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Chapter 1

Introduction

The P vs. NP conundrum, and similar questions posed by theoretical computer science, con-
tain profound mathematical content and carry immediate practical importance. Even without
resolution of the main problems, the theory of NP-completeness and more recent extensions
regarding hardness of approximation and pseudo-randomness, have been useful companions
for practitioners in the field indicating when problems may be too hard to solve. Furthermore,
hardness results do not solely have negative implications.For example, the security of most
cryptographic systems used in practice is based on unprovenhardness assumptions. Also,
through the hardness vs. randomness paradigm, hardness of functions has applications in the
derandomization of algorithms.

However, proving hardness, i.e. proving lower bounds on thecomplexity of explicit func-
tions, has turned out to be extremely difficult. For example,currently we still cannot exclude
the possibility of solvingSAT in linear time on a Turing machine. Traditional techniques
for reasoning about complexity—such as simulation and diagonalization—do not seem to be
adequate because of the so called relativization phenomena[BGS75]. Recently, researchers
have taken a new approach by studying Boolean circuit complexity. Circuits promise to lend
themselves better to mathematical analysis than Turing machines because they are static finite
objects, and their analysis is not subject to diagonalization. Instead of proving P6= NP directly,
the focus in this approach is to prove the stronger result that SATdoes not have polynomial-size
Boolean circuits.

Unfortunately, proving lower bounds on general Boolean circuits has turned out to be
even more difficult. Currently, there is no explicit Booleanfunction in NP[E known to have
super-linear circuit size. The current best-known lower bound on the size of anf ^ ; _ ;:g-
circuit of an explicit function is 5n�o(n) [IM02]. Most progress with circuit complexity has
been made by restricting the model. For example, exponential lower bounds are known for
constant-depth circuits computing the parity function [FSS81, H̊as86, Yao85, Ajt83]. Progress
has not taken place much beyond this low level, e.g. for all weknow non-uniform TC0 might
still contains all of nondeterministic exponential time! We have a good indication of where
current techniques are lacking, namely, all circuit lower bounds to this date have been obtained
by so-called natural proofs [RR97]. In the presence of pseudo-random generators (PRGs) of
certain hardness, for example in TC0, this type of argument is provably self-defeating. Namely,
proving circuit lower bounds for a given class would yield a statistical test for breaking PRGs
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2 CHAPTER 1. INTRODUCTION

contained in that class.
Arguably, the most promising approach for obtaining “non-natural” proofs is by the in-

volvement of sophisticated concepts from mathematics thatare hard in a certain respect. A
promising area for such concepts is algebraic geometry. Algebraic geometry has a long history
of development and has many beautiful techniques and deep results. It already has a track
record of providing lower bounds, in work by Strassen et al. [BS82][Str73b], Bj̈orner, Lov́asz
and Yao [BLY92], and Ben-Or [Ben83].

In order to increase the likelihood of being able to apply algebraic techniques, researchers
have considered arithmetical circuits instead of Boolean circuitry. Arithmetical circuits are
circuits built from addition and multiplication gates computing a polynomial in the input vari-
ables. An analog to the NP-theory exists in this model in the form of Valiant’s classes VP
and VNP [Val79a, B̈ur98]. Separation of these classes provides the same intellectual chal-
lenge as the P vs. NP question. Over fields of characteristic zero, under assumption of
the generalized Riemann hypothesis (GRH), it can be shown that VP= VNP implies that
NC3=poly= PH=poly, and#P=poly= FP=poly [Bür00].

However, in this model the best-known lower bounds for explicit functions are obtained by
Strassen’s degree method [BCS97]. This method relates the size of the arithmetical circuit to
a well-studied algebraic invariant, namely the geometric degree, of a certain geometric object
obtained from the circuit. Unfortunately, the best possible lower bound we can prove with
this technique for ann-variate polynomial of degreed is Ω(nlogd), i.e. barely non-linear for
d = nO(1).

In order to make further progress, researchers have considered more restricted arithmetical
circuits [SW99, Shp01]. A natural one is the restriction to constant depth. Contrary to the
Boolean case, for fields of characteristic 0 (such as the complex numbersC, the real numbers
R, or the rational numbersQ) no non-trivial lower bounds are known. For finite fields the
situation is similar to the Boolean case, and exponential lower bound are known [GR98].

1.1 ΣΠΣ-formulas

In characteristic zero, one of the first non-trivial constant-depth models is that ofΣΠΣ-
formulas, i.e., sums of products of sums of input variables.These networks turn out to be
surprisingly powerful. They capture a general form for computing polynomials via Lagrange
interpolation. For example, the elementary symmetric polynomial of degreed in nvariables has
O(n2) ΣΠΣ-formula size, a result first noted by Ben-Or (See Chapter 3).In [SW99] quadratic
lower bounds are proved in this model, and optimal lower bounds are obtained for high-degree
elementary symmetric polynomials.

Their technique is based on considering the behaviour of thehigher order partial deriva-
tives of a given polynomialf , under restriction to arbitrary affine linear subspaces. For a

polynomial f in variablesx1;x2; : : : ;xn, one can define thedth-order partial derivative∂
d f

∂X with
respect to a multiset of variablesX of size d syntactically, with no need for considering a
limiting process. Letting∂d( f ) stand for the set of all suchdth-order partial derivatives off ,
the dimension of the linear span of the collection of polynomials in ∂d( f ) defines a measure
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of complexity of the polynomialf . One can generalize this to considering the dimension of
the set ofdth-order partial derivativesafter restrictionto some affine linear spaceA, which
is denoted by dim[∂d( f )jA℄. This defines a “progress measure” that is subadditive: for any
f ;g andA, dim[∂d( f +g)jA℄� dim[∂d( f )jA℄+dim[∂d(g)jA℄. Let us sketch one of lower bound
arguments of [SW99].

“Reasonable” estimates can be given that bound dim[∂d(∏r
i=1Li)jA℄ for a product of linear

formsL1;L2; : : : ;Lr , provided the degreer is “low”. For high degree multiplications this cannot
be done. They are dealt with by cancelling them out by means ofthe restriction to an affine lin-
ear space. Polynomialsf for which dim[∂d( f )jA℄ is “high” for anyaffine linear spaceA can be
seen to require large sizeΣΠΣ-formulas by means of a trade-off argument. Namely, if thereare
many high degree multiplication gates, the formula must be large to start with, but otherwise, it
becomes possible to define a restriction to an affine spaceA, which is designed to set to zero at
least one input of each high degree multiplication gate. Next using the subadditivity property
and the “reasonable” bound for low degree multiplication gates, and the fact that dim[∂d( f )jA℄
is high, one obtains a lower bound on themultiplicativesize of the formula forf .

In Chapter 3 we continue the study ofΣΠΣ-formula. We wil show a refinement of the
above described partial derivatives technique, which enables us to account for the number of
addition gatesin the formula, rather than just multiplicative size. Taking circuit size to be
the total number of wires in the circuit, we obtain somewhat sharper lower bounds than the
Shpilka-Wigderson result would imply for a variety of polynomial families.

Also in Chapter 3 we introduce a companion technique for proving ΣΠΣ-formula size
lower bounds, which we’ll show to be useful in case the partial derivatives technique fails due
to an a priori low value of dim[∂d( f )℄. Our technique exploits a certaincancellation avoidance
property of polynomials under restriction to affine linear spaces. The crucial notion is that of
resistanceof a polynomial f . Resistance depends on whetherf , or more generally whether
some higher order partial derivative off , is non-constant onall affine linear spaces of a given
dimensionk. The smaller this dimensionk, the more resistant the polynomialf is, and the
larger theΣΠΣ-formula size off one observes.

All techniques, those of [SW99] and ours, currently known for provingΣΠΣ-formula, are
limited to proving at best quadratic lower bounds. A major open problem is to prove super-
polynomial lower bounds for explicit functions onΣΠΣ-formula size. Likely candidates to
require exponential size in this model are the determinant and permanent polynomials. In light
of [Val79a], polynomial-sizeΣΠΣ-formulas for either one of these implies that all polynomials
in VP have polynomial-size depth 3 formulae. Note that recently Mulmuley and Sohoni pro-
posed a representation theoretic approach to prove the permanent requires super-polynomial
arithmetical circuit size [MS01].

1.2 Restricting the Role of Constants

One of the central mysteries in arithmetic circuit complexity over infinite fieldsF is the com-
putational power conferred by the ability to use “for free” constants of arbitrary magnitude
and/or precision fromF. These constants are a major technical obstacle in relatingarithmetic
complexity to Boolean circuit complexity theory, and recent methods by translation to large
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finite fields (see [B̈ur00] after [Koi96]) seem to have limited domain of application. It is com-
monly observed (e.g. by [Mor73, Cha98, Mul99]) that classicimportant algorithms employ
only simple constants. A major exception ispolynomial interpolation, but even here it seems
that over fields containing the rationals, small constants with enough bits of precision can be
employed equally as well as large ones.

To probe the significance of (the magnitude of) field constants, several researchers have
obtained (often asymptotically tight) size lower bounds onarithmetical circuits in which a
uniform bound is imposed on constants. Morgenstern [Mor73]proved that bounded-coefficient
circuits (henceforth, bc-circuits) need sizeΩ(nlogn) to compute the linear transformation for
the Fast Fourier Transform. Chazelle [Cha98] obtained similar bounds for geometric range-
searching problems, while Lokam [Lok01] obtained related size-depth tradeoffs for bc-circuits
computing linear transformations with certain degrees ofrigidity. More recently Raz [Raz02]
broke through by obtainingΩ(nlogn) lower bounds for a natural bilinear function, namely
multiplication of two

p
n�pn matrices. B̈urgisser and Lotz [BL03] extended Raz’s ideas to

obtain tightΩ(nlogn) bounds on bc-circuits forcyclic convolution, and thence for polynomial
multiplication and related bi-linear functions. These lower bounds hold even when the bc-
restriction is lifted forO(n1�ε)-many “help gates.” The natural question is, can one obtain
similar lower bounds without the bc-restriction at all?

We will continue the study of bilinear circuits with boundedcoefficients. In particular
our focus will be on the cyclic convolution mapping. It can becomputed using the discrete
Fourier transform and its inverse by aO(nlogn) size bounded coefficient bilinear circuit, as is
a well-known folkore result. Our goal is to generalize the arguments of [Raz02, BL03] to more
general models of computation that allow for more unboundedcoeffcients.

For this purpose we introduce in Chapter 4 our main bridging concept, resulting in a model
whose computational power lies somewhere in between the general unbounded coefficient and
bounded coefficient models. This is done by allowing certainlinear transformations to be done
by the bilinear circuit at the input free of charge. For a bilinear functionf (~x;~y), we consider the
orbit of f under the natural “double action”G f = fλx;y: f (Ex;Dy) : D;E 2Gg of some group
G of n�n matrices. Such actions on multilinear mapsf like the determinant and permanent
polynomials form the basis of Mulmuley and Sohoni’s above mentioned proposal on super-
polynomial (arithmetical or Boolean) circuit lower bounds[MS02]. Note that this model not
only works past the above-mentionedO(n1�ε) limit on “help” gates with unbounded constants,
it also does not constrain the linear circuit complexity ofD andE themselves, which may be
as high as quadratic.

We note first that takingG to be all ofSLn(C), the group of complex matrices of deter-
minant 1, is close to the arbitrary-coefficients case from the standpoint of lower bounds. This
means, however, that partial progress should further restrict either the matricesD;E or some
other aspect of the circuits. We extend the lower bounds in [BL03] whenD;E (also) have
boundedcondition number.

In Chapters 5 and 6 we will invesigate the scenerio where the matricesD andE are re-
stricted to be diagonal, focusing on the circular convolution bilinear function. Here one is
naturally lead to questions about minors of then�n Fourier matrix DFTn. Relations will be
established between our aims of proving lower bounds for thediagonal orbit model and discrete
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analogues of theHeisenberg uncertainty principle. Part of our lower bounds will be derived
from the Donoho-Stark discrete uncertainty principle [DS89], which gives bounds on the mea-
sure of simultaneous concentration of ann-vectorx and its discrete Fourier transformDFTnx.
As a main result, which will be of independent interest, we will establish a quantative bound
on the expected value of the determinant of certain Random Vandermonde matrices with nodes
on the unit circle in the complex plane. This result is then used to prove circuit lower bounds.
As a by-product we will deduce also an uncertainty type relation for the discrete analog of
the band-limited functions. Certain limitations of this approach will be probed by considering
results known about the so-called prolate spheroidal wave functions studied in [Sle78].

1.3 Depth Restrictions

Finally, in Chapter 7 we will consider arithmetical circuits of constant bounded depth (not just
depth 3 as was done with theΣΠΣ-formulas). First we will establish several structural results
that focus on the relation that exists between arithmeticalcircuits computing a polynomial,
and circuits that compute all of it partial derivatives. An analogue will be proved of the Baur-
Strassen derivative Lemma [BS82] in which a circuit for a polynomial p is transformed into a
circuit that compute alinear combinationof all the partial derivatives ofp with only constant
factor increase in size. This form of the derivative Lemma has the additional advantage that it
truly does not introduce any new constants in the circuit, which is something the Baur-Strassen
Lemma notoriously is known not to satisfy. We will extend some of the results of [Lok01] to a
particular kind of bounded depth bounded constant ”linear combination” bilinear formula.

Next, we will consider bounded depth bilinear circuits without any kind of assumption
on the magnitude of constants. Circuits of this kind are right on the cutting edge of what one
currently can prove non-trivial , i.e. non-linear, lower bound for. In [RR03] a weak non-linear
lower bound is proved for the matrix multiplication function. The proof involves a “super-
concentrator Lemma” to prove the lower bound. We combine this lemma with thediscrete
uncertainty principle for cyclic groups of prime order, as proved by Tao [Tao91], to obtain a
non-linear lower bound for the cyclic convolution bilinearmap.
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Chapter 2

Preliminaries

2.1 Background Material

All rings are assumed to be commutative and have a multiplicative identity 1. We write[n℄ as
shorthand forf1; : : : ;ng. We assume familiarity with standard notation for complexity classes
such as P= [k�0DTIME[nk℄, NP= [k�0NTIME[nk℄, and so on.

2.1.1 Computational Models

Let R[x1; : : : ;xn℄ denote the polynomial ring in variablesx1; : : : ;xn over a ringR.

Definition 2.1.1. LetRbe a ring andx1;x2; : : : ;xn be a set of variables. Anarithmetical circuit
over R is a 3-tuple(G;γ;κ), whereG = (V;E) is a directed acyclic graph andγ : V ! R[fx1;x2; : : : ;xng[f+;�g is thegate identification functionandκ : E! R is thewire constants
function, satisfying:

1. if in-degree(v) = 0, thenγ(v) 2 R[fx1;x2; : : : ;xng,
2. if in-degree(v)> 0, thenγ(v) 2 f+;�g,

The vertices and edges in an arithmetical circuit are calledgatesandwires. Gates with
in-degree 0 are calledinput gates, or inputsfor short. All other gates are calledregular gates.
For a regular gatev, if ξ(v) = +, thenv is called anaddition gate, and ifξ(v) =�, v is called
a multiplication gate. For a gatev, a wire of the form(u;v) is called aninput wire to v, and a
wire of the form(v;u) is called anoutput wire from v. Note that constants can appear on wires
and as inputs.

Definition 2.1.2. Given an arithmetical circuitC = (G;γ;κ) we define thepolynomials com-
puted by C to be the functionφ : V[G℄! R[x1; : : : ;xn℄ inductively as follows:

1. φ(v) = γ(v), if v is an input gate,

7
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2. φ(v) = ∑r
i=1κ(ei)φ(vi), if v is an addition gate with input wirese1 = (v1;v); e2 =(v2;v); : : : ;er = (vr ;v), and

3. φ(v) = ∏r
i=1κ(ei)φ(vi), if v is a multiplication gate with input wirese1 = (v1;v); e2 =(v2;v); : : : ;er = (vr ;v).

In the above definition,φ(v) is called thepolynomial computed by the gate v. If for a polyno-
mial p2R[x1;x2; : : : ;xn℄ there exists a gatev2V[G℄ for whichφ(v) = p, we sayp is computed
by C .

Thesizeof an arithmetical circuitC = (G ;ξ;η), denoted bys(C ), is defined to be the total
number of wires inG. Themultiplicativeandadditivesize ofC , denoted bys�(C ) ands+(C ),
respectively are defined by

s�(C) = jf(u;v) 2 E[G℄ : ξ(v) =�gj;
and

s+(C) = jf(u;v) 2 E[G℄ : ξ(v) = +gj:
Definition 2.1.3. An arithmetical formula is an arithmetical circuitF = (G;ξ;η) for which
all regular gates have out-degree at most one. For formulae,their size, multiplicative size an
additive size are denoted by`(F ); `�(F ), and`+(F ), respectively.

Note that in the above definition we did not provide subtraction and division gates. The
former can be handled in our model using addition gates with�1 on the second input wire. By
standard robustness results [BCS97], it is not necessary toinclude division gates for computing
polynomials.

Definition 2.1.4. Let p1; p2; : : : ; pm be a collections of polynomials fromR[x1; : : : ;xn℄. The
circuit /formula complexity of p over R, denoted bysR(p1; p2; : : : ; pm) and`R(p1; p2; : : : ; pm)
respectively, is the size of a smallest circuit/formula computing all ofp1; p2; : : : ; pm. For multi-
plicative and additive size, these are denoted bys2R(p1; p2; : : : ; pm) andl2R (p1; p2; : : : ; pm), with2 2 f�;+g.

In case it is clear from the context which underlying ringR we are working over we will
drop the subscriptR in our notation. Sometimes the underlying field matters. Forexample,
over the complex numbersC, `�C(x2

1+ x2
2) = 1 witnessed by the formula(x1+ ix2)(x1� ix2),

but over the real numbersR one has̀ �
ℜ(x2

1+ x2
2) = 2. Suprisingly however, many results and

properties are independent ofR, or care only whetherR is finite or infinite, and if so whether
its charateristic is 0, 2, or an odd prime.

We will now define some computational models that satisfy additional restrictions.

2.1.2 ΣΠΣ-formulae

As the main object of study in chapter 3 we have the following model introduced by [SW99]:
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Definition 2.1.5. A ΣΠΣ-formula is an arithmetical formulaF = (G;ξ;η) such that on any
directed path(u1;u2);(u2;u3); : : : ;(um�1;um) in G there do not exists indices 1� i < j < k�m
such thatξ(ui) = ξ(uk) =� andξ(u j) = +.

In other words, aΣΠΣ-formula can be thought of as having the following structure. First
there is a group of addition gates computing linear forms of the input variables, then there is a
group of multiplication gates that multiply these linear forms. Finally there is a last group of
gates that compute linear combinations of these products.

For a collection of polynomialsp1; p2; : : : ; pm, `3;R(p1; p2; : : : ; pm) will denote the size of
a smallestΣΠΣ-formula computingp1; p2; : : : ; pm. Similar as before we definè�3;R and`+3;R for
multiplicative and addive complexity. Note that in Chapter3 the underlying ring is assumed to
be an arbitrary field of characteristic 0, for example the complex numbersC, and we will drop
theR subscript there.

Given aΣΠΣ-formula computing a single polynomialp with smultiplication gates in some
fixed order, we can write

p= s

∑
i=1

Mi ;
where

Mi = Πdi
j=1l i; j ;

and
l i; j = ci; j ;1x1+ci; j ;2x2+ : : :+ci; j ;nxn+ci; j ;0:

Heredi is the in-degree of theith multiplication gate, andci; j ;k is nonzero iff there is a wire
from xk to the addition gate computingl i; j . Note thatl i; j is homogeneous of degree 1, i.e.
strictly linear, if ci; j ;0 = 0, and is affine linear otherwise. For an affine linear forml , we will
denote its strictly linear part bylh.

2.1.3 Linear and Bilinear Circuits

Definition 2.1.6. A circuit L = (G;γ;κ) is called alinear circuit if it has no multiplication
gates, i.e., for each gatev, γ(v) = +, γ(v) 2 R, or γ(v) = xi for some variablexi . If for no gate
v, γ(v) 2 R, the circuit is calledhomogeneous.

For linear circuitsR will be assumed to be a field. In a homogeneous linear circuit each
gate computes a homogeneous linear form : for eachg2V[G℄, φ(g) = a1x1+a2x2+ : : :+anxn

with ai 2 R. An ordered list ofk gates(g1;g2; : : : ;gk) thus define a linear transforma-
tion Rn! Rk given by mappinga = (a1;a2; : : : ;an) 7! (φ(g1)(a);φ(g2)(a); : : : ;φ(gk)(a). A
k� n matrix A likewise determines a linear transformationRn ! Rk defined by mapping
a = (a1;a2; : : : ;an)T 7! Aa. We denote byslin(A) the minimum size of a linear circuit that
computes this linear transformation.

For bilinear circuits the set of variables is assumed to be partitioned in two setfx1;x2; : : : ;xng [ fy1;y2; : : : ;ymg. We will study the following homogeneous bilinear circuit
model:
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Definition 2.1.7. A homogeneous bilinear circuitis an arithmetic circuitB = (G;γ;κ) satis-
fying:

1. for each multiplication gatev, the polynomialφ(v) computed atv is a homogeneous
bilinear form in variablesfx1;x2; : : : ;xng[fy1;y2; : : : ;ymg, and

2. no input gatev hasγ(v) 2 R.

For a set of bilinear polynomialsp1; p2; : : : ; pk 2 R[x1;x2; : : : ;xn;y1;y2; : : : ;ym℄, we de-
note bilinear circuit complexity bysb;R(p1; p2; : : : ; pk). Similarly as before we define notation
s�b;s+b ; lb; l�b; andl+b for additive/multiplicative circuit/formula size.

Any homogeneous circuit computing a linear transformationwlog. can be assumed to
have no multiplication gates. Any homegeneous circuit computing a set of bilinear forms than
therefore wlog. be assumed to a homegeneous bilinear circuit of the structure defined above.

The above models will be considered under restriction of constants on the wires to bounded
coefficients. Generally, one could define a (families of) bounded-coefficient circuits overC or
R by restricting constants on the wires to be have normO(1). We will adhere to a stricter
definition, with the knowledge that typical results easily generalize toO(1) size constants:

Definition 2.1.8. A circuit C = (G;γ;κ) overC or R is called abounded-coefficientcircuit if
for everye2 E[G℄, jη(e)j � 1.

We will use the sub/superscript ”bc” to indicate bounded coefficient size of polynomials.
For bounded coefficient homogeneous linear circuits lower bounds can be obtained through the
following result by Morgenstern:

Theorem 2.1.1 ([Mor73]) Let A be an n�n matrix, then sbc
lin(A)� log2 jdet(A)j.

We define the discrete Fourier transform matrixDFTn by(DFTn)i j = ωi j ;
whereω is the primitiventh root of unity, i.e.ω = e2πi=n. Its unitary version we denote byFn:

Fn = DFTnp
n

:
The conjugate transpose of a matrixA will be denoted byA�. A matrix A is calledHermitian
or self-adjointif A� = A. A matrix is calledunitary if AA� = A�A = I . As indicated above
FnF�

n = F�
n Fn = I . A little elementary linear algebra shows:jdet(DFTn)j2 = det(DFTn)det(DFTn) = det(DFTn)det(DFT�

n ) = nn:
So by Morgensterns result:

sbc
lin(DFTn)� n

2
log2n;

which is asymptotically tight, given that the circuits forDFTn as given by Cooley and Tukey
[CT65] are of sizeO(nlogn) and have bounded coefficients.
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2.1.4 Perturbation Theory

We require the following basic results from perturbation theory, see e.g. [Bha97]. For vec-
tor x = (x1;x2; : : : ;xn) 2 Cn, we define its̀ 2-norm by jjxjj2 =p∑n

i=1 jxi j2. The`2-norm (or
spectral norm) of anm�n matrix A is defined by

jjAjj2 = max
x6=0

jjAxjj2jjxjj2 ;
and theFrobenius normis defined by

jjAjjF =s m

∑
i=1

n

∑
j=1
jAi j j2:

An eigenvalueof a complex square marixA is a complex numberλ for which there exist
a vectorx such thatAx= λx. For Hermitian matrices all eigenvalues are real numbers. We
denote theith largest eigenvalue of ann�n Hermitian matrixA by λi(A), i.e. we have�∞ <
λn(A)� λn�1(a)� : : :� λ1(A)< ∞.

Theorem 2.1.2 (Weyl’s Perturbation Theorem) Let A and E be Hermitian matrices. Then

max
j
jλ j(A)�λ j(A+E)j � jjEjj2:

We also need the following theorem.

Theorem 2.1.3 (Hadamard Inequality) For an n� n complex matrix A with columns
a1;a2; : : : ;an, jdet(A)j � n

∏
i=1
jjai jj2:

Intuitively speaking, for ann� n matrix A, jdet(A)j is the volume of the parallelipiped
spanned by its columns (or rows). This volume is maximized bymaking the columns orthog-
onal, and it can then be computed by just taking then-product of the lengths of these vectors.
This is essentially the content of the above theorem.

2.1.5 Cyclic Convolution

Definition 2.1.9. Thecyclic convolutionxÆy of two n-vectorsx= (x0;x1; : : : ;xn�1)T andy=(y0;y1; : : : ;yn�1)T is then-vector(z0; : : : ;zn�1)T with components

zk = ∑
i+ j�k modn

xiy j

for 0� k< n.
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For example, forn= 5, we get

xÆy=
0BBBB�

x0y0+x4y1+x3y2+x2y3+x1y4

x1y0+x0y1+x4y2+x3y3+x2y4

x2y0+x1y1+x0y2+x4y3+x3y4

x3y0+x2y1+x1y2+x0y3+x4y4

x4y0+x3y1+x2y2+x1y3+x0y4

1CCCCA
When fixingx= a= (a0; : : : ;an�1)T , the induced map ony is computed by the circulant matrix
Circ(a), which we define by:

Circ(a) =
0BBBBB�

a0 an�1 � � � a2 a1

a1 a0 � � � a3 a2
...

...
...

...
an�2 an�3 � � � a0 an�1

an�1 an�2 � � � a1 a0

1CCCCCA :
That is, we have that

xÆy= Circ(x)y= Circ(y)x:
Convolution can be computed using the Fourier transform, according to the following folklore
result:

Theorem 2.1.4 (The Convolution Theorem)For any a2 Fn,

Circ(a) = Fndiag(DFTna)F�
n :

In the above, for a vectorx= (x1;x2; : : : ;xn)T ,

diag(x) =
0BBBBB�

x1 0 � � � 0 0
0 x2 � � � 0 0
...

...
...

0 0 � � � xn�1 0
0 0 � � � 0 xn

1CCCCCA :
Through the convolution theorem and using theO(nlogn) circuits for the Fourier trans-

form, we thus obtain:
sbc(xÆy) = O(nlogn):

We also find it convenient to consider the “half convolution”defined by HCirc(x)y, where
HCirc(a) is the lower-triangular matrix0BBBBB�

a0 0 � � � 0 0
a1 a0 � � � 0 0
...

...
...

an�2 an�3 � � � a0 0
an�1 an�2 � � � a1 a0

1CCCCCA :
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Then x Æ y can be obtained by adding HCirc(x)y to the inverted vector
HCirc(xn�1;xn�2; : : : ;x1)(y1;y2; : : : ;yn�1), which can be done by bilinear (bc) circuits with
linearly many extra+ gates. Thus lower bounds onxÆy extend immediately to HCirc(x)y. The
convenience is that HCirc(x)y is definable by recursion from HCirc(x1; : : : ;xn�2)(y1; : : : ;yn�2),
needing only linearly-many extra binary� gates applied tox0;y0 and elements ofx0; : : : ;xn�1

and y0; : : : ;yn�1 and preserving the bilinear format. Namely, zero out the first column
and main diagonal of HCirc(a), observe that the piece in between is the lower triangle of
HCirc(a1; : : : ;an�2) multiplying the interiorn� 2 elements ofy, and restore the summands
in the first column and main diagonal involvingx0 andy0. We use this fact in the proof of
Theorem 4.0.1.

2.1.6 Families of Polynomials

In general ifl(n) is a strict monotone increasing function on natural numbersandP = fpn 2
R[x1;x2; : : : ;xl(n)℄gn>0 is a family of polynomials one can define the (non-uniform) complexity
as the function defined bys(n) = s(pl(n)). For uniform complexity one would requires in
addition the existence of some Turing machine that can output descriptions minimum circuits
for eachn, but in this document we will only consider non-uniform complexity.

Let Sn be the symmetric group. The determinant polynomial∆n and permanent polynomial
Πn onn2 variables are defined by

∆n = ∑
σ2Sn

sgn(σ) n

∏
i=1

xi;σ(i); Πn = ∑
σ2Sn

n

∏
i=1

xi;σ(i);
where sgn(σ) is the sign of the permutationσ. Note thatΠn is the same as∆n except without
the sign alternations, and these are the same polynomial when the underlying field has char-
acteristic 2. Valiant [Val79a] proposed a theory analogousto the theory of NP-completeness
in which the determinant and permanent play the roles of feasible and infeasible complete
problem. The determinant has polynomial size arithmeticaland Boolean circuits. The perma-
nent is strongly suspected not to have polynomial size circuits of either kind [Val79b, B̈ur98].
Raz [Raz04a] recently showed that any multilinear formula computing the permanent or de-
terminant must have sizenΩ(logn). Both ∆n andΠn are expected to require exponential size
in the ΣΠΣ-formula model. However, the best-known lower bound for both ∆n and Πn is
Ω(n4= logn), i.e.,Ω(N2= logN) in the numberN = n2 of variables [SW99].

Next we define the elementary symmetric polynomial of degreed:

Sd
n = ∑

T�[n℄jTj=d

∏
i2T

xi :
Ben-Or observed the surprising fact thatSd

n hasO(n2) sizeΣΠΣ-formulas, where the constant
in the big-O does not depend ond. This is done as follows. Define the polynomialg(t) =
Πn

t=1(t + xi). Observe thatg(t) = ∑n
d=0Sd

n(X)tn�d. We can computeg(t0); : : : ;g(tn) for any
given constantst0 : : : tn in parallel withn+1 multiplication gates of degreen. Now, from the
Lagrange interpolation formula, it follows that the coefficient of tn�d, which equalsSd

n, is a
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linear combination ofg(t0) : : :g(tn). Hence we obtain aΣΠΣ-formula forSd
n using a total of at

most 3n2+4n+1 wires. In [SW99] the following lower bound was obtained forSd
n:

`�3(S2d
n )�max(Ω(n

2d
d+2

d
);Ω(nd));8d� 4n=9:

In light of the Ben-Or upper bound, we see that this is tight for d = Ω(n).
2.1.7 Algebraic Geometry

Definition 2.1.10. Let R be a ring. A subsetI of R is anideal if,

1. for anya2 I , for all r 2 R, ra 2 I , and

2. for all a;b2 I , a+b2 I .

For example, ifa1; : : : ;as are elements ofR, then the set of all elements of the formr1a1+: : :+rsas, with all r i 2R, is an ideal. It is called theideal generated by a1; : : : ;as, and denoted by
a1R+ : : :+asR or just(a1; : : : ;as). If for an ideal there exist finitely many elementsa1; : : : ;as,
such thatI = (a1; : : : ;as), then I is calledfinitely generated. It is a fact that the polynomial ring
F[x1; : : : ;xn℄ is Noetherian, implying that all its ideals are finitely generated.

Let I ;J be ideals. Observe,I \ J is an ideal, and that the set of all elementsa+b with
a2 I ;b2 J, is an ideal. We denote it byI + J. More generally, for a family of idealsfIsgs2S,
define∑s2SIs, to be the set of all sums∑s2Sas, with as 2 Is, as 6= 0, for only finitely manys.
Let I �J, be the set of all finite sums∑i aibi, with ai 2 I ;bi 2 J, thenI �J is an ideal.

Now let R= F [x1; : : : ;xn℄. The setFn, of all n-tuples(a1; : : : ;an) with ai 2 F , is called
n-dimensional affine space over F. The elements ofFn are calledpoints.

Definition 2.1.11. Let I be an ideal inR. Theaffine variety defined by I, denoted byV(I), is
the subset of tuples(a1; : : : ;an) 2 Fn, such thatf (a1; : : : ;an) = 0, for every polynomialf 2 I .

We have the following elementary proposition:

Proposition 2.1.5 For ideals I;J;fIsgs2S in R, polynomials f1; : : : ; fs2 R,

1. V(∑s2SIs) = \s2SV(Is).
2. V(I �J) =V(I)[V(J).
3. V(R= (1)) = /0.

4. V((0)) = Fn.

The above Proposition shows that we can define a topology onn-dimensional affine space, by
taking as closed sets all varieties inFn. This topology is called theZariski topology.

Proposition 2.1.6 Let V be a subset of Fn. Then the set of all polynomials f2 F[x1; : : : ;xn℄
such that f(a1; : : : ;an) = 0, for every point(a1; : : : ;an) 2V, is an ideal. This ideal is denoted
by I(V).
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We would like to define the geometric degree of an affine variety. In order to do so we
must introduce the concept of projective space. In the following, letR= F[x0; : : : ;xn℄.
Definition 2.1.12. Let Pn be the set of all(n+1)-tuples(a0; : : : ;an) 2 Fn+1=(0; : : : ;0), where
we identify points(a0; : : : ;an) and(b0; : : : ;bn), if there exist a nonzeroλ2F , such thatai = λbi ,
for all i 2 f0; : : : ;ng. Pn is calledn-dimensional projective space. The equivalence class of a
point (a0; : : : ;an) is denoted by[a0 : : : : : an℄.

A polynomial is calledhomogeneous, if all its monomials are of the same degree. An
ideal I 2 R is called homogeneous if it can be generated by homogeneous polynomials. For a

polynomial f 2 F[x1; : : : ;xn℄, it homogenizationf h is defined byxdeg( f )
0 f (x1

x0
; : : : ; x1

x0
). For an

ideal I = (g1; : : : ;gs), its homogenizationIh is defined to be the ideal(gh
1; : : : ;gh

s).
Definition 2.1.13. Let I be a homogeneous ideal inR. Let V(I) be the set of point(a0 : : : : :
an) 2 Pn such thatf (a0; : : : ;an) = 0, for all homogeneousf 2 I . V(I) is called theprojective
variety defined by I. Conversely, ifV is a subset ofPn, then the ideal generated by all homoge-
neous polynomialsf 2 F [x0; : : : ;xn℄ that vanish onV, is called theideal of the variety V, and
denoted byI(V).

As in affine space, the set of all varieties inPn forms a topology. We can embedn-
dimensional affine space intoPn via the mapφ : Fn! Pn, defined by mapping(a1; : : : ;an) to[1 : a1 : : : : : an℄.

For a homogeneous idealI in R, let I (t) be the set of all homogeneous polynomials ofI
of degreet, and letR(t) be the set of all homogeneous polynomials of degreet. I (t) is a vector
subspace ofR(t). DefineHI (t) = codimension ofI (t) in R(t). The functionHI (t) is called the
Hilbert functionof the idealI . We have the following classical result.

Theorem 2.1.7 (Hilbert-Serre, see [BCS97], p. 178)Let I be a homogeneous ideal of R=
F[x0; : : : ;xn℄, and assume that V(I) is nonempty and of dimension d. Then there exist unique
integers h0;h1; : : : ;hd, such that the polynomial

h(T) = d

∑
j=0

h j(T
d� j )

satisfies h(t) = HI (t), for all sufficiently large t� 0. The uniquely determined polynomial h, is
called the Hilbert polynomial of the ideal I.

Definition 2.1.14. We define thegeometric degreeGDEG(I) of the homogeneous idealI , to
be the uniquely determined integerh0 of Theorem 2.1.7. The geometric degree of a projective
varietyV is defined as the geometric degree ofI(V).

The above is the classical definition of geometric degree of aprojective variety found in
algebraic geometry.

Definition 2.1.15. A subsetV of a topological spaceX is irreducible , if it is nonempty, and
whenever we can writeV = U [W, for setsU andW that are closed inV, then one ofU and
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W must equalsV.

Affine and projectiven-space areNoetheriantopological spaces, which implies that every
varietyV has a unique decompositionV =V1[ : : :[Vs into irreducible varieties, up to order of
terms. TheVi ’s are called thecomponentsof V. When the field is algebraically closed, for any
ideal I , I(V(I)) equals the radical ofI , defined by

p
I = f f j 9n> 0; f n 2 Ig. This gives a 1-

1 correspondence between radical ideals and varieties called the algebra-geometry dictionary.
An ideal I is calledprimary, if for everya =2 I , for everyb with ab2 I , it holds thatbn 2 I , for
somen> 0. An idealI is calledprime, if for every a;b2 R, if ab2 I , thena or b is in I . In
the algebra-geometry dictionary prime ideals correspond 1-1 with irreducible varieties. Every
ideal I can be written as an intersectionI = I1\ : : :\ Is of primary ideals, called theprimary
decompositionof I , such thatV(I1)\ : : :\V(Is) is a decomposition ofV(I) into irreducible
components, and with radicals

p
I j being unique prime ideals.

Definition 2.1.16. For a non-empty affine varietyV, let V1; : : : ;Vs be the irreducible compo-
nents of the closure ofφ(V) in the Zariski topology. We define1 the affine geometric degree
gdeg(V) of V by

s

∑
i=1

GDEG(Vi);
This can be computed from any idealI such thatV =V(I) by calculating a primary decompo-
sition of Ih asI1\ : : :\ Is and then summing GDEG(pI j) over the factors. By convention we
let gdeg( /0) =�1.

Two facts about affine geometric degree:

1. gdeg(Fn) = 1.

2. If f is a polynomial of degreed� 1, then gdeg(V( f ))� deg( f ).
The main fact we will use about degree is the following from ofBézout’s Theorem stated as an
inequality:

Theorem 2.1.8 (cf. [BCS97], p. 181)For affine varieties X and Y, we have that

gdeg(X\Y)� gdeg(X) �gdeg(Y):

1Caution to the reader: this differs from [BCS97], def. 8.22., by decomposingφ(V) rather thanV. This makes
the affine case subordinate to the projective case, and Theorem 2.1.8 merely specializes the statement in [BCS97].



Chapter 3

Lower Bounds onΣΠΣ-formulae

In contrast to the case of Boolean circuit complexity, inarithmeticalcircuit complexity we
do not currently have exponential lower bounds (for “natural” mathematical functions) against
constant-depth circuits, or even constant-depth formulas, in case the underlying field has char-
acteristic zero. Shpilka and Wigderson [SW99] noted that such lower bounds are unknown
even for formulas that are sums-of-products-of-sums, theΣΠΣ formulas defined in chapter 2.

These formulas have notableupper-bound powerbecause they can carry out forms of La-
grange interpolation, including that needed to compute thesymmetric polynomialsSd

n (defined
to be the sum of all degree-d monomials inn variables) in quadratic size. This heightens the

contrast because the Boolean majority function, which is analogous toSdn=2e
n , requires exponen-

tial size in constant-depth Boolean circuits [Hås88]. ThusΣΠΣ formulas present a substantial
challenge for lower bounds, as well as being a nice small-scale model to study.

