

n n
i, <di, <...<di

Inn*



106 CHAPTER 6. UNCERTAINTY PRINCIPLES & MATRIX GAMES

In case

log |_| dn = o(nlogn),
j=tat1
then we can replace the constants which are bigger than leoaside by bounded constant
repeated additions. This takes at mg#‘;znﬂlogd{}n = o(nlogn) additional gates. Hence
we would obtain a one-sided orbit bilinear circuits of sikE,,) + o(nlogn) that use§En}n-0
as helper constants only. Sin€En}n-0 is good, we obtain the conclusion of the theorem by
application of Theorem 6.5.4.
Hence assume we hade> 0 and an infinity seN of input sizes such that for afl € N,

Let ¢, = |EnN(0,1)|. For eacm, Let jip,..., jnn be such that

e“<e”< < €}

Jon Jnn*

If on the subsequende (per abuse, we tredt as an infinite sequence of increasing numbers)

we have that .

Iog|_|er-‘

i\, = o(nlogn),
k=th+1

that is, if for anyn > 0, for all but finitely manyn € N,

n
log |_| €}, < nnlogn,
k=41

then for eachn € N, we can replace the unbounded constants ornyibiele by effectively
o(nlogn) repeated additions. Hence obtaining for eaehN, a one-sided orbit bilinear circuits
of sizes(I'y) + o(nlogn) that use§ Dy }n=0 as helper constants only. Sin€Bn}n-0 is good,
we obtain the conclusion of the theorem by now continuingvdke proof of Theorem 6.5.4.
Hence assume we hade> 0 and an infinity subsequenb of N, such that for alh € N/,

n
d'nlogn
erj]kn > 2 '
k=¢,+1

Case |: Suppose oiN’, ¢;, = Q(¢n), i.e. suppose there exigts> 0, such that for all but
finitely manyn € N’, we have that;, > n¢p.

Subcase A:lf {Dn}n>0 is good because of clause three of the definition, Then also
{En}n>0 is good because of clause three. So we tege> 1/2 such that for all but finitely
manyn, ¢, > en and/, > €'n. Thinking of the helper constants as help gates as in [BL02],
in this case the circuit contains at m@&t- (€ + €'))n unbounded constants. This is bounded
away fromn by a constant factor, and thus via Theorem 6.4 of [BLO2] wankthe statement
of the theorem.
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Subcase Bif {Dn}n>0 is good because of clause one of the definition, d.e= O(,/n),
then by Lemma 6.5.2 we know the player has a asymptotic winsirategy for the circulant
game w.r.t.,. Consider large enoughe N/, and let us drop the sub and superscipts our
variables.

We are going to perform the following substitution on thecait. Setx;; = 0 for all j > ¢
and substituteqj = Zj/dij otherwise. This yields a one-sided orbit circhit of no size no
bigger thars(I"), for which

rl(217 2,...,4,Y1€1,Y2€2,. .. aYnen) = (217 R ,Zg)diaqd-il 7d71)Ma

Il P iz

whereM is them x n minor of Ciry) corresponding to rows:= {iq,...,is}.
Now setr = n— L%J, wherekp is a constant determined large enough so that for any
subspacé) of dimensiorr, there exists valub for y so thatM (with y := b) has ar¢ x £ minor

Mo with detMg) > 2-3nlogn Since we have an asymptotic winning strategy for winnirgy th
circulant game with respeé, there exists sucky. Observe that enlarginky only makes the
circulant game easier for the player. This will enable udso aatisfy the requirement thigj

is chosen so thq% < n. Hence in this casé > n¢ > % Letd={j1,j2,..-, ]}, i.€. Jis the

set of indicesj whereej > 1. LetV be the coordinate subspace determined by set of equation
yj =0, for all j € J. The dimension o¥ is ¢'. Modify circuit I’ into a bounded-coefficient
bilinear circuitl™” by settingy; =0, for all j € J and pushing dowe; constants that are smaller
than one onto the wires. Fgrestricted tov the output of”” andl™" are identical.

Let fy,..., fx be the linear forms ity of "', We still consider these as being defined over
all of the variables,yo, ..., yn, eventhough only’ manyy variables are used. This way we
can still consider them as definimginput polynomial function. Lemma 5.1.1 provides us with
a linear subspadd of dimensiomn — L%J such that for any unib er U , we have that

3s(r")+3n

log miax| fi(b)| < 20t/ko] 72 (6.14)
Now since
dimU NV] > (n— L%J) +0—n=/(— Léj > 0,

we know there exists unlt € U NV. We fix thisb for they inputs. Now the outputs of the
linear forms iny are just constants. Multiplication with these constantt e replaced by
repeated additions just as was done in Theorem 6.5.4. Tdlgiveetails, for the mina¥ig of
Circ(b) with rows| we can obtain fronf ', a bounded coefficieriinear circuit computing the
ct — Ctmap

(1,...,zm)diag(d ", ..., d )Mo,

by removing the outputs not correspondingMa, replacing multiplications withf;(b) by
fi(b)/u, and correcting this by adding at madbgp repeated additions at the output gates,
wherep = max | fi(b)|.
Hence the number of gates we added is at most
3s(y) +3n

tlog mlax| fi(b)| < EW < Skos(n).
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Since 5
|detdiag(d;; ", ..., d;,*)Mo)| > 25m9n,

T
we conclude by Theorem 2.1.1 thef ) > 1§-nlogn.

Subcase Cif {Dn}n-0 is good because of clause two of the definition Zhe= O(n%/4)
and {Dn}n>0 is asymptotically contiguous, we have an asymptoticallpninig strategy for
the contiguous circulant game. The proof proceeds simislin Subcase B. Having only a
strong strategy for the contiguous game is sufficient, simt¢lee case thé; constants that are
cancelled form a contiguous block, and we therefore are mgnkith minors of Cirgy) that
are restricted to a contiguous block of rows.

Case II: Assume the opposite of Case I, i.e. assume forrany0, there are infinitely
manyn € N’ such that/;, < n¢,. Let N” be infinite subsequence &F for which this holds.
OnN", ¢n = Q(¢},). This case now follows similarly as in Case |, but with thandy-sides
interchanged and using”’ instead of\'. O

Let us note that at the current time item 3 of Definition 6.50@sInot read,, > Q(n),
as would be desirable, since this is what we did for the odeescase. The reason being
that Theorem 6.4 of [BLOZ2] allows for up #&n unbounded constants present anywhere in the
circuit, with € < 1. However, it is not clear how to generalize this result toveihg uptogin
unbounded constants on one side of the circuit (say therlineapart) together withanother
€on constants on the other side (the lineay jpart), where potentiallg; +€> > 1. The [BLO2]
result can only be applied provideg+ > < 1.

6.6 Closing the gap

Our original hope was to get item 2 of Theorem 6.5.4 to workafiay ¢(n) = o(n). Unfortu-
nately, the following appears to be true:

Conjecture 3. There existg < 1, such that fo¥(n) = |n®|, the player does not have a strong
asymptotic strategy for winning the contiguous versionadifier matrix game w.r.tZ(n).

Actually we believe that the cut-off point lies somewhere gmear 45, which we will
support using results obtained in [Sle78]. We state:

Conjecture 4. If £, = Q(n*5log"®n) and¢, = o(n), then

1. the player does not have a strong asymptotic strategyiforimg the contiguous circulant
game w.r.t./,, and

2. neither does the player have a strong asymptotic strdtegyinning the contiguous
Fourier game w.r.t¢y,.

Given that we have fairly efficient ways of transferring ttpes between the Fourier
matrix game and the circulant matrix game, it is no supris¢ items 1 and 2 of conjecture 4
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are closely related. Theorem 6.5.1 shows that items 1 anel carivalent fo¥,, = O(%). It
is also clear that conjecture 4 implies conjecture 3.

So, let us have a look at conjecture 4. To analyze this, seppes o(n). Con-
sider playing DFT-Ganién, ¢, r = L%J,B), for some large enough, wherec is some con-
stant. For convenience let us assume tha odd. LetN = {0,1,...,n—1}. Suppose
the adversary chooses rows= 0,1,...,1 —1 and setC of columns 01,...,(r —1)/2 and
n—1,n-2,...,n—(r—1)/2. Inthis case, with =n=1/2DFT,, we letK = FrcF3 then the
entries ofK are given by théirichlet kernel Namely, for 0< s#t </—1, letting f = s—;t
we have

NKe — L7 ik _ ezm'f(rl)/z(rf) 2k _ esz(rl)/zl—tggff
k=—(r=1)/2 K=o 1-

o 2mf(r-1)/2 _ 2mf(r+1)/2 o Tf(r-1) _ gu(r+1)f  gomif(r-1) _ gui(r+1)f

1 — e2mif N 1 e?nf B 1 et
@if(eirf gty et _ gt _Disin(rfm)
T gif(eTf _gif) T e Tf _gif T _Disin(fm)

sin(r(s—t)7)
sin((s—t)7)’

where we can also take this formula to defiyefor s=t, provided it is understood that one
takes the limiting valu&s; = r /nin this case.

LetM =1 —K. We have thak is an eigenvalue d¥l if-and only if 1— A is an eigenvalue of
K. If det(M) = 2-@(Nlog" sinceM is also given byM = Frn/cFgn oo then by Binet-Cauchy

N/C
(Theorem 4.1.3),

detM) = 5 |detfrg)

ScN/C

|Si=¢
So any/? x ¢ minor of DFT, that avoids rowsC has magnitude at most’/22-@(nlogn) —
2-«(nlogn) for ¢ = o(n), which means the player does not have a strong asymptodiegt
All eigenvalues oK are in the interval0, 1]. This is because the largest singular valu&g¢
is at most 1. Hence we have the sameNbrTo give an upper bound on d&t) it thus suffices
to show the largest eigenvalueskotluster very close to 1.

At this stage we introduce theéiscrete prolate matribstudied by Slepian [Sle78]. For

bandwidth parameter \\he defines th&l x N matrix:

~ sinZnwW(s—t)
P(N,W)st = W

where it is understood that fer=t the value on the r.h.s. equaM®/2 Let us takéV = - and
N =/. Then

,forO<st<N-1,

r. _ sinr(s—t)g

Pl 3p)st = n(s—t)

,forO<st</-1



110 CHAPTER 6. UNCERTAINTY PRINCIPLES & MATRIX GAMES

It is certainly clear that for fixed & s#t < /¢—1, since/ = o(n),

TR C SR T L Coul )
n—ep(N,W)st ~ n—ensin((s—t)T)
jim =Y.
n—e N(S—t) 1
= 1,

and that on the diagonal both matrices have all entries ¢qual

6.6.1 Asymptotic Equivalence

Actually a much stronger relation holds between the m#trandpn w. Considered as families
of matrices depending on the parameigthese families arasymptotically equivalentWe
give the definition from [Gra02], modified to give some flektlgiregarding the dimension of
the matrices:

Definition 6.6.1. Two sequences df(n) x £(n) matricesA, andB,, are said to basymptoti-
cally equivalenif the exists boundk such that

1. foralln, ||An||2,||Bnl||2 < K, and

2. limp_e AnBnlle _ g

¢(n)

Note that for ar/(n) x £(n) matrix A, ||Al]2 < [|Al[r < v/4(n)||A]]2, so the second condi-
tion in the definition is weaker than straightforwardly remg that limn_,c ||An — Bn||2 = O.
For asymptotically equivalent matrices their eigenval@ge the same distribution in the fol-
lowing strong sense. Namely, Theorem 2.4 from [Gra02] catwieaked for our scenario to
read:

Theorem 6.6.1Let A, and B, be asymptotically equivalent families &fh) x £(n) Hermitian
matrices. Let m and M be such that for each n, all the eigemsglL(A,) andA; (A,)of A, and
Bn are in the intervalm, M]. Let F(x) be an arbitrary function continous dm,M]. Then

£(n) £(n)
lim ¢(n)~1 Z F(Ai(An) = lim ¢(n)~t Z F(Ni(Bn)).

n—oo n—oo

To give two examples, foF being the identity function, the above states that the aver-
ages of the eigenvalues, if convergent, converge to the sate. ForF(x) = Inx, provided
eigenvalues are positive, one would obtain
lim IndetA,)Y“" = lim Indet(B,) Y/ ‘™.

Nn—o00
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We will now prove that the (families of) matricésandp(¢, -) are asymptotically equiv-
alent.

Theorem 6.6.2If £, = o(n), then for any sequencae,ithe families of, x ¢, matrices{K(n) }n
and{p(l, 22)} defined by

_sin(ra(s—1t)3)

)

KNt = nsin((s—t)

SISy

and .
n, _ Sinrp(s—t)7

P(ln, == )st = =0 forO<st</,—1,

2n
are asymptotically equivalent.

Proof. First of all, sinceK(n) = FrcF3c, by submultiplicativity of the/>-norm we know
[IK(n)|]2 < 1. From [Sle78] we know thatp(4n, 22 )||2 < 1. LetD(n)st = p(¢n, 52) — K(N)st.
Remains to show that

i [IP)[lF
lim ———=0.
n—o  /fq

We use Taylor expansions (see [RWO04] p.197): for evetlyere exists &< 8 < 1 such that
t3
sint=t — G COsot.

Consider fixed X s;t < /,—1 andn. Leta, = sinrn(s—t)’—nT, and letp, = m(s—t). Using
Taylor, write:

. ™

smg(s—t) = g(s—t)—ﬁ(s—t)scoseg(s—t)
_ B w
~n n

with 0 < 8 < 1 depending om ands—t and

™ 3 ATl
Yn = W(s—t) coseﬁ(s—t).

We have that

On an

Bn  Bn—Yn
An(Bn—Yn) B anPn
Bn(Bn—Yn)  Bn(Bn—¥n)

—0OnYn

B2 — BnYn
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—un%(s—t):”coseﬂ(s—t)
T2(s—1)?2 —i(s t)4cosBl(s—t)
—0Ongz(S—1t)cosBA(s—t)

1-— 6nz(s t)2 coseg(s—t)'

Since/, = o(n), if nis large enough the denominator in above expression igarigtclose
to 1. The numerator has two oscillating factors, but coreetg 0 as determined by the domi-
natingsn—;t factor. Hence there exists constant 0 so that for large enough

2 la—10n—
PmE _ 1
ln o En

4
cly
lan?
cl3
nt’

IN

IN

Sincel, = o(n), we get that

1/243/2
PO _ oy €207 _

lim
n—o0 n2

n—o0 fn

(|

Asymptotic equivalence provides us with some preliminaigence of the close similarity
of K(n) andp(¢, ), but by itself is not strong enough to resolve conjecturel fhsk at hand
is to carry over the asymptotic eigenvalue analysis dong(fgrs ) to K(n). We will give some
experimental data that, together with what is already knabwutp(, 5-), suggest indeed one
could prove the truth of conjecture 4 by doing a precise asgtigpeigenvalue analysis of
K(n). Such an analysis however, is still an infamous open proliteRourier analysis, as we
will discuss (see also [AET99, @81, CX84]).

6.6.2 Experimental Data

Let us do an experimental comparison betwkgn) andp(/, 5). Define the function
_ In|del —p(én, z2))|
~In|det(l —K(n))|

where we fix some & & < 1 and set, = |n®|. Figure 6.1 show the functio@(n) for &= 0.5.
The function appears to converge to a value just less thanghesting that for any function

f(n),

) (6.15)

|det(l —p (en,z )| = 2" — |detl —K(n))| = 2°(T(") (6.16)
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Appendix A contains some additional data for different eslwfd. For d close to 1 com-
putational precision becomes an issue, and the range fioust be chosen to be smaller for
data to be reliable. Nevertheless, we believe the data stgytfeat implication (6.16) holds
with ¢, = |n®|, for any 0< & < 1. The asymptotics of the eigenvaluespgN,W) are well-
understood. This translates to statements about the datertrofl — p(N,W), which can be
seen to be smaller than 21°9" for any fixedc > 0, if £, = Q(n*/>log°n). We will show
this momentarily. If indeed implication 6.16 holds for any® < 1, then this would prove
conjecture 4, and rule out strong asymptotic strategiethéplayer oncé, = Q(n4/ 5logl/® n).

1.005 T T T T T T T T T

0.995

0.99

Q(n)

0.985

0.98

0. 975 Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500

n

Figure 6.1:Q(n) for 3= 0.5

6.6.3 Eigenvalues op(N,W)

In [Sle78], the following asymptotic values for the eigelmes ofp(N,W) are given. For large
N andk with
k= |2WN(1—¢)], withO<e< 1,

we get

1— M (p(N,W)) ~ e CHa/2e N, (6.17)
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where
A =cos2iW

andA < B < 1 is determined so that
B || (t—A)(1-t2) N

4 |N TT
C=—|5Li+(2+ —1k—} :
LZ[Zl @r(-19%]

where[X|mogr IS defined to be the number j@, 2m1) congruent to modulo 2t The variables
L1,L2,L3 andL4 determined by

Ll_/ P(t LZ:/lQ(t)dt
Lg—/APtdt L= /

Furthermore, we have

where
1/2

t—B - Q) = [t-B)-Aa-1)

B ~1/2
0= | anw |

We apply this withW = 5= = Mz/rfj A %] N =/ ande = %. We will assumen is some
large enough number, and drop this index for the variablas depend on it. Note that in
[Sle78] the bandwidth parameté' is taken to be fixed, but let us here provide evidence for
our conjectures, modulo the assumption that this techtyaan be resolved. We first perform

a substitutiort = sing on the integral determininB. Define
_ ft-B 1
- Vit-AVI—2

1 arcsml
/ f(t)dt = / f (sing) cospdg
B a

rcsinB

Then

"/ 2 [singp— B
= 6.18
rcst singp— A ( )

Note that sincé\ < B < 1, we have thaf — < arcsinB < 7. Sincel = o(n) we can approx-
imate (6.18) by

;(g—arcst)\/iA \/_\/7\/7
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ApproximatingA by 1— 3(2nw)2 =1— 2 we get that

2c2n?’
uss

So fore = %, Br1- % , Which is approximately in the middle of the intery&l 1]. We

will ignore the factore=C4/2in (6.17), since this factor is certainly always less thauvé.will
now give a lower bound obs:

==t
/;\Wa—gﬁ‘“
\/ﬁ Ae 1
= 2 /A \/(t—A)(l—tZ)dt
> \/ﬁ/# 1t
- 2 Ja VI—A
_ \/B;AZ\/B;A
B—A

22

4c?n?’

Q

So we conclude that for the mati’ = | — p(N, W),

23
MM <e =g wv,

wherek = [WN/2| ~ %. Hence

2/5 5
detM’) <e” 65 = & 09,

If this bound would carry over to the matri, which certainly seems plausible given the
empirical evidence and also the asymptotic equivalenckeifatriceK andp(¥, »=), then in

order for the player to have a strong asymptotic stratggmust beo(nlogn). In other words,

if ﬁ—i = Q(nlogn), i.e. £ = Q(n*5log"°n), the player has no strong asymptotic strategy. This
would then prove conjecture 4.
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Unfortunately, the asymptotic equivalencekondp(¢, 5-) is by itself not strong enough
to carry over eigenvalue results about the mahlfixto M whilst retaining the precise quan-
titive values provided by [Sle78]. We need to know about thecise rates of convergence.
Also given our sensitive requirements on the clusteringgémvalues oK near 1, that is our
need to observe eigenvalues that exponentially closé¢o 1, it seems difficult to carry over
results aboup(¢, 5=) to K using any standard perturbation techniques, like Theorgn®2
(£, 5)||2 does not converge to 0 exponentially fast. Note also thabfeme
6.6.2 actually shows that for some constant O,

52
D)2 <2 5.

So for ¢, = o(n) we do have the,-norm of the difference betwee andp(¢, 5-) going to
zero. The problem is that this convergence is not rapid emotakings—t = 1, we can see
thatD(n) has entries that are rougf@(f}—g) and so certainly

D)= (D)

Hence in an application of 2.1.2, the exponentially clossstelring of eigenvalues @f(¢, 5-)
near 1 would get lost in the approximation.