The multiplicative sizè � of an arithmetical formula or circuit with gates of bounded
or unbounded fan-in can be taken as the total fan-in to multiplication gates. Lower bounds
on `� imply lower bounds on the total circuit/formula size`, taken as the number of wires
in the circuit/formula. The best known lower bound for general arithmetical circuits has re-
mained for thirty years theΩ(nlogn) lower bound oǹ � by the “Degree Method” of Strassen
[Str73a] (see also [BS82, BCS97]), which however applies tosome simple functions such as
f (x1; : : : ;xn) = xn

1 + : : :+ xn
n. Shpilka and Wigderson [SW99] proved lower bounds on`� of

Ω(n2) for Sd
n whend = Θ(n), n2�ε(d) for Sd

n with small values ofd, andΩ(N2=polylog(N))
lower bounds for the determinant, withN = n2. Of course, many natural arithmetical func-
tions including the permanent [Val79b] are conjectured to require exponential size (for̀�) for
general circuits, let aloneΣΠΣ ones. Straight counting of equations for monomial coefficients
show that “generically” functions need exponential size. However, Strassen’s technique has
the limitation thatΩ(nlogn) is the best lower bound for a polynomial of total degreenO(1) in n
variables that it can prove, and the main methods of [SW99] seem to have a similar limitation of
Ω(n2) for ΣΠΣ formulas. Shpilka [Shp01] gets past this only in some further-restricted cases,
and also considers a depth-2 model consisting of an arbitrary symmetric function of sums. This
barrier provides another reason to study theΣΠΣ model, in order to understand the obstacles
and what might be needed to surpass them.

In this chapter we prove a sharpn2 lower bound oǹ � for ΣΠΣ formulas for the function

17
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f (x1; : : : ;xn) = xn
1+ : : :+xn

n computed over the real or rational numbers, and a lower boundof
n2=2 over any field of characteristic zero. Note the absence of “O;Ω” notation. These lower
bounds are obtained via a new notion we introduce, namely theresistanceof a polynomial.
A technique is introduced for proving up to quadraticΣΠΣ-formula size lower bounds for
polynomial with high resistance.

Next we prove lower bounds on the total complexity` for some of Shpilka and Wigder-
son’s functions that are significantly higher (but still sub-quadratic) than their bounds on`�
when the degreed of the function is small. This is done intuitively by exploiting a closed-form
application of the Baur-Strassen “Derivative Lemma” toΣΠΣ formulas, showing thatf and all
of its n first partial derivatives can be computed with only a constant-factor increase iǹ and`�
overΣΠΣ formulas for f .

3.1 Preliminaries

Let us recall the computational model. AΣΠΣ-formula is an arithmetic formula consisting of
four consecutive layers: a layer of input gates, followed bya layer of addition gates, followed
by a layer of multiplication gates, followed by the output. Wires can be assumed to be present
only between consecutive layers. For a polynomialp, l3(p) will denote the size of a smallest
ΣΠΣ-formula computingp. Given aΣΠΣ-formula for a polynomialp, we can write

p= s

∑
i=1

Mi ;
where

Mi = Πdi
j=1l i; j ;

and
l i; j = ci; j ;1x1+ci; j ;2x2+ : : :+ci; j ;nxn+ci; j ;0:

Heredi is the in-degree of theith multiplication gate (fix any order on the multipication gates),
andci; j ;k is nonzero iff there is a wire fromxk to the addition gate computingl i; j . Note thatl i; j
is homogeneous of degree 1, i.e.strictly linear, if ci; j ;0 = 0, and isaffine linearotherwise.

3.1.1 Affine Linear Subspaces and Derivatives

An affine linearsubspaceA of Fn is a set of the formA=V +w= fv+w : v2V g, whereV is
a linear subspace ofFn, andw is a vector inFn. The dimension ofA is defined to be the vector
space dimension ofV.

Let X = (x1; : : : ;xn) be ann-tuple of variables. For any affine subspaceA, we can always
find a set of variablesB� X, and affine linear formslb in the variablesX nB, for eachb2 B,
such thatA is the set of solutions offxb = lb : b2 Bg. This representation is not unique. The
setB is called abaseof A. The sizejBj always equals the co-dimension ofA.

To indicate how one obtains a base, say dimV = r and letR be ann� r matrix whose
columns form a basis ofV. Then

A= fRβ+w : β 2 F rg
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Since row-rank(R) = col-rank(R) = r , there must ber independent rows. LetS be anyr � r
submatrix ofR with independent rows.B is taken to be the set of variables corresponding
to rows not inS. Any specified vector of valuesa can be obtain for variables inX=B: set
β = S�1(a�w). Then the variables inB are determined. Thus the affine linear formslb are
given byRBβ = RBS�1(X=B�w). Denote byRB the rows ofR that are inB, andX=B the
r-vector of variables not inB.

In the following, whenever we consider an affine linear subspaceA, we assume we have
fixed some baseB of A. Any of our numerical “progress measures” used to prove lower bounds
will not depend on the choice of a base. The following notiondoesdepend on the choice of a
base:

Definition 3.1.1 ([SW99]). Let A be an affine linear subspace ofFn, and let f 2 F[x1; : : : ;xn℄.
Then therestriction of f to Ais the polynomial obtained fromf by substitutinglb for the
variablexb for eachb 2 B, is denoted byfjA. If W is a set of polynomials, defineWjA =f fjA j f 2Wg.
Then we define:

Definition 3.1.2. For polynomialf 2F [x1; : : : ;xn℄, define the first order gradient mapping∇ f :
Fn! Fn by

∇ f (a1; : : : ;an)k = ∂ f
∂xk

(a1; : : : ;an):
For linear polynomiall = c1x1+ : : :+ cnxn+ c0, we denotelh = c1x1+ : : :+ cnxn. For a setS
of linear polynomials,Sh = flh : h2 Sg. We have the following proposition:

Proposition 3.1.1 Let S be a set of s polynomials of degree 1 from F[x1; : : : ;xn℄, such that Sh

is an independent set. Then the set of common zeroes of S is affine linear of dimension n�s.

Proof. Let V be the set of common zeroes ofSh. V is a linear space of dimensionn�s. Since
Sh is an independent set, one can conclude there existsv, such that for alll 2 S, l(v) = 0. All of
v+V vanishes onS: for v0 2V, l(v+v0) = lh(v+v0)+c= lh(v)+ lh(v0)+c= l(v)+ lh(v0) = 0.
Coversely, if forw, for all l 2 S, l(w) = 0, then writingw = w0+ v. 0= l(w) = l(w0+ v) =
lh(w0+v)+c= lh(w0)+ lh(v)+c= lh(w0)+ l(v) = lh(w0), sow0 2V, sow2 v+V.

3.2 Resistance of polynomials

We introduce the following notion.

Definition 3.2.1. A polynomial f in variablesx1;x2; : : : ;xn is (d; r;k)-resistantif for any poly-
nomialg(x1;x2; : : : ;xn) of degree at mostr , for any affine linear subspaceA of codimensionk,
there exists adth order partial derivative off �g that is non-constant onA.



20 CHAPTER 3. LOWER BOUNDS ONΣΠΣ-FORMULAE

For a multisetX of sized with elements taken fromfx1;x2; : : : ;xng, we will use the nota-

tion ∂d f
∂X to indicate thedth-order derivative with respect to the variables inX. An elementary

fact is that the order of taking derivatives does not matter.
For polynomials with terms of different degrees, the middleparameterr in the definition

might be useful. However, typically in the applicationsr is set to be deg( f )�1. Convention
will be that when we say a polynomialf is (d;k)-resistant, we meanf is (d;deg( f )�1;k)-
resistant.

Definition 3.2.2. For a polynomialf (x1;x2; : : : ;xn) we define itsresistance factor µ( f ) by

µ( f ) = maxfk+1
d+1

: f is (d;k)-resistantg:
We have the following theorem:

Theorem 3.2.1 `�3( f )� deg( f )µ( f ).
The above theorem will follow from the following general result:

Theorem 3.2.2 Suppose f(x1;x2; : : : ;xn) is (d; r;k)-resistant, then

l�3( f )� (r +1)k+1
d+1

:
Proof. Consider aΣΠΣ-formula that computesf . Remove all multiplication gates that have
degree at mostr . Doing so we obtain aΣΠΣ formulaF computing f �g, whereg is some
polynomial of degree at mostr . SayF hassmultiplication gates. Write:

f �g= s

∑
i=1

Mi;
where

Mi = Πdi
j=1l i; j ;

and
l i; j = ci; j ;1x1+ci; j ;2x2+ : : :+ci; j ;nxn+ci; j ;0:

The degree of each multiplication gate inF is at leastr +1, i.e.di � r +1, for each 1� i � s.
Now select a setSof input linear forms using the following algorithm:

S= /0
for i = 1 to s do

repeat d+1 times:
if (9 j 2 f1;2; : : : ;dig) such thatSh[flhi; jg is a set of independent vectorsthen

S= S[fl i; jg
Let A be the set of common zeroes of the linear forms inS. SinceSh is an independent set, by
Lemma 3.1.1,A is affine linear of co-dimensionjSj � (d+1)s.
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Claim 3.2.3 If at a multiplication gate Mi we picked strictly less than d+1 linear forms, then
any linear form that was not picked is constant on A.

Proof. Each linear forml that was not picked hadlh already was in the span ofSh, for the set
Sbuild up so far. Hence we can writel = c+ lh = c+∑g2Scggh, for certain scalarscg. Since
eachgh is constant onA, we concludel is constant onA.

We conclude that for each multiplication gate at least one ofthe following holds:

1. (d+1) input linear forms vanish onA, or

2. less than(d+1) linear form vanishes onA, and all others are constant onA.

For each multisetX of sized with elements fromfx1;x2; : : : ;xn), thedth order partial derivative

∂d( f �g)
∂X

(3.1)

is in the linear span of the set

f di

∏
j=1
j =2J

l i j : 1� i � s, J� f1;2; : : : ;dig, jJj= d g
Consider 1� i � s andJ � f1;2; : : : ;dig with jJj = d. If item 1 hold for multiplication

gateMi , then

di

∏
j=1
j =2J

l i j (3.2)

vanishes onA, since there must be onel i j that vanishes onA that was not selected, given thatjJj= d. If item 2 holds forMi , then (3.2) is constant onA.
Hence, we conclude that (3.1) is constant onA. Since f is (d; r;k)-resistant, we must have

that the codimension ofA is at leastk+1. Hence(d+1)s� k+1. Since each gate inF is of
degree at leastr +1, we get that

`�3(F )� (r +1)k+1
d+1

:
SinceF was obtained by removing zero or more multiplication gates from aΣΠΣ-formula
computingf , we have proven the statement of the theorem.

To prove lower bounds on resistance, we supply the followinglemma that uses the syntac-
tic notion of affine restriction. In certain cases this will be convenient.
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Lemma 3.2.4 Over fields of characteristic zero, for any d� r, k > 0, and any polynomial
f (x1;x2; : : : ;xn), if for every affine linear subspace A of codimension k, thereexists some dth
order partial derivative of f such that

deg(�∂d f
∂X

�jA)� r�d+1

then f is(d; r;k)-resistant.

Proof. Assume for every affine linear subspaceA of codimensionk, there exists somedth
order partial derivative derivative off such that

deg(�∂d f
∂X

�jA)� r�d+1

Let g be an arbitrary polynomial of degreer . Then�
∂d f �g

∂X

�jA = �
∂d f
∂X
� ∂dg

∂X

�jA= �
∂d f
∂X

�jA��∂dg
∂X

�jA :
The term

�
∂d f
∂X

�jA has degree at leastr � d+ 1, whereas the term
�

∂dg
∂X

�jA can have degree

at mostr�d. Hence deg(�∂d f�g
∂X

�jA) � r�d+1� 1. Since over fields of characterstic zero,

syntactically different polynomials define different mappings, we conclude∂
d f�g
∂X must be non-

constant onA.

Let us make the following important remark: taking partialsdoes not commute with affine

restrictions. For example, it is possible for all∂d f
∂X to vanish onA, but to have some∂

d+1 f
∂X to

be non-constant onA. This appears to be counter-intuitive at first sight, but canplay a role in
application.

3.2.1 Applications

We will now prove some lower bounds on theΣΠΣ-formula size of a few selected explicit
polynomials.

Sum of Nth Powers Polynomial

Consider f = ∑n
i=1xn

i . For this polynomial we haveΠΣ-circuits of sizeO(nlogn): for each
variablexi separate use� logn repeated multiplications to computexn

i and add up the results.
This can be shown to be optimal using Strassen’s degree method. By that method we know



3.2. RESISTANCE OF POLYNOMIALS 23

any circuit for f has sizeΩ(nlogn). The following section investigates lower bounds onΣΠΣ-
formula size forf . The obviousΣΠΣ-formula has additive sizen2 wires in the top linear layer,
and hasn multiplication gates of degreen. We prove that this is essentially optimal.

Lemma 3.2.5 Over fields of characteristic zero, the polynomial f= ∑n
i=1xn

i has resistance
factor µ( f )� n=2.

Proof. We will show that f is (1;n�1)-resistant. Letg be an arbitrary polynomial of degree
deg( f )�1= n�1. Lettingg1; : : : ;gn denote the first order partial derivatives ofg, we get that
the ith partial derivative off �g equal

nxn�1
i �gi(x1; : : : ;xn):

Note that thegi ’s are of total degree at mostn�2.
We claim there is no affine linear subspace of dimension greater than zero on whicĥf

is constant. To show this, it suffices to show thatf̂ is not constant on any affine line inFn.
Consider an arbitrary affine line, parameterized by a variable t:

xi = ci +dit;
whereci anddi are constants for alli 2 [n℄, and with at least onedi nonzero. Then∂( f�g)

∂xi
restricted to the line is given by

n(ci +dit)n�1�hi(t);
for some univariate polynomialshi(t) of degree� n�2. Since there must existsome isuch
thatdi is nonzero, we know some partial derivative restricted to the affine line is parameterized
by a univariate polynomial of degreen�1, and thus, given that the field is of characteristic
zero, is not constant for allt.

Corollary 3.2.6 Over fields of characteristic zero, anyΣΠΣ-formula for f= ∑n
i=1xn

i has mul-
tiplicative size at least n2=2.

Proof. By Theorem 3.2.1,̀�3( f ) � deg( f )µ( f ). Applying Lemma 3.2.5, we get that`�3( f ) �
n2=2.

In case the underlying field is the real numbersR andn is even, we can improve the above
result to prove an absolutely tightn2 lower bound. We start with the following lemma:

Lemma 3.2.7 Let f = ∑n
i=1xn

i . Over the real numbers, if n is even, we have that for any affine
linear subspace A of dimension k� 1, deg( fjA) = n.

Proof. Since f is symmetric we can assume without loss of generality that the following is a
base representation ofA:

xk+1 = l1(x1; : : : ;xk)
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xk+2 = l2(x1; : : : ;xk)
...

xn = ln�k(x1; : : : ;xk):
Then

fjA = xn
1+ : : :xn

k + ln1 + : : :+ lnn�k:
We conclude thatfjA must include the termxn

1, since eachlnj has a non-negative coefficient for
the termxn

1, sincen is even.

Theorem 3.2.8 Over the real numbers, for even n, anyΣΠΣ-formula for f= ∑n
i=1xn

i has mul-
tiplicative size at least n2.

Proof. Using Lemma’s 3.2.4 and 3.2.7 we conclude that over the real numbersf is (0;n�1)-
resistant. Hence, by Theorem 3.2.2 we get that`�3( f )� deg( f )n

1 = n2.

Let us note thatf = ∑n
i=1xn

i is an example of a polynomial that, even for larged, has
relatively few, namely onlyn, partial derivatives. This makes application of the partial deriva-
tives technique of [SW99], which we will describe and extendin the next section, problematic.
Conversely, for polynomials that have many partial derivatives, in a sense to be made more
precise, the technique of [SW99] can be more straightforward in its application than the re-
sistance technique. The problem of analyzing precisely what is the minimal dimension of an
affine linear space on whichf �g is non-constant can be quite hard for a given polynomialf
and arbitraryg with degree less than deg( f ).
Blocks of Powers

Supposen= m2 for somem. Consider the “m blocks ofm powers” polynomial

f = m

∑
i=1

im

∏
j=(i�1)m+1

xm
j :

The straightforwardΣΠΣ-formula for f , that computes each term/block using a multiplication
gate of degreen, is of multiplicative sizen3=2. We will show this is tight.

Proposition 3.2.9 The blocks of powers polynomial f defined above is(0;m�1)-resistant.

Proof. Consider an affine linear space of codimensionm�1. For any baseB of A, restriction to
A consists of substitution of them�1 variables inB by linear forms in the remaining variables
X=B. This means there is at least one term/blockBi := ∏im

j=(i�1)m+1xm
j of f whose variables

are disjoint fromB. This blockBi remains the same under restriction toA. Also, for every other
term/block there is at least one variable that is not assigned to. As a consequence,Bi cannot
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be cancelled against terms resulting from restriction toA of other blocks. Hence deg( fjA) =
deg( f ). Hence by Lemma 3.2.4 we have thatf is (0;m�1)-resistant.

Corollary 3.2.10 For the blocks of powers polynomial f defined above,`�3( f )� nm= n3=2.

Proof. Follows immediately from Theorem 3.2.2 and Proposition 3.2.9.

Alternatively, one can observe that by substitution of a variable yi for each variable ap-
pearing in theith block one obtains from aΣΠΣ-formulaF for f a formula for f 0 = ∑m

i=1yn
i

of the same size asF . Corollary 3.2.6 generalizes to show that`�3( f 0)� 1
2n3=2, which implies`�3( f )� 1

2n3=2.

Polynomials depending on distance to the origin

Over the real numbers,x2
1+ x2

2+ : : :+ x2
n is the Euclidean distance of the point(x1;x2; : : : ;xn)

to the origin. Polynomials defined in terms of this distance can easily be seen to be highly
resistant.

For example, considerf = (x2
1+x2

2+ : : :+x2
n)m. On any affine lineL in Rn the distance to

the origin must vary, which impliesf is non-constant onL. In other words, over the reals,f is(0;n�1)-resistant. Hence by Theorem 3.2.2 we get that

Proposition 3.2.11 Over the real numbers,̀�3((x2
1+x2

2+ : : :+x2
n)m)� 2mn.

Observe that by reduction this means that the “mth-power of an inner product polynomial”,
defined byg= (x1y1+x2y2+ : : :+xnyn)m, must also haveΣΠΣ-size at least 2mnover the reals
numbers.

Symmetric Polynomials

The special case of(0;k)-resistance implicitly appears in [Shp01], or at least in sofar that the
sufficient condition of Lemma 3.2.4 is used for the special cased = 0 in which no derivatives
are taken. For the elementary symmetric polynomialSr

n of degreer � 2 in n variables Theorem
4.3 of [Shp01] implies, using Lemma 3.2.4, thatSr

n is (0;n� n+r
2 )-resistant. Shpilka proves for

r � 2, `3(Sr
n) = Ω(r(n� r)), which can be verified using Theorem 3.2.2:`3(Sr

n)� (r +1)(n�
n+r

2 ) = Ω(r(n� r)). For r = Ω(n) this yields a tightΩ(n2) bound as observed in [Shp01].

3.3 Bounds for +,*-Complexity

The partial derivatives technique of [SW99] ignores the wires of the formula present in the first
layer. In the following we show how to account for them. As a result we get a sharpening of
several lower bounds, though not on`�3 but on total formula size. The main idea is to utilize
a closed form of the Baur-Strassen Derivative Lemma as one can derive it forΣΠΣ-formulae.
Let us describe this closed form here.
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Consider aΣΠΣ-formulaF computing a polynomialp. Then one can write

p= s

∑
i=1

Mi ;
where

Mi = Πdi
j=1l i; j ;

and
l i; j = ci; j ;1x1+ci; j ;2x2+ : : :+ci; j ;nxn+ci; j ;0:

Heredi is the in-degree of theith multiplication gate, andci; j ;k is nonzero iff there is a wire
from xk to the addition gate computingl i; j . Hence, using the addition and product rule for
partial derivatives, we get for anyk,

∂p
∂xk

= s

∑
i=1

di

∑
p=1

∂l i;p
∂xk

di

∏
j=1
j 6=p

l i; j
= s

∑
i=1

di

∑
p=1

ci;p;k di

∏
j=1
j 6=p

l i; j : (3.3)

We need a circuit-gadgetG(z1;z2; : : : ;zd) that computes alld products ofd� 1 distinct
input variables. Such a gadget can be constructed with sizeO(d) many wires:

Proposition 3.3.1 For each d> 1, there exists a circuit Gd(z1;z2; : : : ;zd) that consists of3d�6
multiplication gates and at most6d�12wires that computes all d�1 products of d�1 distinct
input variables.

Proof. Let us constructG inductively. G2(z1;z2) is taken to consist of just the input vari-
ablesz1 andz2. Suppose we have constructedGd. Let gi be the gate inGd that computes
z1z2 : : :zi�1zi+1 : : :zd. Add a new input gate for variablezd+1. Add a g gate that multi-
plies zd andzd+1. Peform the substitutionzd = zd � zd+1 by replacing each wire going from
zd to a gate by a wire that goes fromg to that gate. For 1� j < d, gi now computes
z1z2 : : :zi�1zi+1 : : :zdzd+1. The gategd computesz1z2 : : :zd�1. Hence add a multiplication gate
with input gd andzd and one with inputgd andzd+1 to compute the products “excludingzd”
and “excludingzd+1”. We added three multiplication gates and 6 wires in the induction, which
proves the Proposition.

From the expression given for∂p
∂xk

in (3.3), one can thus obtain a circuit that computes( ∂p
∂x1

; ∂p
∂x2

; : : : ; ∂p
∂xn

) from F by first replacing each multiplication gateMi , which has aritydi, by
a gadgetGdi taking inputsl i;1; l i;2; : : : ; l i;di . Then add an addition gate for eachk of arity

s

∑
i=1

di

∑
p=1

ci;p;k6=0

1
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that computes∂p
∂xk

according to (3.3). This layer is the mirror image of the layer computing
the linear formsl i; j : there is a wire going from variablexk with constantc iff there is a wire

with constantc going from the output of theith gadget that excludesl i; j to the gate for∂p
∂xk

.
(Seen as linear transformations these layers are each others transpose). We can conclude the
resulting circuit for the partials has twice the number of wires fanning into addition gates, and
by Proposition 3.3.1 has at most 6 times the number of wires fanning into multiplication gates.

When we utilize the above structural results, it turns out that the partial derivatives/affine
restrictions technique factors through, allowing us to refine the [SW99] result for *-complexity:

Theorem 3.3.2 ([SW99])Let f 2 F[x1; : : : ;xn℄. Suppose for integers d;D;κ it holds that for
every affine subspace A of co-dimensionκ, dim(∂d( f )jA)> D. Then

l�3( f )�min(κ2

d
; D(κ+d

d ));
—to our result for +,*-complexity:

Theorem 3.3.3 Let f 2 F [x1; : : : ;xn℄. Suppose for integers d;D;κ it holds that for every affine
subspace A of co-dimensionκ, ∑n

i=1dim[∂d( ∂ f
∂xi

)jA℄> D. Then

l3( f )�min( κ2

d+2
; D(κ+d

d )):
Comparing the two theorems, we see that the result by Shpilkaand Wigderson provides

a lower bound on multiplicative complexity, while our result gives a lower bound on thetotal
number of wires. We do get an extra “factorn” of additions with the∑n

i=1dim[∂d( ∂ f
∂xi

)jA℄ > D
condition compared to just dim(∂d( f )jA) > D. Potentially this can lead to improved lower
bounds on thetotal size of the formula, better than one would be able to infer from the lower
bound onmultiplicativecomplexity of Theorem 3.3.2 alone. We shall see that we can indeed
get such kinds of improvements in the applications section below.

We employ the following suite of concepts and lemmas from [SW99] directly. We include
proofs for completeness in case they are fairly short.

Definition 3.3.1 ([SW99]). For f 2 F [x1; : : : ;xn℄, let ∂d( f ) be the set of alldth orderformal
partial derivatives off w.r.t. variables fromfx1; : : : ;xng.
For a multisetX of d variables, for any polynomial f, denote thed-th derivative off by variables
X by ∂ f

∂X . Then

∂d( f ) = f ∂ f
∂X

: Xis a multiset ofd variables2 fx1;x2; : : : ;xngg:
For a set of polynomialsA= f f1; : : : ; ftg, let span(A) = f∑t

i=1ci fi j ci 2 Fg, i.e. span(A)
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is the linear span ofA. We write dim[A℄ as shorthand for dim[span(A)℄. We have the following
elementary sub-additivity property for the measure dim[∂d( f )℄.
Proposition 3.3.4 ([SW99]) For f1; f2 2 F[x1; : : : ;xn℄ and constants c1;c2 2 F,

dim[∂d(c1 f1+c2 f2)℄� dim[∂d( f1)℄+dim[∂d( f2)℄:
Proof. By the addition rule for (formal) partial derivatives:

∂c1 f1+c2 f2
∂X

= c1
∂ f1
∂X

+c2
∂ f2
∂X

Hence each basis vector in∂d(c1 f1+ c2 f2) is in the span of∂d( f1)[ ∂d( f2). Since for vector
spacesA andB, dim(span(A[B))� dim(A)+dim(B), we get the statement.

One also needs to bound the growth of dim[∂d( f )℄ in case of multiplication. For multipli-
cation of affine linear forms, we have the following two bounds.

Proposition 3.3.5 ([SW99]) Let M= Πm
i=1l i , where each li is affine linear. Then

dim[∂d(M)℄� (m
d ):

Proof. span(∂d(M)) � spanfΠi2Sl i j S� [m℄; jSj= m�dg.
For a productM = Πt

i=1l i of affine linear forms, we defineMh to be the setflh1; : : : ; lht g of
strictly linear parts of its input linear forms.

Proposition 3.3.6 ([SW99]) Let M be a product gate withdim[Mh℄ = m, then for any d,

dim[∂d(M)℄� (m+d
d ):

Proof. Let l1; l2; : : : ; lm a set of input linear forms for whichflh1; : : : ; lhmg are independent. Then
any other input linear formr j of M is a linear combinationr j = a1; j l1+a2; j l2+ : : :+am; j lm.
We have

M = m

∏
i=1

l i � k

∏
j=1

(a1; j l1+a2; j l2+ : : :+am; j lm) = p(l1; l2; : : : ; lm)
for some polynomialp(y1;y2; : : : ;ym). Hence by the chain rule, and the fact that any∂l i

∂x j
is a

constant, we can see that the set of alldth-order derivatives ofM is contained in the linear span
of f� ∂dp

∂d1y1∂d2y2 : : :∂dmym

�jA : for anydi � 0 with d1+d2+ : : :dm = dg;
where “jA” is the substitutiony1 = l1;y2 = l2; : : : ;ym = lm. Since there are

�m+d
d

�
ways of

writing d as a sum ofm non-negative integers, we get the result.
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Note that for polynomialsf1; : : : ; fs, span( f1; : : : ; fs)jA = span( f1jA; : : : ; fsjA), and that
dim[WjA℄� dim[W℄. Now we modify Proposition 3.3.4 a little to get a result implicitly used by
Shpilka and Wigderson in their arguments.

Proposition 3.3.7 (cf. [SW99])For f1; f2 2 F[x1; : : : ;xn℄ and constants c1;c2 2 F, and affine
linear subspace A, we have thatdim[∂d(c1 f1+c2 f2)jA℄� dim[∂d( f1)jA℄+dim[∂d( f2)jA℄:
Proof. By the addition rule for (formal) partial derivative and by the fact that substitution is a
homeomorphism on gets that

∂c1 f1+c2 f2
∂X jA = c1

∂ f1
∂X jA+c2

∂ f2
∂X jA

Hence each basis vector in∂d(c1 f1+ c2 f2)jA is in the span of∂d( f1)jA[ ∂d( f2)jA. Since for
vector spacesA andB, dim(span(A[B))� dim(A)+dim(B), we get the statement.

Finally, we require:

Lemma 3.3.8 ([SW99]) For every n;κ;d, and every affine subspace A of co-dimensionκ, we
have that

dim[∂d(S2d
n )jA℄� (n�κ

d ):
Proof. The polynomialS2d

n is multilinear, so onlydth-order derivatives with respect tod dis-
tinct variablesD = fxi1;xi2; : : : ;xidg will be potentially non-zero. LetX be the set of alln
variablesxi . Observe that

∂S2d
n (X)
∂D

= Sd
n�d(X=D):

From [Got66] as used by [SW99] one has that

span(fSd
n�d(X=D) : for all subsetsD� X of sizedg)

has as basis the set of all multilinear monomials in variables X of degreed. There are
�n�κ

d

�
such monomials that are unchanged under the restrictionjA, which gives the result.

Now we can prove our sideways improvement of Shpilka and Wigderson’s main Theo-
rem 3.1 from [SW99].

Proof of Theorem 3.3.3. Consider a minimum-sizeΣΠΣ-formula for f with multiplication
gatesM1; : : : ;Ms. We have that

f = s

∑
i=1

Mi;
where for 1� i � s,

Mi = Πdi
j=1l i; j

with
l i; j = ci; j ;1x1+ci; j ;2x2+ : : :+ci; j ;nxn+ci; j ;0;
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for certain constantsci; j ;k 2 F . Computing the partial derivative off w.r.t. variablexk we get

∂ f
∂xk

= s

∑
i=1

di

∑
j=1

ci; j ;kMi

l i; j : (3.4)

Let
S= fi : dim[Mh

i ℄� κg:
If jSj � κ

d+2, thenl3( f ) � κ2

d+2. SupposejSj < κ
d+2. If S= /0, then letA be an arbitrary affine

subspace of co-dimensionκ. Otherwise, construct an affine spaceA as follows. SincejSj(d+
2) < κ and since for eachj 2 S, dim[Mh

i ℄ � κ, it is possible to pickd+2 input linear forms
l j ;1; : : : ; l j ;d+2 of each multiplication gateM j with j 2 S, such thatflhj ;1; : : : ; lhj ;d+2j j 2 Sg is a
set ofjSj(d+2)< κ independent homogeneous linear forms. Define

A= fx : l i; j(x) = 0; for any i 2 S; j 2 [d+2℄g:
By Lemma 3.1.1, we have that the co-dimension ofA is at mostκ. W.l.o.g. assume the co-
dimension ofA equalsκ. For eachi 2 S, d+2 linear forms ofMi vanish onA. This implies
that

dim[∂d(Mi

l i; j )jA℄ = 0:
for any i 2 S. For anyi =2 S, by Proposition 3.3.6,

dim[∂d(Mi

l i; j )jA℄< (κ+d
d ):

Let Dk = dim[∂d( ∂ f
∂xk

)jA℄. By Proposition 3.3.7 and equation (3.4),

Dk�∑
i =2S

∑
j

ci; j;k 6=0

dim[∂d(Mi

l i; j )jA℄:
Hence there must be at leastDk(κ+d

d ) terms on the r.h.s., i.e. there are at least that many wires

from xk to gates in the first layer. Hence in total the number of wires to the first layer is at least
∑n

i=1
Di(κ+d

d ) > D(κ+d
d ) .

We can apply a similar idea to adapt the other main Theorem from [SW99]:

Theorem 3.3.9 ([SW99])Let f 2 F[x1; : : : ;xn℄. Suppose for integers d;D;κ it holds that for
every affine subspace A of co-dimensionκ, dim(∂d( fjA))> D. Then for every m� 2:

`�3( f )�min(κm; D(m
d )):
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We get:

Theorem 3.3.10Let f 2 F [x1; : : : ;xn℄. Suppose for integers d;D;κ with d� 1, it holds that for
every affine subspace A of co-dimensionκ, ∑n

i=1dim[∂d( ∂ f
∂xi jA)℄> D. Then for every m� 2,

l3( f )�min(1
2

κm; D(m�1
d )):

Proof. Consider a minimum sizeΣΠΣ-formula for f with multiplication gatesM1; : : : ;Ms. We
have that

f = s

∑
i=1

Mi;
where for 1� i � s,

Mi = Πdi
j=1l i; j ;

with
l i; j = ci; j ;1x1+ci; j ;2x2+ : : :+ci; j ;nxn+ci; j ;0:

If there areκ
2 multiplication gatesMi of degree greater thanm then alreadyl3( f ) > 1

2κm.
So suppose the numbert of multiplication gates of degree greater thanm is less thanκ

2, and
enumerate the gates as

M1;M2; : : : ;Mt

of multiplication gates that have degree greater thanm. For i = 1;2; : : :, pick two input linear
formsl i;1; l i;2 of Mi , such that for the total collectionl1;1; l1;2; : : : ; l i;1; l i;2 we have that the strictly
linear partslh1;1; lh1;2; : : : ; lhi;1; lhi;2 are independent. It might be that at somei � t, we cannot find

any l i;1 or l i;2 with lhi;1 or lhi;2 independent from the previously collected linear forms. Inthis
case, we just pickl i;1 if that one is still independent, and skip to the next indexi. If we can’t
even findl i;1 for which l i;1 is independent, we pick no linear form and proceed to the nexti.

Let A be the zero set of all the collected input linear forms. ThenA has co-dimension at
mostκ, by Lemma 3.1.1. Without loss of generality we may assume that the co-dimension of
A equalsκ. Observe that

∂ f
∂xk jA = s

∑
i=1

di

∑
j=1

ci; j ;k(Mi

l i; j )jA: (3.5)

Now for a multiplication gateMi of degree� m, there are three cases: either we picked two
input linear forms ofMi , or we picked just one, or none at all. In the first case,(Mi

l i; j )jA = 0

in the r.h.s. of (3.5), for alli; j. In the second and third case, we know that for every inputl of
Mi that was not picked,lh is a linear combination oflhi ’s for l i ’s that were picked. Hence

lhjA = r

∑
i=1

ci(lhi jA) = constant:
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As a consequence,(Mi
l i; j )jA = constant in the r.h.s. of (3.5), for alli; j. Sinced� 1, in either three

cases, we obtain that∂d(Mi
l i; j jA) = 0. For multiplication gatesMi of degree at mostm, Proposition

3.3.5 gives us that dim[∂d((Mi
l i; j )jA)℄ � (m�1

d ). Let Dk = dim[∂d( ∂ f
∂xk jA)℄. By Proposition 3.3.4,

we see there are at leastDk=(m�1
d ) terms in (3.5). This implies that there are at least that many

wires fanning out ofxk. Adding up for all variables, we conclude thatl3( f )� D=(m�1
d ).

3.3.1 Some Applications

In [SW99] it was proved that ford � logn, `�3(S2d
n ) = Ω(n

2d
d+2

d ). Note for d = 2, this lower
bound is onlyΩ(n). We can apply Theorem 3.3.3 to prove the following stronger lower bound

on the total formula size ofS2d
n . In particular ford = 2, we get anΩ(n4

3) bound.

Theorem 3.3.11For 1� d� logn, `3(S2d
n ) = Ω(n

2d
d+1

d ).
Proof. For any affine subspace A of co-dimensionκ andd� 2 we have that

n

∑
i=1

dim[∂d�1(∂S2d
n

∂xi
)jA℄� dim[∂d(S2d

n )jA℄� (n�κ
d ):

The latter inequality follows from Lemma 3.3.8. Applying Theorem 3.3.3 we get that

`3(S2d
n )�min( κ2

d+1
; (n�κ

d )(κ+d�1
d�1 )) = min( κ2

d+1
; (n�κ

d )(κ+d
d ) κ+d

d
): (3.6)

Setκ = 1
9n

d
d+1 . Then we have that(n�κ

d )(κ+d
d ) κ+d

d
� (n�κ

κ+d
)d κ+d

d

� ( 8=9n

2=9n
d

d+1

)d κ+d
d

= 4dn
d

d+1
κ+d

d� 4d

9d
n

2d
d+1

� n
2d

d+1 :
Hence (2) is at least min( n

2d
d+1

81(d+1) ;n 2d
d+1) = Ω(n

2d
d+1

d ).
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Corollary 3.3.12 `3(S4
n) = Ω(n4=3).

Another function considered in [SW99] is the product of inner-product function. For two
inner-products, i.e. 4n variables, it is defined by

PIP2
n = ( n

∑
j=1

a jb j)( n

∑
i=1

cidi):
Note the lower bound in [SW99] onPIPd

n for the special cased = 2 is Ω(n). We can prove
a non-linear lower bound for this function as follows. As faras we know this is the first non-
linear lower bound on theΣΠΣ-formula size ofPIP2

n .

Set d = 1;κ = n2=3. Observe that∂PIP2
n

∂aic j
= bid j . Let A be any affine subspace of co-

dimensionκ with basisB. At leastn�κ variables infb1; : : : ;bng are not inB. Symmetrically,
at leastn� κ variables infd1; : : : ;dng are not inB. So for at least(n� κ)2 indices(i; j),
∂PIP2

n
∂aic j jA = ∂PIP2

n
∂aic j

. These are independent terms, hence dim[∂2(PIP2
n)jA℄� (n�κ)2. Observe the

fact that for anyf (x1; : : : ;xn) and any affine subspaceA we have that
n

∑
i=1

dim[∂d( ∂ f
∂xi

)jA℄� dim[∂d+1( f )jA℄:
Applying Theorem 3.3.3 we get thatl3PIP2

n �min(n4=3

3 ; (n�n2=3)2
n2=3+1

) = Ω(n4=3). We have proved:

Theorem 3.3.13`3(PIP2
n) = Ω(n4=3).

More generally, we can apply Theorem 3.3.10 to obtain improved exponent for lower
bounds onPIPd

n . We define over 2d variable sets of sizen (superscript indicate different vari-
ables, each variable has degree one):

PIPd
n = d

∏
i=1

n

∑
j=1

xi
jy

i
j :

Theorem 3.3.14For any constant d> 0, `3(PIPd
n ) = Ω(n 2d

d+1).
Proof. Let f = PIPd

n . Essentially we have that

∂ f

∂xi
j
= yi

jPIPd�1
n ;

where thePIPd�1
n must be chosen on the appropriate variable set. LetA be an arbitrary affine

linear subspace of codimensionκ. Then

d

∑
i=1

n

∑
j=1

dim[∂d�1( ∂ f

∂xi
j

jA)℄ = d

∑
i=1

n

∑
j=1

dim[∂d�1(yi
jPIPd�1

n jA)℄
� (dn�κ)dim[∂d�1(PIPd�1

n jA)℄
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The last inequality follows because at leastdn�κ of they-variables are not assigned to with
the restriction toA. From Lemma 4.9 in [SW99] one gets

dim[∂d�1(PIPd�1
n jA)� nd�1�22d�1κnd�2:

Using Theorem 3.3.10 we get

`3( f )�min(κ2

2
; (dn�κ)(nd�1�22d�1κnd�2)�κ�1

d�1

� )
Takingκ = n

d
d+1 , one gets for constantd that`3(PIPd

n ) = Ω(n 2d
d+1):

For comparison, in [SW99] one gets`�3(PIPd
n ) = Ω(n 2d

d+2).
3.4 Conclusion—Possible Further Tools

We have taken some further steps after [SW99], obtaining an absolutely tight (rather than
asymptotically so)n2 multiplicative size bound for a natural function, and obtaining somewhat
higher bounds on+;�-size for low-degree symmetric and product-of-inner-product polyno-
mials. However, these may if anything enhance the feeling from [SW99] that most of the
concepts being employed may go no further than quadratic forlower bounds. One cannot after
all say that a functionf (x1; : : : ;xn) is nonvanishing on an affine-linear space of co-dimension
more thann. The quest then is for a mathematical invariant that scales beyond linear with the
number of degree-d-or-higher multiplication gates in the formula.