It appears that to know about the eigenvalues of the same precise manner that we know
about the eigenvalues of¢, 5-), we need to carry out thenalogous analysias in [Sle78].
However, as remarked before, this remains a major opengmoAET99]. A first step was
taken by Giinbaum [Gii81] into resolving this issue. To give an idea, Slepian&ults are
based on the fact tha(N,W) is closely related to the integral operator

L= / smNT[f—f)
“sinm(f — )

ForL he manages to give a diffential operakbithat commutes with.. This implies that these
operators have the same eigenfunctions. The eigenfusctioh. can be found by solving a
diffential equation of Sturm-Liouville type. This then tislates back to the eigenvectors and
eigenvalues op(N,W).

For comparison, Gmbaum manages to give a tri-diagonal makfikthat commutes with
K. This then meanK andM’ have the same eigenvectors. Potentially, the eigenveatdné
can be expressed in closed form by solving a difference emygtist like in the continuous
scenario a diffential equation needed to be solved. Thisicdy is going to be a formidable
task. Note that also some work towards this end has been dg@XB4], although at a more
elementary level.

In any case, regardless of whether we can formally prove thieems inplausible that
the knowledge-gap we observed in Theorem 6.5.4 and itslaoyd.5.5 can be closed “all the
way up to” ¢, = o(n) by the game strategy framework we devised. Our random Vamutette
matrix strategy gets us up te= Q(n3/ 4). The above motivation leaves open the possibility one
can perhaps push this uptp= o(n"'/f’logl/5 n), but also suggests that at this point any DFT-
Game strategy oriented argument will cease to work: atthg= n%/5+9 point the adversary
appears to have the upper hand.
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6.6.4 Equal Spacing Strategy and its limitations

The previous section gave evidence why it is plausible thialeirge enougls < 1, there is no
strong asymptotic strategy for the player with respeé{iy = |nf| in the relaxed Fourier ma-
trix game. In this section, we will look at the particular sa€o where the adversary chooses a
contiguous block of disallowed columns, and where the plafieoses his columns spaced at
equal intervals in the remaining set of columns. This is éi@alarly instructive case to look at
with regards to conjecture 3. As noted before, we have sodieation this is the worst-case
scenario as far as the adversary’s choices are concerngill. be interesting to see how well
an intuitively good strategy like spacing points equallyhia allowed interval fares in this case.

Instead of analyzing this scenario discretely, we will gmalthe following continuous
analogue. Lek be a constant, and suppadse: o(n). Consider some large enoughSay the
adversary fixes an arbitrasector Sof the unit circle of angqu—nZT[. We will now try to find a
set of/¢ points on the unit circle that are equally spaced in someesand avoid the s&

Let us start out with a sél of mequally spaced points on the unit circle. IRRE MN S
SayR hasr points. LetL = M/R. We wantL to havel points, so assume a 9dtis chosen so

r = m— /. Since the fraction of points d¥l that are inR will be proportional to the fraction

. . . 2
thatSis of the entire cirle, we have thif~ &, sor ~ £, andm~ &0, = o

For finite setA, B € C, define :

Pag = | a— b| .
aeA,tDB,a;éb

We are interested iR |, since it relates to a Vandermonde determinant:
I:)LL - |V(X17X27 ce- 7X|)|27

wherexi, X2,...,X, are the points i.. Observe that

PLL:% and PLR:%a
S0 N
—_ M
PLL—PRMPRR-

Let x be a point contained iM. By symmetry,Pxv is the same for any point of M. Now
Puvm = | det DF Tyy) |2 = m™, soPgy = m. hencePry = m’ andPLy = m’. Hence

AL =M Prr=n?"""Pre

Taking the crude upper bound that any chord between poirRasrof length at mos ’}f we

get that
oY r(r—1)
< | — .
Prr< ( kn)
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Hence (using thain < 2/ for large enougm)

ol r(r—1)
m)

o o1 r(r—1)
2 <m)

22£Iog 2¢+r(r—1)log 2r¢—r(r—1)logkn

R < m%m<

IN

Vi fa
_ Z—O(W Iogkn)+O(W log?)+0©(¢log?) .

Hence if¢ = w(n®4), the dominant term@(% logkn) will cause—logP, | to be of growth
orderw(nlogn).

Returning to the relaxed version of the Fourier matrix gathe,only difference in the
above scenario is that we cannot select arbitrary pointherunit circle, but must pickth
roots of unity. Ifn is large the player can seleétmanynth roots of unity that very closely
approximate the equal spaced points in theLseOur analysis indicates that such an equal
spaced selection would not provide us with an asymptogicatbng strategy fof = w(n3/4),
that in this case the resulting Vandermonde matrix has mhéni@nt of order 2@(nlogn)

From inspection of small cases one can deduce that the gopaehg strategy is not the
optimal strategy against an adversary that chooses a contigblock of columns. Slightly
skewing the selected points towards the set of off-limittsozan yield a larger determinant.
However, it appears unintuitive that by such skewing ongaraduce an asymptotically strong
strategy/forarbitrary ¢ = o(n), given that the equal spacing stategy ceases to be useful at
0= w(n%4),

It also should be emphasized that the equal spacing strated§s for ¢/ = O(n3/4), but
that this does not provide a simpler alternative for our and/andermonde derived strategy.
The equal spacing stategy assumes the set of disallowethoslto be contiguous, wheareas
the random Vandermonde strategy get us up t0O(n%4) with the disallowed/(n) many
columns being in arbitrary configuration. We have given erik to support the claim that no
strategy exists for the player féfn) = n*/5+9,



Chapter 7

Bounded Depth Circuits

In light of the inherent difficulty in proving general cir¢dower bounds, various researchers
have tried to make progress by adding one or more restri¢mtise computational model.
One popular restriction has been the one in which the theiticrestricted to be of constant
bounded depth. In this case arbitrary fan-in at gates isvallioin order to make the model
nontrivial.

In boolean complexity the restriction to constant depthoégsone to successfully prove
exponential lower bounds [Ajt83, FSS81, Yao8%489]. These papers constitute a body of
work that is one of the shining gems of theoretical comput@rge. In the arithmetic world
however, the situation is less bright. Currently only weakér bounds, i.e. just barely non-
linear, are known for constant depth circuits [RR03, Pud94]

Further progress has been made by adding additional testscto the computational
model. Exponential lower bounds were proved for the size ohatone arithmetic circuits
[SS77, MS80], and linear lower bounds are known for theirtll¢S80, TT94]. In Chapter
3 we studied>NZ-formulas, which are of depth three. Over finite fields expuia¢ lower
bounds are known farlnzx-formulas, for example for computing the permanent andéerd
minant polynomials [GK98, GR98]. Exponential lower boumads known fomulti-linearand
homogeneou&lNz-formula [Nis91, NW96]. For unrestrictedlMZ-formulas the only known
lower bounds are the near-quadratic ones of [SW99], andxtem&ions of these results that
we proved in Chapter 3. Note that Raz proved super-polyndovieer bounds on the size of
general multi-linear formulas [Raz04a, Raz04b].

In this chapter we will proceed as follows. First we will peotwo new versions of the
classic “Derivative Lemma” of Baur-Strassen [BS82]. Thasnma is used in combination
with Strassen’s degree method [Str73a, Str73b] to olgameralQ(nlogn) arithmetical cir-
cuit lower bounds for single output functions. Originallir&sen’s degree method works for
proving lower bound on the size of straight-line programsipating several functions. The
Derivative Lemma converts any straight-line program foimgle function into one that com-
putes the function together with all its partial derivatiweith constant factor overhead, thereby
enabling application of the degree method. Let us note treatdwer bounds obtainable this
way, for simple functions like! + x5+ ...+ x3 and less trivial functions like the determinant
and the permanent, are the only general super-linear attbah circuit lower bounds known
to date.

119
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After exposition of our new versions of the Derivative Lemma will prove some lower
bounds for a kind of bounded depth trilinear circuit, whosape and form arises from appli-
cation of our derivative lemmas. We call these kinds of gtsctinterpolation circuits”, and
they compute linear combinations

izi pi(X17X27"'7Xn) (71)

of a collection of polynomialgs, p2, ..., pn, Where we will consider the coefficientsto be
a “special” set of variables. These results take the idemms {t.ok95] a step further for our
particular model.

Lokam considered bounded depth linear circuits with bodnateefficients, and bilinear
formulas, which essentially are linear circuits of depth/AZ will prove size-depth trade offs
for our special kind of bounded coefficient tri-linear citoccomputing linear combinations of
the form (7.1), where the polynomiais are bilinear polynomials of form' Ay.

Then in the last section, we will switch gears and prove a limear lower bound on
the size of a bounded depth bilinear circuit computing daceonvolutionx' Circ(y). To
emphasize, the lower bound obtained there is without aryigesn on the coefficients that
are on the wires. We will employ a lemma from [RR03] absuperconcentratoproperties of
the graph of a bilinear circuit, and we will combine this in @al way with theuncertainty
principle proved by Tao [Tao091], as it is known for cyclic groups of peimrder, in order to
obtain our lower bound.

7.1 Derivative Lemmas and Linear Interpolation

In this section inputs are not considered gates, fan-inumtled by two and the size of circuits
is measured by counting gates.

Definition 7.1.1. An interpolation circuit for computing polynomiald, ..., f,, in variables
X1,...,%Xn IS defined to be an arithmetical circuit with inputs,...,X, and special inputs
b1,...,bm that computes the linear combinatign{ﬂ1 bi fi. Interpolation circuit size is defined

byi(fi,..., fm) =s(3M,bifi).

Our main interest is to consider interpolation circuitst thave bounded coefficients. The
reason is that interpolation circuits with bounded coedfits have, like the orbit models we
defined before, computational power somewhere in betweebhdhnded and unbounded co-
efficient model. An important technical detail is whetheg thircuit has access to a constant
1 gate. We will indicate explicitly by using superscipif that is the case. We uské<* g
to indicate asymptotic orderin = O(g). Call a polynomial nontrivial if it is not equal to a
variable or a constant. We have the following easy obsemsti

Proposition 7.1.1 For any set of distinct nontrivial polynomialg,f. ., f,, we have that
1. |bc(f1, ey fm) S* Sbc(f]_, ey fm)
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2. POL(fy, ..., fm) <* SPOL(fy, ..., fm).

Applying the Baur-Strassen Derivative Lemma to a boundezfficeent interpolation circuit
without access to 1, yields us a bounded circuit computiegst#parate functions with access
to 1. Hence,

Proposition 7.1.2 For any set of distinct nontrivial polynomialg,f.., f we have that
2. sbql(fl"”’ fm) <* ibc’l(fl,..., fm)-

So we conclude that the bounded coefficient interpolatiodehwith access to 1 is equally
powerful as bounded coefficients with access to 1.

Corollary 7.1.3 iP%Y(fy,..., fr) =" LO1(fq,..., fm).

For linear circuits we can summarize the above situatiorodsis. We denote byﬁtl’ﬁ’elar the
size of circuits that consists of addition gates computiaghbgeneous linear forms and addi-
tion gates computing constants, and allowing one mul@giln gate at each output that multi-

plies a linear form and a constant gaf; ... denotes the size of a bounded constant interpo-

lation circuit which is bilinear. Observe that for a lineaaphx.Ax, i35, . (Ax) <* qk:r?;ar(Ax),

because we can replace the multiplication gate with cohbiaperforming repeated additions
at the single output of the interpolation circuit. Convéysés. . (Ax) >* s1b"f’elar(Ax), by appli-
cation of the Baur-Strassen Derivative Lemma, and therstearing constant multiplications

to the outputs. Hence we have
Proposition 7.1.4 Sinear(AX) <* §°1 (Ax) =* b __(Ax) <* spe_ (AX).

Sinear = Ipilinear
Examples can be given for which the interpolation model isenppwerful than the bounded-
coefficient model, when disallowing access to 1. For exargile, (2", . .., 2"%q) = Q(n?),
whereasb”mear(znxl,...,2”xn) = O(n). Theibs ..,-model can play a similar role as the or-
bit model in future research, namely provide an intermedipttal for proving lower bounds,
somewhere in between the bounded and unbounded constaat mod

Theorem 7.1.5 Given a bounded coefficient circliitcomputing 1, ..., f, at (non-input) gates

of fanout zero in variablesx. . ., x, of size s, we can construct a bounded-coefficient circuit of
size at mosbs with extra inputs & by, ..., b, computing

bof; + Zlb.

o1}

forall j=1...m

Proof. We use induction on the number of gatesther than the outputs. The base case is
whenr = 0. In this case eachy is a gate taking both inputs directly from the input variable
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s= m and the theorem follows readily. Suppase- 0. Leth be a gate taking both inputs
from the variables. Lef’ be the circuit obtained frorfi by replacingh with a new variable
Xn+1. Thatis, add a new inpw, 1, and whenever there is a wire fromto a gate, have the
same wire (with identical constant) to that gate fregn, and finally removén. Say the new
circuit computesfs,..., f},. By induction, we obtain a bounded coefficient circiift with
iNnputsxy,...,Xy+1 andby,...,by1 computing

n+1 6'

bofj + Zb.

(forall j =1...m) of size at most &— 1). Note that for each, f/[x,.1 < h] = fi. The chain
rule gives us the following equality for any=1...mandk=1...n,

of; Of] of! oh
Oxe O '
Let " be the circuit obtained frofi” by replacing input variabl&,  ; with the gateh. That
is, add the gatl, and whenever there is a wire fratq, 1 to a gate have exactly the same wire

(with identical constant) fronh to that gate, and finally remove, 1. We see thaf”” has a
gategj computing

n+1 af'
g] - bOf [XFH—J. — h + Zb| XrH_]_ — h]

for j = 1...m. Hence we obtain the required circuit by performing the stisn
N dh
b1 ) bi——
i; 0%

af’ oh Oof!

N ah
ioni1— S b—] = bof! —~h+ S b=+ h+S b L IXqi1 ¢ h
gj[ n+1 i; Ia)(i] 0 [Xn+l Zl i [Xn+1 Zi i aXn+1[ n+1 ]

Since foranyj =1...m,

of;
= bofj+ Zb. L

The substitution fob, 1 can be done by adding at most 3 gates. That is, in base
ax; + Bxj, we substituteab; + b;, which takes one gate. In cake= ax; - Bxj, we substitute
apbixj +apBbjx, which takes 3 gates. In both cases constants on the wirdsareonstants
from the bounded-constant circliit We conclude thaft”’ has size at most(S— 1) + 4 < 5s,
and that it is a bounded-constant circuit. O

Corollary 7.1.6 In the statement of Theorem 7.1.5[ itloes not use a constant 1 input gate,
then neither does the constructed circuit.
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The above property is violated by the Baur-Strassen lemma.giie an example, a
bounded coefficient bilinear circuit computimgAy is turned by that construction (when just
constructingdx;’s) into a bounded-coefficient circuit computidy , but using a constant 1 in-
put gate to build up constants, which get used at multippcagjates. This is an unfortunate
fact, because current volume and spectral techniques,riitydar Morgenstern’s Theorem,
for proving lower bounds on linear circuits get defeated lighsusage of constants. Note that
[NW9O5] overlooked this fact, and that the proof their “Cdaoy 3” is wrong. In this example,
our proof of Theorem 7.1.5 simply reproduces a boundedficeft bilinear circuit computing
bT Ay. Applying the corollary form = 1 yields the following:

Corollary 7.1.7 ibC(f,aa)f ,. ,axn)

<* (1),

We can also obtain a “transpose” of the above theorem.

Theorem 7.1.8 Given a bounded coefficient circliicomputing 1, ..., fn at (non-input) gates

of fanout zero in variablesx. . ., x, of size s, we can construct a bounded- coefficient circuit of
size at mosbs with extrainputs .. .., by computingy ™, b fiand 3" ; by af' forallj=1...n,
whenever these are not identically zero.

Proof. We use induction to the number of gatesther than the outputs. The base case is
whenr = 0. In this case eachy is a gate taking both inputs directly from the input variable
s = m and the theorem follows readily. Suppase- 0. Leth be a gate taking both inputs
from the variables. Lef’ be the circuit obtained fromfi by replacingh with a new variable
Xn+1. Thatis, add the new inpw,. 1, and whenever there is a wire fromto a gate, have
the same wire (with identical constant) to that gate frgum, and finally removen. Say the
new circuit computed;, ..., f;,. By induction, we obtain a bounded coefficient cirduitwith
iNnputsxi, ..., Xn+1 andby, ..., bm computingy ™ , b; f/ andg{ilbig—)z, forall j=1...n+1 of
size at most 65— 1). Note that for each, f/[xn+1 + h] = fi. The chain rule gives us the
following equality foranyi =1...mandk=1...n:

of;  off of/ oh

— = h h-—.

e Ox —[Xn+1 < O]+ Xn41 < h]- % Xe
Let " be the circuit obtained frorh” by replacing input variabl&, .1 with the gateh. That
is, add the gath, and whenever there is a wire frag, 1 to a gate have exactly the same wire
(with identical constant) fronh to that gate, and finally remove., 1. We see thaf”” has a
gate computing " ; b; f/[xn11 < h| = 3 ; bi fi and for eachh = 1...n+1,

0% Xn+1

g] == i;bia—Xj[XrH_l <— h]

By the chain rule, whenevey; is not present irh, which is for all but at most two indices
je{l,...,n},gj=35" 1bigt af' . For the remaining indiceg add gates to compute

oh of/ of/ oh

+ b —hl+Y Db +~h.-—
gj+0Ont1- - Z\'GJXHH ] Z\IGM Xn+1 ]Xj
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a Xn_|_ i

o saf of/ oh
= i;bl (a—xj[xn+1<—h]+ 1[Xn+1%h]'x_1>

m of
= bj—.
i; I‘3Xi

This can be done using at most 3 gates. Hence the final cirasithmost &5— 1) + 3 < 5s
gates. O

7.1.1 Closed Form Bilinear Derivative Lemma

For a general homogeneous bilinear circuit computing ttiegair form f = x" Ay correspond-
ing to a matrixA, as we noted in the previous section, application of the Exrassen con-
struction to obtair(g—xfl, g—xfz, e g—);), which are the linear forms given &y, yields a circuit in
which each gate computes a linear fornmyjrbut using constant gates and allowing computed
constants to multiply linear forms. This is unfortunatecsirior such circuits currently there
are no lower bound techniques known. Hence there is no Btfargvard reduction of prov-
ing lower bounds for bilinear forms via the Baur-Strasserivdéve lemma to the linear case.
This contrasts with the successful Raizfgisser-Lotz strategy for bounded-coefficient circuits,
whose extension we studied in previous chapters. The ttitiai causes the Bauer-Strassen
construction to introduce these undesired multiplicaiaith build-up constants can be seen
to be linear part of the bilinear circuselow the multiplication gatedHere we will show that if
this lower layer is a not a circuit butfarmula, then we do have a derivative-lemma construction
that leaves a homogeneous linear circuit with only addigates.