One tool that has so far disappointed comes from various forms of thedegreenotion used
by Strassen [Str73a]. The gradient of the sum-of-nth-powers function, namely the regular
mapping(xn�1

1 ; : : : ;xn�1
n ), hasalgebraic degree da = (n�1)n at each of its points in the range,

and likewise the “mapping ideal”hy1�xn�1
1 ; : : : ;yn�xn�1

n i hasgeometric degree(n�1)n (see
ch. 8 of [BCS97]), which is the highest possible for a degree-(n�1) regular mapping. The
attraction here is that the gradient of a multiplication gate, i.e. of a productz1; : : : ;zm, has
algebraic degree onlym� 1, although its mapping ideal has exponential geometric degree
1+ (m� 2)2m�1. A ΣΠΣ formula with s multiplication gates of degreesdi and total fan-in
N = ∑s

i=1di can be decomposed as a composition of a linear map fromFn to FN, then a vector
of multiplications in variablesz1; : : : ;zN, and then a singular linear transformation back toFn.
A similar decomposition holds for formulas computing the gradient (and higher derivatives) of
the function. If the two linear maps did not affect the algebraic degree of the composition, then
by the product rule for degree one would get the inequality

da� s

∏
i=1

(di�1):
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Upon finding a way to dispense with multiplication gates of degree less thann (or degreeo(n)),
similar to what we did in the proof of Theorem 3.3.3, this inequality would yield quadratic
lower bounds oǹ�3( f ) for a great variety of functionsf . Unfortunately the linear mapsdo af-
fect the algebraic degree, and the inequality is false. In fact, our computer runs have found that
randomΣΠΣ formulas consisting of one *-gate of fan-inn and some small number of binary
multiplication gates already achieve the maximum possiblealgebraic degree. It is possible that
deeper uses of algebraic/geometric degree may yield invariants that scale to exponential size,
but the simple notion’s failure to pass even the quadratic threshold is not promising.

Suspiciously absent in current lower bound techniques forΣΠΣ-formulas are random
restriction type arguments, whereas all the results forBooleanconstant depth circuits of
[Ajt83, FSS81, Yao85, H̊as89] proceed using random restrictions. Note that Raz manages
to use random restritions in conjunction with a partial derivatives based technique in his work
on multilinear arithmetical formulas [Raz04a, Raz04b]. In any event, the search for stronger
mathematical techniques to prove exponential lower boundsin the self-containedΣΠΣ formula
case continues.
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Chapter 4

Orbit of Bilinear Forms

The seminal motivation of this and the next two chapters is toremove a major restriction from
notable recent lower bounds by Raz [Raz02] and Bürgisser-Lotz [BL02]. The work will be
done exclusively over the fieldC of complex numbers. We are interested in borrowing the
following set of concepts from representation theory, see for example [NS82]. Note also the
work by Mulmuley and Sohoni [MS02], who have outlined an approach via geometric invariant
theory to showing P6= NP and other questions, involving some of the same basic concepts.

Definition 4.0.1. Let G be a group andX be a complex linear space6= f0g and denote by
LinC(X) the set of all linear operatorsX! X. A group representation is a mappingT : G!
LinC(X) such that

1. T(e) = idX, whereidX is the identity operator onX, ande is the identity of the groupG.

2. for all g1;g2 2G;T(g1g2) = T(g1)ÆT(g2).
We are interested in the special case whereX is taken to be the vector space

C[x0;x1; : : : ;xn�1℄m of homogeneous polynomials of degreem in variablesx0;x1; : : : ;xn�1

over C, and consideringG to be a group ofn� n invertible matrices under multiplication.
Then for invertible matrixE 2 G, we can define linear transformationT(E) by mapping
f 2 C[x0;x1; : : : ;xn�1℄m according to:

T(E)( f ) = f (E�1x):
In other words, for vector of variablesx = (x0;x1; : : : ;xn�1)T , mappingT(E) is defined by
performing the substitution

xi := (E�1x)i : for eachi = 0;1; : : : ;n�1;
on the polynomialf . This defines a linear transformation onX:(µ f +g)(E�1x) = µ f(E�1x)+g(E�1x);
for any constantµ, any homogeneous polynomialsf andg of same degree and invertible matrix
E. It also is a representation, for the identity matrixI , T(I) is the identity map and for any two

37
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invertible matricesE andD,

T(DE)( f ) = f ((DE)�1x)= f (E�1D�1x)= T(D) f (E�1x)= T(D)ÆT(E) f :
For a homogenous polynomialf and group representation ofG as above the setf f (E�1x) : E 2Gg
is called theG-orbit of f . More generally for multi-output polynomial mappings given by a
tuple of polynomialsF = ( f1; f2; : : : ; fm) we define theG-orbit ofF to be the setf( f1(E�1x); f2(E�1x); : : : ; fm(E�1x)) : E 2Gg:
We are interested in proving sweeping lower bounds on the arithmetical complexity of all poly-
nomials f (E�1x) that appear in theG-orbit of some explicitly defined polynomialf (or more
generally for a multi-output polynomial mappingF ), for certain matrix groupsG. In particular,
we will focus on bilinear multi-output mappings over disjoint variable setsfx0;x1; : : : ;xn�1g
andfy0;y1; : : : ;yn�1g. In that case it is more natural to let two matricesE andD act on the
variables separately. We define:

Definition 4.0.2. Let E and D be n� n non-singular complex matrices, and letx =(x0;x1; : : : ;xn�1)T andy = (y0;y1; : : : ;yn�1)T be vectors of variables. Anorbit circuit is the
compositionΓ(Ex;Dy), whereΓ is a bounded-constants bilinear circuit. The size of the circuit
is taken to be the size ofΓ.

To emphasize, the entries of the matricesE andD above are not restricted to be of norm at most
one. An orbit circuit thus has the potential help of 2n2-many unbounded constants, although
flowing through only 2n-many input gates. In Section 4.3 we also consider having ann�n
matrix at the output gates.

If for a bilinear mappingb(x;y) one proves that any orbit circuit that computes it requires
sizes, this means that for any invertibleE andD, the polynomialb(E�1x;D�1y) must have
regularcircuit size at leasts. Namely, from the ordinary circuit:

Γ(x;y) = b(E�1x;D�1y)
we obtain an orbit circuit of sizesby substitution:

Γ(Ex;Dy) = b(E�1Ex;D�1Dy) = b(x;y)
that computesb. In this sense, any of our results that follow provegenericlower bounds on
entire families of polynomials. Even when we are forced to make further restrictions on the
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groupsE andD are taken from, or even drop the entire group concept, and just consider sets
of matrices, this should be kept in regard. The computational model may seem increasingly
exotic this way, but from the point of view of provinggenericlower bounds no such objection
holds.

First, any bilinear circuitC can be converted to an orbit circuitΓ of the same size with
diagonal matricesE andD. If g is a+ gate withmoutgoing wires with constantsc1; : : : ;cm and
constantsd;e on its incoming wires, then we may takec to be the maximum ofjc1j; : : : ; jcmj,
replace eachci by ci=c (which has norm at most 1), and makecd;ce the new constants on the
incoming wires. Ifg is a� gate, we need only propagatecd;e upward. Iterating this from the
outputs up pushes all unbounded constants up to the wires from the inputs. Repeating this one
more time pushes the unbounded constants onto the inputs themselves as nonnegative reals,
and they can be the entries ofE andD. None of the final constants will be zero unless the
corresponding input was already zeroed out. Thus the orbit model withG= GLn(C), namely
the group of all invertible complex matrices, is no less general than the unbounded-coefficients
case (possibly more so, ifD andE have high circuit complexity by themselves). Actually, the
above shows that takingG to be the group of all invertible diagonal matrices yields a model
equivalent in power as the unbounded-coefficients case. In fact, we could take the matrices at
the input to be constant multiplesλI of the identity matrix, and multiply by the appropriate
constants less than one to correct for this at the cost of addingn unary addition gates.

Note that in Chapter 6 we will establish some orbits model lower bounds relative to diag-
onal matrices for circular convolution.

Things become more interesting withG=SLn(C). If (the function computed by)C ignores
inputsx0 andy0, then we can create diagonal matricesD;E of determinant 1 by taking the first
entry to be 1=Kn�1 and the remaining entries to beK, whereK is the maximum real constant
obtained in the pushing-up process. The tiny entry inD andE gets thrown away while the
large ones feed the bc-circuitΓ left over from the process. If we insist on attention to functions
f that depend on all of their inputs, then lower bound techniques that tolerate two unbounded
“help gates” (not needing then1�ε allowance in [BL02]) still imply lower bounds in the general
case, withx0 andy0 becoming the help gates. If we disallow this but “relax” orbit circuits Γ
by allowing access also to the un-transformed inputsx0 andy0, we can still prove rigorously
thatSLn(C)-orbit bc-circuit lower bounds imply unbounded-coefficient lower bounds, for half-
convolution and functions with a similar recursion:

Theorem 4.0.1 Bilinear circuits C of size s computingHCirc(x)y can be converted into “re-
laxed” SLn-orbit circuits Γ of size s+O(n) computingHCirc(x)y.

Proof. ConvertC to Γ0 by pushing up constants as before, along with the above diagonal
D;E2SLn(R). Now reduceΓ0 by zeroing the constants out ofx0 andy0, splicing out gates their
wires connect to. The resulting circuit computes HCirc(x1; : : : ;xn�2)(y1; : : : ;yn�2). Finally use
the free access to the untransformed inputsx0 andy0 to re-create HCirc(x)y as above, adding
2n-many� gates and 2n�1+ gates at the outputs. On productsx0yi with i > 0, the constantK
onyi from D is counter-acted by a constant 1=K on the wire fromx0, and similarly for products
xiy0. This yields the desired “relaxed” orbit bc-circuitΓ.
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The significance of the orbit model is threefold. Firstly, itis natural and bridges between
the bounded coefficient and general cases. Secondly, it defeats the proof methods of Raz and
Bürgisser-Lotz. Thirdly, the orbit model leads to cutting edge problems in Fourier theory, as
we show.

The proofs in [Raz02, BL02] rely on bounding the volume-expansion factor on allr-
dimensional subspaces ofCn, for some valuer = Θ(n). Matrices of this form can expand
volume in many of these subspaces by the unbounded factorK (or rather byKr), and it seems
not to matter that the first co-ordinate is crushed by 1=Kn�1. We adapt these methods for cases
where we can avoid or contain this problem.

The backbone of our lower bound technique will be the same as in [Raz02, BL02]: to
simplify the bilinear circuit into a linear circuit using the probabilistic method. The idea is to
fix scalar valuesa = (a0;a1; : : : ;an�1) for x = (x0;x1; : : : ;xn�1) such that the “x side” of the
bilinear bc-circuitΓ, which computes linear forms say`1(x); `2(x); : : : ; `k(x), keeps the valuesj`1(a)j; j`2(a)j; : : : ; j`k(a)j “reasonably small” while leaving the complexity of the induced lin-
ear mapA(y0; : : : ;yn�1) “high”. Substituting those values at the�-gates and building them up
additively from bounded constants leaves a bc-linear circuit C computingA of the same order
of size asΓ, henceΓ must obey the size lower bounds known forC.

Recall we defined thecyclic convolution xÆy of two n-vectorsx;y as above is then-vector(z0; : : : ;zn�1) with components
zk = ∑

i+ j�k modn

xiy j ;
for 0� k< n. In terms of circulant matrices:

xÆy= Circ(x)y:
Our main focus in this and the next two chapters will be to establish orbit model lower

bounds for this bilinear form. We conjecture:

Conjecture 1. For any twon�nmatricesE andD with determinant equal to one, any bounded
coefficient bilinear circuitΓ with Γ(Ex;Dy) = xÆy requiresΩ(nlogn) gates.

We also believe the statement of the conjecture holds for arbitrary matricesE andD, but obtain-
ing unbounded constant lower bounds seem hard with known techniques, whereas the above
conjecture seems to lie within our present reach. The conjecture is equivalent to asserting that
any bilinear map in theSLn(C) orbit of xÆy requires bounded coefficient circuit sizeΩ(nlogn).
One must be careful here, for example one cannot prove anSLn(C)-orbit lower bound for the
tri-linear form p(x;y;z) = zTCirc(x)y. Namely there exists a polynomial in theSLn(C)-orbit of
p that has linear size! By Theorem 2.1.4:

zTCirc(x)y= zTFndiag(DFTnx)F�
n y

so if we substitutezT := zTF�
n , y := Fny, x := Fnx, we get the polynomialp

nzTdiag(x)y=pn
n�1

∑
i=0

zixiyi :
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This polynomial can be computes by a circuit of size 3n+O(log
p

n) = O(n), by com-
puting each of then termsxiyizi and add these, and next usingO(log

p
n) repeated additions

to multiply by
p

n. The key point in this example is that we are dealing with a single output
circuit. For example, using the repeated addition trick to multiply n outputs of a circuit by

p
n

would costΘ(nlogn) in size, since you have to repeat for each output individually.

4.1 Definitions and Background

We next introduce some of the required concepts. We will provide proofs for completeness in
case they are short.

4.1.1 Standard Gaussian vectors

A random vectorx 2 C is calledstandard Gaussianif the real and imaginary parts of all
componentsxi comprise 2n independent standard normally distributed random variables. An
important fact is that ifF is any unitary transformation, thenFx is again standard Gaussian
distributed, see e.g. [BL02].

For an r-dimensional linear subspaceU , we say that a random vectora is standard Gaussian
distributed inU if we can writea = β1v1 + : : :+ βrvr , whereβ is standard Gaussian inCr

andfvigi is an orthonormal basis forU . This representation is independent of the choice of
orthonormal basis.

We will use the following two Lemmas from [BL02]. A random variablet is exponentially
distributed with parameter1 if it has density functionp(t) = e�t for t � 0, and p(t) = 0
otherwise.

Lemma 4.1.1 ([BL02]) Let (x1; : : : ;xn)T be standard Gaussian inCn. Let f = ( f1; : : : ; fn)T 2
Cn. Then S:= f1x1+ : : :+ fnxn is normally distributed with mean 0 and variancek fk2. Fur-

thermore, T:= jSj2
2k fk2 is exponentially distributed with parameter 1. Hence T has mean and

variance both equal to 1.

As in [BL02], when we say a vectorz2 Cr is normal distributed with mean 0, we mean
that the real and imaginary parts of each componentzi are normal distributed random variables
with mean 0.

Lemma 4.1.2 ([BL02]) Let z= (z1; : : : ;zr)T be a normal distributed random vector inCr with
mean 0. Define the complex covariance matrixΣ of z to be entry-wise expectation of the outer
product zz�, i.e. Σ = E[zz�℄. Then we have

Pr[jz1j2 � � � jzr j2� δr det(Σ)℄> 1
2
;

for some absolute constantδ > 0. More precisely,δ = 2�(γ+p2φ) with γ = 1p
π
R ∞

0 t� 1
2e�t logtdt;

andφ = 1
2

R ∞
0 e� t

2 log2 tdt: (Hereδ is approximately0:02.)
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4.1.2 Mean Square Volume & Matrix Rigidity

Given anm�n matrix A and setsI � f1; : : : ;mg of row indices andJ� f1; : : : ;ng of column
indices, defineAI ;J to be the matrix of elements with row index inI and column index inJ. We
let AI stand forAI ;f1;:::;ng andAI for Af1;:::;mg;I . Pervasive in this work will be applications of
the Binet-Cauchy theorem, which states:

Theorem 4.1.3 (Binet-Cauchy Theorem)Let A be an m� n matrix and let B be an n�m
matrix with n�m. Then

det(AB) = ∑
I�f1;2;:::;ngjI j=m

det(AI )det(BI ):
It is well known that the volume of the parallelepiped subtended by the rows of a matrix

A2 Cn�n is given byjdet(A)j. Morgenstern [Mor73] proved that logjdet(A)j is an asymptotic
lower bound on the size of a linear arithmetical circuit withbounded coefficients computing
the linear transformation given byA. For further lower bounds it is useful to define variations
of volume for r-subsets of then coordinates. The two versions [BL02, BL03] of the work
by Bürgisser and Lotz refer to two different “r-volume” notions, and it suits our purposes to
include both, giving them different names.

Definition 4.1.1 ([Raz02, BL02]). GivenA2 Cm�n, andr such that 1� r �minm;n, define

volr(A) = maxjI j=r
(det(AI A

�
I ))1=2; (4.1)

vol0r(A) = maxjI j;jJj=r
(jdet(AI ;J)j): (4.2)

The centerpiece definition in [BL02, BL03], however, involves taking the Euclidean norm
rather than the max-norm.

Definition 4.1.2 ([BL02]). Given A 2 Cm�n, andr such that 1� r � minm;n, define ther-
mean square volumemsvr(A) of A by

msvr(A) = ∑
I ;J jdet(AI ;J)j2!1=2 ;

whereI andJ range over allr-subsets off1;2; : : : ;ng.
These definitions are related by:

Lemma 4.1.4 ([BL02, BL03], respectively)For A and r as above,

vol0r(A) � msvr(A)� (m
r )1=2(n

r )1=2vol0r(A); (4.3)

volr(A) � msvr(A)� (m
r )1=2volr(A): (4.4)
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Proof. The inequalities given in (4.3) are immediate. For (4.4) useTheorem 4.1.3.

An important fact is that mean squarer-volume is invariant under unitary transformations.
That is:

Proposition 4.1.5 For m�n matrix A and any unitary matrices U2 Cm�m and V2 Cn�n,

msvr(A) = msvr(UAV):
Proof. By the Theorem 4.1.3:

msv2
r (A) = ∑jI j=r

det(MI ;I );
whereM = AA�. Hence the right-side invariance msvr(AV) = msvr(A), for any unitraryV is
clear:msv2r (AV) = ∑jI j=r det(NI ;I ), for

N = (AV)(AV)� = AVV�A� = AA� = M:
For the left-side invariance, it is clear from the definitionthat for any matrixB,

msvr(B) = msvr(B�):
Hence the left-side invariance follows from the right-sideinvariance by observing that

msvr(UA) = msvr((UA)�) = msvr(A�U�) = msvr(A�) = msvr(A):
So one can express msvr(A) in terms of thesingular value decompositionof A as folows.

We first define:

Definition 4.1.3. The ith singular valueσi(A) is defined to be

σi(A) = λi(AA�)1=2;
whereλi(AA�) is theith largest eigenvalue ofAA�.

The singular values of a matrix are non-negative real numbers. Recall the following theo-
rem (See e.g. [Bha97]):

Theorem 4.1.6 (Singular Value Decomposition)For any m�n matrix A, there exist unitary
matrices U2 Cm�m and V2 Cn�n, such that

UAV = diag(σ1;σ2; : : : ;σn);
whereσ1� σ2� : : :� σn� 0 are the singular values of A.
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Hence by the unitrary invariance of mean-square-volume we have that

msv2
r (A) = msv2

r (UAV)= msv2
r (diag(σ1;σ2; : : : ;σn)= ∑jI j=r
∏
i2I

σ2
i

= Sr
n(σ2

1;σ2
2; : : : ;σ2

n);
whereSr

n is the elementary symmetric polynomial ofn variables of degreer .
There is also the following characterization of the singular values of a matrix (See

[Bha97]):

Theorem 4.1.7 (Courant-Fisher minmax Theorem)Let A be an m�n, matrix then for any
i = 1;2; : : : ;n,

σi(A) = max
S�Cn

dim(S)=i

min
x2S=f0g jjAxjj2jjxjj2 ;

where S ranges over all linear subspaces of dimension i.

From this it is immediately clear that for any matrixA, σ1(A) = jjAjj2. Also one has thatjjAjj2F = σ2
1(A)+σ2

2(A)+ � � �+σ2
n(A).

As we have remarked above, msvr is not preserved under transformations inSLn(R) (un-
lessr = n). The following theorem states the use of the mean square volume measure for
proving lower bounds.

Theorem 4.1.8 ([BL02]) For A 2 Cm�n, and 1 � r � min(m;n), we have that a linear
bounded-constant circuit computing A has size at leastlogmsvr(A)� 1

2 log(m
r )(n

r ).
Next we introduce Raz’s notion of geometric rigidity.

Definition 4.1.4 ([Raz02]). Let A2 Cn�n be a matrix with with row vectorsai , Ther-rigidity
of A is defined to be

rigr(A) = min
dimV=r

max
1�i�n

dist(ai ;V);
whereV ranges over all linear subspaces ofCm, and dist(a;V) = minv2V ka�vk2.

This notion relates to ther-volume measures defined above in the following sense:

Lemma 4.1.9 ([Raz02])For any r, volr(A)� rigr(A)r .

If one considers an arbitrary topological sorting of the gates of a bounded coefficient linear
circuit f1; f2; : : : ; fs,then we can think of thefi ’s defining ans�n matrixA. One can argue that
each gatefi can at most double ther-volume:

volr( f1; f2; : : : ; fi)� 2 �volr( f1; f2; : : : ; fi�1);
which implies volr(A)� 2s(Γ), for any bounded-coefficient linear circuitΓ computingA. Com-
bined with the above Lemma this then gives:
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Theorem 4.1.10 ([Raz02])For A2Cm�n, and1� r �m, every linear bounded-constant cir-
cuit computing A has size at least rlogrigr(A).
We will use the following Lemma from [BL02]. Here forf ;a2 Cn, we think of f as a linear
form via f (a) = f �a.

Lemma 4.1.11 ([BL02]) Let f1; : : : ; fk be linear forms and1 � r < n. Then there exists a
linear subspace U ofCn of dimension r such that for a2U standard Gaussian, we have that

Pr[max
i
j fi(a)j � 2(pln4k)rign�r( f T

1 ; : : : ; f T
k )℄� 1

2
:

4.2 Well-Conditioned Orbit Circuits

In this section, we will consider orbit circuitsΓ(Ex;Dy) for which matricesE andD arewell-
conditionedin the following traditional sense.

Definition 4.2.1. The condition numberκ(E) of a non-singular matrixE is defined to be

the ratio σ1(E)
σn(E) of its largest and smallest singular value. This is the same as the productjjEjj2 � jjE�1jj2 (see [GvL96]). We will fix some absolute constantκ1, and stipulate that a

well-conditionedmatrix E hasκ(E)� κ1.

Let us remark that well-conditioned matrices donot form a group. Unitary matrices have
condition number 1, and do form a group. That the results of[BL02; BL03℄ carry over to orbits
under unitary matrices follows immediately on the “x side” because the image of a standard-
Gaussian vector under unitary transformation is standard Gaussian, and on the “y side” because
unitary transformations preserve msvr . For bounded condition number, the “y side” needs only
the following easy proposition:

Proposition 4.2.1 For any two n�n matrices A and B where B has determinant equal 1, for
any1� r � n, msv2

r (AB)� κ(B)�2rmsv2
r (A).

Proof. Applying Theorem 4.1.6, letB=UDV be the singular value decomposition ofB. Then
msv2

r (AB) = msv2
r (AUDV) = msv2

r (AUD). So the general case reduces to the case whereB
is diagonal with real entries. So assumeB= diag(b1; : : : ;bn). Observe that eachbi � κ(B)�1.
Hence

msv2
r (AB) = ΣI ;Jjdet(AB)I ;Jj2= ΣI ;J ∏

j2J
jb j j2jdetAI ;Jj2

� κ(B)�2rΣI ;JjdetAI ;Jj2= κ(B)�2rmsv2
r (A):
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However, the “x side” needs more care that the deviation from standard Gaussian distribu-
tion incurred in going fromx to Exdoes not disturb the statistical machinery by too much. The
crux of the matter lies in the following generalization of a Lemma in [BL02].

Lemma 4.2.2 Let 1� r < n, and let E and D be an n�n complex matrices with determinant
1 that are well-conditioned. Let U be a linear subspace of dimension r, and let a be standard
Gaussian in U. Then

Pr[sbc
lin(Circ(Ea)D)� 1

2
r logn�cn℄> 1

2
;

where c is some absolute constant.

Proof. By Theorem 2.1.4, we can write

Circ(Ea) = Fndiag(λ0; : : : ;λn�1)F�1
n ;

where (λ0; : : : ;λn�1)T = DFTnEa:
Let α = λp

n. By invariance of mean-square-volume under unitary transformation, we get that

msv2
r (Circ(Ea)) = msv2

r (diag(λ0; : : : ;λn�1))= ∑
J

∏
j2J
jλ j j2

= nr ∑
J

∏
j2J
jα j j2;

whereJ ranges over all subsets off1; : : : ;ng of sizer . By definition of standard Gaussian, we
can writea=Vβ, whereV is ann� r matrix with orthonormal column vectorsv1; : : : ;vr andβ
standard Gaussian inCr . LetW = FnEV. Thenα = FnEa= FnEVβ =Wβ.

For a subsetJ of f1; : : : ;ng of size r , let WJ be the sub-matrix ofW consisting of rows
indexed byJ, and letαJ = (α j)T

j2J. Observe thatαJ = WJβ. The covariance matrix ofαJ is
given by

Σ = E[αJα�
J℄= E[WJββ�W�

J ℄= WJE[ββ�℄W�
J= WJW

�
J :

The last line follows becauseβ is standard Gaussian distributed. We get that det(Σ) =jdet(WJ)j2. Applying Theorem 4.1.3 yields that

∑
J
jdetWJj2 = det(W�W) = det(V�E�EV):
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We claim now that det(V�E�EV) � κ�2r n�1
n

1 , whereκ1 > 0 is a global constant. To prove
the claim, observe that in terms of singular valuesσi(EV) we have

det(V�E�EV) = r

∏
i=1

σi(EV)2:
By Theorem 4.1.7:

σr(EV) = minjjxjj2=1
jjEVxjj2:

SinceV has orthonormal columns, forx with jjxjj2 = 1, jjVxjj2 = 1. So for anyx,jjEVxjj2� minjjzjj2=1
jjEzjj2 = σn(E):

For the matrixE we have

1= det(E�E) = n

∏
i=1

σi(E)2;
and by well-conditioning thatσ1(E)

σn(E) � κ1, whereκ1 is an absolute constant. Hence we conclude
that

σr(EV)� σn(E)� κ� n�1
n

1 ;
and hence that

det(V�E�EV)� κ�2r n�1
n

1 ;
thus proving the claim.

Hence we conclude that there exists a setJ such thatjdet(WJ)j2� κ�2r n�1
n

1 (n
r )�1:

Applying Lemma 4.1.2 to the vectorαJ, we get that with probability greater than1
2 that

∏
i2J
jαij2� δr det(Σ)� δrκ�2r n�1

n
1 (n

r )�1;
whereδ is an absolute constant. Hence

msv2
r (Circ(Ea))� nrδrκ�2r n�1

n
1 (n

r )�1� nrδrκ�2r
1 2�n:

Hence by Proposition 4.2.1,

msv2
r (Circ(Ea)D)� nrδrκ�4r

1 2�n:
Hence applying Theorem 4.1.8 we get:

sbc
lin(Circ(Ea)D) � logmsvr(Circ(Ea)D)� log

�
n
r

�
� r

2
logn�cn;
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wherec is an absolute constant.

Combining the above lemma with Lemma 4.1.11 in the same manner as in [BL02] yields
the main theorem of this section.

Theorem 4.2.3 Any orbit circuitΓ(Ex;Dy), where E and D have determinant equal to 1 and
are well-conditioned, computing cyclic convolution xÆy must haveΩ(nlogn) gates.

Proof. Let Γ(Ex;Dy) be an orbit circuit computingxÆ y. Fix r = 1
2n. Canceling the ma-

trices E and D, we get thatΓ(x;y) computes Circ(E�1x)D�1y. Let f1; : : : ; fk be the lin-
ear forms computed by the circuit inΓ(x;y). in the variablesx1; : : : ;xn. To be precise, if a
gate computesc1x1+ : : :+ cnxn, then it corresponding linear form as a vector is(c1; : : : ;cn)T .
Let R = rign�r( f T

1 ; : : : ; f T
k ). Observe thatE�1 and D�1 have determinant 1 and are well-

conditioned as well. By Lemmas 4.2.2 and 4.1.11, there exists ana2 Cn such that:

1. sbc
lin(Circ(E�1a)D�1)� 1

2r logn�cn, for absolute constantc, and

2. maxi j fi(a)j � 2
p

ln4kR.

Let α=maxi j fi(a)j. ThenΓ(a;y) computes the linear mapping Circ(E�1a)D�1. As in [BL02],
we can make this circuit into a bounded-constant linear circuit by:

1. replacing each multiplication withfi(a) with a multiplication by 2α�1 fi(a), and

2. multiplying each output withα2 using at most log(α
2) additions and one scalar multipli-

cation of absolute value at most 2.

Letting S(Γ) denote the size ofΓ, we thus obtain a bounded-constant linear circuit that has
at mostS(Γ) + nlogα � S(Γ) + nlog(2pln4kR) gates computing Circ(E�1a)D�1. We can
assumek� n2, and by the rigidity bound of Theorem 4.1.10:

S(Γ)� sbc
lin( f T

1 ; : : : ; f T
k )� (n� r) logR�n: (4.5)

So we obtain the inequality

S(Γ)+nlog(2p4n2R)� n
4

logn�cn;
which together with (4.5) yieldsS(Γ) = Ω(nlogn).

To summarize, the main idea in the above proof is that the two lemmas show the existence
of a valuea to fix for x, so that simultaneously the values of the linear forms`1(a); : : : ; `k(a) are
manageably small and the bc-complexity of the resulting linear map iny is high. The values`1(a); : : : ; `k(a) are small enough that the linear circuit obtained from the original bilinear bc-
circuit Γ by plugging them in and deleting the “x side” can be converted into a linear bc-circuit
adding not too many gates, leading to the conclusion thatΓ itself must have been large.
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4.3 Orbit circuits with exactly n multiplication gates

In previous sections we explained why it is still difficult toprove super-linear lower bounds on
SLn(C)-orbits of natural functions, but we obtained such lower bounds when the matrices have
bounded condition number. Now we show that if we restrictΓ to have onlyn multiplication
gates, then a tightΩ(nlogn) lower-bound on the complexity of cyclic convolution applies, for
arbitrary matrices inSLn(C) acting not only at the inputs but also at the outputs. Let� denote
the entry-wise product of vectors, i.e.(a�b)i = aibi, for eachi.

Theorem 4.3.1 For any0< ε < 1
2, for all but finitely many n, for any n�n matrices C;D;E

such that
E(Cx�Dy) = Circ(x)y;

one of the following conditions must hold:

1. jdet(C)j or jdet(D)j is at least nn( 1�2ε
4 ), or

2. jdet(E)j is at least nεn.

We note that such a circuit exists, via Theorem 2.1.4. The proof works by showing that up to
movable factors this representation is essentially unique.

Proof. Given that the range ofCirc(x)y equalsCn, we note that the matrixE must be non-
singular. For 0� k� n�1, define ann�n matrixVk by(Vk)i j = (CT

i Di)k j;
for 0� i; j � n�1, whereCi andDi denote theith row ofC andD, respectively. Now we note
some elementary lemmas:

Lemma 4.3.2 For 0� k; j � n�1, (EVk) j = ek+ j mod n, where ei denotes the ith standard

basis vector, and(EVk) j denotes the jth column of EVk.

Proof. (EVk) j = E(Vk
j ), where

Vk
j = �(CT

0 D0)k j; : : : ;(CT
n�1Dn�1)k j

�T :
For eachi, (CT

i Di)k j is the coefficient of the termxky j computed at multiplication gatei,
since there we compute polynomial(Cix)(Diy). HenceE(Vk

j ) equals then-vector of coeffi-
cients(r1; : : : ; rn), wherer i equals the coefficient ofxky j in (Circ(x)y)i , which in turn equals
ek+ j modn.

Lemma 4.3.3 For 0� k� n�1,

Vk = E�1lshift(I ;k mod n);
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where lshift(I ; i) is the matrix obtained by wrap-around shifting the columns of I by i steps to
the left.

Proof. Using Lemma 4.3.2, we get that

EVk = ek modn;ek+1 modn; : : : ;ek+n�1 modn = lshift(I ;k modn)
SinceE must be invertible, we get the Lemma.

Lemma 4.3.4 For 0� k� n�1, Vk = lshift(Vk�1 modn;1).
Proof. Using the fact thatlshift(AB; i) = A � lshift(B; i) and Lemma 4.3.3 we get that

lshift(Vk�1 modn;1) = lshift(E�1lshift(I ;k�1 modn);1)= E�1lshift(lshift(I ;k�1 modn);1)= E�1lshift(I ;k modn)= Vk:
Lemma 4.3.5 For 0� i � n�1, the matrix CT

i Di is a circulant matrix with(CT
i Di)st = (CT

i Di)s�1 modn;t+1 modn;
for all 0� s; t � n�1.

Proof. Consider arbitrary 0� s; t � n�1. Then using Lemma 4.3.4 we get:(CT
i Di)st = Vs

it= Vs�1 modn
i;t+1 modn= (CT

i Di)s�1 modn;t+1 modn:
Proposition 4.3.6 All entries of C and D must be nonzero.

Proof. Suppose on rowi of C there is a zero entry. ThenCT
i Di has one of its rows all zero.

By Lemma 4.3.5 this implies thatCT
i Di has all entries zero. This means the output of theith

multiplication gate is always zero. Hence the output of the circuit is strictly contained inCn,
which is a contradiction. For example, forx = e1, Circ(x)y= Iy. By symmetry, we conclude
that alsoD must have all entries nonzero.
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Lemma 4.3.7 For 0� i � n�1, there exists an nth root of unity f such that for0� j � n�1,

Ci j = fCi; j+1 modn; and

Di j = f Di; j+1 modn:
Proof. Observe that if somef satisfies the above, thenf n = 1. Fix 0� i � n�1. Let us use
the short=handc j andd j for the entriesCi j andDi j , respectively, and we drop the modn in
the subscript, assuming all indexing is done modn. By Lemma 4.3.5 for anys andt, and any
numberl , csdt = cs�l dt+l . Fix t = 0 andl =�1. Since all entries ofC andD are non-zero, we
get for anys that

cs

cs+1
= dn�1

d0
:

Let f = dn�1
d0

. For 0� j � n�1,

f c j+1 = c j

c j+1
c j+1 = c j :

Similarly we get for any 0� j � n�1, that

d j�1

d j
= c0

cn�1
;

which implies the statement for theDi j ’s of the Lemma, and note the multiplierf is indeed the
same forC andD.

The above Lemma tells us that for each rowi there is a root of unityf and nonzeroai

andbi so thatCi = (ai ; f ai ; : : : ; f n�1ai), andDi = (bi ; f bi ; : : : ; f n�1bi). It is not to difficult to
see that these multiplier must be distinct for different rows. Namely, if fori 6= j, rows i and
j use the same multiplier, thenCi = λCj andDi = ξD j , for certain scalarsλ andξ. But then(Cix)(Diy) = λξ(Cix)(Diy). In other words theith and jth multiplication gate are restricted to
be some fixed scalar multiple of each other. Hence the input toE is of dimension less thann,
hence the output of the circuit has dimension< n, which is a contradiction.

So the full setfω0;ω; : : : ;ωn�1g with w = e2πi=n is used. Without loss of generality we
assumewi is used for rowi. Hence we get

C= diag(a0; : : : ;an�1)DFTn

D = diag(b0; : : : ;bn�1)DFTn: (4.6)

From (4.6), and the fact thatfrT
i r i : 0� i � n�1g is a linearly independent set withr i equal

the ith row ofDFTn, we obtain:

Proposition 4.3.8 The set of polynomialsf(Cx�Dy)i : 0� i � n�1g is linearly independent.
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The above proposition tells us that there is exactly one matrix E such thatE(Cx�Dy) =
Circ(x)y. It can be verified that the matrix

E = 1
n

DFT�
ndiag( 1

a0b0
; : : : ; 1

an�1bn�1
):

works, via Theorem 2.1.4.
We now complete the proof of this section’s main theorem. Let∆ =

diag(a0b0; : : : ;an�1bn�1), dC = jdet(diag(a0; : : : ;an�1))j, anddD = jdet(diag(b0; : : : ;bn�1))j.
Thenjdet(∆)j= dCdD. Fix 0< ε < 1=2. If dC � n�n(ε=2+1=4), thenjdet(C)j= dCjdet(DFTn)j= dCnn=2� nn(1=4�ε=2):
Similarly if dD � n�n(ε=2+1=4), thenjdet(D)j is at leastnn(1=4�ε=2). Otherwisejdet(∆)j is at
mostn�n(ε+1=2). This implies thatjdet(E)j is at leastnεn.

As a corollary to the above theorem we get the following:

Corollary 4.3.9 For any n� n matrices E, D and F with determinant equal to 1, any orbit
circuit FΓ(Ex;Dy) with exactly n multiplication gates computingCirc(x)y must have size at
leastΩ(nlogn).
Proof. Let Mx andMy be the linear maps computed at the input in thex andy variables, re-
spectively, and letMo be the linear map of the circuit at mapping the values from multiplication
gates to output. These are all maps fromCn to Cn. By Theorem 4.3.1 one of the three linear
mappings, call itM, of the output circuit must have determinant of absolute value at leastnn=6.
The mapM can be written as a product of a determinant-1 matrix that does not count towards
the circuit size, and another matrixN that is computed by gates. Hence using Theorem 2.1.1,
the number of gates to computeN is at least lognn=6 = Ω(nlogn).

The above corollary implies a lower bound on bounded-coefficient complexity (when re-
stricted ton multiplication gates) of the entire bilinearSLn(C)-orbit of the mapping Circ(x)y.
Namely we have:

Corollary 4.3.10 For any two n� n matrices E and D in SLn(C), the size of a bounded-
coefficient circuit with n multiplication gates computingCirc(Ex)Dy must beΩ(nlogn).
4.4 Orbits of ΣΠΣ- Formulae

In this section we extend our lower bounds from chapter 3 toΣΠΣ formulas with arbitrary
linear transformations at the inputs. These linear transformations might themselves requiren2

formula size. More precisely, we consider orbit circuits ofthe formC(Ex), whereE 2GLn(C)
andC is aΣΠΣ-formula. To emphasize, constants on wires are unrestricted. Let `o

3( f ) denote
the smallest number of wires for aΣΠΣ-formulaC for which there exists invertible matrixE
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such thatC(Ex) = f . RegularΣΠΣ-formula size, that is fixingE to be the identity map in the
above, is denoted bỳ3( f ).

We refer to [SW99] for definitions and basic results used in the following. In addition, let
us note that for polynomialf and affine subspaceA of codimensionκ, we can representfjA by
a substitutionf (Bx+b) for some matrixB of rankn�κ and vectorb. For a set of polynomials
T, dim[ft(Bx+b) : t 2 Tg℄ is the same for allB of equal rank and fixed vectorb.

Lemma 4.4.1 Let g2 C[y1; : : : ;yn℄ and let E2 GLn(C). Suppose f = g(Ex). If it holds that
for every affine subspace A of codimensionκ, dim(∂d( f )jA) > D, then also for every affine
subspace B of codimensionκ, dim(∂d(g)jB)> D.

Proof. Suppose there exists affine subspaceB of codimensionκ such that dim[∂d(g)jB)℄� D.
Let S= ∂d(g), S(Ex)= fs(Ex) : s2Sg andT = ∂d( f ). Observe thatT � span(S(Ex)). Suppose
restriction toB is represented by substitution(Bx+b). E�1B is also affine of codimensionκ,
and by the remark before this lemma,

dim[∂d( f )jE�1B℄ = dim[fp(E�1Bx+E�1b) : p2 Tg℄
Sincefp(E�1Bx+E�1b) : p2 Tg is contained in the span ofS(Bx+b), we obtain a contra-
diction.

Theorem 4.4.2 Let f 2 C[x1; : : : ;xn℄. Suppose for integers d;D;κ it holds that for every affine
subspace A of codimensionκ, dim(∂d+1( f )jA)> D. Then

`o
3( f )�min( κ2

d+2
; D(κ+d

d )):
Proof. Supposef =C(Ex), whereC is aΣΠΣ formula with l3( f ) many wires andE is some
invertible matrix. Write Letg= C(y). Observe that by Lemma 4.4.1 we have to any affineA
of codimensionκ,

n

∑
i=1

dim[∂d( ∂g
∂yi

)jA℄� dim[∂d+1(g)jA℄> D: (4.7)

Let M1; : : : ;Ms be the multiplication gates ofC. We have thatg= ∑s
i=1Mi , where for 1� i � s,

Mi = Πdi
j=1l i; j with deg(l i; j) = 1 anddi = indeg(Mi). Write l i; j = ci; j ;1y1 + ci; j ;2y2 + : : :+

ci; j ;nyn+ci; j ;0. Computing the partial derivative ofg w.r.t. variableyk we get:

∂g
∂yk

= s

∑
i=1

di

∑
j=1

ci; j ;kMi

l i; j : (4.8)

Let S= fijdim(Mh
i ) � κg. If jSj � κ

d+2, thenl3( f ) � κ2

d+2. SupposejSj < κ
d+2. If S= /0, then

let A be an arbitrary affine subspace of codimensionκ. Otherwise, we haved+2 < κ. It is
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possible to pickd+ 2 input linear formsl j ;1; : : : ; l j ;d+2 of each multiplication gateM j with
j 2 S, such thatflhj ;1; : : : ; lhj ;d+2j j 2 Sg is a set of at mostκ independent homogeneous linear
forms. DefineA = fyjl i; j(y) = 0; i 2 S; j 2 [d+2℄g. We havecodim(A) � κ. Wlog. assume
codim(A) = κ. For eachi 2 S, d+2 linear forms ofMi vanish onA. This implies that

dim(∂d(Mi

l i; j )jA) = 0:
For i =2 S, by Proposition 2.3 in [SW99],

dim(∂d(Mi

l i; j )jA)< (κ+d
d ):

Let Dk = dim(∂d( ∂g
∂yk

)jA). By equation (4.7),∑n
k=1Dk > D. By Proposition 2.2 of [SW99] and

equation (4.8),

Dk � ∑
i; j

ci; j;k 6=0

dim(∂d(Mi

l i; j )jA):
Hence there must be at leastDk(κ+d

d ) terms on the RHS, i.e. there are at least that many wires

from yk to gates in the next layer. Hence in total the number of wires to fanning out from the
inputs ofC is at least∑n

i=1
Di(κ+d

d ) > D(κ+d
d ) .

We compare the above with Theorem 3.3.3 and Shpilka and Wigderson’s Theorem 3.3.2.
Let us define

ρd;k( f ) = min
codim(A)=k

dim[∂d( f )jA℄
Lemma 4.4.1 implies that forf in theGLn(C)-orbit of g, i.e. f = g(Ex), for some non-singular
matrix E, thatρd;k( f ) = ρd;k(g). However, it does not hold in general is that

min
codim(A)=k

 
n

∑
i=1

dim[∂d( ∂ f
∂xi

)jA℄!= min
codim(A)=k

 
n

∑
i=1

dim[∂d( ∂g
∂xi

)jA℄! :
This is the reason that we lose the “potential extra factor ofn” arising from the summation
in theorem 3.3.3. Theorem 4.4.2 comes very close in its statement to Theorem 3.3.2. The
only essential difference is the condition dim[∂d( f )jA℄ versus dim[∂d+1( f )jA℄. We will give an
example in the applications that shows how this enables in certain cases for our Theorem 4.4.2
to outperform Theorem 3.3.2.

4.4.1 Lower Bounds

Theorem 4.4.3 For 1� d� logn, `o
3(S2d

n ) = Ω(n
2d

d+1

d ).
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Proof. By Lemma 4.14 in [SW99] we have that for any affine subspace A ofcodimensionκ
andd� 0,

dim(∂d+1(S2d+2
n )jA)� (n�κ

d+1):
Applying Theorem 4.4.2 we get that

lo3(S2d+2
n ) � min( κ2

d+2
; (n�κ

d+1)(κ+d
d ))

= min( κ2

d+2
; (n�κ

d )(κ+d
d ) n�κ�d�1

d+1
)

� min( κ2

d+2
; (n�κ

d )(κ+d
d ) n�2κ

d+1
)) (4.9)

subject to the condition(d+1)< κ. Setκ = 1
9n

d+1
d+2 . Then we have that(n�κ

d )(κ+d
d ) n�2κ

d+1
� (n�κ

κ+d
)d n�2κ

d+1

� ( 8=9n

2=9n
d+1
d+2

)d n�2κ
d+1

= 4dn
d

d+2
n�2κ
d+1

� n
2d+2
d+2

d+1
:

Hence (4.9) is at least min( n
2d+2
d+2

81(d+2) ; n
2d+2
d+2

d+1 ) = Ω(n
2d+2
d+2

d+2 ).
Recall the product-of-inner-product polynomial:

PIP2
n = ( n

∑
j=1

a jb j)( n

∑
i=1

cidi):
We prove:

Theorem 4.4.4 `o
3(PIP2

n) = Ω(n4=3).
Proof. Setd = 1;κ = n2=3. Observe that∂PIP2

n
∂aic j

= bid j . Let A be any affine subspace of codi-

mensionκ with basisB. At leastn�κ variables infb1; : : : ;bng are not inB. Symmetrically,
at leastn� κ variables infd1; : : : ;dng are not inB. So for at least(n� κ)2 indices(i; j),
∂PIP2

n
∂aic j jA = ∂PIP2

n
∂aic j

. These are independent terms, hence dim(∂2(PIP2
n)jA) � (n�κ)2. Applying

Theorem 4.4.2 we get that`o
3(PIP2

n)�min(n4=3

3 ; (n�n2=3)2
n2=3+1

) = Ω(n4=3).
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The above is an example, where the different conditions of dim[∂d( f )jA℄ > D versus
dim[∂d+1( f )jA℄ > D in the statements of Theorems 3.3.2 and 3.3.3 matter. Recallour pre-
vious remark that [SW99] yields only a trivialΩ(n) lower bound for this polynomial. More
generally, we have the product ofd inner products:

PIPd
n = d

∏
i=1

( n

∑
j=1

ai
jb

i
j);

for variablesai
j ;bi

j with i; j 2 f1; : : : ;ng.
Theorem 4.4.5 For constant d� 2, `o

3(PIPd
n ) = Ω(n 2d

d+1).
Compare with`�3(PIPd

n ) = Ω(n 2d
d+2) in [SW99], which for the special cased = 2 even

becomes trivial.

Theorem 4.4.6 `3(zTCirc(x)y) = Ω(n4
3).

Proof. Let f = zTCirc(x)y. Aply Theorem 3.3.3 ford = 1. Since∂1( ∂ f
∂zi

) contains all variables

x1; : : : ;xn, we conclude dim[∂1( ∂ f
∂zi

)jA℄ is at leastn�κ for any affineA of codimensionκ. Hence

l3( f )�min(κ2=3; n(n�κ)
κ+1 ). Takingκ = n2=3 yields`3( f ) = Ω(n4=3).

Note thatzTCirc(x)y can be computed inO(nlogn) size using a bounded constantΣΠΣΠΣ
circuit, and also note that theorem 3.1 and 3.2 of [SW99] are rendered useless for this poly-
nomial, because the dimension of the set of first partials andalso the dimension of the set of
second partials is justO(n).

We cannot prove a non-linear lower bound onlo3(zTCirc(x)y), because there exist a polyno-
mial in the orbit ofzTCirc(x)y that hasO(n) ΣΠΣ-formula size! Namely, separately in each set
of variables, applyDFT�1

n to x, Fn to y andF�1
n to z. By theorem 2.1.4 Circ(x) =Fndiag(λ)F�1

n
for λ = DFTnx. Hence we getzTF�1

n Circ(DFT�1
n x)Fny= zTdiag(x)yT .

The above is an example of a polynomial where the extra factorof n obtained by the
summation in Theorem 3.3.3 matters: dim[∂2( f )jA℄ = O(n), but∑i dim[∂1( ∂ f

∂zi
)℄� n(n�κ), for

any affineA of codimensionκ. This polynomial also provides us with a counter-example tothe
claim that for anyf = g(Ex),

min
codim(A)=k

 
n

∑
i=1

dim[∂d( ∂ f
∂xi

)jA℄!= min
codim(A)=k

 
n

∑
i=1

dim[∂d( ∂g
∂xi

)jA℄! :
If this were true, we could prove equally strong lower boundsfor the ΣΠΣ-orbit model as
obtainable with Theorem 3.3.3 for regularΣΠΣ-formulas. However, this does not hold, and we
had to weaken Theorem 3.3.3 somewhat, resulting in its analogy Theorem 4.4.2.

As a last application, we define
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Definition 4.4.1. Ford� 1, define the linear-sum of the product ofd n�n matricesX1; : : : ;Xd

to be the polynomial
LMMd = ∑n

i=1∑n
j=1ai j (X1 �X2 : : : �Xd)i j

We prove the following lower bound:

Theorem 4.4.7 For constant d� 1, `o
3(LMM2d+1) = Ω(n4� 4

d+2).
Proof. Rewrite

LMM2d+1 = ∑
i0;:::;i2d+12f1;:::;ngai0;i2d+1x

1
i0;i1x2

i1;i2 : : :x2d+1
i2d;i2d+1

:
Consider fixed indicesi0; : : : ; i2d+1. Taking(d+1)-order partial with respect to the variables
x1

i0;i1;x3
i2;i3; : : : ;x2d+1

i2d;i2d+1
of LMM2d+1 yields the monomial

ai0;i2d+1x
2
i1;i2x4

i3;i4 : : :x2d
i2d�1;i2d

:
Consider an arbitrary affine subspaceA of codimensionκ. Since in each matrix there are at
leastn2�κ unassigned variables when doing the substitution corresponding to restriction toA,
we conclude that there are at least(n2�κ)d+1 choices for the indices, which produce a partial
derivative that is not altered by restricting toA. Since each choice yields a different partial we

conclude dim[∂d+1(LMM2d+1)jA℄ � (n2�κ)d+1). Takingκ = n
2d+2
d+2 in Theorem 4.4.2 yields

the theorem.

4.5 Remarks

As a stepping stone towards proving lower bounds for unbounded constant circuits, we defined
a computational model that allows for more unbounded constants than previously considered
in the literature (e.g. see [BL02]), but that does this in some moderated sense. The model also
serves the dual purpose of investigating the computationalcomplexity of all that is present in
theG-orbit of a given bilinear map, for various matrix groupsGunder consideration. Given that
takingG= GLn(C) results in a model that is at least as powerful as the unbounded constants
case, the next natural thing we attempted was to lift the random substitutation technique of
[BL02, Raz02] to theSLn(C)-orbit model.

This turned out to be hard because of two conflicting issues. Namely, there is the apparent
requirement in the random substitution technique to selectthe random input from asubspace
U of some dimensionεn with ε < 1, which seems to be about the only way to make the outputs
of the linear forms on which substitution is performed “reasonably” bounded. Provided that
is true, they can be replaced by “few enough” repeated additions, and this way a reduction
to the (well understood) linear case is achieved. Unifying this modus operandi of the restric-
tion technique with the wild zoo of ill-conditioned matrices present inSLn(C) is problematic.
Geometrically speaking onlyn-dimensional volumes retain the same volume under such trans-
formation, but any lower dimensional volumes can be arbitrarily stretched or squashed. In any
configuration of the argument we considered this becomes an issue. Either the msvr -volume of
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the larget linear form one reduces to is negatively impacted, or, attempting to salvage this, the
outputs of linear forms on which one performs substitution are ill-behaved, or vice-versa.

We did manage to show that techniques from [BL02, Raz02] continue to stand while al-
lowing the circuit to have for free at the inputs linear transformations inSLn(C) that have
condition numberO(1). In particular unitary matrices present no problem. We alsomanaged
to show our desired result of proving anΩ(nlogn) sizeSLn(C)-orbit model lower bound for
circular convolutionassuming only n multiplication gates are used.

We considered orbits in conjunction withΣΠΣ-formulas. The fact that lower bounds for�-complexity are maintained unaltered under such an extension is trivial. Interestingly enough,
we showed things also carry through when counting addition gates at the inputs.

In the next two chapter we will focus onDLn(C)-orbits, that is allowing for free arbi-
trary diagonalmatrices of determinant one at the inputs. Also these matrices can be arbitrary
ill-conditioned, and hence will still provide a formidableproving ground. The effect of their
ill-conditioning on the desired lower bound argument however, will be a little bit less unruly.
We first will make an exposition of the complexity theoretic issues that are involved in inter-
lude Chapter 5, outlining the global structure of the lower bound proof we are going to pursue.
Then in Chapter 6 we will set up a framework that allows for a rigorous attack on the involved
problems. Using Fourier analysis, in particular involvinga discrete variant of theHeisenberg
uncertainty principle, we will be able to establish some lower bounds for the circular convo-
lution bilinear map. We will also establish a results about random Vandermonde matrices, and
derive a circuit lower bound from that. Finally, some limitations will be explored using result
know about the asymptotic eigenvalues of theprolate matrix[Sle78].



Chapter 5

Diagonal Orbits

Our aim is to extend the arguments in [Raz02, BL02] with regard to the number of unbounded
constants allowed in the circuit, and to give lower bounds onentire orbitsf (Dx;Ey), where f
is a natural bilinear function like matrix multiplication or convolution, andD;E are matrices
of unit determinant. We begin with the very special case where E is the identity andD is a
diagonal matrix. Handling this case is not sufficient, but itbrings out connections to major
matrix problems about minors, in case of convolution about the discrete Fourier matrixDFTn.
Accordingly, in this chapter and the next, we focus on circuits of the form

Γn(x1 �dn
1; : : : ;xn �dn

n;y1;y2; : : : ;yn);
wherefΓngn>0 is a family of bounded-coefficient bilinear circuits andfDn = (dn

1;dn
2; : : : ;dn

n)gn>0;
is a family ofn-tuples satisfying that for anyn,

n

∏
i=1

dn
i = 1:

These circuits compute bilinear mappings in the set of variables fx1;x2; : : : ;xng andfy1;y2; : : : ;yng. As done before for orbit circuits, for circuit size we only count the size of
Γn. In other words, the constantsdn

i do not count against the size. They can be considered
unary helper gates.

In this chapter we lay out the complexity theory side of the lower bound strategy. The next
chapter attacks the mathematical problems involved, and establishes some lower bounds, and
also indicates some limitations of the taken approach.

5.1 Strategy and Conditional Result

As in [BL02, Raz02], one of the inputs is going to be fixed by constants (we fixy), thereby
reducing the bilinear case to a question about linear circuits. Oncey is fixed, the outputs of the

59
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linear forms iny output constants that are used at the multiplication gates.These multiplica-
tions with constants can be replaced by performing repeatedadditions. In a way to be made
more precise later, one can only do this, if the outputs of thelinear forms in they variables are
“reasonably” bounded. If this is true, only few repeated addition will be needed, leaving the
blow-up in size of the circuit limited. Also, withy fixed, the circuit computes a linear transfor-
mation in thex variables. If one manages to fixy so that the resulting linear map has provably
high complexity,while at the same timeleaving blow-up in size caused by the repeated addition
to be limited, one would conclude the original circuit must have been of “high” complexity.
For the purpose of bounding the magnitude of the linear formswhen fixingy, we prove the
following lemma.

Lemma 5.1.1 Given k� n matrix F computed by b.c. linear circuitΓ with n inputs and k
outputs, for all0� l < n, there exists U� Cn of co-dimension l such that for all a2U

max
1�i�k

j(Fa)ij � jjajj2 �23s(Γ)+3n
2l+2 :

Proof. By the min-max charaterization of singular values (Theorem4.1.7)

σn(F) = minjjajj2=1
jjFajj2:

If σn(F) < 1, addn gates to the circuit that make a copy of the inputs. We obtain acircuit Γ0
of at mosts(Γ)+n gates computing ak0�n matrix G with σn(G)� 1 andk0 � n.

ConsiderG�G. Using Theorem 4.1.3 (Binet-Cauchy), we get that

det(G�G) = ∑jTj=n

jdet(GT)j2��k0
n

�
22s(Γ0):

The last inequality follows from Morgenstern’s Theorem 2.1.1. So

det(G�G)� 2k022s(Γ0) � 23s(Γ0) � 23s(Γ)+3n:
Also

det(G�G) = n

∏
i=1

σi(G)2:
For arbitrary 0� l < n,

σl+1(G)l+1 � l+1

∏
i=1

σi(G)
� n

∏
i=1

σi(G)
� 2

3s(Γ)+3n
2 :
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Soσl+1(G)� 2
3s(Γ)+3n

2l+2 . By Theorem 4.1.7 (Courant-Fisher-Weyl min-max)

σl+1(G) = min
codim(U)=l

max
unit x2U

jjGxjj2:
Hence we conclude that there existsU � Cn of co-dimensionl such that for all unitx2U ,

max
1�i�k

j(Fx)i j � max
1�i�k0 j(Gx)i j= jjGxjj∞ � jjGxjj2� 2

3s(Γ)+3n
2l+2 :

The statement of the lemma now follows by linearity.

We compare the above with the proofs of Lemma 4.1 in [Raz02] and Lemma 4.2 in [BL03].
There the definition of rigidity is used to obtain a subspaceU from which selecting arandom
inputa yields a bound on the magnitudes ofFa with high probability. We obtain a subspaceU
such thatfor all unit a2U these magnitudes are bounded, alas with a slightly weaker bound.
Namely, a standard Gaussian vector in ann� l dimensional vector space has expected normp

n� l , but this factor crucially gets dampened in [BL03] and [Raz02]. Nevertheless, Lemma
5.1.1 will suffice for our purposes. We have the following conditional theorem:

Theorem 5.1.2 Let fDn = (dn
1;dn

2; : : : ;dn
n)gn>0 be a family of n-tuples satisfying that for any

n, ∏n
i=1dn

i = 1. SupposefΓngn>0 is a family of bounded-coefficient bilinear circuits such that
for all n,

Γn(x1 �dn
1; : : : ;xn �dn

n;y) = xTCirc(y):
Let

In = fi : 0� i � n�1 with dn
i < 1g;

and definè n = jInj. If for everyδ > 0, there exists a k0 > 0 so that for all but finitely many n,
for any affine linear space U of codimensionb `n

k0

, there exists a2U with jjajj2 = 1 such that

Circ(a) has aǹ n� `n minor M with rows In withjdet(M)j � 2�δnlogn;
then there existsγ > 0 such that for infinitely many n,

s(Γn)� γnlogn:
Let us first make some preliminary remarks. Suppose that in the above`n = Ω(n).

This means there exists an 0< ε0 < 1 so that for all but finitely manyn, `n � ε0n. In
this case we think of thedn

i that are larger than 1 as help gates as in [BL02]. There are at
most (1� ε0)n many such help gates. Currently known techniques can already handle this
amount of undbounded constants. Namely, Theorem 6.4 of [BL02] tells us that in this case
s(Γn) = Ω(nlogn). The question we like to address is whether we can manage to deal with
n�o(n) many unbounded constants in the circuit. This situation arises with`n = o(n) in the
above.
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Proof. (of Theorem 5.1.2)Wlog. we assume alldn
i values are distinct. (If this is not true

make infinitismal perturbations of thedn
i and addn gates to correct these again.) For eachn,

let i1;n; : : : ; in;n be such that

dn
i1;n < dn

i2;n < dn
i`n;n < 1< dn

i`n+1;n < :: : < dn
in;n:

In case

log
n

∏
j=`n+1

dn
i j;n = o(nlogn);

then we can replace the constants which are bigger than 1 by bounded constant repeated addi-
tions. This takes at most∑n

j=`n+1 logdn
i jn

= o(nlogn) additional gates. Hence we would obtain
a family of regular bounded-coefficient bilinear circuits of size s(Γn)+o(nlogn) computing
xTCirc(y), but such a family must have sizeΩ(nlogn) by [BL02]. Hence we would conclude
s(Γn) = Ω(nlogn).

So assume that there is aδ > 0 such that for infinitely manyn, ∏n
j=`n+1dn

i j;n > 2δnlogn.
This implies that for infinitely manyn,`n

∏
j=1

dn
i j;n < 2�δnlogn; (5.1)

Let us consider some large enoughn for which (5.1) holds, and let us drop the sub and
supersciptsn on our variables.

We are going to perform the following substitution on the circuit. Setxi j = 0 for all j > `
and substitutexi j = zj=di j otherwise. This yields a bounded coefficient bilinear circuit of size
no bigger thans(Γ), and it computes(z1; : : : ; z̀ )diag(d�1

i1
; : : : ;d�1

i` )M;
whereM is the`�n minor of Circ(y) corresponding to rowsIn.

Now setr = n�b k̀0

, wherek0 is the constant that is assumed to exist by the statement of

the theorem forδ2. Let f1; : : : ; fk be the linear forms iny of Γ. Lemma 5.1.1 provides us with a
linear subspaceU of dimensionn�b k̀0


 such that for any unita2R U , we have that

logmax
i
j fi(a)j � 3s(Γn)+3n

2b`=k0
+2
(5.2)

For any unita 2U and any`� ` minor M0 of Circ(a) with rows I we can obtain fromΓn a
bounded coefficientlinear circuit computing theCm! Cm map(z1; : : : ;zm)diag(d�1

i1
; : : : ;d�1

i` )M0;
by removing the outputs not corresponding toM0 and replacing multiplications withfi(a) by
fi(a)=µ and correcting this by adding at most` logµ repeated additions at the output gates,
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whereµ= maxi j fi(a)j. Hence the number of gates we added is at most

` logmax
i
j fi(a)j � `3s(Γn)+3n

2b`=k0
+2� k03s(Γn)+3nk0� 4k0s(Γn):
So the size of the resulting b.c. linear circuit is at most(4k0+1)s(Γ). However, by the condition
of the theorem, and given thatn is assumed to be large enough, the above can be done for a
minorM0 for which jdet(M0)j � 2� δ

2nlogn;
This means that jdet(diag(d�1

i1
; : : : ;d�1

i l
)M0)j � 2

δ
2nlogn:

However, by Morgenstern’s bound (Theorem 2.1.1) any bounded coefficient circuit com-
puting diag(d�1

i1
; : : : ;d�1

im )M0 then requires at leastδ
2nlogn gates. Hences(Γn)� δ

8k0+2nlogn.

5.2 Finding good minors

Using the notation of Theorem 5.1.2, and given our preliminary remark, we see that we are
essentially left with establishing the following condition:

(Condition I) For every familyfIn�f0;1; : : : ;n�1ggn>0 with `n = jInj= o(n), and every
δ > 0, there exists ak0 > 0 so that for all but finitely manyn, for any affine linear spaceU of
codimensionb `n

k0

, there existsa2U with jjajj2 = 1 such that Circ(a) has aǹ n� `n minor M

with rowsIn with jdet(M)j � 2�δnlogn:
By our preliminary remark, we know the conclusion of the theorem is true for̀ n = Ω(n),

without need to establish anything further. So actually, for complete coverage of all cases, we
would want to establish the condition for functions`n that arenot Ω(n), but we are already
going to be content with the weaker theorem that would resultfrom satisfing condition I for`n = o(n).

Let us remark the setsIn and the subspace(s)U mentioned in the condition areadversarial
in nature, they are determined by a hypothetical orbit circuit for circular convolution of size
o(nlogn), that we are trying to show does not exist. Hence the universal quantification over
these quantities in the statement of condition I.

Given that Theorem 2.1.4 allows us to write

Circ(a) = Fndiag(DFTna)F�
n ;
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it is no supprise that condition I is related to finding minorsof DFTn on a given set of rowsIn
that have “reasonably” large determinant. We state:

(Condition II) For every familyfIn � f0;1; : : : ;n� 1ggn>0 with `n = jInj = o(n), and
every δ > 0, there exists ak0 > 0 so that for all but finitely manyn, for any b `n

k0

 columns

Jn � f0;1; : : : ;n� 1g, there exists aǹn� `n minor M of DFTn with rows In and columns
disjoint fromJn with jdet(M)j � 2�δnlogn:
Theorem 5.2.1 If Condition I holds, then so does Condition II.

Proof. Suppose Condition I holds. LetfIn � f0;1; : : : ;n�1ggn>0 be given, and definèn =jInj. Assume that̀n = o(n), Let δ > 0 be given. We want to argue it is now possible to select a
k0 > 0 so that for any family fJn� f0;1; : : : ;n�1ggn>0;
with jJnj= b `n

k0

, for all but finitely manyn, there exists̀n� `n minorM of DFTn with rowsIn

and columns disjoint fromJn with jdet(M)j � 2�δnlogn:
For eachn, defineUn to be the subspace of vectorsv for which (Fnv) j = 0 for all j 2 Jn. This
subspace has dimensionn�jJnj = n�b `n

k0

. By condition I, for anyδ0 > 0,there existsk00 > 0

so that, providedn is large enough, we have unita2Un such that Circ(a) has a square minor
M with rowsIn such that jdet(M)j � 2�δ0nlogn: (5.3)

Let Q(a) = Circ(a)Circ(a)�. Using Theorem 2.1.4 write

Q(a) = DFTndiag(jλ0j2; jλ1j2; : : : ; jλn�1j2)DFT�n; (5.4)

whereλ = Fn(a). Note thatjjλjj2 = 1.
Using Theorem 4.1.3 (Binet-Cauchy Theorem) and (5.3) we get:

det(Q(a)In;In) = ∑jSj=`n

jdet(Circ(a)In;Sj2� 2�2δ0nlogn; (5.5)

where in the sumS ranges over all subsets of size`n of f0;1; : : : ;n�1g. Also using Theorem
4.1.3 and now using (5.4) we can write

det(Q(a)In;In) = ∑jSj=`n

jdet(DFTn
In;S)j2∏

s2S

jλsj2: (5.6)

Sincejjλjj2 = 1, for anySof size`n, ∑s2Sjλsj2� 1. Using the arithmetic-geometric mean
inequality, we then get

∏
s2S

jλsj2� ( 1`n
)`n:
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By our choice ofU , the only terms in (5.6) that are possibly non-zero are thosefor those sets
S that avoidJn, namely∏s2Sjλsj2 is zero for all others. Combining (5.5) and (5.6) we get that
there exists some setSdisjoint fromJn which hasjdet(DFTn

In;S)j2∏
s2S

jλsj2� 2�2δ0nlogn�n:
and hence jdet(DFTn

In;S)j2� 2�2δ0nlogn�n``n
n :

The above holds for anyδ0 > 0, so withδ0 chosen small enough we get that

2�2δ0nlogn�n``n
n � 2�δnlogn;

This way we see Condition II is satisfied, provided ConditionI holds.

In other words Condition II is a necessary condition for establishing Condition I. In Chap-
ter 6 we will see that Condition II would also be a sufficient condition for obtaining Condition
I. However, now that we have extracted the more fundamental notion of finding minors on the
Fourier matrix, let us have a look at some issues that are involved in establishing Condition II.

As it turns out, Condition II is too strong to satisfy forarbitrary families of rowsfIngn>0

and columnsfJngn>0. To give an example of what can happen, supposen is a square. Then
it can be seen that any

p
n�pn minor of DFTn that has rows which are multiples of

p
n and

avoids columns that are multiples of
p

n is singular. For example, lettingω = e2πi=9, DFT9 is
given by: 0BBBBBBBBBBBB�

1 1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7 ω8

1 ω2 ω4 ω6 ω8 ω1 ω3 ω5 ω7

1 ω3 ω6 1 ω3 ω6 1 ω3 ω6

1 ω4 ω8 ω3 ω7 ω2 ω6 ω1 ω5

1 ω5 ω1 ω6 ω2 ω7 ω3 ω8 ω4

1 ω6 ω3 1 ω6 ω3 1 ω6 ω3

1 ω7 ω5 ω3 ω1 ω8 ω6 ω4 ω2

1 ω8 ω7 ω6 ω5 ω4 ω3 ω2 ω1

1CCCCCCCCCCCCA
Selecting rows 0, 3 and 6:0� 1 1 1 1 1 1 1 1 1

1 ω3 ω6 1 ω3 ω6 1 ω3 ω6

1 ω6 ω3 1 ω6 ω3 1 ω6 ω3

1A
and then removing columns 0, 3 and 6:0� 1 1 1 1 1 1

ω3 ω6 ω3 ω6 ω3 ω6

ω6 ω3 ω6 ω3 ω6 ω3

1A
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leaves a matrix with only two different kinds of columns, so any 3� 3 minor of it will be
singular. More generally, whenevern = ` � k, any`� ` minor with rows 0;k;2k; : : : ;(`�1)k
and columns avoiding 0; `;2`; : : : ;(k�1)` can be seen to be singular. Consequently, one can
observe that for̀n =ω(pn) condition II does not hold. In the next chapter we will therefore try
to establish weaker versions of condition II, and derive (weakened) diagonal orbit lower bounds
therefrom. The final lower bound theoremwe will arrive at, while deriving some mathematical
results that are interesting in their own right, is the following result:

Main Result 5.2.1 Let fDngn>0 be a unit helper family, and supposefΓngn>0 is a family of
bounded-coefficient bilinear circuit such that for all n,

Γn(x1 �dn
1; : : : ;xn �dn

n;y) = xTCirc(y):
Define ln = jDn\ (0;1)j. We have that

1. If ln = O(n1
2), then there existsγ > 0 so that s(Γn)� γnlogn, for infinitely many n.

2. If ln = O(n3
4) andfDngn>0 is asympotically contiguous, then then there existsγ > 0 so

that s(Γn)� γnlogn, for infinitely many n.

3. If ln = Ω(n), then s(Γn) = Ω(nlogn).
In the above, a familyfDngn>0 where eachDn is ann-tuple of distinct positive real num-

bers(dn
1; : : : ;dn

n) such that∏n
i=1dn

i = 1 is called aunit helper family. If for all but finitely many
n, the entries inDn of value less than one are contiguous (in the circular sense), we say thatfDngn>0 is asymptotically contiguous. In other words, the theorem proves a lower bound for
orbit ciruits of the formΓ(Dx;y), whereD is diagonal and with unit determinant, but with some
further restrictions on how many helper constants are less than one, and how they are located
relative to eachother.

Curiously, in the above theorem it is not the unbounded constants that form a problem, but
rather the seemingly innocent ones that are less than one, which the circuit could have supplied
itself without problem. Note that the above theorem impliesthat we can handle, without further
assumptions, anyn�o(pn) many unbounded constants. At its most extreme this allows for
n�1 unbounded constants in the circuit, balanced against a single small helper constant that
makes the product of all helper constants equal to one. This improves theεn many allowed
unbounded constants for fixedε < 1 from [BL02]. Although it must be said that we have strict
requirements on where the constants are located in the circuit, and we have the requirement
that their product is one. [BL02] has neither of these additional restrictions. Of course lifting
the latter requirement puts one in the arena of the general unbounded constants case, which,
even for linear circuits, now has been a standing open problem in theoretical computer science
for over 35 years.
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5.3 Symmetry properties of circular convolution

We refer to [Hun80] for the group theoretical notions used inthe following. A curiousity is
that in Chapter 4 we managed to lift the results of [BL02], amonst others, to orbit circuits of
the formΓ(U0x;U1x), whereU0 andU1 are unitary. This includes the case where the free maps
are permutation matrices. However, Theorem 5.2.1, or better said its proof, is incompatible
with any such generalization. Of course, the two conditionsof a unitaryanddiagonal matrix
together, leave only the identity matrix, but more can be said. Namely, there is a certain lack of
symmetry in circular convolution map. In the following letSn be the group of permutations on
n-vectors. We think of eachπ 2 Sn to be a bijectionπ : Zn! Zn, whereZn = f0;1; : : : ;n�1g
is the additive group of integers modulon.

Definition 5.3.1. Call a permutationπ 2 Sn retrievableif there exist permutationsπ1 andπ2 in
Sn, such that

π2[π(x)Circ(π1(y))℄ = xCirc(y):
for n-vectors of variablesx= (x0;x1; : : : ;xn�1) andy= (y0;y1; : : : ;yn�1)T .

In other words, a permutation is retrievable if applicationof it to then-vector of variablesx can
be undone by applying a permutation to then-vectory, and applying one to the result vector
obtained by convolution of the permutedx and y vectors. Elementary reasoning yields the
following:

Theorem 5.3.1 For any n, the retrievable permutations form a group, and areprecisely those
permutationπ : Zn! Zn for which there exists b;g2 Zn with g relatively prime to n such that
for each i2 Zn,

π(i) = b+gi:
Proof. See Appendix B.

The retrievable permutations form a subgroupRn of Sn of size at mostn2�n, hence there
are in general vastly more unretrievable permutations thanretrievable ones. So the circular
convolution map enjoys nice symmetry properties, but, perhaps unexpectedly, is not “all sym-
metric”.

We conclude that for anyn> 3, it is not in general possible to undo a permutation on thex
variables by permuting they variables, and then permuting the final result vector. If onecould
do this, then one could easily convert any circuit computingπ(x)Circ(y) into one computing
xCirc(y). Namely, simply permuting they variables at the inputs and the outputs of the circuit
with the π1 and π2 that work for π, and one is done. By taking inverses, this would mean
that for anyπ, any circuit forxCirc(y) can be converted into a circuit computingπ(x)Circ(y).
Perfoming this conversion on an orbit circuit

Γ(x1d1;x2; : : : ;xndn;y) = xCirc(y);
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we would get a circuitΓ0 such that

Γ0(xπ(1)d1;xπ(2); : : : ;xπ(n)dn;y) = xCirc(y):
which means we have a circuitΓ00 with

Γ00(x1dπ�1(1);x2dπ�1(2); : : : ;xndπ�1(n);y) = xCirc(y):
In other words we would have a means of permuting the helper constants on the variables.
This would then allow us to at least establish item 2 of Theorem 5.2.1 without the contiguity
requirement.

From the above we conclude that one cannot in general converta circuit forπ(x)Circ(y)
into one computingxCirc(y) by permuting they-inputs and outputs. However, something
weaker would suffice for our purposes. Namely, if for every permutationπ there exists a
reductionthat converts a circuit forπ(x)Circ(y) into one forxCirc(y), using onlyo(nlogn)
additional circuit hardware, then one would obtain the sameconclusion of establishing item 2
of Theorem 5.2.1 without the contiguity requirement. It is not clear whether this can be done.

5.4 Contiguity and Chordal Product

Given that we cannot establish Condition II in general, one natural scenario to consider is
whether we can establish Condition II in case the setIn is contiguous. Here we mean contiguous
in the modular sense:n�1 and 0 are adjacent. In other words,In is contiguous if and only
if it is of the form fb+ r modn : i � r � jg, for certain integersb; i and j. Establishing this
weaker condition, would yield us a diagonal orbit lower bound for more restriced orbit circuits
for which the helper variables that are less than 1 appear as acontiguous block, i.e. are all
adjacent (again in the circular sense).

It is not hard to see that w.l.o.g. we can assume then thatIn consists of rows 0;1; : : : ; `n�1
of DFTn. All `n� `n minors M with these rows are Vandermonde matrices of formM =
V(ω1;ω2; : : : ;ω`n) where theω’s arenth roots of unity. Using the determinant formula for a
Vandermonde matrix, we have thatjdet(M)j = CP (ω1;ω2; : : : ;ω`n), where we define for any
finite setP = fp1; p2; : : : ; pkg of points on the unit circle in the complex plane theirchordal
product

CP (P) = ∏
1�i< j�k

jpi� p j j:
Let Ω = fω0;ω1; : : : ;ωn�1g be thenth roots of unity. Condition II now becomes:

(Condition II 0) For `n = o(n), and everyδ > 0, there exists ak0 > 0 so that for all
but finitely manyn, for any b `n

k0

 many roots of unityJn � Ω, there exists̀ n roots of unity

x1;x2; : : : ;x`n 2ΩnJn such that

CP (x1;x2; : : : ;x`n)� 2�δnlogn:
Without the presence of the set of “off-limits” pointsJn the CP (x1;x2; : : : ;x`n) is max-

imized at``n=2
n by selecting thè n points with equal separation between adjacent points on
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the circle. Namely, Wlog. we select thènth roots of unity. HenceCP (x1;x2; : : : ;x`n) =jdet(DFT̀ n)j= ``n=2
n . By the Hadamard Inequality (Theorem 2.1.3), this is the maximum mag-

nitude of the determinant of anỳn� `n matrix with unit entries.
The above means for example that for`n = O(pn) it will be simple to satisfy Condition

II 0. Say`n� d
p

n, for some constantd > 0, for all large enoughn. For simplicity lets assume
that `n dividesn. Selectingk0 so thatb `n

k0

 < 1

d2`n ensures that of then`n
sets of`n equally

spaced points, sincen`n
� 1

d

p
n� 1

d2`n, there must exist at least one that contains no off-limit
point fromJn.

As we will see, we can actually establish condition II for`n = O(pn), so there is no need
for a contiguity requirement in this case at all. For general, `n = o(n) there is no such simple
argument as we described above. We are faced with the following problem:

Problem. For some largen, consider the setΩ = fω0;ω1; : : : ;ωn�1g of all nth roots of unity
on the unit cirlce in the complex plane. LetR�Ω be a given set of roots that are “off-limits”.
For any`, what is the optimal strategy to select` roots of unityωi1;ωi2; : : : ;ωi` 2 Ω nR that
maximizesCP (ωi1;ωi2; : : : ;ωi`) ?