In case the lower layer is a formula, we can assume wlog. lirslidwer layer consists of a
single unbounded fan-in addition gate summing the outal multiplication gates. Namely,
multiplication gates with fan-out bigger than one can belidaped so all multiplication gates
have fan-out one, and this can be done with constant facerhead. Next all constant on
these fan-out wires can be pushed upward, resulting in arltayer that just adds up the
multiplication gates. Hence we can state our theorem aswell

Theorem 7.1.9 Suppose we have a linear circuit(x1, X2, ...,X,) computing homogeneous
linear forms (X),[2(X),...,Ik(X) and a circuitC2(y1,Yo,- - .,Yn) cOmputing homogeneous lin-
ear forms £ (Yy),r2(y),...,rk(y). Let f be a bilinear form given by

k
f= .Zlh(i)l’i(Y).

of of af) of

Then we can construct a homogeneous linear circuit comguikih := (0_><1’0_><2""’M

size s, + s2), where g and $ are the sizes of1 and (», respectively.

Proof. Foreach € {1,2,...,k} write

i (X) = @j1X1 + &i2X2 + - . . + @inXn,
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with &1, a;2,...,an € C. Then

of XK airi(y)
. i; 0Xs
 Eoali(
N axs

= .;aasri(V)

In other words, defining thlex n matrix A = (apq) 1< p<k,1<q<n

Oxf = [ri(y),r2(9),..-,rc(¥)]A,

so that
(0xF)T = AT[r1(9),r2(9), ..., 1))

Now circuit ¢; computes\X. AX. Since the circuit size of a matrixand its transposa’ are the
same, we obtain a homegenous linear circgitvith k inputs anch outputs computing\™. By
the above we thus get a homogeneous linear circuidfbrby composing circuitg» and (s:
firstr1(y),r2(y),-..,rk(y) are computed by» and then these are taken as inputg4oDoing
so, then ouputs of3 will yield 0 f. O

7.2 Bounded Depth Bilinear Interpolation Circuits

In this section we are going to consider bilinear interpofatircuits of the following structure.
There are three sets of input vectors namely and special interpolation inputs There are
two top-level linear mappings computing separately fouingectorsx andy. Both these map-
ping are computed by depth— 1 circuits. Multiplication gates are allowed, but are riestd
to have exactly one of its inputs taken to be\ariable. The we think of the variables as if
they were constants taken from the underlying fieéld

Say the outputs of these circuits &1€x), ...,Ix(x) andry(y),...,rk(y). These are actually
linear inx ory, but may contain higher powers pf/ariables.

Then there ard multiplication gates computingy = 4;(x)ri(y) for 1 <i < k. Finally
there is a single unbounded fan in addition gate, takingtsyfrom all multiplication gates.
Constants on the wires are assumed to have norm at most one.

We identify a bilinear fornp(x,y) onn+nvariables in a natural way with thex n matrix
of coefficients(p)i; = the coefficient of the monomialy;. Linear forms¢;(x) andri(y) are
identified with row vectors. Under this identification we dans say that each multiplication
gatem computesﬁiTri. The function computed by the circuit is required to be offtiren

3 2(xTAy) = xT<k§ 2N
=1

k=1
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for certain complex x n matricesAy. In this situation, we say the circuit is amerpolation
circuit for computing matrices AAy,...,Am. The idea is that, by varying the assignments
of complex numbers ta, we can compute any of the bilinear formsMy, for any matixM
obtained as the linear combinatibvh= z;A1 + 2222 + . .. + ZnAm.

7.2.1 Preliminaries and Related Work

Definition 7.2.1 ([Lok95]). Let 1 <r <n, for ann x m matrix A we define its/>-r-rigidity to
be

AA(r) = min{||A— B||2 : Bis ann x mmatrix of rank at most},

where||A— B||r denotes the Frobenius norm.

Lokam defined thé1-norm||C||1 of a circuit to be the sum of the absolute values of all
constants on the wires @. For a matrixA, defining||Cl9(14)||; to be the minimurr;-norm
of a linear circuit of deptld computing the linear mappirig, he proved:

Lemma 7.2.1 ([Lok95]) Forany r> 1,

2 1/2d
ISl zr (A2)

This results was later improved by PakI[Pud98] to
ICI(1)113 > dn| detaf?/n,

where the/>-norm of a circuit is defined analogously to thyenorm of a circuit.
One class of matrices for which we have good bounds on theigidity are Hadamard
matrices.

Definition 7.2.2. An n x n matrix H is called ageneralized Hadamard matrik HH* = nl,.

When the entries of the matrit are restricted to be-1 one gets the standard definition of a
Hadamard matrix. As an example, the Fourier mdDixT, is a generalized Hadamard matrix.
One has:

Theorem 7.2.2 ([Lok95]) AZ(r) = n(n—r).

Denoting byC[ld}(IA) the minimum number of wires of any depdHinear circuit with con-
stants on the wires of norm at most 1 that computegx, one then has by Lokam’s result

that for any generalized Hadamard maHxC[ld}(lH) = Q(n“?ld), and by Pudik’s improve-

mentC[ld}(IH) = Q(n”é). Lokam also considered bilinear formulas, as introducgtW95],
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corresponding to a matri&, which are formulas of form

m
bA(X7 y) = ZXTQi pITy7

wherep; andg; are column vectors. The sitéba) of the formulaba is taken to be the total
number of non-zero entries in tlgg and p; vectors. These formulas are essentially depth 2
linear circuits: s(ba) = ©(CZ(1a)) [NW95], so one gets for bilinear formula with bounded
coefficients a lower bount?(by) = Q(n%4) via Lokam and.®(by) = Q(n*?) via Pudhk’s
result, for computing a generalized Hadamard maittix Lokam results yield the original
bound proved in [NW95], and Pua’s bound improves it.

7.2.2 Our Result

Theorem 7.2.3 Let C be an interpolation circuit of structure as defined adwith multiplica-
tion layer at depth d that computeg A..,An. Then forl <r <n, the number of wires of C
that do not fan out from z variables is at least

- 1/(2d-1)
r Az.(r)) n-2/(2d-1)
(3.5

Proof. LetC be given as indicated. Fix4d r < n. Let Sequal the number of wires & that
do not fan out ofz variables. We call a gate or naxvariable special if the number of wires
fanning out from it is at leas$/r. Note there can be at masspecial gates. No multiplication
gate or the output gate can be special.

We now will consider what happens to a matfixthat is computed, in the sense that we
defined, as we remove a special ggteThat is, temporarily fixz = 1 andz, = 0 for k # 1.
Letly,lo,... Ik be the linear forms ix andry,ro, ..., rg be the linear forms ity computed by
the circuit, after this assignment. The output of the ciredih this assignment tawill be the
bilinear formx™ Ajy. Now removeg and consider the modified outpxtA"y. We will have
Six cases to consider.

Case 1:gis an input variable;. In this case we remove the wires fanning out frem
That means that for eadh/®" = ¢; with jth entry set to zero. Hence for eaghm®" = m
with row j zeroed out. Since each outpijtis simply a linear combination of the matrices,
we getA™W= A with the jth row zeroed out, i.eA; gets modified by subtracting a matrix of
rank O or 1.

Case 2:gis an input variabley;. Similarly as above we can conclude each output gets
modified by subtracting a rank-1 matrix.

Case 3: g is a multiplication gaten, = £7r;. The output gets modified by subtracting
a scalar multiple ofny. Observe that rankn) < 1. So the output gets again modified by
subtraction a matrix of rank at most 1.

Case 4. g is an addition gate linear iR. Suppose gatg computes the linear forrh
Then for each, "™V = ¢ —yil, for certain scalarg;. Hence for each, m™®¥= (¢"W)Tr; =
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¢Tri—yiITri. SinceA = Z¥_,a;mj, we get that
Ainew _ Zk:la_mnew
= ZJ 205 (mj =yl Try)

= A-ITZagyr).

Observe thatTZ'j‘zlo(jyjrj has rank at most 1. Hence again we have that each output is modi
fied by a matrix of rank at most 1.

Case 5:gis an addition gate linear jn Similarly as case 4, we can show that each output
get modified by subtracting a matrix of rank at most 1.

Case 6:gis a multiplication gate that has one of its inputs beirayariable. Withz being
assigned to, we can consider this gate to be an addition gatljs case reduces to case 4 or
5.

LetC' be the circuit obtained by consecutively removing all splegates. From the above
we conclude that for eadh if we set allZs to be zero excep; = 1, then the output of the
circuit is a bilinear formx™ (A; — B;)y, whereB; is some matrix with rank at most

The fanout of each gate @ is at mostS/r. We are now going to estimate the following
guantity, which is the sum of norms of all entries of the cotegunatrices:

P = ZLZ\] X —Bs) .J| (7.2)

For a given pai(x;,y;), there are at mog8/r)9- (S/r)4-1 pairs of paths starting ik and
yj and that come together in the same multiplication gate. Titwen that gate there is a single
edge to the output. We can estimate (7.2) by summing oveheadlet pairs of paths and over
all assignments tathat set exactly a singlg = 1. One pair of paths can contributegabmost
oneof the Aj — Bj. Namely, if the pair contains two multiplication gates wipecialz andz;
input withi # |, then contribution t&\; — Bj andA; — Bj is zero, since in either case the other
variable is set to zero. Since any constant on a wire has nomost 1, we conclude each such
path contributes at most 1 tb. Hence

P < n®(s/r)2t,

Thus
S> rol/(2d-1)-2/(2d-1)
Observe that . .
O= [As—BdIE > S AL(1)
from which the theorem readily follows. O

The above theorem yields lower bounds whenever the biliferars that are computed
have associated matrices of higar-rigidity. For example:
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Corollary 7.2.4 let Aq,...A, be a set of n Hadamard matrices. Then any depth d bilin-
ear interpolation circuit, of the structure defined abovieatt computes A...,A, has size
Q(ntt =),

Proof. By Theorem 7.2.2, we know that for a Hadamard maittpa?(H) > n(n—r). Apply-
ing the above Theorem one gets that the number of wires noitrfgrout ofz variables is at
least

- 1/(2d-1)
r(ZAﬁ(r)) n 2@ > r(n.n(n—r))Y -1 n-2/@d-1) (7.3)
i=

= r(n—r)Y/-1), (7.4)

Settingr = n/2 then yields the corollary. O

7.3 Bilinear circuits with unbounded coefficients of depth
O(1)

In [RRO3] a super-linear lower bound is proved on the numibedges of any bilinear circuit
with arbitrary coefficientsand constantdepth computing matrix multiplication. Their result
gives a lower bound on the number of edges present in theitcbelow the multiplication
gates. In other words, the bilinear circuit gets to perfowo tinear transformations at the
inputs in the two different variable setie of charge In our orbit-related terminology, the
circuits are taken to be of the formEx Dy), whereE andD are arbitrary matrices ofar-
bitrary dimension. The proof technique is graph theoretic in natlirenake use of certain
superconcentrator properties any circuit computing m@imduct must posess.

In this section we will verify that this proof technique cadsabe successfully applied to
the circular convolution function’ Circ(y) which has been the main focus of our attention in
previous chapters. Interestingly enough, we will esséiytiaduce the problem to a question
about the superconcentrator properties of the discretedfrdtansform. Recall the definition:

Definition 7.3.1. An n-superconcentrator is a directed acyclic grapk- (V,E) with n input
nodeslg C V andn output node®g C V such that for everyn, for every setX C Ig, and
Y C Og, there existn vertex disjoints paths frof{ to Y.

In can be seen that for primg any linear circuit computingpF T, is a p-superconcentrator.
Namely, it is well-known that any minor &@F T, is non-singular [Ta091]. If there would exist
any setsX C Ig andY C Og of sizem such that there are strictly fewer thamvertex disjoint
paths fromX to 'Y, then the corresponding minE?rFT>'(°Y would be singular.

We will not directly use this fact, but rather use ttliscrete uncertainty principlproved
by Tao [Tao091], which was stated in Theorem 6.3.3. Nevez®lthe proof of this uncer-
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tainty principle relies on the fact that all minors DT, are non-singular, for prime, so
superconcentrator propertiesioF T, are involved, albeit indirectly.

We now introduce some prerequisites taken from [RR03]. Wensed some definitions
about slow-growing functions and a lemma.

7.3.1 Prerequisites

Definition 7.3.2. For a functionf : N — N, definef () to be the composition of with itself i
times:

1. £ is the identity function,
2. 10 =fofi-1 fori>o0.
Futhermore, forf such thatf(n) < n, for alln > 0, define

f*(n) =min{i: {1 <1}

As in [RRO03], the following set of extremely slow-growingrfctionsAq(n) will be used
to express the lower bounds. Eagi(n) is a monotone increasing function tending to infinity.

Definition 7.3.3. Let

1. Ai(n) = [vn],
2. A2(n) = [logn],
3. Ad(n) =AG_,(n), ford > 2.

For a directed acyclic grapB, Vg denotes the set of all nodds, those with in-degree 0,
andOg those with out-degree 0. The depth®fs the length in edges of the longest path from
I to Og. Raz and Shpilka prove the following combinatorial lemma:

Lemma 7.3.1 ([RRO3]) Forany0 < € < 4—%)0 and any layered directed acyclic graph G of depth
d with more than n vertices and less theum- A4(n) edges, the following is satisfied:

For some k with,/n < k= 0(n), there exist subsetst Ig, O C Og, and V C Vg for which
I1],]0] <5e-d-nand|V| =k, and such that the total number of directed paths frefi ko

Og\ O that do not pass through nodes in V is at mn§f

7.3.2 Circuits for Circular Convolution

The circuits we will consider in this section are of the fallag form. They are bounded depth
bilinear circuits with arbitrary fan-in and fan-out withtatrary constants on the wires. We will
assume our circuits are layered. We will give lower boundthemumber of edges present in
the circuit below the multiplication gates. In other wortigse circuits get two arbitrary linear
transformations at the inputs for free. For use in this seabinly, we define:
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Definition 7.3.4. For a bounded depth bilinear circ@twe define its sizg(C) to be the num-
ber of edges in the circuit between the multiplication gated the outputs, and define by its
depthd(C) to be the length of a longest path in edges from a multiplicegate to an output.

We begin with the following easy proposition:

Proposition 7.3.2 Any bilinear circuit of depth 1 computing circular convdtut x™ Circ(y)
has size &) > n?.

Proof. A circuit of depth 1 has a very simple structure. There areesoombenr of multipli-
cation gated!, computing product¥, = L, (X)R:(y), whereL,(x) andR; (y) are linear forms.
Then there is one layer of output gates, each gate computingnation over some set of input
multiplication gates.

We will argue that each output gate must be connected to sttrigaultiplication gates.
For purpose of contradiction suppose that this is not the.c&ay some output ga® takes
input from < n multiplication gates. Consider the subspace of dimensidaast 1 defined
by equationd_j(x) = 0, for each multiplication gat¢ attached to outpud;. We can select a
non-zero vectoa from this space such that for any assigmeatb,

(a' Circ(b)); = 0.

This yields a contradiction, for example we can téketo be equal ta* shifted byi, then
(alCirc(b)) = ||al|3, which is non-zero, sincais a non-zero vector. O

We now prove our main result for arbitrary constant boundsatial

Theorem 7.3.3 There existg > 0 such that if p is a prime number, any layered bilinear cir-
cuit with inputs x= (Xo,X1,...,Xp—1) and y= (Yo,Y1,...,Yp—1) of depth d computing cirular
convolution X Circ(y) has size &) > epAq(p).

Proof. Consider the circuit computing
x" Circ(y) = x' Fpdiag(DF Ty(y))F; .

We first apply substitutions’ := x" Fo andy = %DFTF’;y at the inputs. This does not alter the
circuit below the multiplication gates, but now we have &w@ir computing

x" diag(y)Fy.

Let G be the directed acyclic graph of demdhgiven by the part of circuit below the multipli-
cation gates. The sét is the collection of multiplication gated; = L;i(x)Ri(y), whereL;(x)
andR;(y) are linear forms. Tak®g = {1,2,..., p} to be the set of outputs of the circuit. Let
€ > 0 be some small enough constant to be determined laterallyi@ has at leasp vertices.
Suppose thab has strictly fewer thagp- Aq(p) edges. Lemma 7.3.1 applies, and we obtain
setsl C Ig, O € Og andV C Vg such that
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1. [I],|O| < 5edp,
2. V| =k, with /n>k=0o(p), and

3. the total number of directed paths frdgi | to Og\O that do not pass through nodes in
Vis at most%z.

For each output nodiec Og\O, defineP(i) to be the number of multiplication gates in
Ic\I for which there exists a directed path that bypadsesid reaches node Let R be a set
of r = 10k output gates with lowedR(i) values. By averaging we get that

r r ep?  10ep
Pr) < ——— PN <——-—r—-—= .
rgR ()= |0c\O| re()zg\o ()= p—5dp k  1—5ed

Let I’ be the set of all multiplication gates ig\| for which there exist directed paths to nodes
in Rthat bypas¥. We can conclude that

10ep
1—5ed’

Define a linear subspad®® by the set of equations

V] <

Ri(y)=0forallielul'.

For any fixed substitution foy € W the resulting circuit has all of the gates computing linear
function in thex variables. Relative to a fixed choice fgy define linear subspadai, by
equationgy(x) = 0 for all v € V, wheregy(x) denotes the linear form computed at gatélote
that dimW) > p—5edp— % and dimW,) > p—k, for eachy. Now we have arranged that
for eachy € W, and eaclx € W,

(x"diag(y)Fs)r =0, (7.5)

for eachr e R
In order to reach a contradiction, we will now argue that passible to selegt € W and
x € W, such that some output Ris non-zero.
First of all, fix a vectory € W that has at mostes p+ % zeroes: this can be done

because ditW) > p—5edp— %. Let A be the set of indices for whichy; = 0. Let
m=|A| LetVW be a subspace M, of dimension 1 obtained by adding equations to the
defining set o#, as follows. For the first stage add= 0 for eachi € A. In a second stage,
start adding equations that requike= 0 for i ¢ A, until the dimension has been cut down to 1.
Since we are starting out with a space of dimengenk, after the first stage, the dimension
will be cut down to at mosp— k—m, so we will be able to adg = 0 in the second stage for at
leastp—k—m—1. manyi with i ¢ A. Provideck is small enough, sinde= o(n), k-+mwill be

less than a small fraction qf, so we are guaranteed that we can indeed complete this proces
still leaving a subspace of non-trivial dimension. Seletaebitraryx from \/\45 Observe that

of the p—mindicesi notin A, x; is non-zero for at mos+ 1 entries, and thag is zero for all



7.3. BILINEAR CIRCUITS WITH UNBOUNDED COEFFICIENTS OF DERTO(1) 133

i € A. Sox; is zero for each for whichy; = 0. Sincex itself is a nonzero vector there must be
some place wherex; andy; are both nonzero.

Let f = x"diag(y) and f = fF3. We thus conclude that is a non-zero vector, but that
Isupg(f)| <k+1.

By the discrete uncertainty principle for cyclic groups oinpe order [Tao91], stated in
Theorem 6.3.3, we have that

supf(f) +supg f) > p+ 1.