Related to this question, what setsR in the above provide the worst-case scenario? That is:

Problem. For anyk; `, for what kind of setsR�Ω of sizek is

max
S�Ω=RjSj=` CP (S)

minimized, and what is this min-max value ?

We have some indication that setsR that are contiguous provide this worst-case scenario,
but the question is related to some standing open problems [DS89] that turn out to be supris-
ingly hard to solve, as we will discuss in the next chapter.

For establishing item 2 of Theorem 5.2.1 we consider a randomized strategy: pick thèn

points uniformly at random from the collection of points that are allowed. This strategy works
fairly well. It enables us to get out desired lower bound for`n = O(n3=4).

For `n = nε, with ε a constant arbitrarily close to 1, we give evidence that there is no
strategy at allthat enables us to satisfy Condition II0. We will give evidence that Condition
II 0 cannot be satisfied, even forε = 4=5+δ, whereδ > 0 is constant. We do so by employing
what is known about the asymptotic spectrum of the discrete prolate spheroidal wave functions
[Sle78].
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Chapter 6

Uncertainty Principles & Matrix Games

The Heisenberg uncertainty principlein quantum mechanics is widely known, even to the
extent of having had a cultural impact. The principle is a theorem derivable from the axioms
of quantum mechanics, and expresses the inherent impossibility of simultaneously knowing,
to arbitrary precision, certain complementary observables in nature. For example, one cannot
simultaneously, through measurement, determine both the position and velocity of some given
elementary particle to arbitrary precision.

Physical interpretation aside, the uncertainty principlecan be expressed quite generally
as a mathematical statement about operators in a Hilbert spaceH . Following [Sel01, SH05],
sayH has inner product denoted byh�; �i and normjj � jj = h�; �i1=2. For a linear operator
A : H ! H we denote its domain byD(A). Define thenormalized expected value of A with
respect to f2D(A) by

τA( f ) = hA f; f ih f ; f i
and thestandard deviation of A with respect to fby

σA( f ) = jj(A� τA( f )) f jj:
The uncertainty principle relates the standard deviationsof two operatorsA and B to their
commutator[A;B℄, which is defined as[A;B℄ = AB�BA. An operatorA is said to be symmetric
if hAx;yi= hx;Ayi for everyx;y2D(A).
Theorem 6.0.1 (Uncertainty Principle, see [SH05])Let A and B be symmetric operators
some Hilbert spaceH . Then

σA( f )σB( f )� jh[A;B℄ f ; f ij
2

;
for all f 2D(AB)\D(BA).

For the Hilbert spaceL2(R) of all square integrable functionsf : R!C, with inner prod-
uct defined by h f ;gi= Z ∞�∞

f (x)g(x)dx;
71
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the above implies the following classic uncertainty statement about the measures of concentra-
tion of a functionf 2 L2(R) and its Fourier transform̂f : R! C, defined by

f̂ (ω) = Z ∞�∞
f (x)e�iωxdx:

Namely we have that

Theorem 6.0.2 (see [SH05])Let f 2 L2(R) with jj f jj= 1. Let

xa = Z ∞�∞
xj f (x)j2dx;

ωa = Z ∞�∞
ωj f (ω)j2dx;

∆x= Z ∞�∞
(x�xa)2j f (x)j2dx; and

∆ω = Z ∞�∞
(ω�ωa)2j f (ω)j2dω:

Then
∆x∆ω� π=2:

The above shows that for a functionf : R! C one cannot simultaneously localizef and
its Fourier transformf̂ to arbitrary extent: the smaller standard deviation∆x of f , the larger
the standard deviation∆ω of f̂ must be. Going back to physical interpretation briefly, in this
scenariof could be thewave functionof some particle (in one dimension, at some fixed time),
in which case one obtains the probability of detecting the particle by square integration of the
wave function. The position of the particle is a random variable, and the quantityxa is the
expected location of the particle.∆x is the standard deviation of this position random variable.
As it turns out, f̂ is the wave function inmomentum space, that isωa and∆ω are the average
and standard deviation of the momentum of the particle. The position and momentum arise
from probablity distributions as one can witness them in reality by carrying out some large
number of identically prepared experiments. The above gives limits on how much one can
narrow down simultaneously the deviations for position andmomentum.

There are severals settings in which one can observe the uncertainty phenomena. The
above scenario is “continuous-to-continuous”, i.e. the fourier transform (and its inverse)
move functions between continuous domains. Donoho and Stark [DS89] investigated several
“discrete-to-discrete” analogues of the above uncertainty relation. That is, forn-vectorx and its
discreteFourier transform ˆx= DFTnx, they considered as measure of localization the support
supp(x), which is the total number of non-zeroes ofx. They also defined a more quantatively
subtle notion ofε-concentration of a vectorx on a set of indicesT � f0;1; : : : ;n�1g,which is
defined as thè2-norm ofx restricted toT. For these two measures they proved inequalities in
the spirit of Theorem 6.0.2, showing the limits on the simultaneous concentration achievable
for any fourier pair(x; x̂).

Uncertainty relations of the kind obtained by [DS89] are closely related to properties of
minors of the Fourier matrixDFTn. For proving lower bounds in the orbit model for the
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circular convolution bilinear mapxTCirc(y), precise quantative statements about these minors
regarding the magnitude of their determinant is exactly what we need, as we saw in Chapter 5
with Conditions I and II expressed there.

In the following sections we will express particularsufficientconditions for yielding orbit
model lower bounds in terms of certaingamesplayed on theDFTn matrix. These games
are taking the place of Conditions I and II of Chapter 5, but using this linguistic tool will
conveniently suppress some of the lengthy quantifier alternations in our statements we would
otherwise have.

To outline the idea, the games are played between a player andan adversary. The adversary
chooses a set of rowsRand a set of columnsC. Then the player tries to select a minor ofDFTn

with rows R avoiding columnsC in order to maximize the determinant. We will establish
connections between the existence of certain good strategies for these games to uncertainty
type relations in the “discrete-to-discrete” setting. We will then use this to prove Theorem
5.2.1.

For the first item of this theorem we will involve an uncertainty relation proven in [DS89].
Unfortunately, this argument breaks down, for reasons indicated in Chapter 5, for̀n beyond
O(n1=2).

In order to establish some further results, we make further assumptions on the constantdi

present at the inputs. In case they are asymptotically contiguous, we can press on the statement
of our theorem for larger̀n up toO(n3=4). Namely, in this case it will turn out that for lower
bounds it is sufficient for the player to win the more relaxed version of the Fourier matrix game
in which it is assumed that the set of rowsR the adversary chooses in contiguous. In this case,
determinants of Vandermonde matrices will play a role.

The problem becomes the following: with some number` of thenth roots of unity being
disallowed by the adversary, how do we selectm other roots of unityx1;x2; : : : ;xm in order
to maximize the determinant of the Vandermonde matrixV(x1;x2; : : : ;xm) supported by those
points? We will show a randomized strategy for the player that is sufficient for proving orbit
model lower bounds in which we can tolerate up toO(n3=4) roots being disallowed by the
player. In order to achieve this result we prove a lower boundon the expected value of the
determinant of the Vandermonde matrixV(x1;x2; : : : ;xm) with nodes on the unit circle. This
result is interesting in its own right, and may have further applications.

One application we give, is an uncertainty-type relation for a discrete analogue of the
bandlimited functions. In the continous setting, a function f : R! C is called bandlimited if
there existsΩ 2R such thatf̂ (ω) = 0 for all jωj> Ω. For bandlimited functions more intricate
details are known about simultaneous concentration off and f̂ than the standard uncertainty
principle. See for example [Sle78] for a study in the “continuous-to-discrete” domain.

Interestingly enough, [Sle78] will also give us some indications on the limits we can expect
with our taken approach. Desirable would be to find player strategies that can tolerateany`= o(n) number of roots being disallowed by the adversary. Some indication is that the worst-
case scenario is when the adversary chooses these roots to becontiguous. When he/she does,
we have some indication that there is no good strategy for theplayer (in a sense which we will
make more precise later) once`= Ω(n4=5 log1=5n).
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6.1 Minor Games on Matrices

Definition 6.1.1. We define the circulant game CIRC-Game(n; l ;k;B) to be the following
single-round game against an adversary agent:

Adversary: selects a linear subspaceU � Cn of co-dimensionk andl dis-
tinct rowsr1; r2; : : : ; r l 2 f0;1: : : ;(n�1)g.

Player: selectsa2U with jjajj2= 1, and selects anl� l minorM ofCirc(a)
with rowsr1; r2; :::; : : : ; r l .

Result: The player wins if and only ifjdet(M)j> B.

Related to the above game is the following game on theDFTn matrix:

Definition 6.1.2. We define the Fourier matrix game DFT-Game(n; l ;k;B) to be the following
single-round game against an adversary agent:

Adversary: selects l distinct rows r1; r2; : : : ; r l and k distinct columns
c1;c2; : : : ;ck in f0;1; : : : ;(n�1)g.

Player: selects anl� l minorM of then�n Fourier matrixDFTn with rows
r1; r2; : : : ; r l and columns disjoint fromc1;c2; : : : ;ck.

Result: The player wins if and only ifjdet(M)j> B.

We define DFT-Game�(n; l ;k;B) and CIRC-Game�(n; l ;k;B) to the same games as above,
but with the relaxation that the adversary can choose only sets of rowsR that are contiguous in
the cyclic sense:R= fb+ i modn : 0� i � l �1g for somebase point b.

For the contiguous circulant game it is immediately obviousthat we can assume without
loss of generality that the adversary chooses any particular contiguous setR of our preference,
since for any two chosen setsR1 andR2, the matricesCirc(a)R1 andCirc(a)R2 just differ by
a cyclic shift. We can make the same assumption wlog. for the contiguous Fourier game.
Namely, for anyl columnsC = fc1;c2; : : : ;clg and two contiguous setsR1 andR2 with base
pointsb1 andb2 respectively, we have that

DFTR1;C = DFTR2;C �diag(ωrc1;ωrc2; : : : ;ωrcl );
wherer = b1�b2, andω = e2πi=n. Hencejdet(DFTR1;C)j= jdet(DFTR2;C)j.

We begin by proving a generalization of the phenomena we sketched in Chapter 5 with the
DFT9 example: for this matrix, any 3�3 minor with rows 0, 3, and 6 and columns avoiding 0,
3, and 6 is singular. In general we have the following:

Theorem 6.1.1 If n = l �k, then the adversary has a winning strategy for DFT-Game(n; l ;k;0).
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Proof. A winning strategy for the adversary is to take rows

r i = ki;
for i = 0;1; : : : ;(l �1), and columns

ci = li ;
for i = 0;1; : : : ;(k�1).

Let A be thel �n minor of DFTn with rowsr0; r1; : : : r l�1. Therth columnAr of A equals(1;αr ;α2r ; : : : ;α(l�1)r)T , whereα = e
2πi
n k = e

2πi
l . Hence for anyr ,

Ar = Ar+l modn:
With columns 0; l ;2l ; : : : ;(k�1)l disallowed, there are therefore onlyl �1 distinct columns in
the remaining set, so anyl � l minor ofA that avoids the disallowed columns will be singular.

Corollary 6.1.2 If n is a square, then the adversary has a winning strategy for
DFT-Game(n;pn;pn;0).

So if n= l �k, there is not much honour to achieve in general for the playeras it comes to
playing DFT-Game(n; l ;k; �). This will also have a negative impact on the general lower bound
result we are trying to prove, as we will see. It is the reason why in Theorem 5.2.1 for item 1 we
stated a limitation of̀n = O(n1=2). In casek � l < n however, this pathetic case does not apply,
and the player does have a non-trivial strategy. Fork � l belown, perturbation theory kicks in,
and by applying the Binet-Cauchy Theorem one can guarantee the existence of a minor with a
“reasonable” lower bound on the magnitude of its determinant. We have the following result:

Theorem 6.1.3 The player has a winning strategy for DFT-Game(n; l ;k;B), provided k� l < n,
and

B< (n�kl)l=2
�

n�k
l

��1=2:
Proof. Suppose the adversary choosesl rows R andk columnsC. Let N = f0;1; : : : ;n�1g.
Let A= DFTR;N=C andB= DFTR;C. Then

AA� = nI�BB�
Both AA� andBB� are Hermitian, so by Theorem 2.1.2 (Weyl’s Perturbation Theorem), pro-
vided jjBB�jj2� n, for eachi, theith eigenvalueλi(AA�)� n�jjBB�jj2. We can write

BB� = ∑
i2C

cic
�
i ;

whereci is the ith column ofDFTR;N. Sincejjcic�i jj2� jjci jj22 = l , then by subadditivity of the`2-norm,jjBB�jj2� kl. Hence
det(AA�)� (n�kl)l :
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By Theorem 4.1.3 (Binet-Cauchy Theorem)

det(AA�) = ∑jSj=l

jdet(AR;S)j2:
Hence we conclude there existsSof sizel such that

jdetDFTR;Sj � (n�kl)l=2
�

n�k
l

��1=2:
For our lower bound results for circular convolution, we require good strategies not for the

Fourier matrix game, but rather for the circulant matrix game. Fortunately, these two games
are closely related. In one direction we have the following theorem:

Theorem 6.1.4 If the adversary has a winning strategy for DFT-Game(n; l ; r;B), then it has

a winning strategy for CIRC-Game(n; l ; r;�n�r
l

�
n� l

2 B). The same statement holds with Game
replaced by Game�.
Proof. Let R andC be the sets ofl rows andr columns of the adversary’s winning strategy
in the fourier matrix game. Then for the circulant game the adversary chooses the setR for
the rows, and takesU to be the subspace of vectorsv for which (Fnv)i = 0 for all i 2C. This
subspace has dimensionn� r .

Say the player picks unita2U , and sayT is the set of columns of the minor he chooses.
Using Theorem 2.1.4 write

Circ(a) = 1p
n

DFTndiag(λ)DFT�n;
whereλ = Fn(a). Thenjjλjj2 = 1.

Using Theorem 4.1.3 (Binet-Cauchy Theorem) we can write:

det(Circ(a)R;T) = ∑jSj=l

(∏
s2S

λs)det(DFTR;S)det( 1p
n

DFT�
S;T):

Since jjλjj2 = 1, for anyS of size l , ∑s2Sjλsj � pl . Using the arithmetic-geometric mean
inequality, we then get

∏
s2S

jλsj � ( 1p
l
)l ;

and note that there are at mostn� r nonzeroλs because of the choice ofU . By Theorem 2.1.3
(Hadamard inequality) we then have

jdet( 1p
n

DFT�
S;T)j � (plp

n
)l :
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Since det(DFTR;S) < B for anyS disjoint fromC and∏i2Sλi = 0 for all other setsS, we get
that jdet(Circ(a)R;T)j< ∑jSj=l ;S\C= /0

( 1p
l
)l B(plp

n
)l =�n� r

l

�
n�l=2B:

This proves the statement for the regular versions of the game. The statement for both
versions of the relaxed game can be verified analogously.

From this we see that the same pathetic casen= k � l arises for the circulant game. In this
situation again there is not much glory to achieve for the player. Namely, we have:

Corollary 6.1.5 If n = l � k, then the adversary has a winning strategy for
CIRC-Game(n; l ;k;0). In particular, the adversary can win Circ-Game(n;pn;pn;0) in
case n is a square.

We can also prove a relation between the circulant and Fourier game in the reverse direc-
tion. The following lemma yields a way for the player to tranfer his strategy for the Fourier
game to the circulant game. The strategy for the player in this case is to use some randomiza-
tion: given the subspaceU that the adversary selects, the player selects a standard Gaussian
vector inU . Given that the player has a “good” strategy for the Fourier matrix game, this will
combine to be a good strategy for the circulant game as well.

Theorem 6.1.6 For any n; r; l with l + r � n, if the player has a winning strategy for
DFT-Game(n; l ; r;B), then the player has a winning strategy for CIRC-Game(n; l ; r;B0), where

B0 = Bδl=2q�n
r

�
4l (n� r)l

;
and δ is a constant approximately0:02. More precisely δ = 2�(γ+p2φ) with γ =

1p
π
R ∞

0 t� 1
2e�t logtdt; andφ = 1

2

R ∞
0 e� t

2 log2 tdt: The same statement holds with Game replaced

by Game�.
Proof. Suppose the adversary chooses subspaceU of dimensionn� r and a set ofl rowsR in
the circulant game.

Consider standard Gaussian randomly selecteda2RU , thenλ=Fna is also standard Gaus-
sian.

Write λ = Aα, whereA is ann� (n� r) matrix that has orthonormal columns that span
FnU , andα is standard Gaussian inCn�r . Apply Theorem 4.1.3 (Binet-Cauchy):

∑jRj=n�r

jdet(AR)j2 = det(A�A) = 1

Hence there exists a setR of n� r rows with jdet(AR)j2 � �nr��1
. Since the player can win

DFT-Game(n; l ; r;B), let T be a subset ofR such thatjdet(DFTR;T)j> B:
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Note that det(ATA�T)� �nr��1
. Namely det(ATA�T)=det(MM�), whereM is obtained by adding

n� r� l rows toAT which are orthonormal and orthogonal to the span of the rows of AT . Since
each rowr of A hasjjr jj2 � 1 we must have thatjdet(M)j � jdetARj. That is, thejdet(M)j is
the maximum determinant one can get by appendingn� r� l rows of norm at most 1 to thel
rowsAT .

The matrixATA�T is the covariance matrix of centered Gaussian vector(λi)i2T . By Lemma
4.1.2, with probability greater than12 we have that

∏
i2T
jλi j2� δl det(ATA�T)� δl

�
n
r

��1:
whereδ is a constant approximately 0:02. More precisely, Lemma 4.1.2 givesδ = 2�(γ+p2φ)
with γ = 1p

π
R ∞

0 t� 1
2 e�t logtdt; andφ = 1

2

R ∞
0 e� t

2 log2 tdt:
Now let us bound the norm of the vectorλ. We have that

E[jjλjj22℄ = E[jjαjj22℄ = (n� r)E[jα1j2℄ = 2(n� r):
The last equality follows from Lemma 4.1.1. By the Markov inequality,

Pr[jjλjj22� 4(n� r)℄� 1
2
:

From the above we conclude there must exist a vectora2U such that if we letλ = Fna, thenjjλjj22� 4(n� r) and simultaneously

∏
i2T
jλi j2� δl

�
n
r

��1:
Say the player choosesa0= ajjajj2 , which is unit. Theorem 2.1.4 (Convolution Theorem) implies:

Circ(a0) = DFTndiag(λ0)Fn;
whereλ0 = Fna0. Let D =Circ(a0)Circ(a0)�. Then

D = DFTndiag(jλ00j2; jλ01j2; : : : ; jλ0n�1j2)DFT�
n

Using Theorem 4.1.3 (Binet-Cauchy), we can write

det(DR;R) = ∑jSj=l

(∏
i2S

jλ0i j2)jdet(DFTR;S)j2
� (∏

i2T
jλ0i j2)jdet(DFTR;T)j2

> B2δl�n
r

�
4l (n� r)l

:
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Applying Binet-Cauchy once more, we have that

det(DR;R) = ∑jSj=l

jdet(Circ(a0)R;S)j2:
Hence there existsSsuch that

jdet(Circ(a0)R;S)j> Bδl=2q�n
r

�
4l (n� r)l

:
This is the minor that the player chooses.

The above argument goes through in case of playing the contigous games. In this case
theR chosen by the adversary is contiguous, so it suffices for the player to invoke its winning
strategy for DFT-Game�(n; l ; r;B) instead, to get the result.

As we can see in the above Lemma 6.1.6, there is some loss in thethresholdB by which
the player can win the game. In our application in section 6.5however, it will turn out that
this loss is ignorable as a lower order term in our estimates.This gives us the convenience of
focusing on the more fundamental notion of playing the game on the Fourier matrix.

6.2 Random Vandermonde Matrices

We are going to employ the probabilistic method to show the existence of good strategies
for playing the contiguous Fourier matrix game. For the contiguous Fourier matrix game the
essential question becomes:

Problem. For some largen, consider the setΩ = fω0;ω1; : : : ;ωn�1g of all nth roots of unity
on the unit cirlce in the complex plane. LetR�Ω be a given set of roots that are “off-limits”.
For any`, what is the optimal strategy to select` roots of unityωi1;ωi2; : : : ;ωi` 2 Ω nR that
maximizes the Vandermonde determinant:

∏
1�s<t�` jωis�ωit j ?

Related to this question, what setsR in the above provide the worst-case scenario? That is:

Problem. For anyk; `, for what kind of setsR�Ω of sizek is

max
S�ΩnRjSj=` ∏

p6=q2S

jp�qj
minimized, and what is this min-max value ?
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6.2.1 Related Work

The above two questions are related to the following. Suppose T � D := f0;1; : : : ;n� 1g.
What setsR minimize jjDFTn

T;Rjj2 ? If we letM = DFTn
T;R andN = DFTn

T;DnR, then

MM�+NN� = nI:
So using the Weyl Perturbation Theorem, ifjjDFTn

T;Rjj2 < K we get that each eigenvalue

λi(NN�)� n�K, and consequently thatjdet(NN�)j � (n�K)l , where`= jTj. Then applying
Theorem 4.1.3 one gets that there exists an`� ` minor of N with determinant of magnitude

at least(n�K)`(n�jRj` ) . Donoho and Stark considered theoppositequestion of which setsT andR

maximizejjDFTn
T;Rjj2. They define the “index-limiting” operatorPR = diag(1R), where 1R is

the 0;1-valuedn-vector that is 1 precisely for all indices inR, and the “frequence-limiting”
operatorPT = F�

n diag(1T)Fn. Note thatjjPTPRjj2 = jjDFTT;Rjj2. They conjecture:

Conjecture 2 ([DS89]). For intervalT and setR with jRj � jTj = n, jjPTPRjj2 is maximized
whenR is also an interval.

Potentially, maximizingjjDFTn
T;Rjj2 yields the converse effect of forcingjdet(NN�)j to

be small, although one cannot directly conclude this from the Perturbation Theorem. Forcingjdet(NN�)j to be small also depresses the value

max
S�ΩnRjSj=` CP (S); (6.1)

whereCP (S) is thechordal product of S, which we defined in Section 5.4 by

CP (S) = ∏
p6=q2S

jp�qj:
So as answer to the second problem above, it appears plausible that the bad setsR that minimize
(6.1) are whenR is chosen to be an interval, i.e. ifR is a set of indices that is contiguous in the
modular sense. Computer runs seem to corroborate this idea,and in the analysis that follows
suchR indeed seem to form the major difficulty.

Also related to our work, is the question of the conditioningof a Vandermonde matrix. For
real numbersr1; r2; : : : ; r`, the Vandermonde matrixV(r1; r2; : : : ; r`) infamously can be highly
ill-conditioned [Gau75]. For Vandermonde matrices with nodes in the complex plane, where
the nodes are arranged to be nicely spread out the situation can be better. Ferreira [Fer99] gives
some bounds for Vandermonde matrices with nodes on the unit circle in the complex plane that
show the matrix can be quite well conditioned provided the nodes are spread around the cirle
evenly.

We should also mention the powerful work done by Camdes, Romberg and Tao [CRT04].
They prove that for anyT of sizeO( n

logn), if one selects the setSby independently choosing
for each columnk to be inSwith probabilityτ, whereτ is some fixed constant, then with high
probability forM = DFTn

T;S, the determinant det(MM�) is “not to small”. Unfortunately, their
moment methodapproach is not robust against the adversarial setR of points to avoid. At a
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critical juncture in their proof they rely on thecancellation propertyof the roots of unity, which
states that for anyr not divisible byn we have

n�1

∑
i=0

ωri = 0;
whereω is any primitiventh root of unity. The presence of the setR makes that not all roots
appear with equal probability, indeed some may appear with probability 0. Consequenctly, after
taking expectations and doing a brute force application of the inclusion-exclusion principle, not
all roots of unity are guaranteed to appear in the final expression to be cancelled. Hence the
attempt to adapt their proof to our situation breaks down. Seen more holistically, since their
proof makes no assumption aboutT, except on its size, the presence of the setR must make
their proof break down, because of the phenomena we sketchedin the introduction. Recall for
example we observed that ifn is a square, then there exist setsT andR of size

p
n that make

any minor singular with that has rowsT and that avoids columnsR. The question is whether
we can do better by assuming thatT is contiguous. We will now turn to this question.

6.2.2 Randomized Selection Strategy

We first prove an estimate on a particular sum that is involvedin the analysis.
Define the ln-of-chord length functionf (t) = ln j1�eit j, for t 2Rnfk2π : k2Zg. Straight-

forward geometry gives us:

f (t) = 1
2

ln(2�2cost);
which can be rewritten using the relation sin2 α

2 = 1�cosα
2 as

f (t) = ln2sin
t
2
= ln2+ ln jsin

t
2
j:

We will also consider a discretized version of this function, which per abuse of notation will
also be denoted byf . It will be clear from the context, whetherf is referring to the discrete or
continuous function.

Lemma 6.2.1 Let ε(t) = ln jtj� f (t). Then for any t withjtj< 1,

0< ε(t)< t2

12
:

Proof. First of all for anyt, f (t) = ln j1�eit j< ln jtj. We thus see thatε(t) is non-negative. For
t 2 (0;2π), we have for the error functionε(t) = ln jtj� f (t) = ln jtj

2sin t
2
. Fort > 0, sint � t� t3

6 .

So on this interval,ε(t) � ln t

t� t3
24

=� ln(1� t2

24). For �1
24 < x< 1

24, ln(1+x) � x� x2

2 . So for

0< t < 1,

0< ε(t)< t2

24
+ t4

1152
< t2

12
:
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The lemma follows by symmetry off (t) and lnjtj.
Lemma 6.2.2 Let n� 7, and letω = e2πi=n. Define the discrete function f(d) = ln j1�ωdj,
for d = 1;2; : : : ;n�1. Then

n�1

∑
d=1

f (d)� 2� ln2� 2π2

3n2 :
Proof. Using the fact (see e.g. [RW04], p. 182, equation 55) thatZ πn2

0
ln(sinx)dx=�π

2
ln2;

we get that Z 2π

0
f (t)dt = 2π ln2+Z 2π

0
lnsin

t
2

dt

= 2π ln2+2
Z π

0
lnsin

t
2

dt

= 2π ln2+4
Z πn2

0
lnsinxdx= 0:

For j = 0;1; ; : : : ;n�1, define intervalI j = [ j 2π
n ;( j +1)2π

n ℄. By the above,

2π
n

n�1

∑
d=1

f (d) = 2π
n

n�1

∑
d=1

f (d)�Z 2π

0
f (t)dt

= 2π
n

f (1)�2
Z 2π=n

0
f (t)dt+ 2π

n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt: (6.2)

We will approximatef (t) by lnt for t close to 0, and estimate the error incurred by this to
bound the first two terms of (6.2). Using Lemma 6.2.1 , provided n� 7,

f (1)� ln
2π
n
� ε(2π

n
)� ln

2π
n
� π2

3n2 :
and Z 2π=n

0
f (t)dt � Z 2π=n

0
ln tdt

� [t ln t� t℄2π=n
0= 2π

n
ln

2π
n
� 2π

n
:
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Hence (6.2) is at least

2π
n

ln
2π
n
� 2π3

3n3 � 4π
n

ln
2π
n

+ 4π
n

+ 2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt �

2π
n

ln
n
2π

+ 4π
n
� 2π3

3n3 + 2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt: (6.3)

We will now bound the last two term in the above expression. Let us first consider the case
whenn is even.

2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt = 2π

n

n�1

∑
d=2

f (d)� n�2

∑
d=1

Z
Id

f (t)dt

= 2π
n

n=2

∑
d=2

[ f (d)+ f (n+1�d)℄�2

n
2�1

∑
d=1

Z
Id

f (t)dt

= 2π
n

n=2

∑
d=2

[ f (d)+ f (d�1)℄�2

n
2�1

∑
d=1

Z
Id

f (t)dt

= 2π
n

n=2�1

∑
d=1

[ f (d)+ f (d+1)℄�2

n
2�1

∑
d=1

Z
Id

f (t)dt

= n=2�1

∑
d=1

(2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt): (6.4)

Since for 1� d� n=2�1, f (t) is strict monotone increasing, we know that

2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt ��2π
n
[ f (d+1)� f (d)℄:

Hence (6.4) is at least

2π
n

n=2�1

∑
d=1

[ f (d)� f (d+1)℄ = 2π
n
[ f (1)� f (n

2
)℄

� 2π
n
[ln 2π

n
� π2

3n2 � ln2℄:
Hence (6.2) is at least

4π�2π ln2
n

� 4π3

3n3 :
Hence we conclude that in casen is even, that

n�1

∑
d=1

f (d)� 2� ln2� 2π2

3n2 :
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Let us now consider the case whenn is odd. Then

2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt

= 2π
n

n�1

∑
d=2

f (d)� n�2

∑
d=1

Z
Id

f (t)dt

= 2π
n

f (n+1
2

)+ 2π
n

(n�1)=2

∑
d=2

[ f (d)+ f (n+1�d)℄�2

n�1
2 �1

∑
d=1

Z
Id

f (t)dt�Z
I(n�1)=2

f (t)dt

= 2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ 2π
n

(n�1)=2

∑
d=2

[ f (d)+ f (d�1)℄�2

n�1
2 �1

∑
d=1

Z
Id

f (t)dt

= 2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ 2π
n

n�1
2 �1

∑
d=1

[ f (d)+ f (d+1)℄�2

n�1
2 �1

∑
d=1

Z
Id

f (t)dt

= 2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ n�1
2 �1

∑
d=1

(2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt): (6.5)

Since for 1� d� (n�1)=2�1, f (t) is strict monotone increasing, we know that

2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt ��2π
n
[ f (d+1)� f (d)℄:

Hence (6.5) is at least

2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ 2π
n

n�1
2 �1

∑
d=1

[ f (d)� f (d+1)℄ =
2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ 2π
n
[ f (1)� f (n�1

2
)℄ =

�Z
I(n�1)=2

f (t)dt+ 2π
n

f (1) �
2π
n
[ln 2π

n
� π2

3n2 � ln2℄;
and so we obtain the same bound as then is even case.

Lemma 6.2.3 Let n� 7, and letω = e2πi=n. Define the discrete function f(d) = ln j1�ωdj,
for d = 1;2; : : : ;n�1, then

n�1

∑
d=1

f (d)� 2ln
n
2π

+2+ ln2+ π2

5832n2 :
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Proof. For j = 0;1; ; : : : ;n�1, define intervalI j = [ j 2π
n ;( j +1)2π

n ℄. As in the proof of Lemma
6.2.2 we can write:

2π
n

n�1

∑
d=1

f (d) = 2π
n

n�1

∑
d=1

f (d)�Z 2π

0
f (t)dt

= 2π
n

f (1)�2
Z 2π=n

0
f (t)dt+ 2π

n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt; (6.6)

providedn� 7, we have by Lemma 6.2.1 thatZ 2π=n

0
f (t)dt � Z 2π=n

0
ln t� ε(t)dt

� [t ln t� t℄2π=n
0 � [ t3

36
℄2π=n
0

= 2π
n

ln
2π
n
� 2π

n
� 2π3

5832n3 :
Hence (6.6) is at most

2π
n

f (1)+ 4π
n

ln
n
2π

+ 4π
n

+ 2π3

5832n3 + 2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt: (6.7)

We will now bound the last two term in the above expression. Let us first consider the case
whenn is even. As in the proof of Lemma 6.2.2 we can write

2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt = n=2�1

∑
d=1

(2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt): (6.8)

Since for 1� d� n=2�1, f (t) is strict monotone increasing, we know that

2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt � 2π
n
[ f (d+1)� f (d)℄:

Hence (6.8) is most

2π
n

n=2�1

∑
d=1

[ f (d)� f (d+1)℄ = 2π
n
[ f (n

2
)� f (1)℄

= 2π
n
[ln2� f (1)℄:

Hence (6.6) is at most
4π
n

ln
n
2π

+ 4π
n
(1+ 1

2
ln2)+ 2π3

5832n3 :
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Hence we conclude that in casen is even, that

n�1

∑
d=1

f (d)� 2ln
n
2π

+2+ ln2+ π2

5832n2 :
Let us now consider the case whenn is odd. As in Lemma 6.2.2 we can write

2π
n

n�1

∑
d=2

f (d)�Z (n�1) 2π
n

2π=n
f (t)dt

= 2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ n�1
2 �1

∑
d=1

(2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt): (6.9)

Since for 1� d� (n�1)=2�1, f (t) is strict monotone increasing, we know that

2π
n
[ f (d)+ f (d+1)℄�2

Z
Id

f (t)dt � 2π
n
[ f (d+1)� f (d)℄:

Hence (6.9) is at most

2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ 2π
n

n�1
2 �1

∑
d=1

[ f (d)� f (d+1)℄ =
2π
n

f (n+1
2

)�Z
I(n�1)=2

f (t)dt+ 2π
n
[ f (1)� f (n�1

2
)℄ =

�Z
I(n�1)=2

f (t)dt+ 2π
n

f (1) �
2π
n
[ln2� f (1)℄:

Hence we obtain the same bound as then is even case.

We now turn to the main result in this section. Given that in the contiguous version of
the Fourier matrix game it does not really matter which blockof rows the adversary chooses,
we will focus on playing the game on the firstl many rows. In this case any selected minor
will be a Vandermonde matrix. In order to show existence of a good minor that avoids the
set of columns chosen by the adversary, we will consider selecting a random such minor, and
evaluate the expected value of its determinant.

More precisely, for complex numbersz0;z1; : : : ;zl�1, denote byV =V(z0;z1; : : : ;zl�1) the
l � l Vandermonde matrix defined byVi j = zj

i for 0� i; j � l �1, we have that:

Theorem 6.2.4 For any n and l; r with 0� r < n
π and l+r � n, Let N= fωkjk= 0;1; : : : ;n�1g,

whereω = e2πi=n. Let R be an arbitrary subset of N of size r. Consider the process of picking
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fz0; : : : ;zl�1g � NnR uniformly at random among all subsets of NnR of size l. Then for the
Vandermonde matrix V=V(z0;z1; : : : ;zl�1) we have

E[ln jdetVj℄� (n�2r)� l
2

�(n� r)(n� r�1)(2� ln2� 2π2

3n2 )� � l
2

�(n� r)(n� r�1)(r2 ln
n
rπ

+ r2+ r4π2

36n2):
Proof.

E[ln jdetVj℄ = E[ln∏
i< j
jzi�zj j℄

= E[∑
i< j

ln jzi�zj j℄
= ∑

i< j
E[ln jzi�zj j℄ (by linearity of E)

= �
l
2

�
E[ln jz0�z1j℄ (by symmetry):

Let η = E[ln jz0�z1j℄. We can write the following expression forη:

η = ∑
p2NnR

∑
q2NnR;q6=p

Pr[z0 = p andz1 = q℄ ln jp�qj:
Sincefz0;z1g is uniform among 2-subsets ofNnR, for anyp 6= q,

Pr[(z0 = p andz1 = q) or (z0 = q andz1 = p)℄ =�jNnRj
2

��1:
Since the events[(z0 = p andz1 = q℄ and [(z0 = q andz1 = p℄ are disjoint and have equal

probability, we can conclude that Pr[(z0 = p andz1 = q℄ = 1
2

�jNnRj
2

��1 = 1(n�r)(n�r�1) . Define

f (k) = ln j1�wkj, for k= 1;2; : : : ;n�1, and letχ correspond to the characteristic function of
NnR. That isχ(i) = 1 if i 2 NnR, and 0 otherwise. We have

η = 1(n� r)(n� r�1) ∑
p2NnR

∑
q2NnR;q6=p

ln jp�qj
= 1(n� r)(n� r�1) n�1

∑
i=0

n�1

∑
j=0; j 6=i

χ(i)χ( j) ln jωi�ω j j
= 1(n� r)(n� r�1) n�1

∑
i=0

n�1

∑
d=1

χ(i)χ(i +d modn) ln jωi�ωi+dj
= 1(n� r)(n� r�1) n�1

∑
i=0

n�1

∑
d=1

χ(i)χ(i +d modn) ln j1�ωdj
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= 1(n� r)(n� r�1) n�1

∑
i=0

n�1

∑
d=1

χ(i)χ(i +d modn) f (d)
= 1(n� r)(n� r�1) n�1

∑
d=1

f (d)n�1

∑
i=0

χ(i)χ(i +d modn)
= 1(n� r)(n� r�1) n�1

∑
d=1

f (d)c(d);
where we define

c(d) = n�1

∑
i=0

χ(i)χ(i +d modn):
Now for anyd,

c(d) = n�1

∑
i=0

χ(i)χ(i +d modn)� n�2r;
since for fixedd, the number of indicesi for which at least one ofχ(i) andχ(i +d modn) is
zero is at most 2r . Also we have that

n�1

∑
d=0

c(d) = n�1

∑
d=0

n�1

∑
i=0

χ(i)χ(i +d modn)
= n�1

∑
i=0

χ(i) n�1

∑
d=0

χ(i +d modn)
= n�1

∑
i=0

χ(i)(n� r)
= (n� r)2:

So
n�1

∑
d=1

c(d) = (n� r)2� (n� r) = n2�2rn+ r2�n+ r:
Sincec(d) is always at leastn�2r , define an “excess” functione(d) by

e(d) = c(d)� (n�2r):
The total excess equals

n�1

∑
d=1

e(d) = n�1

∑
d=1

c(d)� (n�1)(n�2r) = r2� r:
We get that

n�1

∑
d=1

f (d)c(d) = n�1

∑
d=1

f (d)[e(d)+(n�2r)℄
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= (n�2r) n�1

∑
d=1

f (d)+ n�1

∑
d=1

f (d)e(d)
� (n�2r)(2� ln2� 2π2

3n2 )+ n�1

∑
d=1

f (d)e(d);
where the last line follows from Lemma 6.2.2.