Hence the output vector of the circtfitis non-zero in at leagt+ 1 — (k+1) = p—k places.
SinceR is of size 1&, by the pigeonhole principle, there must be some outpiR that is
non-zero. This is in contradiction with (7.5). O
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Chapter 8

Conclusions

Given the inherent hardness in proving lower bounds for Bawlcircuits, we embarked upon
a study of arithmetical circuits. They bring the promise renceadily than Boolean circuits,
of involving sophisticated concepts from algebra and aigielgeometry in a successful lower
bound proof.

We continued the investigation &f12-formulas started by [SW99]. There we presented
a new technique for proving lower bounds by introducing tbeam of resistanceof a poly-
nomial. Using this notion we proved tight lower bounds ongbhe ofnth powers polynomial
f =3I ,x". For anyd, there are onlyn manydth order partial derivatives for this polyno-
mial, which makes it hard to derive lower bounds using theéigaderivatives technique from
[SWO9].

The partial derivatives technique yields lower bounds oftiplicative complexity only.
In Chapter 3, we showed how this method can be extended tolgmer bounds on total
complexity, utilizing a closed form Baur-Strassen styleiggive lemma for theZNZ case.
We have shown that this yields stronger lower bounds thasetfrom [SW99], especially for
low-degree polynomials. In certain cases, this improvameanages to lift trivia(n) lower
bounds, derived using the partial derivatives techniquepon-linear results. For instance, we
showed for the elementary symmetric polynomial of degreleatt(S) = Q(n*/3), and for
the product-of-inner-product polynomial tha(PIP?) = Q(n*/3).

Both the partial derivatives technique and our resistaachrtique are limited to yield-
ing quadratic lower bounds only. Such is tolerable whenidgatith families of polynomials
that indeed hav®(n?) size>M3-formulas, likes" ; X" and (using Ben-Or’s interpolation re-
sult) the elementary symmetric polynomials, but shows @rsegap in our knowledge when
dealing with families of polynomials that are believed torhach more complex. As origi-
nally remarked in [SW99], currently we know of no super-puadynial lower bounds for the
depth-threexM=-formula model over fields of characteristic zero. For ex@mpne would
like to establish such bounds for the determinant and pegntgmolynomials. This contrasts
with the situtation for Boolean circuits, for which we knowp®nential lower bounds for con-
stant depth circuits [Ajt83, FSS81, Yao85a$89]. Future work oxM-formulas should be
directed towards closing this discrepancy.

135



136 CHAPTER 8. CONCLUSIONS

Open Problem 5. Prove a super-polynomial lower bound on #i@>-formula size for an ex-
plicit function, e.g. the determinant or permanent, oveelfof characteristic zero.

Suspiciously absent in current lower bound technique& FbE-formulas are random re-
striction type arguments, whereas all the results of [Aji83S81, Yao85, Bs89] proceed
using random restrictions. Note that Raz manages to us@manestrictions in conjunction
with a partial derivatives based technique in his workmoualtilinear arithmetical formulas
[Raz04a, Raz04b].

In Chapter 4 we investigated bilinear circuits with compteefficients ofO(1) bounded
magnitude. These circuits form a logical next place to ifigase, given that linear circuits with
bounded coefficients are essentially understood [Mor#g&],caven that unbounded coefficient
linear circuits have confounded any form of non-trivial Embound, even after 35 years of
intense research activity.

We introduced the bilinear orbit circuit model. FGL,(C)-orbits this model is at least
as powerful as the unbounded coefficient case, bubfg(C) it provided a challenging com-
putational model to prove lower bounds for. The only knowrhteques for proving lower
boundeds for bounded coefficient bilinear circuits of [BL.B2az02] fail to stand in this model,
due to possible ill-conditioning of the free maps. The modes introduced because it allows a
moderated study of a computation model in which more unbedmdefficients can be present
than current techniques allow for. Secondly, lower bouwdstfe orbit circuit complexity of a
single polynomialg(x,y) translate to sweeping lower bounds on entire orbitp(afy).

Our study was focused on the circular convolution mapgirg.Circ(x)y. We showed
that if the free maps have condition numiar), then the the proof of [BL02] can be adapted
to show that circular convolution still requir€Xnlogn) size. Future work could be directed
towards lifting this restriction, and prove genegil,(C)-orbit lower bounds, but there are
difficulties abound.

Namely, there is the apparent requirement in the randomtitutizn technique to select
the random input from gubspace Uof some dimensiogn with € < 1, which seems to be
about the only way to make the outputs of the linear forms oithvkubstitution is performed
“reasonably” bounded. Provided that is true, they can blacegd by “few enough” repeated
additions, and this way a reduction to the (well understdio@par case is achieved. Unifying
this modus operandi of the restriction technique with thielwoo of ill-conditioned matrices
present inSL,(C) is problematic. Geometrically speaking omydimensional volumes retain
the same volume under such transformation, but any loweemmonal volumes can be arbi-
trarily stretched or squashed. In any configuration of tigeiarent we considered this becomes
an issue. Either the mswolume of the target linear form one reduces to is negatival
pacted, or, attempting to salvage this, the outputs of tieali forms on which one substitutes
are ill-behaved, or vice-versa.

We managed to prove tigl2(nlogn) sizeSL,(C)-orbit lower bounds for circular convo-
lution in case the circuit has precisalynultiplication gates. The proof shows that in this case
the convolution theorem circuit, which uses the discreterieo transform and its inverse, is
essentially unique.

We also considered orbits in conjunction wERZ-formulas. The fact that lower bounds
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for x-complexity are maintained under such an extension istriinterestingly enough, we
showed things also carry through when counting additioagyat the inputs.

Given the difficulties proving lower bound @&L,(C)-orbit circuits, any attempt to lift the
O(1) condition number assumption perhaps is best attacked byéirsidering the diagonal
DLy(C)-orbit model as an important test case. Diagonal matricesmibfdeterminant can still
be arbitrarily ill-conditioned. We managed to prove botloaé-sided” and “two-sided” diag-
onal orbit lower bound, modulo some extra assumptions atbeuamount and placement of
helper constants less than 1 (see Theorems 6.5.4 and 6/Me@)id so by introducing a novel
game to be player on tHeF T, matrix, in which an adverary select some rows that must be
included and some columns that must be avoided. Then thewgsato find a minor satis-
fying these restrictions with maximum determinant. We tetlathis game to several discrete
uncertainty principles. In the contiguous case of playimg game, i.e. where an interval
of rows is chosen, this led us to a randomized game strategydéfined for any finite set
P={p1,pP2,..., Pk} Of points on the unit circle in the complex plane thehiordal product

CPP) = ] Iei—njl,

1I<i< )<k

and asked the fundamental question:

Open Problem 6. For some large, consider the se® = { wo, wy,...,wn_1 } of all nth roots
of unity on the unit cirlce in the complex plane. LBtC Q be a given set of roots that
are “off-limits”. For any/, what is the optimal strategy to selettnany nth-roots of unity
Wiy, Wiy, ..., 0, € Q\ Rthat maximizex" P(wj,, w,,...,w,) ?

We approached the above problem by simply selecting tbets of unity uniformly at random.
This yielded a result (Theorem 6.2.4) about random Vandedaanatrices with nodes on the
unit cirle, which appears of independent mathematical@ste This strategy fares fairly well,
in the terminology of Theorem 6.5.4, féf = O(n%/4).

Related to the question of what is the optimal strategy, esahiestion what se® in the
above provide the worst-case scenario? That is:

Open Problem 7. For anyk, ¢, for what kind of setk C Q of sizek is

maxC?P(S)
SCQ/R
IS=¢

minimized, and what is its value ?

We have some indication that s&dhat are contiguous provide this worst-case scenario,
but the question is related to some long standing open prab[®S89] that turn out to be
suprisingly hard to solve.

During our investigation, we also encountered an intangstiumerical problem that is
interesting for purely mathematical reasons. Suppose \iaedthe following sequence of
points{ pm}m>1 on the unit circle:p; = 1, and form > 1, pm is the first point q (if it exists) in

counter-clockwise rotation around the unit circle afbgy 1 such that|‘|i”;‘11 |g— pi| = 1. This
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problem arose in trying to devise a strategy that packs intpan a greedy manner, by adding
a point each time, but ensuring that the added point has dowd-groduct with the previously
added points. For those purposes, we also considered thiéecatdn of the above problem in
which there was some given sector on the unit circle offtbmi

In any case, the interesting feature is that the sequépgén>1 appears to be infinite,
and appears to enjoy a nié!{ml/z) growth (when seen in radians). It would be nice to give a
closed form expression for the points in this sequence. €gaence for the modified problem
is a little more erratic, but also appears to be infinite f@asonable” disallowed sectors.

Beyond thel,, = O(n3/ 4) growth rate a better strategy is required than random s$efect
but as we posed in Conjecture 4, we do not believe there existisategy that can deal with
arbitrary ¢, = o(n). Conjecture 4 can be settle if one manages to carry over ghrapmstic
eigenvalue analysis of the prolate matrix of [Sle78] to tiszibte-to-discrete case. We have
made the conjecture plausible both from an empirical andréteal standpoint. Carrying out
the discrete analogy of the eigenvalue analysis of [Sle@8jdver, will be no easy task. See
e.g. [Gii81, CX84, AET99]. In any case, this is an interesting proble Fourier analysis,
but from the theoretical computer science point of view, awd be more interesting to see
whether one can devise alternative lower bound argumeatgitttumvent the issue.

As far as the contiguity assumption is concerned, one waiaove it, would be by
giving areductionthat converts a circuit for(x" )Circ(y) into one forx™ Circ(y), using only
o(nlogn) additional circuit hardware. It is not clear whether this ¢@ done. We showed
that one certainly cannot in general convert a circuit " )Circ(y) into one computing
xT Circ(y) by permuting they-inputs and outputs. This would only work for permutatiofis o
form 1i(i) = b+ gi, whereg is a generator of the additive group of integers modulo

In any case, if it is true that in the unbounded coefficient etdde size of any bilinear
circuit computingx” Circ(y) is Q(nlogn), then it is also true that any orbit circui{ Dx, Ey)
with D andE diagonal and of unit determinant has s2énlogn). We have managed to prove
the latter under some additional restrictions, but still te be resolved is the situation for
general diagonal maps of determinant one:

Open Problem 8. Prove that any bilinear orbit circuiit(Dx, Ey), whereD andE are diagonal
with unit determinant that computes circular convolutidrCirc(y), must have size(I') =
Q(nlogn).

The presence of arbitrary diagonal matri€eandE of unit determinant defeats any of the
known volumetric techniques [BL02, Raz02]. Such is the assentially because the matrix
D can behighly ill-conditioned, making it hard to find “good” minors (in treense of having
large determinant) of the matrix Cii@) that are in the “right” place. For the result in [BL0Z2],
it is sufficient to argue thexistenceof a good minor, whereas in the orbit model one seems to
be forced to argue existence of good minors in a certain pédee matrix. The results we
obtained still manages to strengthen [BL0O2]. Provided wdersome extra assumptions about
D, we could indeed locate such good minors of Gijcin the required place, they way our
argument demanded.

We have tried to push the restrictionsDras far as possible, but for the kind of volumetric
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technique we where pursuing, we met a roadblock in trying ito @ur matrix games under
extreme circumstances, because of phenomena relateddmothte spheroidal wave functions
in [Sle78].

Thereal question is how far any kind of volumetric technique willigain the orbit model.
It seems non-volumetric techniques are called for, but mhight be tantamount to proving
lower bounds in the unbounded coefficient model. As a main igoaur orbit model setup,
still open is the following problem:

Open Problem 9. Prove that any bilinear orbit circuit of form(Dx, Ey) (or I'(Dx,y)), where
D andE have unit determinant, computing circular convolutidrCirc(y) has sizes(I') =
Q(nlogn).

For that matter, up to now we have concentrated on circulavalation, but more generally it
would be desirable to solve:

Open Problem 10. Prove a non-linear lower bound on the size of any bilineait aibcuit
of form I"(Dx,Ey) (or I'(Dx,y)), whereD andE have unit determinant for computing some
explicitly defined bilinear map.

Then there is of course the holy-grail of proving lower bosifa the undbounded coeffi-
cient model for bilinear or low degree functions, which isigglent to proving lower bounds
in the orbit model for arbitrary diagonal maps. Even strartgan that (given that the linear
maps do not count against the size), one may try to solve:

Open Problem 11. Prove a non-linear lower bound on the size of any bilineait artxuit of
form " (Dx,Ey) (or ' (Dx,y)), whereD andE arearbitrary n x mmatrices for computing some
explicitly defined bilinear map.

Finally, in Chapter 7 we considered bounded depth bilineauits and introduced inter-
polation circuits. We proved a Baur-Strassen style deviedémma for this model, which has
the added advantage that it does not introduce additiomedtants, as the regular derivative
lemma notoriously does. We gave a closed form derivativarianfor a special kind of bi-
linear circuits, whose bottom layer is a formula. ResultfLok95] we extended to a special
kind of bilinear circuit. Finally, we proved a non-lineamler bound for bilinear circuits (with
unboundedcoefficients) computing circular convolution in case thpunhsizen is a prime
number. We did this using in the discrete uncertainty pplecior cyclic groups of prime order
[Tao91], and combining it with a “superconcentrator-lemim&/RR03]. It would be interest-
ing to see whether we can remove the assumptiomtisaprime. This might be hard, because
only if nis prime do we know thaDF T, is a regular matrix, and thus that any linear circuit for
it must be a superconcentrator.

Open Problem 12. Can one prove a non-linear lower bound for a bilinear circainputing
Circ(x)y in case the input sizeis composite?
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To summarize, we extended the partial derivatives metho&fZ-formulas. Some con-
tributions were made to Fourier analysis and the theory mfloan matrices. We introduced
the usage of uncertainty principles for proving lower bagjnd particular the strengthened
uncertainty principle for cyclic groups of prime order [Bdg. We extended the bilinear lower
bounds of [BL02, Raz02]. Overall we have deepened the lowand results of several pub-
lished papers [SW99, BL02, Raz02, RR03], and we have deédeaathematical obstacles to
proving more general lower bounds.
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Appendix A

The following figures refer to the functio@(n) defined in 6.15.
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Appendix B

We refer to [Hun80] for the group theoretical notions usethafollowing.

In this Appendix we prove Theorem 5.3.1, which stated thatafoy n, the retrievable
permutations form a group, and are precisely those periontat Z,, — Z,, for which there
existsh, g € Z,, with g relatively prime ton such that for eache Z,

(i) =b+gi.

Note that numberg that are relatively prime ta form precisely all generators of the additive
groupZy,.

Proof. (of Theorem 5.3.1) In the following all indices of variables are considered-el
ments ofZ,, and all arithmetic with indices takes place within this iigld group. WIlog.
we do the proof withn-vectors of variables indexed as= (x1,X2,...,X—1,X0) andy =
(Yn-1,Yn_2,---,Yo)T. In this casexCirc(y) has variables lined up nicely so tikeh entry
(xCirc(y))k has for each term the&-index andy-index summing tok. Namely, for each
k=0,1,...,n—1 we have that

(Cire)k= 5 X
ik
We first show any permutation: Z, — Z,, that is of the form
(i) = b+ gi,

for someb € Z,, and generatog of the additive grougZ,, is retrievable. Wlog. we can assume
thatb = 0, sinceb only produces a cyclic shift blg places. It is clear that a permutatioris
retrievables ifftcomposed with a cyclic shift is retrievable. Define permiataty by

(i) = (i —n) = g(i —n),
for eachi € Z,,. Then we get that thgth entry ofi(x)Circ(r(y)) equals
Xm(1) Y (n-1+j) T Xn(2) Y (n-2+j) T - - Xn(n—1)¥m (1+]) + Xm(0) Yru(j)-

Consider an arbitrary tery)Ym (n—k+j) Of the above expression. It has indices summing as
follows:

(K)+m(n—k+j) = gk+g(h—Kk+j—n)
= dj.
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So all terms have indices summing to the same vglu&inceg is a generator of the additive
groupZ,, we see that all thea sum-values are presents at thentries ofri(x)Circ(my(y)). In
other wordsyi(x)Circ(ty (y)) is a permutation okCirc(y).

Let us now do the converse directions. Suppoisea retrievable permutation, and fgtbe
a permutation of thg variables such that(x)Circ(my(y)) is a permutation oXCirc(y). Since
the x-indices andy-indices of each term of th¢ entry of xCirc(y) have to sum to the same
numberj, there must existbp, by, ...,b,_1 so that the indices of each term of thih entry
of m(x)Circ(my(y)) sum tobj, for eachj =0,1,...,n—1. Observe thafbo,by,...,bh_1} =
{0,1,...,n—1}. The jth entry ofr(x)Circ(my (y)) equals

Xn(1)¥ry (n-1+j) T Xm(2)Ym(n-2+j) - - Xn(n-1)Ym (1+) T Xn(0)Yru (j)

which we can rewrite as
n

Zl Ti(n—i) Y (i+j)-

So we have the following condition satisfied:

(Vi,ieZn), mu(i+j)+mn—i)=Db;. (1)
This implies that for ang,t € Z,,, we have

VieZzy), m(i+s)=m(i+t)+ (bs—h).

In particular,
(Viezp), m(i)=m(i+1)+ (bg—Dby),

and
(Vi € Zn), T[1(i + 1) = T[1(i +2) + (bl— bz),

which is equivalent to saying
(Vi S Zn), T[]_(i) = T[1(i + 1) + (bl — b2).

Repeating this for als andt with t = s+ 1, we get there exists some numlges Z, so that
g=bp—by=by—by=...=bh_2—by_1 = by_1—Dbp. The numbeg must be a generator of
Zp, since otherwise not every element&fwould be in the range af;. We can conclude that
we can write

bj =bo—gj,
forall j =0,1,...,n— 1. However, specifying condition (1) with= 0, we have

(Vi €Zn), m(j)+m(0)=by.

Somy is defined by
(Vi €Zn), mu(j)=(bo—m(0))—9j.
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Which implies by condition (1) that is defined, for each=0,1...,n—1, by

mn—i) = bp—mm(i)
= bo— (bo—1(0)) +gi
= 11(0)+gi.

Hence we have that for eack Z,,

n(i) = m(0)+g(n—i)
= T110)+ (—0)i.

Since(—g) is also a generator &, we conclude thatris of the form stated by the theorem.
By the above it can thus be seen that the retrievable penonsgdbrm a groufR,. Namely,
composingm (i) = by + g1i with T(i) = by + goi one gets

m(Te(i) = bi+oim(i)
= b1+01b2+ 01001

The generators df, are precisely all integers (modulo n) that are relativelynprton. So the
productgi gz is again a generator, this showing the composition is of éogiired form. The
inverse of a permutation(i) = b+ gi is given byt (i) = ¢+ hi, wherec is the unique number
such thagc= —b, andh is the unique number so thgh= 1 in Z,,. O

Each choice fob andgyield a distinct permutatiort, so|Ry| = n@(n), wheregis theEuler
totient function giving the number of natural numbers relatively prim@td his is maximized
for primen, in which caséR,| = n?> —n. Modulo cyclic shifts R, is isomorphic to theharacter
group Z; (integers from{1,2,...,n— 1} relatively prime ton under multiplication) through
regular representation g» 11(i) = gi. Namely, lettingH,, be the sugroup of all cyclic shifts, i.e.
permutations of the formi(i) = b+ i, thenRy/Hn ~ Z;.