Note that for anyd, c(d) � n� r , and thus 0� e(d) � r . We know that∑n�1
d=1 f (d)e(d)

is smallest if the total excessr2� r is placed at much as possible at places wheref (d) is the
smallest. By the concavity off , one can conclude that in caser is odd,

n�1

∑
d=1

f (d)e(d) � (r�1)=2

∑
d=1

f (d)r + n�1

∑
d=n� r�1

2

f (d)r
= 2r

(r�1)=2

∑
d=1

f (d)
� 2r

n
2π

Z r�1
2

2π
n

0
f (t)dt

= rn
π

Z (r�1)π
n

0
ln t� ε(t)dt

� rn
π
[t ln t� t� t3

36
℄ (r�1)π

n
0 fby Lemma 6.2.1g

= r(r�1) ln
(r�1)π

n
� (r�1)r� 1

36
r(r�1)3π2

n2

� r2 ln
rπ
n
� r2� r4π2

36n2 ;
and in case thatr is even,

n�1

∑
d=1

f (d)e(d) � r=2

∑
d=1

f (d)r + n�1

∑
d=n+1� r

2

f (d)r
� r

n
2π

Z rπ
n

0
f (t)dt+ r

n
2π

Z (r�2)π
n

0
f (t)dt+

= rn
2π

Z rπ
n

0
ln t� ε(t)dt+ rn

2π

Z (r�2)π
n

0
ln t� ε(t)dt

� rn
2π

[t ln t� t� t3

36
℄ rπ

n
0 + rn

2π
[t ln t� t� t3

36
℄ (r�2)π

n
0 fby Lemma 6.2.1g

� r2 ln
rπ
n
� r2� r4π2

36n2 :
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Hence we finally conclude that

E[lndetV℄� (n�2r)� l
2

�(n� r)(n� r�1)(2� ln2� 2π2

3n2 )� � l
2

�(n� r)(n� r�1)(r2 ln
n
rπ

+ r2+ r4π2

36n2):
As a special case it can be verified that the statement of Theorem 6.2.4 is also valid with

r = 0. In this case there are no roots of unity to be avoided. Combined with Lemma 6.2.3 we
get:

Corollary 6.2.5 For any n and any l� n, Let N be the set of nth roots of unity. Letfz0; : : : ;zl�1g � N be a uniformly at random selected subset of size l. Then for the Vander-
monde matrix V=V(z0;z1; : : : ;zl�1) we have that

E[ln jdet(V)j℄ = Φ
� l

2

�
n�1

;
where

2� ln2� 2π2

3n2 �Φ� 2ln
n
2π

+2+ ln2+ π2

5832n2 :
Proof. Following the initial steps of the proof of Theorem 6.2.4 forr = 0 one obtains

E[ln jdet(V)j℄ = � l
2

�
n�1

n�1

∑
d=1

f (d):
Applying Lemma’s 6.2.2 and 6.2.3 gives the result.

Let us note however that in this case one knows the expected value of the determinant
exactly:

Proposition 6.2.6 For a random Vandermonde matrix V selected as in Corollary 6.2.5, we
have that E[jdet(V)j2℄ = nl

�n
l

��1
.

Proof. LetM be the set of alll� l minors ofDFTn with rows 0;1; : : : ; l�1. By Binet-Cauchy
(Theorem 4.1.3):

∑
V2M jdet(V)j2 = nl :

Hence for a uniformly at random selectedV 2RM we have thatE[jdet(V)j2℄ = nl
�n

l

��1.

Theorem 6.2.4 gives us a strategy for winning the contiguousversion of the Fourier matrix
game, which in turn using Theorem 6.1.6 yields a strategy forwinning the contiguous circulant
game. This strategy will be the basis for the circuit lower bounds we will prove in Section 6.5.
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Corollary 6.2.7 For any n and any l; r with 1� r < n
π and l+ r � n, the player has a winning

strategy for DFT-Game�(n; l ; r;eC), provided

C< (n�2r)� l
2

�(n� r)(n� r�1)(2� ln2� 2π2

3n2 )� � l
2

�(n� r)(n� r�1)(r2 ln
n
rπ

+ r2+ r4π2

36n2):
Proof. Recalling our remark after definition 6.1.2, we can assume with loss of generality that
the adversary chooses rowsR= f0;1; : : : ; l �1g. Any l � l minor of DFTn with rows R is a
Vandermonde matrix. LetC be the set of columns the adversary chooses. Theorem 6.2.4 gives
a lowerbound onE[ln jdet(M)j℄ for randomly selectedl � l minor M of DFTn with rows R
avoiding columnsC. There must exist least one minorM0 that has lnjdet(M0)j �E[ln jdet(M)j℄.
So the player chooses such a minor, for which we then have the lower bound on the absolute
value of its determinant as stated in the corollary.

Let us express the above hiding some of the constants for later convenience:

Corollary 6.2.8 For any n and any l; r with 1� r < n
π and l+ r � n, the player has a winning

strategy for DFT-Game�(n; l ; r;B) for some B where

B� 2Θ( l2
n � l2r2

n2 log n
r ):

6.3 Discrete Uncertainty Principles

In this section we will establish a relation between the matrix games and various known discrete
uncertainty relations. Let us begin with an alternative proof, which is new to our knowledge,
of the Donoho-Stark discrete uncertainty principle.

Definition 6.3.1. For ann-vector f , define the support off to be the setL( f ) = fi : fi 6= 0g.
The size of the support of a vectorf is a crude measure of the amount of localization of a
vector. Analogous to the Heisenberg uncertainty principle, we can prove that for this measure
a vector f and its Fourier transform̂f cannot both be arbitrarily narrowly localized. More
precisely, one has:

Theorem 6.3.1 ([DS89])For any n-vector f6= 0,jsupp( f )j � jsupp( f̂ )j � n; (6.10)

where f̂ = Fn f is the discrete Fourier transform of f .

Proof. Consider an arbitrary Fourier transform pair( f ; f̂ ) with f̂ = Fn f and f 6= 0. Since

Circ( f ) =pnF�
n diag( f̂ )Fn;

we have that
supp( f̂ ) = rank(Circ( f )):
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Let R be the maximum number of zeroes following a non-zero entry inf (in the cyclic sense).
ThenR� njsupp( f )j �1.

Namely, if this were not the case then, imagine partitioningthe entries off as follows.
Start at an arbitrary nonzero position. Seti = 1. If there are no other zero positions then
Bi equals this position. Otherwise, letBi be this position together with all the zero positions
that follow it (in the cyclic sense). Repeat this process forthe nexti. We obtain this way
B1;B2; : : : ;Bjsupp( f )j that partition alln entries of f . By the above then, for eachi, jBi j �
R+1< njsupp( f )j . So j[

i

Bij< jsupp( f )j � njsupp( f )j = n:
This is a contradiction, becauseB1;B2; : : : ;Bjsupp( f )j partition then entries off .

The above implies the firstR+1 rows of Circ( f ) are independent, because they contain a
square submatrix that is upper triangular (modulo cylic shifts). Hence rank(Circ( f ))�R+1�

njsupp( f )j .
Interestingly enough, divisibility properties ofn play an important role in the analysis. For

example, Tao showed that in casen is prime the inequality (6.10) can be significantly improved.
The proof relies on the well-known fact that for primep the discrete Fourier transform matrix
DFTp is regular.

Definition 6.3.2. An n� n marix A is called regular if any square submatrix ofA is non-
singular.

Theorem 6.3.2 For prime p, DFTp is a regular matrix.

The first proof of this fact is attributed to Chebotarëv, who proved it in 1926 (see [SJ96]).
Although typical proofs of this fact are field theoretic in nature, Tao gives a proof by elementary
means. Once one has established this fact the following can be proved quite readily:

Theorem 6.3.3 ([Tao91])For prime p, for any nonzero p-vector f and its Fourier transform
f̂ = Fp f we have that jsupp( f )j+ jsupp( f̂ )j � p+1:
Proof. Let k= p�jsupp( f̂ )j. There arek zeroes inf̂ . Let I � f0;1; : : : ; p�1g be the indices
of these zeroes. Supposejsupp( f )j � k. LetJ�f0;1; : : : ; p�1g be a set of sizek that contains
all indices of non-zero entries off . We have that(DFT p

I ;J) fJ = (DFTp f )I = 0;
but fJ 6= 0 sincef 6= 0. This is a contradiction sinceDFT p

I ;J is non-singular. Hencejsupp( f )j>
k= p�jsupp( f̂ )j.

Actually, in the above proof we only used the fact thatDFTp is a regular matrix, so more
generally we have:
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Theorem 6.3.4 Let A be an n�n regular matrix and consider pairs( f ; f̂ := A f) where f 6= 0.
Then jsupp( f )j+ jsupp( f̂ )j � n+1:

For the Fourier matrix game this fact immediately implies:

Proposition 6.3.5 For any prime p, and any l+ k� p, the player has a winning strategy for
DFT-Game(p; l ;k;0).

In what follows, we will establish relations between our matrix games and uncertainty type
relations. We will show that we can turn a refinement of the Donoho-Stark uncertainty relation
into a game strategy, and also provide a tranferral in the converse direction. The game strategy
obtained this way later will be used to prove our main lower bound theorem for orbit circuits.
We also show that the strategy obtained in Corollary 6.2.7 can gives us an uncertainty type
relation. This uncertainty relation will be for a discrete analogue of band-limited functions.
We define:

Definition 6.3.3. An n-vector f is calledl-index-limitedif supp( f ) � fb+ i mod n : 0� i �
l �1g, for some numberb.

In other words a vectorf is l -index-limited if its support is contained in a contiguous set (in
the modular sense) of sizel .

Let us start by making some preliminary observations about index-limited vectorsf in
conjunction with the support-size notion of localization.In the next section we will turn to
a more precise localization measure thanjsupp( f )j. For index-limited vectors one can easily
prove a strengthening of the uncertainty inequality (6.10). We following the same top-level
idea used to prove Theorem 6:3:3.

Theorem 6.3.6 For any n-vector f6= 0 that is l-index-limited,

jsupp( f̂ )j> n� l ;
where f̂ = Fn f is the discrete Fourier transform of f .

Proof. Consider arbitrary Fourier transform pair( f ; f̂ ) and letT = fb+ i mod n : 0� i �
l � 1g be a contiguous set of indices containing supp( f ). Supposejsupp( f̂ )j � n� l .
Then we can find a setS = fs1;s2; : : : ;slg of size l so that f̂i = 0 for each i 2 S. In
other wordsDFTS;T fT = 0 with fT 6= 0. So DFTS;T is singular. However,DFTS;T =
diag(ωs1b;ωs2b; : : : ;ωsl b)V(ωs1;ωs2; : : : ;ωsk), that is a (nonsingular) diagonal matrix multiplied
with a (nonsingular) Vandermonde matrix, and is hence not singular.

For l << n� 2
p

n+ 1, the above guaranteesjsupp( f )j+ jsupp( f̂ )j >> 2
p

n, whereas
Theorem 6.3.1 can only guaranteejsupp( f )j+ jsupp( f̂ )j � 2

p
n.
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6.3.1 Uncertainty relations imply game strategies

We now turn to a less crude measure of localization than the support of a vector. Following
[DS89]:

Definition 6.3.4. An n-vector f is ε-concentratedon a setT of indices ifr
∑
i =2T

j fi j2� ε:
Theorem 6.3.1 can be refined to

Theorem 6.3.7 ([DS89])For any n-vector f withjj f jj2 = 1 that isεT-concentrated on a set T
and f̂ = Fn f beingεΩ-concetrated on a setΩ, we have thatjTj � jΩj � n(1� (εT + εΩ))2: (6.11)

Note that in [BM99] it is claimed that the inequality (6.11) in the statement of the theorem
can be improved to

S( jTj � jΩj
n

)� (1� (εT + εΩ))2;
whereS(x) is defined asS(x) = 2

πSi(x)� 1
πsin(x), and whereSi(x) is the sine-integral function:

Si(x) = R x
0

sint
t dt.

Counter-examples can be given to this claim for anyt andu with tu = n by takingT =f0;u;2u; : : : ;u(t�1)g andΩ = f0; t;2t; : : : ; t(u�1)g. It is well know [DS89] that the indicator
for T transforms to the indicator ofΩ when taking the Fourier tranform. In other words, there
exist a Fourier transform pair( f ; f̂ ) with f 0-concentrated onT and f̂ 0-concentrated onΩ.
HoweverS(1)< 1, so the above would claim this is impossible. We have been unable to verify
the original intent of the claim, and the authors have not responded to our queries.

Let us now use Theorem 6.3.7 in order to obtain a “fairly” goodstrategy for playing the
Fourier matrix game. This will be the basis for proving part of the bilinear circuit lower bounds
in section 6.5. For certain types of circuits Theorem 6.3.7 will be not be strong enough. This
is where the game strategy obtained in Corollary 6.2.7 comesin. From this game strategy we
will also be able to derive strengthened uncertainty relations for index-limited vectors.

Theorem 6.3.8 For any l; r with lr � n and l+ r � n, the player has a winning strategy for
DFT-Game(n; l ; r;B). for any

B< (pn�plr )l
�

n� r
l

��1=2:
Proof. Suppose the adversary chooses a set of rowsRof sizel and set of columnsT of sizer .
Let M be the minor ofFn with rowsRand columnsT. By Theorem 6.3.7, for any unit vectorf
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that is 0-concentrated onT, f̂ = Fn f is εR concentrated onR, where

εR� 1�r lr
n
:

Hence jjMjj2 = maxjjajj2=1
jjMajj2�r lr

n
:

Let N be thel � (n� r) minor of Fn corresponding to rowsR and columns not inT. Since
NN�+MM� = I , λ is an eigenvalue ofMM� if-and-only if (1�λ) is an eigenvalue ofNN�.
The singular values ofM are the square roots of the eigenvalues ofMM�. Hence we conclude
the smallest singular value ofN is at least

σ2
l (N)� 1�r lr

n
;

and hence that

σ2
l (pnN)�pn�plr :

Therefore

det(1
n

NN�)� (pn�plr )2l :
By Theorem 4.1.3,

det(1
n

NN�) = ∑jSj=l ;S\T= /0
jdet(DFTR;S)j2:

Hence we conclude there exists a minorM1 with rows R and columns avoidingT that has
determinant at least jdet(M1)j � (pn�plr )l

�
n� r

l

��1=2:
Actually, Theorem 6.1.3 yields a slightly stronger strategy than the above theorem. For the

types of lower bounds we will prove in Section 6.5 the slight numerical differences will turn
out to be immaterial.

6.3.2 Games strategies imply uncertainty relations

Winning strategies against the adversary for the Fourier matrix game are useful for yielding
discrete uncertainty relations. Similarly, winning strategies against the adversary in the con-
tiguous Fourier matrix game imply uncertainty relations for index-limited vectors. The stronger
the player’s strategy, the stronger the uncertainty relation is obtained.
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Lemma 6.3.9 Suppose the player has a winning strategy for DFT-Game(n; l ;k;B). Then for
any set T of size l and any setΩ of size r with r� k, if a unit n-vector f with Fourier transform
f̂ = Fn f is εT-concentrated on T, then̂f is εΩ-concentrated onΩ with

εΩ > (1� εT) B

nl=2
:

Proof. Consider an arbitrary Fourier transform pair( f ; f̂ ) with f εT-concentrated on arbitrary
setT of size l . T = fb+ i mod n : 0� i � l �1g Consider arbitrary set of indicesΩ of size
r with r � k. By the definition of the Fourier matrix game and using fact that DFTn is a
symmetric matrix, there existsl � l minorV of DFTn with columnsT rows avoidingΩ such
that jdet(V)j2� B2:
Since jdet(V)j2 = det(VV�) = l�1

∏
i=0

λi(VV�) = l�1

∏
i=0

σi(V)2;
we conclude that the smallest singular valueσl (V)� B

σl�1
1

Being a minor of unitary matrixFn,

σ1( 1p
nV)� 1, soσ1(V)�pn. So

σl ( 1p
n
V)� B

nl=2
:

By the min-max characterization of singular values given inTheorem 4.1.7 we have for any
l � l matrix A that

σl (A) = inf
x6=0

jjAxjj2jjxjj2 :
Hence jj f̂Ωjj2� jj 1p

n
V( fT)jj2� σl ( 1p

n
V)jj fT jj2 > (1� εT) B

nl=2
:

6.3.3 An uncertainty relation for index-limited vectors

Let us generalize the notion of an index-limited vector to work with our ε-concetration notion
of localization:

Definition 6.3.5. An n-vector f is calledε; l-index-limitedif there existsg with jjgjj2� ε such
that f �g is l -index-limited.

Anolgously to Theorem 6.3.6 one would hope to be able to improve Theorem 6.3.7 when
restricting to index-limited vectors. For example, it should be possible to obtain lower bounds
on concentration for setT andΩ with jTj � jΩj > n when dealing with index-limited vectors,
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eventhough Theorem 6.3.7 is trivialized beyond this range.A complete analysis of this problem
is still open. In order to make steps towards this goal, usingCorollary 6.2.7 we now give an un-
certainty type relation that does manage to express non-trivial lower-bounds on concentration
for scenarios wherejTj � jΩj> n.

Lemma 6.3.10 Suppose the player has a winning strategy for DFT-Game�(n; l ;k;B). Then for
any unit n-vector f that isε; l-index-limited and any setΩ of size r with r� k, f̂ = Fn f is
εΩ-concentrated onΩ with

εΩ > (1� ε) B

nl=2
� ε:

Proof. Consider an arbitrary Fourier transform pair( f ; f̂ ) and letT = fb+ i mod n : 0� i �
l�1g be a contiguous set of indices containing supp( f �g) with g some vector withjjgjj2� ε,
and jj f jj2 = 1. Consider arbitrary set of indicesΩ of sizer with r � k. By definition of the
relaxed Fourier game and the fact that the Fourier matrix is symmetric, there existsl � l minor
V of DFTn with columnsT and rows avoidingΩ such thatjdet(V)j2� B2:
Similarly as in the proof of Lemma 6.3.9 we get for the smallest singular valueσl of 1p

nV,

σl ( 1p
n
V)> B

nl=2
:

Let Ω0 be the rows ofV. Write(Fn f )Ω0 = (Fn( f �g)+Fng)Ω0 = 1p
n
V( f �g)T +(Fng)Ω0 :

By the min-max characterization of singular values given byTheorem 4.1.7 we have thatjj 1p
n
V( f �g)T)jj2� σl ( 1p

n
V)jj f �gjj2 > (1� ε) B

nl=2
:

Sincejj(Fng)Ω0jj � ε, we get by the triangle inequality thatjj f̂Ω0 jj2 > (1� ε) B

nl=2
� ε:

SinceΩ0 is disjoint fromΩ we concludef̂ is εΩ concentrated onΩ with εΩ > (1� ε) B
nl=2 � ε.

We now state our uncertainty relation for index-limited vectors.

Corollary 6.3.11 Suppose f is a unit n-vector that isε; l-index-limited with Fourier transform
f̂ = Fn f . Then for any setΩ of size r with r� n

π and l+ r � n, f̂ is εΩ-concentrated onΩ with

εΩ � (1� ε) eB

nl=2
� ε;
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where

B= (n�2r)� l
2

�(n� r)(n� r�1)(2� ln2� 2π2

3n2 )� � l
2

�(n� r)(n� r�1)(r2 ln
n
rπ

+ r2+ r4π2

36n2):
Proof. This following immediately from the player strategy as shown to exist in Corollary
6.2.7 and applying Lemma 6.3.10.

The lower-bound on concentration onΩ is fairly weak, but we should stress this bound is
given for any conceivable setΩ, not just contiguous ones. It is conceivable that the bound can
be significantly improved by directly analyzing the`2-norm of random Vandermonde matrices
instead of their determinant.

AssumingΩ to be contiguous should make even further improvements possible. This
would qualify for doing the discrete analogue of the work done by Slepian [Sle78]. A first step
has been taken by Grunbaum [Grü81], but this still remains to be a major open problem.

Our theorem still yields non-trivial lower bounds on concentration in case bothl ; r >>pn,
which is a breaking point for typical straightforward calculations. For example, Theorem
6.3.7 yields a trivial lower-bound ofεΩ � 0 in casejTj � jΩj � n, even if jTj is assumed to be
contiguous.

6.4 The Circulant Game� - an ad hoc strategy

We will consider an ad-hoc strategy for winning the contiguous version of the circulant game.

Definition 6.4.1. A vector spaceU � Cn is ε; l-flat with respect to given orthonormal basis
u0;u1; : : : ;un�1 if for every nonzerox2U , writing x= ∑n�1

i=0 aiui, there existsi 2 f0;1; : : : ;n�
1g such that jaij � εjjxjj2+ l�1

∑
j=1

�jai� j modnj+ jai+ j modnj� :
In the following, if the basis is omitted when using this definition, it is understood we are

considering flatness with respect to the standard basis. If aspaceU is notε; l -flat, we say it is
ε; l-bumpy, and in this case any nonzero vectorx2U violating the above inequality is called
anε; l-bumpy vector.

If for vector x, we have thatjxi j > εjjxjj2 and the previous or nextl �1 positions are 0,
we sayx has apureε; l-halfbump. Analogously to the above we define a vector spaceU to be
purelyε; l-half-flat if it contains no pureε; l -half-bumpy vectors.

Bumpiness is a projective notion in the following sense:

Proposition 6.4.1 If x is anε; l-bumpy vector then so isλx, for any nonzeroλ 2 C. The same
holds with “bumpy” relpaced by “purely half-bumpy”.
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Lemma 6.4.2 If U �Cn is purelyε; l-halfbumpy, then there exists unit x2U, such that for any
contiguous set of l rows R, there exists a contiguous set of l columns T, such thatjdet(Circ(x)R;T)j> εl :
Proof. Consider any unit purelyε; l -half-bumpy vectorx in U , which exists by Proposition
6.4.1. Writex= (x0;x1; : : : ;xn�1) w.r.t. the standard basis. Without loss of generality assume
that for somei, jci j > ε and jci� j modnj = 0, for j = 1;2; : : : l �1. Also wlog. assumeR=f0;1; : : : ; l�1g. LetT = fi; i+1; : : : ; i+ l�1g. LetM =Circ(x)R;T . ThenM is upper triangular
with xi on the diagonal, sojdet(M)j= jxi jl > εl .

Lemma 6.4.3 If U � Cn is ε; l-bumpy, then there exists a unit vector x2U such that for any
contiguous set of l rows R, there exists contiguous set of l columns T, such thatjdet(Circ(x)R;T)j> εl :
Proof. Consider any unitε; l -bumpy vectorx in U , which exists by Proposition 6.4.1. Write
x= (x0;x1; : : : ;xn�1) w.r.t. the standard basis. Without loss of generality assume that for some
i, jci j > ε+∑l�1

j=1 jci� j modnj, and also wlog. assumeR= f0;1; : : : ; l � 1g. Let T = fi; i +
1; : : : ; i + l �1g. Let M = Circ(x)R;T . M hasxi on all diagonal entries, so using the Greshgorin
disc theorem (see e.g. [Bha97]), for each eigenvalue,jλk(M)j � jxi j �∑l�1

j=1 jxi� j modnj+jxi+ j modnj> ε.

Definition 6.4.2. Let

1. ρ(n; l ;k) = inffε : 8U � Cn of co-dimensionk that isε; l -bumpyg, and

2. ρ0(n; l ;k) = inffε : 8U � Cn of co-dimensionk that is purelyε; l -half-bumpyg.
The above defines an interesting notion in its own right, but with regards to the circulant

matrix games we immediately get:

Theorem 6.4.4 The player has winning strategies for Circ-Game�(n; l ;k;Bl ), where B=
max(ρ(n; l ;k);ρ0(n; l ;k)).
Proof. Suppose the adversary chooses a set ofl rows R and subspaceU � Cn of dimension
n� k. Then we know thatU is at leastρ(n; l ;k); l -bumpy. Hence by Lemma 6.4.3 the player
can choosex2U and contiguous set of rowsT so that det(Circ(x)R;T) > ρ(n; l ;k)l . Also we
know thatU is at leastρ(n; l ;k)0-half-bumpy. Hence by Lemma 6.4.2 the player can choose
x0 2U and contigous set of rowsT 0 so that det(Circ(x)R;T 0)> ρ0(n; l ;k)l .

Proposition 6.4.5 For any n;k; l with l �1< n�k, ρ0(n;k; l) � 2�n+l�1.
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Proof. Consider arbitraryU of co-dimensionk. We can addl �1 equations of the formxi =
xi�1 = : : := xi�l+2 = 0 to define a subspaceU 0 of U of nonzero dimension. Pick a unitx2U 0.
For purpose of contradiction assume thatx is 2�n+l�1; l -flat. This meansjxi+1j � 2�n+l�1,jxi+2j � 2�n+l , etc.. so

jjxjj2� n�l

∑
k=0

jxi+k+1 modnj � n�l

∑
k=0

2�n+l�1+k� 2�n+l�1(2n�l+1�1)< 1;
which is a contradiction.

6.5 Bilinear Circuit Lower Bounds

In this section we prove orbit lower bounds in the special case the free maps are diagonal with
respect to the standard basis and of determinant equal 1.

6.5.1 Strong asymptotic strategies

Definition 6.5.1. Let ln be a function with 2ln� n. We say that the player has astrong asymp-
totic winning strategy for the relaxed (or regular circulant) game with respect to ln, if for every
δ > 0 there exists ak> 0 such that for all but finitely manyn, the player has a winning strategy
for Circ-Game�(n; ln;b ln

k 
;2�δnlogn), or Circ-Game(n; ln;b ln
k 
;2�δnlogn), respectively.

Similarly we define the notion of a strong asymptotic winningstategy for the Fourier
matrix game and its relaxed version. We have shown there to beways of transferring strategies
in both directions between the Fourier matrix game and the circulant game (Theorems 6.1.6 and
6.1.4). Some loss in the strength of the strategies was involved, but when considering strong
asymptotic strategies this loss is inconsequential. Namely, we have the following theorem:

Theorem 6.5.1 Let `n be a function with̀ n = O( n
logn). The player has a strong asymptotic

strategy for winning the circulant game with respect to`n if and only if it has a strong asymp-
totic strategy for winning the Fourier game w.r.t.`n. The same statement hold for the relaxed
versions of both games.

Proof. Suppose the player has a strong asymptotic strategy w.r.t.`n for winning the Fourier
matrix game. So for everyδ0 > 0, there exists ak> 0, such that for all but finitely manyn, the
player can win

DFT-Game(n; `n;b`n

k

;2�δ0nlogn):

By Theorem 6.1.6 this means the player can win

Circ-Game(n; `n;b`n

k

;2�δ0nlogn �G);
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where withδ � 0:02 being the absolute constant of Theorem 6.1.6, the loss-factor G is given
by

G= δ`n=2q� nb `n
k 
�4`n(n�b `n

k 
) � 2�O(n):
To summmarize for some constantc> 0, we have that for anyδ0 > 0, there existsk, such

that for all but finitely manyn, the player can win

Circ-Game(n; `n;b`n

k

;2�δ0nlogn�cn):

This implies he/she has a strong asymptotic winning strategy for winning the circulant game
with respect tò n.

For the converse direction, suppose the player does not havean asymptotic winning strat-
egy for the Fourier matrix game w.r.t.`n. So there exists aδ > 0 such that for anyk, there are
infinitely manyn, for which the adversary can win

DFT-Game(n; `n;b`n

k

;2�δnlogn):

Then by Theorem 6.1.4, the adversary can win

Circ-Game(n; `n;b`n

k

;2�δnlogn �F);

where we can crudely bound the loss-factorF by

F =�n�b `n
k 
`n

�
n�`n=2 = 2O(n):

To summarize, there exist a constantc> 0 and a constantδ > 0, such that for allk, for infinitely
manyn, the adversary can pick̀n rows and a subspaceU of dimensionn�b `n

k 
, such that any`n� `n minorM of Circ(a) with rows as determined by the adversary hasjdet(M)j � 2�δnlogn+cn:
So for anyδ0 that is infinitisimally smaller thanδ, providedn is large enough one gets a straightjdet(M)j � 2�δ0nlogn bound. This implies the player does not have a strong asymptotic strategy
for the circulant game w.r.t.̀n.

The statement for there relaxed versions of the games hold because our “transfer” Theo-
rems 6.1.6 and 6.1.4 hold with both regular games replaced bytheir relaxed versions.

6.5.2 Main Result

Definition 6.5.2. A family fDngn>0 where eachDn is ann-tuple of distinct positive real num-
bers(dn

1; : : : ;dn
n) such that∏n

i=1dn
i = 1 is called aunit helper family . If for all but finitely

manyn, the entries inDn of value less than one are contiguous (in the circular sense), we say
thatfDngn>0 is asymptotically contiguous.
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Lemma 6.5.2 Let`n be a function satisfying̀n =O(pn). Then the player has a strong asymp-
totic winning strategy for the circulant game w.r.t.`n.

Proof. Let δ > 0 be given. Saỳn � c
p

n for all large enoughn. Setk = 4c2. By Theorem
6.3.8 the player can win DFT-game(n; `n;b `n

k 
;B) with

B := (1
2

p
n)`n

�
n�b`n=k
`n

��1=2:
Then applying Theorem 6.1.6 we obtain a strategy for winningCirc-game(n; `n;b `n

k 
;D) with

D� (1
2

p
n)`n

�
n�b`n=k
`n

�1=2

ε`n=2
�

nb`n=k
��1=2(n�b`n=k
)�`n=2;
whereε is a constant approximately 0:02. This is certainly at least 2�δnlogn for any δ > 0,
providedn is large enough.

Lemma 6.5.3 Let `n be a function satisfying̀n = O(n3=4). Then the player has a strong
asymptotic winning strategy for the relaxed circulant gamew.r.t. `n.

Proof. Let δ > 0 be given. Letk be a constant to be determined later. By Corollary 6.2.8,
providedn is large enough, the player has a winning strategy for DFT-Game�(n; `n;b `n

k 
;B) for
someB where

B� 2Θ( `2n
n � `4n

k2n2 log kn`n ):
Now applying Theorem 6.1.6, we obtain a strategy for winningCirc-game(n; `n;b `n

k 
;D) with

D� 2Θ( `2n
n � `4n

k2n2 log kn`n )ε`n=2
�

nb`n=k
��1=2(n�b`n=k
)`n=2;
whereε is a constant approximately 0:02. We see that it is possible to setk large enough to
makeB at least 2�δnlogn for all large enoughn.

Theorem 6.5.4 Let fDngn>0 be a unit helper family, and supposefΓngn>0 is a family of
bounded-coefficient bilinear circuits such that for all n,

Γn(x1 �dn
1; : : : ;xn �dn

n;y) = xTCirc(y):
Define`n = jDn\ (0;1)j. We have that

1. If `n = O(n1
2), then there existsγ > 0 so that s(Γn)� γnlogn, for infinitely many n.

2. If `n = O(n3
4) andfDngn>0 is asympotically contiguous, then then there existsγ > 0 so

that s(Γn)� γnlogn, for infinitely many n.
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3. If `n = Ω(n), then s(Γn) = Ω(nlogn).
Proof. Let us first prove the third item. Suppose`n = Ω(n). Hence there exists anε0 with
1> ε0 > 0 so that for all but finitely manyn, `n� ε0n. In this case we think of thedn

i that are
larger than 1 as help gates as in [BL02]. There are at most(1� ε0)n many such help gates.
Theorem 6.4 of [BL02] yields thats(Γn) = Ω(nlogn).

Let us now focus on the first two items. For eachn, Let i1n; : : : ; inn be such that

dn
i1n

< dn
i2n

< :: : < dn
inn
:

In case

log
n

∏
j=`n+1

dn
i jn

= o(nlogn);
then we can replace the constants which are bigger than 1 by bounded constant repeated ad-
ditions. Which takes at most∑n

j=`n+1 logdn
i jn

= o(nlogn) additional gates. Hence we would
obtain a family of regular bounded-coefficient bilinear circuits of sizes(Γn)+o(nlogn) com-
puting xTCirc(y), but such a family must have sizeΩ(nlogn) by [BL02]. Hence we would
concludes(Γn) = Ω(nlogn). In this case we can see that both item 1 and 2 of the theorem are
satisfied.

So assume that there is aδ > 0 such that for infinitely manyn, ∏n
j=`n+1dn

i jn
> 2δnlogn. This

implies that for infinitely manyn, `n

∏
j=1

dn
i jn

< 2�δnlogn: (6.12)

Let us consider some large enoughn for which (6.12) holds, and let us drop the sub and
supersciptsn on our variables.

We are going to perform the following substitution on the circuit. Setxi j = 0 for all j > `
and substitutexi j = zj=di j otherwise. This yields a bounded coefficient bilinear circuit of no
size no bigger thans(Γ), and it computes(z1; : : : ; z̀ )diag(d�1

i1
; : : : ;d�1

i` )M;
whereM is them�n minor of Circ(y) corresponding to rowsI := fi1; : : : ; i`g.

Now setr = n�b k̀0

, wherek0 is a constant to be determined later. Letf1; : : : ; fk be the

linear forms iny of Γ. Lemma 5.1.1 provides us with a linear subspaceU of dimensionn�b k̀0



such that for any unitb2R U , we have that

logmax
i
j fi(b)j � 3s(Γn)+3n

2b`=k0
+2
: (6.13)

We think of the subspaceU and the setI as chosen by the adversary.
For any unitb2U and anỳ � ` minor M0 of Circ(b) with rows I we can obtain fromΓn

a bounded coefficientlinear circuit computing theCm! Cm map(z1; : : : ; z̀ )diag(d�1
i1

; : : : ;d�1
i` )M0;
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by removing the outputs not corresponding toM0, replacing multiplications withfi(b) by
fi(b)=µ, and correcting this by adding at most` logµ repeated additions at the output gates,
whereµ= maxi j fi(b)j.

Hence the number of gates we added is at most

` logmax
i
j fi(b)j � `3s(Γn)+3n

2b`=k0
+2
� k03s(Γn)+3nk0� 4k0s(Γn):

So the size of the resulting b.c. linear circuit is at most 5k0s(Γ).
So provided the player has a strong asymptotic strategy winning strategy with respect to`n for the circulant game, we know a constantk0 can be chosen such that there exist unitb2U

andM0 with jdet(M0)j � 2� δ
2nlogn;

and if we know in addition thatI is contigious, then only a strong asymptotic winning strategy
for the relaxed circulant game is required for the same fact.This would imply thatjdet(diag(d�1

i1
; : : : ;d�1

i` )M0)j � 2
δ
2nlogn:

However, by Morgenstern’s bound any bounded coefficient circuit computing
diag(d�1

i1
; : : : ;d�1

i` )M0 then requires at leastδ
2nlogn gates. Hences(Γn)� δ

10k0
nlogn.

In casè n =O(n1
2), we know that the player has a strong asymptotic winning strategy w.r.t.`n for winning the circultant game by Lemma 6.5.2, which establishes item 2 of the theorem.

In case`n = O(n3
4), we know that the player has a strong asymptotic winning strategy

w.r.t. `n for winning the contiguous circulant game, by Lemma 6.5.3. So provided the helper
family is asymptotically contiguous the setI is contiguous, and this establishes item 3.

The model of computation that we are considering is admittedly exotic, but it should be
noted that the model allows for up ton�1 unbounded constants, which is more than theεn
unbounded constants the help gates technique in [BL02] manages to handle, where 0< ε < 1
cannot depend onn. We do have a strong restriction on where the unbounded constants can
appear in the circuit, and there is the restriction of their product being at mostΘ(1). As we
observed before, the orbit model has computational power somewhere in between the general
unbounded-coefficient model and the bounded-coefficient model. However, it seems unlikely
that the model we consider is as powerful as the general unbounded-coefficient case in which
the helper constantsdi ’s are unrestricted.

Stepping away from the orbit model, what Theorem 6.5.4 establishes with respect to the
standard bounded-coefficient model of computation is a general lower bound for entire families
of bilinear mappings, that appear in theSLn(C)-orbit of the circular convolution mapping.
Namely, the following corollary is immediate:

Corollary 6.5.5 LetfDngn>0 be a unit helper family, and define`n = jDn\ (0;1)j. If `n satis-
fies one of:

1. If `n = O(n1
2), or
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2. If `n = O(n3
4) andfDngn>0 is asymptotically contiguous, or

3. If `n = Ω(n),
then for any family of bounded-coefficient bilinear circuitsfΓngn>0 that computesfxTCirc(d1y1;d2y2; : : : ;dnyn)gn>0;
there existsγ > 0 so that for infinitely many n, s(Γn)� γnlogn.

Both in Theorem 6.5.4 and its Corollary 6.5.5 a knowledge gapis present, informally
speaking, for̀ n in betweenO(n3=4) andΩ(n). In Section 6.6 we will give some evidence that,
at least in our framework, we will not be able to close this gap. The analysis involvesdiscrete
prolate spheroidal sequencesand their remarkable eigenvalue properties. First however, we
will generalize Theorem 6.5.4 to two-sided orbits.

6.5.3 Two-Sided Diagonal Case

So far we have focused attention on diagonal orbit circuits in which only one side, which
w.l.o.g. was assumed to be thex-side, has helper constants. We now generalize Theorem 6.5.4
to the scenario in which we have helper constants on both thex andy-side. Obviously in this
more general case we will observe an analogous “knowledge-gap” as is present in Theorem
6.5.4, e.g. as it comes to dealing with`n that are notO(pn). We will show however that,
provided we have on both of the input sides of the circuit any of the favorable situations that
we did manage to handle before, then we can still establish thenlogn lower bound.

Definition 6.5.3. Call a unit helper familyfDngn>0 good if for `n = jDn\ (0;1)j one of the
following holds:

1. `n = O(pn), or

2. `n = O(n3=4) andfDngn>0 is asymptotically contiguous, or

3. for someε > 1=2, for all but finitely manyn, `n� εn.

We have the following theorem:

Theorem 6.5.6 Let fDngn>0 and fEngn>0 be unit helper families that are both good, and
supposefΓngn>0 is a family of bounded-coefficient bilinear circuits such that for all n,

Γn(x1 �dn
1; : : : ;xn �dn

n;y1 �en
1; : : : ;yn �en

n) = xTCirc(y):
Then there there existsγ > 0 such that for infinitely many n, s(Γn)� γnlogn.

Proof. Let `n = jDn\ (0;1)j. For eachn, Let i1n; : : : ; inn be such that

dn
i1n

< dn
i2n

< :: : < dn
inn
:
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In case

log
n

∏
j=`n+1

dn
i jn

= o(nlogn);
then we can replace the constants which are bigger than 1 on the x-side by bounded constant
repeated additions. This takes at most∑n

j=`n+1 logdn
i jn

= o(nlogn) additional gates. Hence
we would obtain a one-sided orbit bilinear circuits of sizes(Γn)+o(nlogn) that usesfEngn>0

as helper constants only. SincefEngn>0 is good, we obtain the conclusion of the theorem by
application of Theorem 6.5.4.

Hence assume we haveδ > 0 and an infinity setN of input sizes such that for alln2 N,

n

∏
j=`n+1

dn
i jn
� 2δnlogn:

Let `0n = jEn\ (0;1)j. For eachn, Let j1n; : : : ; jnn be such that

en
j1n

< en
j2n

< :: : < en
jnn
:

If on the subsequenceN (per abuse, we treatN as an infinite sequence of increasing numbers)
we have that

log
n

∏
k=`0n+1

en
jkn

= o(nlogn);
that is, if for anyη > 0, for all but finitely manyn2 N,

log
n

∏
k=`0n+1

en
jkn
� ηnlogn;

then for eachn 2 N, we can replace the unbounded constants on they-side by effectively
o(nlogn) repeated additions. Hence obtaining for eachn2N, a one-sided orbit bilinear circuits
of sizes(Γn)+o(nlogn) that usesfDngn>0 as helper constants only. SincefDngn>0 is good,
we obtain the conclusion of the theorem by now continuing as in the proof of Theorem 6.5.4.

Hence assume we haveδ0 > 0 and an infinity subsequenceN0 of N, such that for alln2N0,
n

∏
k=`0n+1

en
jkn
� 2δ0nlogn:

Case I: Suppose onN0, `0n = Ω(`n), i.e. suppose there existsη > 0, such that for all but
finitely manyn2 N0, we have that̀ 0n� η`n.

Subcase A: If fDngn>0 is good because of clause three of the definition, Then alsofEngn>0 is good because of clause three. So we haveε;ε0 > 1=2 such that for all but finitely
manyn, `n � εn and`0n � ε0n. Thinking of the helper constants as help gates as in [BL02],
in this case the circuit contains at most(2� (ε+ ε0))n unbounded constants. This is bounded
away fromn by a constant factor, and thus via Theorem 6.4 of [BL02] we obtain the statement
of the theorem.
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Subcase B:If fDngn>0 is good because of clause one of the definition, i.e.`n = O(pn),
then by Lemma 6.5.2 we know the player has a asymptotic winning strategy for the circulant
game w.r.t.̀ n. Consider large enoughn2 N0, and let us drop the sub and supersciptsn on our
variables.

We are going to perform the following substitution on the circuit. Setxi j = 0 for all j > `
and substitutexi j = zj=di j otherwise. This yields a one-sided orbit circuitΓ0 of no size no
bigger thans(Γ), for which

Γ0(z1;z2; : : : ; z̀ ;y1e1;y2e2; : : : ;ynen) = (z1; : : : ; z̀ )diag(d�1
i1

; : : : ;d�1
i` )M;

whereM is them�n minor of Circ(y) corresponding to rowsI := fi1; : : : ; i`g.
Now setr = n� b k̀0


, wherek0 is a constant determined large enough so that for any
subspaceU of dimensionr , there exists valueb for y so thatM (with y := b) has aǹ � ` minor

M0 with det(M0) � 2� δ
2nlogn. Since we have an asymptotic winning strategy for winning the

circulant game with respect`n there exists suchk0. Observe that enlargingk0 only makes the
circulant game easier for the player. This will enable us to also satisfy the requirement thatk0

is chosen so that1k0
< η. Hence in this casè0 > η` > k̀0

. Let J = f j1; j2; : : : ; j`0g, i.e. J is the
set of indicesj whereej > 1. LetV be the coordinate subspace determined by set of equation
y j = 0, for all j 2 J. The dimension ofV is `0. Modify circuit Γ0 into a bounded-coefficient
bilinear circuitΓ00 by settingy j = 0, for all j 2 J and pushing downei constants that are smaller
than one onto the wires. Fory restricted toV the output ofΓ00 andΓ0 are identical.

Let f1; : : : ; fk be the linear forms iny of Γ00. We still consider these as being defined over
all of the variablesy1;y2; : : : ;yn, eventhough onlỳ 0 manyy variables are used. This way we
can still consider them as definingn-input polynomial function. Lemma 5.1.1 provides us with
a linear subspaceU of dimensionn�b k̀0


 such that for any unitb2R U , we have that

logmax
i
j fi(b)j � 3s(Γ00)+3n

2b`=k0
+2
: (6.14)

Now since

dim[U \V℄� (n�b
k̀0

)+ `0�n= `0�b

k̀0

> 0;

we know there exists unitb 2U \V. We fix thisb for the y inputs. Now the outputs of the
linear forms iny are just constants. Multiplication with these constants will be replaced by
repeated additions just as was done in Theorem 6.5.4. To givethe details, for the minorM0 of
Circ(b) with rows I we can obtain fromΓn a bounded coefficientlinear circuit computing the
C`! C` map (z1; : : : ;zm)diag(d�1

i1
; : : : ;d�1

i` )M0;
by removing the outputs not corresponding toM0, replacing multiplications withfi(b) by
fi(b)=µ, and correcting this by adding at most` logµ repeated additions at the output gates,
whereµ= maxi j fi(b)j.

Hence the number of gates we added is at most

` logmax
i
j fi(b)j � `3s(Γ00n)+3n

2b`=k0
+2
� 5k0s(Γn):
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Since jdet(diag(d�1
i1

; : : : ;d�1
i` )M0)j � 2

δ
2nlogn;

we conclude by Theorem 2.1.1 thats(Γn)� δ
10k0

nlogn.

Subcase C:If fDngn>0 is good because of clause two of the definition, i.e`n = O(n3=4)
andfDngn>0 is asymptotically contiguous, we have an asymptotically winning strategy for
the contiguous circulant game. The proof proceeds similarly as in Subcase B. Having only a
strong strategy for the contiguous game is sufficient, sincein the case thedi constants that are
cancelled form a contiguous block, and we therefore are working with minors of Circ(y) that
are restricted to a contiguous block of rows.

Case II: Assume the opposite of Case I, i.e. assume for anyη > 0, there are infinitely
manyn 2 N0 such that̀ 0n < η`n. Let N00 be infinite subsequence ofN0 for which this holds.
On N00, `n = Ω(`0n). This case now follows similarly as in Case I, but with thex andy-sides
interchanged and usingN00 instead ofN0.

Let us note that at the current time item 3 of Definition 6.5.3 does not read̀n � Ω(n),
as would be desirable, since this is what we did for the one-sided case. The reason being
that Theorem 6.4 of [BL02] allows for up toεn unbounded constants present anywhere in the
circuit, with ε < 1. However, it is not clear how to generalize this result to allowing uptoε1n
unbounded constants on one side of the circuit (say the linear in x part) together withanother
ε2n constants on the other side (the linear iny part), where potentiallyε1+ε2 > 1. The [BL02]
result can only be applied providedε1+ ε2 < 1.

6.6 Closing the gap

Our original hope was to get item 2 of Theorem 6.5.4 to work forany `(n) = o(n). Unfortu-
nately, the following appears to be true:

Conjecture 3. There existsε < 1, such that for̀ (n) = bnε
, the player does not have a strong
asymptotic strategy for winning the contiguous version of Fourier matrix game w.r.t.̀(n).

Actually we believe that the cut-off point lies somewhere for ε near 4=5, which we will
support using results obtained in [Sle78]. We state:

Conjecture 4. If `n = Ω(n4=5 log1=5n) and`n = o(n), then

1. the player does not have a strong asymptotic strategy for winning the contiguous circulant
game w.r.t.̀ n, and

2. neither does the player have a strong asymptotic strategyfor winning the contiguous
Fourier game w.r.t.̀n.

Given that we have fairly efficient ways of transferring strategies between the Fourier
matrix game and the circulant matrix game, it is no suprise that items 1 and 2 of conjecture 4
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are closely related. Theorem 6.5.1 shows that items 1 and 2 are equivalent for̀ n = O( n
logn). It

is also clear that conjecture 4 implies conjecture 3.
So, let us have a look at conjecture 4. To analyze this, suppose ` = o(n). Con-

sider playing DFT-Game�(n; `; r = b c̀
;B), for some large enoughn, wherec is some con-
stant. For convenience let us assume thatr is odd. LetN = f0;1; : : : ;n� 1g. Suppose
the adversary chooses rowsR= 0;1; : : : ; l � 1 and setC of columns 0;1; : : : ;(r � 1)=2 and
n�1;n�2; : : : ;n� (r�1)=2. In this case, withF = n�1=2DFTn, we letK = FR;CF�

R;C then the
entries ofK are given by theDirichlet kernel. Namely, for 0� s 6= t � `�1, letting f = s�t

n ,
we have

n �Kst = (r�1)=2

∑
k=�(r�1)=2

e2πik f = e�2πi f (r�1)=2
(r�1)
∑
k=0

e2πik f = e�2πi f (r�1)=21�e2πir f

1�e2πi f

= e�2πi f (r�1)=2�e2πi f (r+1)=2

1�e2πi f = e�πi f (r�1)�eπi(r+1) f

1�e2πi f = e�πi f (r�1)�eπi(r+1) f

1�e2πi f

= eπi f (e�πir f �eπir f )
eπi f (e�πi f �eπi f ) = e�πir f �eπir f

e�πi f �eπi f = �2i sin(r f π)�2i sin( f π)
= sin(r(s� t)π

n)
sin((s� t)π

n) ;
where we can also take this formula to defineKst for s= t, provided it is understood that one
takes the limiting valueKst = r=n in this case.

Let M = I�K. We have thatλ is an eigenvalue ofM if-and only if 1�λ is an eigenvalue of
K. If det(M) = 2�ω(nlogn), sinceM is also given byM = FR;N=CF�

R;N=C, then by Binet-Cauchy
(Theorem 4.1.3),

det(M) = ∑
S�N=CjSj=` jdet(FR;S)j2:

So any`� ` minor of DFTn that avoids rowsC has magnitude at mostn`=22�ω(nlogn) =
2�ω(nlogn) for ` = o(n), which means the player does not have a strong asymptotic strategy.
All eigenvalues ofK are in the interval[0;1℄. This is because the largest singular value ofFR;C
is at most 1. Hence we have the same forM. To give an upper bound on det(M) it thus suffices
to show the largest eigenvalues ofK cluster very close to 1.

At this stage we introduce thediscrete prolate matrixstudied by Slepian [Sle78]. For
bandwidth parameter W, he defines theN�N matrix:

ρ(N;W)st = sin2πW(s� t)
π(s� t) ; for 0� s; t � N�1;

where it is understood that fors= t the value on the r.h.s. equals 2W. Let us takeW = r
2n and

N = `. Then

ρ(`; r
2n

)st = sinr(s� t)π
n

π(s� t) ; for 0� s; t � `�1:
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It is certainly clear that for fixed 0� s 6= t � `�1, sincè = o(n),
lim
n!∞

Kst

ρ(N;W)st
= lim

n!∞

π(s� t)
nsin((s� t)π

n)= lim
n!∞

π(s� t)
n(s� t)π

n= 1;
and that on the diagonal both matrices have all entries equalto r

n.

6.6.1 Asymptotic Equivalence

Actually a much stronger relation holds between the matrixK andρN;W. Considered as families
of matrices depending on the parametern, these families areasymptotically equivalent. We
give the definition from [Gra02], modified to give some flexibility regarding the dimension of
the matrices:

Definition 6.6.1. Two sequences of̀(n)� `(n) matricesAn andBn are said to beasymptoti-
cally equivalentif the exists boundK such that

1. for all n, jjAnjj2; jjBnjj2 < K, and

2. limn!∞
jjAn�BnjjFp`(n) = 0.

Note that for aǹ (n)� `(n) matrix A, jjAjj2� jjAjjF �p`(n)jjAjj2, so the second condi-
tion in the definition is weaker than straightforwardly requiring that limn!∞ jjAn�Bnjj2 = 0.
For asymptotically equivalent matrices their eigenvalueshave the same distribution in the fol-
lowing strong sense. Namely, Theorem 2.4 from [Gra02] can betweaked for our scenario to
read:

Theorem 6.6.1 Let An and Bn be asymptotically equivalent families of`(n)� `(n) Hermitian
matrices. Let m and M be such that for each n, all the eigenvaluesλi(An) andλi(An)of An and
Bn are in the interval[m;M℄. Let F(x) be an arbitrary function continous on[m;M℄. Then

lim
n!∞

`(n)�1
`(n)
∑
i=1

F(λi(An)) = lim
n!∞

`(n)�1
`(n)
∑
i=1

F(λi(Bn)):
To give two examples, forF being the identity function, the above states that the aver-

ages of the eigenvalues, if convergent, converge to the samevalue. ForF(x) = lnx, provided
eigenvalues are positive, one would obtain

lim
n!∞

lndet(An)1=`(n) = lim
n!∞

lndet(Bn)1=`(n):
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We will now prove that the (families of) matricesK andρ(`; r
2n) are asymptotically equiv-

alent.

Theorem 6.6.2 If `n = o(n), then for any sequence rn, the families of̀ n�`n matricesfK(n)gn
andfρ(l ; rn

2n)gn defined by

K(n)st = sin(rn(s� t)π
n)

nsin((s� t)π
n)

and

ρ(`n; rn

2n
)st = sinrn(s� t)π

n

π(s� t) ; for 0� s; t � `n�1;
are asymptotically equivalent.

Proof. First of all, sinceK(n) = FR;CF�
R;C, by submultiplicativity of thè 2-norm we knowjjK(n)jj2 � 1. From [Sle78] we know thatjjρ(`n; rn

2n)jj2 � 1. Let D(n)st = ρ(`n; rn
2n)�K(n)st.

Remains to show that

lim
n!∞

jjD(n)jjFp`n
= 0:

We use Taylor expansions (see [RW04] p.197): for everyt, there exists 0< θ < 1 such that

sint = t� t3

6
cosθt:

Consider fixed 0� s; t � `n�1 andn. Let αn = sinrn(s� t)π
n, and letβn = π(s� t). Using

Taylor, write:

sin
π
n
(s� t) = π

n
(s� t)� π3

6n3(s� t)3cosθ
π
n
(s� t)

= βn

n
� γn

n

with 0< θ < 1 depending onn ands� t and

γn = π3

6n2(s� t)3cosθ
π
n
(s� t):

We have that

D(n)st = αn

βn
� αn

βn� γn= αn(βn� γn)
βn(βn� γn) � αnβn

βn(βn� γn)= �αnγn

β2
n�βnγn
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= �αn
π3

6n2(s� t)3cosθπ
n(s� t)

π2(s� t)2� π4

6n2(s� t)4cosθπ
n(s� t)

= �αn
π

6n2(s� t)cosθπ
n(s� t)

1� π2

6n2(s� t)2cosθπ
n(s� t) :

Since`n = o(n), if n is large enough the denominator in above expression is aribtrarily close
to 1. The numerator has two oscillating factors, but converges to 0 as determined by the domi-
nating s�t

n2 factor. Hence there exists constantc> 0 so that for large enoughn,jjD(n)jj2F`n
� 1`n

`n�1

∑
s=0

`n�1

∑
t=0

c
(s� t)2

n4

� c`4
n`nn4

� cl3n
n4 :

Since`n = o(n), we get that

lim
n!∞

jjD(n)jjFp`n
� lim

n!∞

c1=2`3=2
n

n2 = 0:
Asymptotic equivalence provides us with some preliminary evidence of the close similarity

of K(n) andρ(`; r
2n), but by itself is not strong enough to resolve conjecture 4. The task at hand

is to carry over the asymptotic eigenvalue analysis done forρ(`; r
2n) to K(n). We will give some

experimental data that, together with what is already knownaboutρ(`; r
2n), suggest indeed one

could prove the truth of conjecture 4 by doing a precise asymptotic eigenvalue analysis of
K(n). Such an analysis however, is still an infamous open problemin Fourier analysis, as we
will discuss (see also [AET99, Grü81, CX84]).

6.6.2 Experimental Data

Let us do an experimental comparison betweenK(n) andρ(`; r
2n). Define the function

Q(n) = ln jdet(I �ρ(`n; `n
2n))j

ln jdet(I �K(n))j ; (6.15)

where we fix some 0< δ < 1 and set̀ n = bnδ
. Figure 6.1 show the functionQ(n) for δ = 0:5.
The function appears to converge to a value just less than 1, suggesting that for any function
f (n), jdet(I �ρ(`n; `n

2n
))j= 2f (n) =) jdet(I �K(n))j= 2Θ( f (n)) (6.16)
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Appendix A contains some additional data for different values ofδ. For δ close to 1 com-
putational precision becomes an issue, and the range forn must be chosen to be smaller for
data to be reliable. Nevertheless, we believe the data suggests that implication (6.16) holds
with `n = bnδ
, for any 0< δ < 1. The asymptotics of the eigenvalues ofρ(N;W) are well-
understood. This translates to statements about the determinant of I �ρ(N;W), which can be
seen to be smaller than 2�cnlogn for any fixedc > 0, if `n = Ω(n4=5 log1=5n). We will show
this momentarily. If indeed implication 6.16 holds for any 0< δ < 1, then this would prove
conjecture 4, and rule out strong asymptotic strategies forthe player oncèn =Ω(n4=5 log1=5n).

0 50 100 150 200 250 300 350 400 450 500
0.975
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0.985
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n

Q
(n

)

Figure 6.1:Q(n) for δ = 0:5
6.6.3 Eigenvalues ofρ(N;W)
In [Sle78], the following asymptotic values for the eigenvalues ofρ(N;W) are given. For large
N andk with

k= b2WN(1� ε)
; with 0< ε < 1;
we get

1�λk(ρ(N;W))� e�CL4=2e�L3N; (6.17)
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where
A= cos2πW

andA< B< 1 is determined so thatZ 1

B

s
t�B(t�A)(1� t2)dt = k

N
π:

Furthermore, we have

C = 4
L2

�
N
2

L1+(2+(�1)k)π
4

�
mod2π

;
where[x℄mod2π is defined to be the number in[0;2π) congruent tox modulo 2π. The variables
L1;L2;L3 andL4 determined by

L1 = Z 1

B
P(t)dt L2 = Z 1

B
Q(t)dt

L3 = Z B

A
P(t)dt L4 = Z B

A
Q(t)dt;

where

P(t) = ���� t�B(t�A)(1� t2) ����1=2 ; Q(t) = ��(t�B)(t�A)(1� t2)���1=2 :
We apply this withW = r

2n = b`=c

2n � `

2cn, N = ` andε = 3
4. We will assumen is some

large enough number, and drop this index for the variables that depend on it. Note that in
[Sle78] the bandwidth parameterW is taken to be fixed, but let us here provide evidence for
our conjectures, modulo the assumption that this technicality can be resolved. We first perform
a substitutiont = sinφ on the integral determiningB. Define

f (t) =rt�B
t�A

1p
1� t2

:
Then Z 1

B
f (t)dt = Z arcsin1

arcsinB
f (sinφ)cosφdφ

= Z π=2

arcsinB

s
sinφ�B
sinφ�A

dφ: (6.18)

Note that sinceA< B< 1, we have thatπ2� π`
cn < arcsinB< π

2. Since`= o(n) we can approx-
imate (6.18) by

1
2
(π
2
�arcsinB)r1�B

1�A
� 1p

2

p
1�B

r
1�B
1�A

= 1�Bp
2�2A

:



6.6. CLOSING THE GAP 115

ApproximatingA by 1� 1
2(2πW)2 = 1� π2`2

2c2n2 , we get that

B� 1� π2`2

c2n2(1� ε):
So for ε = 3

4, B� 1� π2`2

4c2n2 , which is approximately in the middle of the interval[A;1℄. We

will ignore the factore�CL4=2 in (6.17), since this factor is certainly always less than 1.We will
now give a lower bound onL3:

L3 = Z B

A

s
B� t(t�A)(1� t2)dt

� Z A+B
2

A

s
B� t(t�A)(1� t2)dt

� r
B�A

2

Z A+B
2

A

1p(t�A)(1� t2)dt

� r
B�A

2

Z A+B
2

A

1p
t�A

dt

= r
B�A

2

Z B�A
2

0

1p
δ

dδ

= r
B�A

2
2

r
B�A

2= B�A� π2`2

4c2n2 :
So we conclude that for the matrixM0 = I �ρ(N;W),

λk(M0)� e�`L3 = e� π2`3
4c2n2 ;

wherek= bWN=2
 � `2

4cn. Hence

det(M0)� e� π2l5

16c3n3 = e�Θ( `5
n3 ):

If this bound would carry over to the matrixM, which certainly seems plausible given the
empirical evidence and also the asymptotic equivalence of the matricesK andρ(`; r

2n), then in

order for the player to have a strong asymptotic strategy,`5

n3 must beo(nlogn). In other words,

if `5

n3 = Ω(nlogn), i.e. `= Ω(n4=5 log1=5n), the player has no strong asymptotic strategy. This
would then prove conjecture 4.
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Unfortunately, the asymptotic equivalence ofK andρ(`; r
2n) is by itself not strong enough

to carry over eigenvalue results about the matrixM0 to M whilst retaining the precise quan-
titive values provided by [Sle78]. We need to know about the precise rates of convergence.
Also given our sensitive requirements on the clustering of eigenvalues ofK near 1, that is our
need to observe eigenvalues that areexponentially closeto 1, it seems difficult to carry over
results aboutρ(`; r

2n) to K using any standard perturbation techniques, like Theorem 2.1.2.
Namely, jjK� ρ(`; r

2n)jj2 does not converge to 0 exponentially fast. Note also that Theorem
6.6.2 actually shows that for some constantc> 0,jjD(n)jj2� c1=2 `2

n

n2 :
So for `n = o(n) we do have thè2-norm of the difference betweenK andρ(`; r

2n) going to
zero. The problem is that this convergence is not rapid enough: takings� t = 1, we can see
thatD(n) has entries that are roughlyΩ( `n

n2) and so certainly

jjD(n)jj2 = Ω( `n

n2):
Hence in an application of 2.1.2, the exponentially close clustering of eigenvalues ofρ(`; r

2n)
near 1 would get lost in the approximation.

It appears that to know about the eigenvalues ofK in the same precise manner that we know
about the eigenvalues ofρ(`; r

2n), we need to carry out theanalogous analysisas in [Sle78].
However, as remarked before, this remains a major open problem [AET99]. A first step was
taken by Gr̈unbaum [Gr̈u81] into resolving this issue. To give an idea, Slepian’s results are
based on the fact thatρ(N;W) is closely related to the integral operator

L� Z W

W
d f 0sinNπ( f � f 0)

sinπ( f � f 0) :
ForL he manages to give a diffential operatorM that commutes withL. This implies that these
operators have the same eigenfunctions. The eigenfunctions for L can be found by solving a
diffential equation of Sturm-Liouville type. This then translates back to the eigenvectors and
eigenvalues ofρ(N;W).

For comparison, Gr̈unbaum manages to give a tri-diagonal matrixM0 that commutes with
K. This then meansK andM0 have the same eigenvectors. Potentially, the eigenvectorsof M0
can be expressed in closed form by solving a difference equation, just like in the continuous
scenario a diffential equation needed to be solved. This certainly is going to be a formidable
task. Note that also some work towards this end has been done in [CX84], although at a more
elementary level.

In any case, regardless of whether we can formally prove this, it seems inplausible that
the knowledge-gap we observed in Theorem 6.5.4 and its corollary 6.5.5 can be closed “all the
way up to”`n = o(n) by the game strategy framework we devised. Our random Vandermonde
matrix strategy gets us up to`= Ω(n3=4). The above motivation leaves open the possibility one
can perhaps push this up to`n = o(n4=5 log1=5n), but also suggests that at this point any DFT-
Game strategy oriented argument will cease to work: at the`(n) = n4=5+δ point the adversary
appears to have the upper hand.
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6.6.4 Equal Spacing Strategy and its limitations

The previous section gave evidence why it is plausible that for large enoughε < 1, there is no
strong asymptotic strategy for the player with respect to`(n) = bnε
 in the relaxed Fourier ma-
trix game. In this section, we will look at the particular scenario where the adversary chooses a
contiguous block of disallowed columns, and where the player chooses his columns spaced at
equal intervals in the remaining set of columns. This is a particularly instructive case to look at
with regards to conjecture 3. As noted before, we have some indication this is the worst-case
scenario as far as the adversary’s choices are concerned. Itwill be interesting to see how well
an intuitively good strategy like spacing points equally inthe allowed interval fares in this case.

Instead of analyzing this scenario discretely, we will analyze the following continuous
analogue. Letk be a constant, and suppose` = o(n). Consider some large enoughn. Say the
adversary fixes an arbitrarysector Sof the unit circle of anglek̀n2π. We will now try to find a
set of` points on the unit circle that are equally spaced in some sense and avoid the setS.

Let us start out with a setM of m equally spaced points on the unit circle. LetR= M\S.
SayR hasr points. LetL = M=R. We wantL to have` points, so assume a setM is chosen so
r = m� `. Since the fraction of points ofM that are inR will be proportional to the fraction
thatS is of the entire cirle, we have thatr

m � k̀n, sor � `2

kn�` , andm� `kn
kn�` = `

1� k̀n
.

For finite setsA;B2 C, define

PAB = ∏
a2A;b2B;a6=b

ja�bj:
We are interested inPLL, since it relates to a Vandermonde determinant:

PLL = jV(x1;x2; : : : ;xl )j2;
wherex1;x2; : : : ;xn are the points inL. Observe that

PLL = PLM

PLR
and PLR = PRM

PRR
;

so

PLL = PLM

PRM
PRR:

Let x be a point contained inM. By symmetry,PxM is the same for any pointx of M. Now
PMM = jdet(DFTm)j2 = mm, soPxM = m. hencePRM = mr andPLM = m`. Hence

PLL = ml�rPRR= m2`�mPRR:
Taking the crude upper bound that any chord between points inR is of length at most2π`

kn , we
get that

PRR��2π`
kn

�r(r�1) :
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Hence (using thatm� 2` for large enoughn)

PLL � m2`�m
�

2π`
kn

�r(r�1)
� 2`2`�2π`

kn

�r(r�1)
= 22` log2̀ +r(r�1) log2π`�r(r�1) logkn

= 2
�Θ( `4(kn)2 logkn)+Θ( `4(kn)2 log`)+Θ(` log`):

Hence if`= ω(n3=4), the dominant term�Θ( `4(kn)2 logkn) will cause� logPLL to be of growth

orderω(nlogn).
Returning to the relaxed version of the Fourier matrix game,the only difference in the

above scenario is that we cannot select arbitrary points on the unit circle, but must picknth
roots of unity. Ifn is large the player can select`-manynth roots of unity that very closely
approximate the equal spaced points in the setL. Our analysis indicates that such an equal
spaced selection would not provide us with an asymptotically strong strategy for̀ = ω(n3=4),
that in this case the resulting Vandermonde matrix has determinant of order 2�ω(nlogn).

From inspection of small cases one can deduce that the equal spacing strategy is not the
optimal strategy against an adversary that chooses a contiguous block of columns. Slightly
skewing the selected points towards the set of off-limit roots can yield a larger determinant.
However, it appears unintuitive that by such skewing one canproduce an asymptotically strong
strategy forarbitrary ` = o(n), given that the equal spacing stategy ceases to be useful at`= ω(n3=4).

It also should be emphasized that the equal spacing strategyworks for ` = O(n3=4), but
that this does not provide a simpler alternative for our random Vandermonde derived strategy.
The equal spacing stategy assumes the set of disallowed columns to be contiguous, wheareas
the random Vandermonde strategy get us up to` = O(n3=4) with the disallowed̀ (n) many
columns being in arbitrary configuration. We have given evidence to support the claim that no
strategy exists for the player for`(n) = n4=5+δ.



Chapter 7

Bounded Depth Circuits

In light of the inherent difficulty in proving general circuit lower bounds, various researchers
have tried to make progress by adding one or more restricionsto the computational model.
One popular restriction has been the one in which the the circuit is restricted to be of constant
bounded depth. In this case arbitrary fan-in at gates is allowed in order to make the model
nontrivial.

In boolean complexity the restriction to constant depth enables one to successfully prove
exponential lower bounds [Ajt83, FSS81, Yao85, Hås89]. These papers constitute a body of
work that is one of the shining gems of theoretical computer science. In the arithmetic world
however, the situation is less bright. Currently only weak lower bounds, i.e. just barely non-
linear, are known for constant depth circuits [RR03, Pud94].

Further progress has been made by adding additional restrictions to the computational
model. Exponential lower bounds were proved for the size of monotone arithmetic circuits
[SS77, MS80], and linear lower bounds are known for their depth [SS80, TT94]. In Chapter
3 we studiedΣΠΣ-formulas, which are of depth three. Over finite fields exponential lower
bounds are known forΣΠΣ-formulas, for example for computing the permanent and/or deter-
minant polynomials [GK98, GR98]. Exponential lower boundsare known formulti-linearand
homogeneousΣΠΣ-formula [Nis91, NW96]. For unrestrictedΣΠΣ-formulas the only known
lower bounds are the near-quadratic ones of [SW99], and the extensions of these results that
we proved in Chapter 3. Note that Raz proved super-polynomial lower bounds on the size of
general multi-linear formulas [Raz04a, Raz04b].

In this chapter we will proceed as follows. First we will prove two new versions of the
classic “Derivative Lemma” of Baur-Strassen [BS82]. This lemma is used in combination
with Strassen’s degree method [Str73a, Str73b] to obtaingeneralΩ(nlogn) arithmetical cir-
cuit lower bounds for single output functions. Originally Strassen’s degree method works for
proving lower bound on the size of straight-line programs computing several functions. The
Derivative Lemma converts any straight-line program for a single function into one that com-
putes the function together with all its partial derivatives with constant factor overhead, thereby
enabling application of the degree method. Let us note that the lower bounds obtainable this
way, for simple functions likexn

1+ xn
2+ : : :+ xn

n and less trivial functions like the determinant
and the permanent, are the only general super-linear arithmetical circuit lower bounds known
to date.

119
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After exposition of our new versions of the Derivative Lemma, we will prove some lower
bounds for a kind of bounded depth trilinear circuit, whose shape and form arises from appli-
cation of our derivative lemmas. We call these kinds of circuits “interpolation circuits”, and
they compute linear combinations

n

∑
i=1

zi pi(x1;x2; : : : ;xn) (7.1)

of a collection of polynomialsp1; p2; : : : ; pn, where we will consider the coefficientszi to be
a “special” set of variables. These results take the ideas from [Lok95] a step further for our
particular model.

Lokam considered bounded depth linear circuits with bounded coefficients, and bilinear
formulas, which essentially are linear circuits of depth 2.We will prove size-depth trade offs
for our special kind of bounded coefficient tri-linear circuit computing linear combinations of
the form (7.1), where the polynomialspi are bilinear polynomials of formxTAy.

Then in the last section, we will switch gears and prove a non-linear lower bound on
the size of a bounded depth bilinear circuit computing circular convolutionxTCirc(y). To
emphasize, the lower bound obtained there is without any restriction on the coefficients that
are on the wires. We will employ a lemma from [RR03] aboutsuperconcentratorproperties of
the graph of a bilinear circuit, and we will combine this in a novel way with theuncertainty
principle proved by Tao [Tao91], as it is known for cyclic groups of prime order, in order to
obtain our lower bound.

7.1 Derivative Lemmas and Linear Interpolation

In this section inputs are not considered gates, fan-in is bounded by two and the size of circuits
is measured by counting gates.

Definition 7.1.1. An interpolation circuit for computing polynomialsf1; : : : ; fm in variables
x1; : : : ;xn is defined to be an arithmetical circuit with inputsx1; : : : ;xn and special inputs
b1; : : : ;bm that computes the linear combination∑m

i=1bi fi . Interpolation circuit size is defined
by i( f1; : : : ; fm) = s(∑m

i=1bi fi).
Our main interest is to consider interpolation circuits that have bounded coefficients. The

reason is that interpolation circuits with bounded coefficients have, like the orbit models we
defined before, computational power somewhere in between the bounded and unbounded co-
efficient model. An important technical detail is whether the circuit has access to a constant
1 gate. We will indicate explicitly by using superscipt1 if that is the case. We usef �� g
to indicate asymptotic orderingf = O(g). Call a polynomial nontrivial if it is not equal to a
variable or a constant. We have the following easy observations.

Proposition 7.1.1 For any set of distinct nontrivial polynomials f1; : : : ; fm we have that

1. ibc( f1; : : : ; fm)�� sbc( f1; : : : ; fm).
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2. ibc;1( f1; : : : ; fm)�� sbc;1( f1; : : : ; fm).
Applying the Baur-Strassen Derivative Lemma to a bounded coefficient interpolation circuit
without access to 1, yields us a bounded circuit computing the separate functions with access
to 1. Hence,

Proposition 7.1.2 For any set of distinct nontrivial polynomials f1; : : : ; fm we have that

1. sbc;1( f1; : : : ; fm)�� ibc( f1; : : : ; fm).
2. sbc;1( f1; : : : ; fm)�� ibc;1( f1; : : : ; fm).

So we conclude that the bounded coefficient interpolation model with access to 1 is equally
powerful as bounded coefficients with access to 1:

Corollary 7.1.3 ibc;1( f1; : : : ; fm) =� sbc;1( f1; : : : ; fm).
For linear circuits we can summarize the above situation as follows. We denote bysbc;1

linear the
size of circuits that consists of addition gates computing homogeneous linear forms and addi-
tion gates computing constants, and allowing one multiplication gate at each output that multi-
plies a linear form and a constant gate.ibc

bilinear denotes the size of a bounded constant interpo-

lation circuit which is bilinear. Observe that for a linear mapλx:Ax, ibc
bilinear(Ax)�� sbc;1

linear(Ax),
because we can replace the multiplication gate with constant by performing repeated additions
at the single output of the interpolation circuit. Conversely, ibc

bilinear(Ax)�� sbc;1
linear(Ax), by appli-

cation of the Baur-Strassen Derivative Lemma, and then transferring constant multiplications
to the outputs. Hence we have

Proposition 7.1.4 slinear(Ax)�� sbc;1
linear(Ax) =� ibc

bilinear(Ax)�� sbc
linear(Ax).

Examples can be given for which the interpolation model is more powerful than the bounded-
coefficient model, when disallowing access to 1. For examplesbc

linear(2nx1; : : : ;2nxn) = Ω(n2),
whereasibc

bilinear(2nx1; : : : ;2nxn) = O(n). The ibc
bilinear-model can play a similar role as the or-

bit model in future research, namely provide an intermediate goal for proving lower bounds,
somewhere in between the bounded and unbounded constant model.

Theorem 7.1.5 Given a bounded coefficient circuitΓ computing f1; : : : ; fm at (non-input) gates
of fanout zero in variables x1; : : : ;xn of size s, we can construct a bounded-coefficient circuit of
size at most5s with extra inputs b0;b1; : : : ;bn computing

b0 f j + n

∑
i=1

bi
∂ f j

∂xi
;

for all j = 1: : :m.

Proof. We use induction on the number of gatesr other than the outputs. The base case is
whenr = 0. In this case eachf j is a gate taking both inputs directly from the input variables,
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s= m and the theorem follows readily. Supposer > 0. Let h be a gate taking both inputs
from the variables. LetΓ0 be the circuit obtained fromΓ by replacingh with a new variable
xn+1. That is, add a new inputxn+1, and whenever there is a wire fromh to a gate, have the
same wire (with identical constant) to that gate fromxn+1, and finally removeh. Say the new
circuit computesf 01; : : : ; f 0m. By induction, we obtain a bounded coefficient circuitΓ00 with
inputsx1; : : : ;xn+1 andb0; : : : ;bn+1 computing

b0 f 0j + n+1

∑
i=1

bi
∂ f 0j
∂xi

;
(for all j = 1: : :m) of size at most 5(s�1). Note that for eachi, f 0i [xn+1 h℄ = fi . The chain
rule gives us the following equality for anyj = 1: : :m andk= 1: : :n,

∂ f j

∂xk
= ∂ f 0j

∂xk
[xn+1 h℄+ ∂ f 0j

∂xn+1
[xn+1 h℄ � ∂h

∂xk
:

Let Γ000 be the circuit obtained fromΓ00 by replacing input variablexn+1 with the gateh. That
is, add the gateh, and whenever there is a wire fromxn+1 to a gate have exactly the same wire
(with identical constant) fromh to that gate, and finally removexn+1. We see thatΓ000 has a
gateg j computing

g j = b0 f 0j [xn+1 h℄+ n+1

∑
i=1

bi
∂ f 0j
∂xi

[xn+1 h℄;
for j = 1: : :m. Hence we obtain the required circuit by performing the substitution

bn+1 n

∑
i=1

bi
∂h
∂xi

:
Since for anyj = 1: : :m,

g j [bn+1 n

∑
i=1

bi
∂h
∂xi

℄ = b0 f 0j [xn+1 h℄+ n

∑
i=1

bi
∂ f 0j
∂xi

[xn+1 h℄+ n

∑
i=1

bi
∂h
∂xi
� ∂ f 0j

∂xn+1
[xn+1 h℄

= b0 f j + n

∑
i=1

bi
∂ f j

xi
:

The substitution forbn+1 can be done by adding at most 3 gates. That is, in caseh =
αxi +βx j , we substituteαbi +βb j , which takes one gate. In caseh = αxi �βx j , we substitute
αβbix j +αβb jxi , which takes 3 gates. In both cases constants on the wires are1 or constants
from the bounded-constant circuitΓ. We conclude thatΓ000 has size at most 5(s�1)+4� 5s,
and that it is a bounded-constant circuit.

Corollary 7.1.6 In the statement of Theorem 7.1.5, ifΓ does not use a constant 1 input gate,
then neither does the constructed circuit.
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The above property is violated by the Baur-Strassen lemma. To give an example, a
bounded coefficient bilinear circuit computingxTAy is turned by that construction (when just
constructing∂xi ’s) into a bounded-coefficient circuit computingAy , but using a constant 1 in-
put gate to build up constants, which get used at multiplication gates. This is an unfortunate
fact, because current volume and spectral techniques, in particular Morgenstern’s Theorem,
for proving lower bounds on linear circuits get defeated by such usage of constants. Note that
[NW95] overlooked this fact, and that the proof their “Corollary 3” is wrong. In this example,
our proof of Theorem 7.1.5 simply reproduces a bounded-coefficient bilinear circuit computing
bTAy. Applying the corollary form= 1 yields the following:

Corollary 7.1.7 ibc( f ; ∂ f
∂x1

; : : : ; ∂ f
∂xn

)�� sbc( f ).
We can also obtain a “transpose” of the above theorem.

Theorem 7.1.8 Given a bounded coefficient circuitΓ computing f1; : : : ; fm at (non-input) gates
of fanout zero in variables x1; : : : ;xn of size s, we can construct a bounded-coefficient circuit of
size at most5s with extra inputs b1; : : : ;bm computing∑m

i=1bi fi and∑m
i=1bi

∂ fi
∂x j

, for all j = 1: : :n,

whenever these are not identically zero.

Proof. We use induction to the number of gatesr other than the outputs. The base case is
whenr = 0. In this case eachf j is a gate taking both inputs directly from the input variables,
s= m and the theorem follows readily. Supposer > 0. Let h be a gate taking both inputs
from the variables. LetΓ0 be the circuit obtained fromΓ by replacingh with a new variable
xn+1. That is, add the new inputxn+1, and whenever there is a wire fromh to a gate, have
the same wire (with identical constant) to that gate fromxn+1, and finally removeh. Say the
new circuit computesf 01; : : : ; f 0m. By induction, we obtain a bounded coefficient circuitΓ00 with

inputsx1; : : : ;xn+1 andb1; : : : ;bm computing∑m
i=1bi f 0i and∑m

i=1bi
∂ f 0i
∂x j

, for all j = 1: : :n+1 of

size at most 5(s� 1). Note that for eachi, f 0i [xn+1 h℄ = fi . The chain rule gives us the
following equality for anyi = 1: : :mandk= 1: : :n:

∂ fi
∂xk

= ∂ f 0i
∂xk

[xn+1 h℄+ ∂ f 0i
∂xn+1

[xn+1 h℄ � ∂h
∂xk

:
Let Γ000 be the circuit obtained fromΓ00 by replacing input variablexn+1 with the gateh. That
is, add the gateh, and whenever there is a wire fromxn+1 to a gate have exactly the same wire
(with identical constant) fromh to that gate, and finally removexn+1. We see thatΓ000 has a
gate computing∑m

i=1bi f 0i [xn+1 h℄ = ∑m
i=1bi fi and for eachj = 1: : :n+1,

g j = m

∑
i=1

bi
∂ f 0i
∂x j

[xn+1 h℄:
By the chain rule, wheneverx j is not present inh, which is for all but at most two indices

j 2 f1; : : : ;ng, g j = ∑m
i=1bi

∂ fi
∂x j

. For the remaining indicesj, add gates to compute

g j +gn+1 � ∂h
x j

= m

∑
i=1

bi
∂ f 0i
∂x j

[xn+1 h℄+ m

∑
i=1

bi
∂ f 0i

∂xn+1
[xn+1 h℄ � ∂h

x j
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= m

∑
i=1

bi

�
∂ f 0i
∂x j

[xn+1 h℄+ ∂ f 0i
∂xn+1

[xn+1 h℄ � ∂h
x j

�
= m

∑
i=1

bi
∂ fi
∂x j

:
This can be done using at most 3 gates. Hence the final circuit has at most 5(s�1)+3� 5s
gates.

7.1.1 Closed Form Bilinear Derivative Lemma

For a general homogeneous bilinear circuit computing the bilinear form f = xTAycorrespond-
ing to a matrixA, as we noted in the previous section, application of the Baur-Strassen con-
struction to obtain( ∂ f

∂x1
; ∂ f

∂x2
; : : : ; ∂ f

∂xn
), which are the linear forms given byAy, yields a circuit in

which each gate computes a linear form iny, but using constant gates and allowing computed
constants to multiply linear forms. This is unfortunate since for such circuits currently there
are no lower bound techniques known. Hence there is no straightforward reduction of prov-
ing lower bounds for bilinear forms via the Baur-Strassen derivative lemma to the linear case.
This contrasts with the successful Raz/Bürgisser-Lotz strategy for bounded-coefficient circuits,
whose extension we studied in previous chapters. The culprit that causes the Bauer-Strassen
construction to introduce these undesired multiplications with build-up constants can be seen
to be linear part of the bilinear circuitbelow the multiplication gates. Here we will show that if
this lower layer is a not a circuit but aformula, then we do have a derivative-lemma construction
that leaves a homogeneous linear circuit with only additiongates.

In case the lower layer is a formula, we can assume wlog. that this lower layer consists of a
single unbounded fan-in addition gate summing the outputs of all multiplication gates. Namely,
multiplication gates with fan-out bigger than one can be duplicated so all multiplication gates
have fan-out one, and this can be done with constant factor overhead. Next all constant on
these fan-out wires can be pushed upward, resulting in a lower layer that just adds up the
multiplication gates. Hence we can state our theorem as follows:

Theorem 7.1.9 Suppose we have a linear circuitC1(x1;x2; : : : ;xn) computing homogeneous
linear forms l1(~x); l2(~x); : : : ; lk(~x) and a circuitC2(y1;y2; : : : ;yn) computing homogeneous lin-
ear forms r1(~y); r2(~y); : : : ; rk(~y). Let f be a bilinear form given by

f = k

∑
i=1

l i(~x)r i(~y):
Then we can construct a homogeneous linear circuit computing ∂x f := ( ∂ f

∂x1
; ∂ f

∂x2
; : : : ; ∂ f

∂xn
) of

size O(s1+s2), where s1 and s2 are the sizes ofC1 andC2, respectively.

Proof. For eachi 2 f1;2; : : : ;kg write

l i(~x) = ai1x1+ai2x2+ : : :+ainxn;
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with ai1;ai2; : : : ;ain 2 C. Then

∂ f
∂xs

= k

∑
i=1

∂l i(~x)r i(~y)
∂xs

= k

∑
i=1

∂l i(~x)
∂xs

r i(~y)
= k

∑
i=1

aisr i(~y)
In other words, defining thek�n matrix A= (apq)1�p�k;1�q�n,

∂x f = [r1(~y); r2(~y); : : : ; rk(~y)℄A;
so that (∂x f )T = AT [r1(~y); r2(~y); : : : ; rk(~y)℄T :
Now circuitC1 computesλ~x:A~x. Since the circuit size of a matrixA and its transposeAT are the
same, we obtain a homegenous linear circuitC3 with k inputs andn outputs computingAT . By
the above we thus get a homogeneous linear circuit for∂x f by composing circuitsC2 andC3:
first r1(~y); r2(~y); : : : ; rk(~y) are computed byC2 and then these are taken as inputs toC3. Doing
so, then ouputs ofC3 will yield ∂x f .

7.2 Bounded Depth Bilinear Interpolation Circuits

In this section we are going to consider bilinear interpolation circuits of the following structure.
There are three sets of input vectors namelyx, y and special interpolation inputsz. There are
two top-level linear mappings computing separately for input vectorsx andy. Both these map-
ping are computed by depthd�1 circuits. Multiplication gates are allowed, but are restricted
to have exactly one of its inputs taken to be az variable. The we think of thez variables as if
they were constants taken from the underlying fieldC.

Say the outputs of these circuits arel1(x); :::; lk(x) andr1(y); : : : ; rk(y). These are actually
linear inx or y, but may contain higher powers ofzvariables.

Then there arek multiplication gates computingmi = `i(x)r i(y) for 1� i � k. Finally
there is a single unbounded fan in addition gate, taking inputs from all multiplication gates.
Constants on the wires are assumed to have norm at most one.

We identify a bilinear formp(x;y) onn+n variables in a natural way with then�n matrix
of coefficients(p)i j = the coefficient of the monomialxiy j . Linear forms`i(x) andr i(y) are
identified with row vectors. Under this identification we canthus say that each multiplication
gatemi computes̀ T

i r i. The function computed by the circuit is required to be of theform

m

∑
k=1

zk(xTAky) = xT( m

∑
k=1

zkAk)y ;
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for certain complexn�n matricesAk. In this situation, we say the circuit is aninterpolation
circuit for computing matrices A1;A2; : : : ;Am. The idea is that, by varying the assignments
of complex numbers toz, we can compute any of the bilinear formsxTMy, for any matixM
obtained as the linear combinationM = z1A1+z2A2+ : : :+zmAm.

7.2.1 Preliminaries and Related Work

Definition 7.2.1 ([Lok95]). Let 1� r � n, for ann�m matrix A we define its̀ 2-r-rigidity to
be

∆2
A(r) = minfjjA�Bjj2F : B is ann�mmatrix of rank at mostrg;

wherejjA�BjjF denotes the Frobenius norm.

Lokam defined thè1-norm jjCjj1 of a circuit to be the sum of the absolute values of all
constants on the wires ofC. For a matrixA, definingjjC[d℄(lA)jj1 to be the minimum̀ 1-norm
of a linear circuit of depthd computing the linear mappinglA, he proved:

Lemma 7.2.1 ([Lok95]) For any r� 1,

jjC[d℄(lA)jj1� r

�
∆2

A(r)
n

�1=2d :
This results was later improved by Pudlák [Pud98] tojjC[d℄(lA)jj22� dnjdetAj2=dn;
where thè 2-norm of a circuit is defined analogously to the`1-norm of a circuit.

One class of matrices for which we have good bounds on their`2-rigidity are Hadamard
matrices.

Definition 7.2.2. An n�n matrix H is called ageneralized Hadamard matrixif HH� = nIn.

When the entries of the matrixH are restricted to be�1 one gets the standard definition of a
Hadamard matrix. As an example, the Fourier matrixDFTn is a generalized Hadamard matrix.
One has:

Theorem 7.2.2 ([Lok95]) ∆2
H(r) = n(n� r).

Denoting byC[d℄
1 (lA) the minimum number of wires of any depthd linear circuit with con-

stants on the wires of norm at most 1 that computesλx:Ax, one then has by Lokam’s result

that for any generalized Hadamard matrixH, C[d℄
1 (lH) = Ω(n1+ 1

2d ), and by Pudĺak’s improve-

mentC[d℄
1 (lH) = Ω(n1+ 1

d ). Lokam also considered bilinear formulas, as introduced in[NW95],
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corresponding to a matrixA, which are formulas of form

bA(x;y) = m

∑
i=1

xTqi p
T
i y;

wherepi andqi are column vectors. The sizeL(bA) of the formulabA is taken to be the total
number of non-zero entries in theqi and pi vectors. These formulas are essentially depth 2
linear circuits: s(bA) = Θ(C[2℄(lA)) [NW95], so one gets for bilinear formula with bounded
coefficients a lower boundLb

1(bH) = Ω(n5=4) via Lokam andLb
1(bH) = Ω(n3=2) via Pudĺak’s

result, for computing a generalized Hadamard matrixH. Lokam results yield the original
bound proved in [NW95], and Pudlák’s bound improves it.

7.2.2 Our Result

Theorem 7.2.3 Let C be an interpolation circuit of structure as defined above with multiplica-
tion layer at depth d that computes A1; : : : ;Am. Then for1� r � n, the number of wires of C
that do not fan out from z variables is at least

r

 
m

∑
i=1

∆2
Ai
(r)!1=(2d�1)

n�2=(2d�1):
Proof. Let C be given as indicated. Fix 1� r � n. Let Sequal the number of wires ofC that
do not fan out ofz variables. We call a gate or nonz-variable special if the number of wires
fanning out from it is at leastS=r . Note there can be at mostr special gates. No multiplication
gate or the output gate can be special.

We now will consider what happens to a matrixAi that is computed, in the sense that we
defined, as we remove a special gateg. That is, temporarily fixzi = 1 andzk = 0 for k 6= i.
Let l1; l2; : : : ; lk be the linear forms inx andr1; r2; : : : ; rk be the linear forms iny computed by
the circuit, after this assignment. The output of the circuit with this assignment tozwill be the
bilinear formxTAiy. Now removeg and consider the modified outputxTAnew

i y. We will have
six cases to consider.

Case 1:g is an input variablex j . In this case we remove the wires fanning out fromx j .
That means that for eachi, `new

i = `i with jth entry set to zero. Hence for eachi, mnew
i = mi

with row j zeroed out. Since each outputAi is simply a linear combination of the matricesmi ,
we getAnew

i = Ai with the jth row zeroed out, i.e.Ai gets modified by subtracting a matrix of
rank 0 or 1.

Case 2: g is an input variabley j . Similarly as above we can conclude each output gets
modified by subtracting a rank-� 1 matrix.

Case 3: g is a multiplication gatemi = `T
i r i. The output gets modified by subtracting

a scalar multiple ofmi . Observe that rank(mi) � 1. So the output gets again modified by
subtraction a matrix of rank at most 1.

Case 4: g is an addition gate linear inx. Suppose gateg computes the linear forml .
Then for eachi, `new

i = `i � γi l , for certain scalarsγi. Hence for eachi, mnew
i = (`new

i )Tr i =
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`T
i r i� γi lTr i . SinceAi = Σk

j=1α jmj , we get that

Anew
i = Σk

j=1α jm
new
j= Σk

j=1α j(mj � γ j l
Tr j)= Ai� lTΣk

j=1α jγ j r j :
Observe thatlTΣk

j=1α jγ jr j has rank at most 1. Hence again we have that each output is modi-
fied by a matrix of rank at most 1.

Case 5:g is an addition gate linear iny. Similarly as case 4, we can show that each output
get modified by subtracting a matrix of rank at most 1.

Case 6:g is a multiplication gate that has one of its inputs being azvariable. Withzbeing
assigned to, we can consider this gate to be an addition gate,so this case reduces to case 4 or
5.

LetC0 be the circuit obtained by consecutively removing all special gates. From the above
we conclude that for eachi, if we set allz’s to be zero exceptzi = 1, then the output of the
circuit is a bilinear formxT(Ai�Bi)y, whereBi is some matrix with rank at mostr .

The fanout of each gate inC0 is at mostS=r . We are now going to estimate the following
quantity, which is the sum of norms of all entries of the computed matrices:

Φ = m

∑
s=1

n

∑
i=1

n

∑
j=1
j(As�Bs)i j j2: (7.2)

For a given pair(xi ;y j), there are at most(S=r)d � (S=r)d�1 pairs of paths starting inxi and
y j and that come together in the same multiplication gate. Thenfrom that gate there is a single
edge to the output. We can estimate (7.2) by summing over all these pairs of paths and over
all assignments toz that set exactly a singlezi = 1. One pair of paths can contribute toat most
oneof theAi�Bi . Namely, if the pair contains two multiplication gates withspecialzi andzj

input with i 6= j, then contribution toA j �B j andAi�Bi is zero, since in either case the other
variable is set to zero. Since any constant on a wire has norm at most 1, we conclude each such
path contributes at most 1 toΦ. Hence

Φ� n2(S=r)2d�1:
Thus

S� rΦ1=(2d�1)n�2=(2d�1):
Observe that

Φ = m

∑
s=1
jjAs�Bsjj2F � m

∑
s=1

∆2
Ai
(r);

from which the theorem readily follows.

The above theorem yields lower bounds whenever the bilinearforms that are computed
have associated matrices of high`2-r-rigidity. For example:
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Corollary 7.2.4 let A1; : : :An be a set of n Hadamard matrices. Then any depth d bilin-
ear interpolation circuit, of the structure defined above, that computes A1; : : : ;An has size

Ω(n1+ 1
2d�1).

Proof. By Theorem 7.2.2, we know that for a Hadamard matrixH, ∆2
r (H)� n(n� r). Apply-

ing the above Theorem one gets that the number of wires not fanning out ofz variables is at
least

r

 
m

∑
i=1

∆2
Ai
(r)!1=(2d�1)

n�2=(2d�1): � r (n �n(n� r))1=(2d�1)n�2=(2d�1) (7.3)

= r(n� r)1=(2d�1): (7.4)

Settingr = n=2 then yields the corollary.

7.3 Bilinear circuits with unbounded coefficients of depth
O(1)

In [RR03] a super-linear lower bound is proved on the number of edges of any bilinear circuit
with arbitrary coefficientsandconstantdepth computing matrix multiplication. Their result
gives a lower bound on the number of edges present in the circuit below the multiplication
gates. In other words, the bilinear circuit gets to perform two linear transformations at the
inputs in the two different variable setsfree of charge. In our orbit-related terminology, the
circuits are taken to be of the formΓ(Ex;Dy), whereE andD arearbitrary matrices ofar-
bitrary dimension. The proof technique is graph theoretic in nature. It make use of certain
superconcentrator properties any circuit computing matrix product must posess.

In this section we will verify that this proof technique can also be successfully applied to
the circular convolution functionxTCirc(y) which has been the main focus of our attention in
previous chapters. Interestingly enough, we will essentially reduce the problem to a question
about the superconcentrator properties of the discrete Fourier transform. Recall the definition:

Definition 7.3.1. An n-superconcentrator is a directed acyclic graphG = (V;E) with n input
nodesIG � V andn output nodesOG � V such that for everym, for every setsX � IG, and
Y �OG, there existmvertex disjoints paths fromX to Y.

In can be seen that for primep, any linear circuit computingDFTp is a p-superconcentrator.
Namely, it is well-known that any minor ofDFTp is non-singular [Tao91]. If there would exist
any setsX � IG andY � OG of sizem such that there are strictly fewer thanm vertex disjoint
paths fromX to Y, then the corresponding minorDFT p

X;Y would be singular.
We will not directly use this fact, but rather use thediscrete uncertainty principleproved

by Tao [Tao91], which was stated in Theorem 6.3.3. Nevertheless, the proof of this uncer-
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tainty principle relies on the fact that all minors ofDFTp are non-singular, for primep, so
superconcentrator properties ofDFTp are involved, albeit indirectly.

We now introduce some prerequisites taken from [RR03]. We will need some definitions
about slow-growing functions and a lemma.

7.3.1 Prerequisites

Definition 7.3.2. For a functionf : N! N, define f (i) to be the composition off with itself i
times:

1. f (0) is the identity function,

2. f (i) = f Æ f (i�1), for i > 0.

Futhermore, forf such thatf (n)< n, for all n> 0, define

f �(n) = minfi : f (i) � 1g
As in [RR03], the following set of extremely slow-growing functionsλd(n) will be used

to express the lower bounds. Eachλd(n) is a monotone increasing function tending to infinity.

Definition 7.3.3. Let

1. λ1(n) = bpn
,
2. λ2(n) = dlogne,
3. λd(n) = λ�d�2(n), for d > 2.

For a directed acyclic graphG, VG denotes the set of all nodes,IG those with in-degree 0,
andOG those with out-degree 0. The depth ofG is the length in edges of the longest path from
IG to OG. Raz and Shpilka prove the following combinatorial lemma:

Lemma 7.3.1 ([RR03]) For any0< ε< 1
400 and any layered directed acyclic graph G of depth

d with more than n vertices and less thanε �n �λd(n) edges, the following is satisfied:
For some k with

p
n� k= o(n), there exist subsets I� IG, O�OG, and V�VG for whichjI j; jOj � 5ε �d �n andjVj = k, and such that the total number of directed paths from IGnI to

OGnO that do not pass through nodes in V is at mostε � n2

k .

7.3.2 Circuits for Circular Convolution

The circuits we will consider in this section are of the following form. They are bounded depth
bilinear circuits with arbitrary fan-in and fan-out with arbitrary constants on the wires. We will
assume our circuits are layered. We will give lower bounds onthe number of edges present in
the circuit below the multiplication gates. In other words,these circuits get two arbitrary linear
transformations at the inputs for free. For use in this section only, we define:
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Definition 7.3.4. For a bounded depth bilinear circuitC we define its sizes(C) to be the num-
ber of edges in the circuit between the multiplication gatesand the outputs, and define by its
depthd(C) to be the length of a longest path in edges from a multiplication gate to an output.

We begin with the following easy proposition:

Proposition 7.3.2 Any bilinear circuit of depth 1 computing circular convolution xTCirc(y)
has size s(C)� n2.

Proof. A circuit of depth 1 has a very simple structure. There are some numberr of multipli-
cation gatesMr computing productsMr = Lr(x)Rr(y), whereLr(x) andRr(y) are linear forms.
Then there is one layer of output gates, each gate computing summation over some set of input
multiplication gates.

We will argue that each output gate must be connected to at least n multiplication gates.
For purpose of contradiction suppose that this is not the case. Say some output gateOi takes
input from< n multiplication gates. Consider the subspace of dimension at least 1 defined
by equationsL j(x) = 0, for each multiplication gatej attached to outputOi . We can select a
non-zero vectora from this space such that for any assigmenty= b,(aTCirc(b))i = 0:
This yields a contradiction, for example we can takebT to be equal toa� shifted byi, then(atCirc(b)) = jjajj22, which is non-zero, sincea is a non-zero vector.

We now prove our main result for arbitrary constant bounded depth.

Theorem 7.3.3 There existsε > 0 such that if p is a prime number, any layered bilinear cir-
cuit with inputs x= (x0;x1; : : : ;xp�1) and y= (y0;y1; : : : ;yp�1) of depth d computing cirular
convolution xTCirc(y) has size s(C)� εpλd(p).
Proof. Consider the circuit computing

xTCirc(y) = xTFpdiag(DFTp(y))F�
p :

We first apply substitutionsxT := xTF�
p andy= 1

nDFT�
Py at the inputs. This does not alter the

circuit below the multiplication gates, but now we have a circuit computing

xTdiag(y)F�
p :

Let G be the directed acyclic graph of depthd given by the part of circuit below the multipli-
cation gates. The setIG is the collection of multiplication gatesMi = Li(x)Ri(y), whereLi(x)
andRi(y) are linear forms. TakeOG = f1;2; : : : ; pg to be the set of outputs of the circuit. Let
ε > 0 be some small enough constant to be determined later. Trivially G has at leastp vertices.
Suppose thatG has strictly fewer thanεp �λd(p) edges. Lemma 7.3.1 applies, and we obtain
setsI � IG, O�OG andV �VG such that
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1. jI j; jOj � 5εdp,

2. jVj= k, with
p

n� k= o(p), and

3. the total number of directed paths fromIGnI to OGnO that do not pass through nodes in

V is at mostε p2

k .

For each output nodei 2 OGnO, defineP(i) to be the number of multiplication gates in
IGnI for which there exists a directed path that bypassesV and reaches nodei. Let R be a set
of r = 10k output gates with lowestP(i) values. By averaging we get that

∑
r2R

P(r)� rjOGnOj ∑
r2OGnO

P(r)� r
p�5εdp

� εp2

k
= 10εp

1�5εd
:

Let I 0 be the set of all multiplication gates inIGnI for which there exist directed paths to nodes
in R that bypassV. We can conclude that

jI 0j � 10εp
1�5εd

:
Define a linear subspaceW by the set of equations

Ri(y) = 0 for all i 2 I [ I 0.
For any fixed substitution fory2W the resulting circuit has all of the gates computing linear
function in thex variables. Relative to a fixed choice fory, define linear subspaceWy by
equationsgv(x) = 0 for all v2V, wheregv(x) denotes the linear form computed at gatev. Note
that dim(W)� p�5εdp� 10εp

1�5εd and dim(Wy)� p�k, for eachy. Now we have arranged that
for eachy2W, and eachx2Wy, (xTdiag(y)F�

p )r = 0; (7.5)

for eachr 2 R.
In order to reach a contradiction, we will now argue that it ispossible to selecty2W and

x2Wy such that some output inR is non-zero.
First of all, fix a vectory 2W that has at most 5εdp+ 10εp

1�5εd zeroes: this can be done

because dim(W) � p� 5εdp� 10εp
1�5εd . Let A be the set of indicesi for which yi = 0. Let

m= jAj. Let W0
y be a subspace ofWy of dimension 1 obtained by adding equations to the

defining set ofWy as follows. For the first stage addxi = 0 for eachi 2 A. In a second stage,
start adding equations that requirexi = 0 for i =2 A, until the dimension has been cut down to 1.
Since we are starting out with a space of dimensionp� k, after the first stage, the dimension
will be cut down to at mostp�k�m, so we will be able to addxi = 0 in the second stage for at
leastp�k�m�1. manyi with i =2A. Providedε is small enough, sincek= o(n), k+mwill be
less than a small fraction ofp, so we are guaranteed that we can indeed complete this process
still leaving a subspace of non-trivial dimension. Select an arbitraryx from W0

y. Observe that
of the p�m indicesi not inA, xi is non-zero for at mostk+1 entries, and thatxi is zero for all
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i 2 A. Soxi is zero for eachi for which yi = 0. Sincex itself is a nonzero vector there must be
some placei wherexi andyi are both nonzero.

Let f = xTdiag(y) and f̂ = f F�
P . We thus conclude thatf is a non-zero vector, but thatjsupp( f )j � k+1.

By the discrete uncertainty principle for cyclic groups of prime order [Tao91], stated in
Theorem 6.3.3, we have that

supp( f )+supp( f̂ )� p+1:
Hence the output vector of the circuitf̂ is non-zero in at leastp+1� (k+1) = p� k places.
SinceR is of size 10k, by the pigeonhole principle, there must be some output inR that is
non-zero. This is in contradiction with (7.5).
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Chapter 8

Conclusions

Given the inherent hardness in proving lower bounds for Boolean circuits, we embarked upon
a study of arithmetical circuits. They bring the promise, more readily than Boolean circuits,
of involving sophisticated concepts from algebra and algebraic geometry in a successful lower
bound proof.

We continued the investigation ofΣΠΣ-formulas started by [SW99]. There we presented
a new technique for proving lower bounds by introducing the notion of resistanceof a poly-
nomial. Using this notion we proved tight lower bounds on thesum ofnth powers polynomial
f = ∑n

i=1xn
i . For anyd, there are onlyn manydth order partial derivatives for this polyno-

mial, which makes it hard to derive lower bounds using the partial derivatives technique from
[SW99].

The partial derivatives technique yields lower bounds on multiplicative complexity only.
In Chapter 3, we showed how this method can be extended to givelower bounds on total
complexity, utilizing a closed form Baur-Strassen style derivative lemma for theΣΠΣ case.
We have shown that this yields stronger lower bounds than those from [SW99], especially for
low-degree polynomials. In certain cases, this improvement manages to lift trivialΩ(n) lower
bounds, derived using the partial derivatives technique, to non-linear results. For instance, we
showed for the elementary symmetric polynomial of degree 4 that `3(S4

n) = Ω(n4=3), and for
the product-of-inner-product polynomial that`3(PIP2

n) = Ω(n4=3).
Both the partial derivatives technique and our resistance technique are limited to yield-

ing quadratic lower bounds only. Such is tolerable when dealing with families of polynomials
that indeed haveO(n2) sizeΣΠΣ-formulas, like∑n

i=1xn
i and (using Ben-Or’s interpolation re-

sult) the elementary symmetric polynomials, but shows a severe gap in our knowledge when
dealing with families of polynomials that are believed to bemuch more complex. As origi-
nally remarked in [SW99], currently we know of no super-polynomial lower bounds for the
depth-threeΣΠΣ-formula model over fields of characteristic zero. For example, one would
like to establish such bounds for the determinant and permanent polynomials. This contrasts
with the situtation for Boolean circuits, for which we know exponential lower bounds for con-
stant depth circuits [Ajt83, FSS81, Yao85, Hås89]. Future work onΣΠΣ-formulas should be
directed towards closing this discrepancy.

135
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Open Problem 5. Prove a super-polynomial lower bound on theΣΠΣ-formula size for an ex-
plicit function, e.g. the determinant or permanent, over a field of characteristic zero.

Suspiciously absent in current lower bound techniques forΣΠΣ-formulas are random re-
striction type arguments, whereas all the results of [Ajt83, FSS81, Yao85, H̊as89] proceed
using random restrictions. Note that Raz manages to use random restrictions in conjunction
with a partial derivatives based technique in his work onmultilinear arithmetical formulas
[Raz04a, Raz04b].

In Chapter 4 we investigated bilinear circuits with complexcoefficients ofO(1) bounded
magnitude. These circuits form a logical next place to investigate, given that linear circuits with
bounded coefficients are essentially understood [Mor73], and given that unbounded coefficient
linear circuits have confounded any form of non-trivial lower bound, even after 35 years of
intense research activity.

We introduced the bilinear orbit circuit model. ForGLn(C)-orbits this model is at least
as powerful as the unbounded coefficient case, but forSLn(C) it provided a challenging com-
putational model to prove lower bounds for. The only known techniques for proving lower
boundeds for bounded coefficient bilinear circuits of [BL02, Raz02] fail to stand in this model,
due to possible ill-conditioning of the free maps. The modelwas introduced because it allows a
moderated study of a computation model in which more unbounded coefficients can be present
than current techniques allow for. Secondly, lower bounds for the orbit circuit complexity of a
single polynomialsp(x;y) translate to sweeping lower bounds on entire orbits ofp(x;y).

Our study was focused on the circular convolution mappingλx;y:Circ(x)y. We showed
that if the free maps have condition numberO(1), then the the proof of [BL02] can be adapted
to show that circular convolution still requiresΩ(nlogn) size. Future work could be directed
towards lifting this restriction, and prove generalSLn(C)-orbit lower bounds, but there are
difficulties abound.

Namely, there is the apparent requirement in the random substitution technique to select
the random input from asubspace Uof some dimensionεn with ε < 1, which seems to be
about the only way to make the outputs of the linear forms on which substitution is performed
“reasonably” bounded. Provided that is true, they can be replaced by “few enough” repeated
additions, and this way a reduction to the (well understood)linear case is achieved. Unifying
this modus operandi of the restriction technique with the wild zoo of ill-conditioned matrices
present inSLn(C) is problematic. Geometrically speaking onlyn-dimensional volumes retain
the same volume under such transformation, but any lower dimensional volumes can be arbi-
trarily stretched or squashed. In any configuration of the argument we considered this becomes
an issue. Either the msvr -volume of the target linear form one reduces to is negatively im-
pacted, or, attempting to salvage this, the outputs of the linear forms on which one substitutes
are ill-behaved, or vice-versa.

We managed to prove tightΩ(nlogn) sizeSLn(C)-orbit lower bounds for circular convo-
lution in case the circuit has preciselyn multiplication gates. The proof shows that in this case
the convolution theorem circuit, which uses the discrete Fourier transform and its inverse, is
essentially unique.

We also considered orbits in conjunction withΣΠΣ-formulas. The fact that lower bounds
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for �-complexity are maintained under such an extension is trivial. Interestingly enough, we
showed things also carry through when counting addition gates at the inputs.

Given the difficulties proving lower bound onSLn(C)-orbit circuits, any attempt to lift the
O(1) condition number assumption perhaps is best attacked by first considering the diagonal
DLn(C)-orbit model as an important test case. Diagonal matrices ofunit determinant can still
be arbitrarily ill-conditioned. We managed to prove both a “one-sided” and “two-sided” diag-
onal orbit lower bound, modulo some extra assumptions aboutthe amount and placement of
helper constants less than 1 (see Theorems 6.5.4 and 6.5.6).We did so by introducing a novel
game to be player on theDFTn matrix, in which an adverary select some rows that must be
included and some columns that must be avoided. Then the goalwas to find a minor satis-
fying these restrictions with maximum determinant. We related this game to several discrete
uncertainty principles. In the contiguous case of playing this game, i.e. where an interval
of rows is chosen, this led us to a randomized game strategy. We defined for any finite set
P= fp1; p2; : : : ; pkg of points on the unit circle in the complex plane theirchordal product

CP (P) = ∏
1�i< j�k

jpi� p j j;
and asked the fundamental question:

Open Problem 6. For some largen, consider the setΩ = fω0;ω1; : : : ;ωn�1g of all nth roots
of unity on the unit cirlce in the complex plane. LetR� Ω be a given set of roots that
are “off-limits”. For any`, what is the optimal strategy to select`-manynth-roots of unity
ωi1;ωi2; : : : ;ωi` 2ΩnR that maximizesCP (ωi1;ωi2; : : : ;ωi`) ?

We approached the above problem by simply selecting the` roots of unity uniformly at random.
This yielded a result (Theorem 6.2.4) about random Vandermonde matrices with nodes on the
unit cirle, which appears of independent mathematical interest. This strategy fares fairly well,
in the terminology of Theorem 6.5.4, for`n = O(n3=4).

Related to the question of what is the optimal strategy, is the question what setsR in the
above provide the worst-case scenario? That is:

Open Problem 7. For anyk; `, for what kind of setsR�Ω of sizek is

max
S�Ω=RjSj=` CP (S)

minimized, and what is its value ?

We have some indication that setsR that are contiguous provide this worst-case scenario,
but the question is related to some long standing open problems [DS89] that turn out to be
suprisingly hard to solve.

During our investigation, we also encountered an interesting numerical problem that is
interesting for purely mathematical reasons. Suppose we define the following sequence of
pointsfpmgm�1 on the unit circle:p1 = 1, and form> 1, pm is the first point q (if it exists) in
counter-clockwise rotation around the unit circle afterpm�1 such that∏m�1

i=1 jq� pij= 1. This
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problem arose in trying to devise a strategy that packs in points in a greedy manner, by adding
a point each time, but ensuring that the added point has good chord-product with the previously
added points. For those purposes, we also considered the modification of the above problem in
which there was some given sector on the unit circle off-limits.

In any case, the interesting feature is that the sequencefpmgm�1 appears to be infinite,
and appears to enjoy a niceΘ(m1=2) growth (when seen in radians). It would be nice to give a
closed form expression for the points in this sequence. The sequence for the modified problem
is a little more erratic, but also appears to be infinite for “reasonable” disallowed sectors.

Beyond thè n = O(n3=4) growth rate a better strategy is required than random selection,
but as we posed in Conjecture 4, we do not believe there existsa strategy that can deal with
arbitrary`n = o(n). Conjecture 4 can be settle if one manages to carry over the asymptotic
eigenvalue analysis of the prolate matrix of [Sle78] to the discrete-to-discrete case. We have
made the conjecture plausible both from an empirical and theoretical standpoint. Carrying out
the discrete analogy of the eigenvalue analysis of [Sle78] however, will be no easy task. See
e.g. [Gr̈u81, CX84, AET99]. In any case, this is an interesting problem in Fourier analysis,
but from the theoretical computer science point of view, it would be more interesting to see
whether one can devise alternative lower bound arguments that circumvent the issue.

As far as the contiguity assumption is concerned, one way to remove it, would be by
giving a reductionthat converts a circuit forπ(xT)Circ(y) into one forxTCirc(y), using only
o(nlogn) additional circuit hardware. It is not clear whether this can be done. We showed
that one certainly cannot in general convert a circuit forπ(xT)Circ(y) into one computing
xTCirc(y) by permuting they-inputs and outputs. This would only work for permutations of
form π(i) = b+gi, whereg is a generator of the additive group of integers modulon.

In any case, if it is true that in the unbounded coefficient model the size of any bilinear
circuit computingxTCirc(y) is Ω(nlogn), then it is also true that any orbit circuitΓ(Dx;Ey)
with D andE diagonal and of unit determinant has sizeΩ(nlogn). We have managed to prove
the latter under some additional restrictions, but still left to be resolved is the situation for
general diagonal maps of determinant one:

Open Problem 8. Prove that any bilinear orbit circuitΓ(Dx;Ey), whereD andE are diagonal
with unit determinant that computes circular convolutionxTCirc(y), must have sizes(Γ) =
Ω(nlogn).

The presence of arbitrary diagonal matricesD andE of unit determinant defeats any of the
known volumetric techniques [BL02, Raz02]. Such is the caseessentially because the matrix
D can behighly ill-conditioned, making it hard to find “good” minors (in thesense of having
large determinant) of the matrix Circ(a) that are in the “right” place. For the result in [BL02],
it is sufficient to argue theexistenceof a good minor, whereas in the orbit model one seems to
be forced to argue existence of good minors in a certain placeof the matrix. The results we
obtained still manages to strengthen [BL02]. Provided we made some extra assumptions about
D, we could indeed locate such good minors of Circ(a) in the required place, they way our
argument demanded.

We have tried to push the restrictions onD as far as possible, but for the kind of volumetric
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technique we where pursuing, we met a roadblock in trying to win our matrix games under
extreme circumstances, because of phenomena related to theprolate spheroidal wave functions
in [Sle78].

Thereal question is how far any kind of volumetric technique will carry in the orbit model.
It seems non-volumetric techniques are called for, but thatmight be tantamount to proving
lower bounds in the unbounded coefficient model. As a main goal in our orbit model setup,
still open is the following problem:

Open Problem 9. Prove that any bilinear orbit circuit of formΓ(Dx;Ey) (or Γ(Dx;y)), where
D and E have unit determinant, computing circular convolutionxTCirc(y) has sizes(Γ) =
Ω(nlogn).
For that matter, up to now we have concentrated on circular convolution, but more generally it
would be desirable to solve:

Open Problem 10. Prove a non-linear lower bound on the size of any bilinear orbit circuit
of form Γ(Dx;Ey) (or Γ(Dx;y)), whereD andE have unit determinant for computing some
explicitly defined bilinear map.

Then there is of course the holy-grail of proving lower bounds for the undbounded coeffi-
cient model for bilinear or low degree functions, which is equivalent to proving lower bounds
in the orbit model for arbitrary diagonal maps. Even stronger than that (given that the linear
maps do not count against the size), one may try to solve:

Open Problem 11. Prove a non-linear lower bound on the size of any bilinear orbit circuit of
form Γ(Dx;Ey) (or Γ(Dx;y)), whereD andE arearbitrary n�mmatrices for computing some
explicitly defined bilinear map.

Finally, in Chapter 7 we considered bounded depth bilinear circuits and introduced inter-
polation circuits. We proved a Baur-Strassen style derivative lemma for this model, which has
the added advantage that it does not introduce additional constants, as the regular derivative
lemma notoriously does. We gave a closed form derivative lemma for a special kind of bi-
linear circuits, whose bottom layer is a formula. Results of[Lok95] we extended to a special
kind of bilinear circuit. Finally, we proved a non-linear lower bound for bilinear circuits (with
unboundedcoefficients) computing circular convolution in case the input sizen is a prime
number. We did this using in the discrete uncertainty principle for cyclic groups of prime order
[Tao91], and combining it with a “superconcentrator-lemma” of [RR03]. It would be interest-
ing to see whether we can remove the assumption thatn is prime. This might be hard, because
only if n is prime do we know thatDFTn is a regular matrix, and thus that any linear circuit for
it must be a superconcentrator.

Open Problem 12. Can one prove a non-linear lower bound for a bilinear circuitcomputing
Circ(x)y in case the input sizen is composite?
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To summarize, we extended the partial derivatives method for ΣΠΣ-formulas. Some con-
tributions were made to Fourier analysis and the theory of random matrices. We introduced
the usage of uncertainty principles for proving lower bounds, in particular the strengthened
uncertainty principle for cyclic groups of prime order [Tao91]. We extended the bilinear lower
bounds of [BL02, Raz02]. Overall we have deepened the lower bound results of several pub-
lished papers [SW99, BL02, Raz02, RR03], and we have delineated mathematical obstacles to
proving more general lower bounds.
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Appendix A

The following figures refer to the functionQ(n) defined in 6.15.

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 1:Q(n) for ε = 0:75
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Appendix B

We refer to [Hun80] for the group theoretical notions used inthe following.
In this Appendix we prove Theorem 5.3.1, which stated that for any n, the retrievable

permutations form a group, and are precisely those permutation π : Zn! Zn for which there
existsb;g2 Zn with g relatively prime ton such that for eachi 2 Zn,

π(i) = b+gi:
Note that numbersg that are relatively prime ton form precisely all generators of the additive
groupZn.

Proof. (of Theorem 5.3.1). In the following all indices of variables are considered ele-
ments ofZn, and all arithmetic with indices takes place within this additive group. Wlog.
we do the proof withn-vectors of variables indexed asx = (x1;x2; : : : ;xn�1;x0) and y =(yn�1;yn�2; : : : ;y0)T . In this case,xCirc(y) has variables lined up nicely so thekth entry(xCirc(y))k has for each term thex-index andy-index summing tok. Namely, for each
k= 0;1; : : : ;n�1 we have that (xCirc(y))k = ∑

i; j2Zn
i+ j=k

xiy j :
We first show any permutationπ : Zn! Zn that is of the form

π(i) = b+gi;
for someb2 Zn and generatorg of the additive groupZn is retrievable. Wlog. we can assume
thatb= 0, sinceb only produces a cyclic shift byb places. It is clear that a permutationπ is
retrievables iffπ composed with a cyclic shift is retrievable. Define permutation π1 by

π1(i) = π(i�n) = g(i�n);
for eachi 2 Zn. Then we get that thejth entry ofπ(x)Circ(π1(y)) equals

xπ(1)yπ1(n�1+ j)+xπ(2)yπ1(n�2+ j)+ : : :xπ(n�1)yπ1(1+ j)+xπ(0)yπ1( j):
Consider an arbitrary termxπ(k)yπ1(n�k+ j) of the above expression. It has indices summing as
follows:

π(k)+π1(n�k+ j) = gk+g(n�k+ j�n)= g j:
149
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So all terms have indices summing to the same valueg j. Sinceg is a generator of the additive
groupZn, we see that all then sum-values are presents at then entries ofπ(x)Circ(π1(y)). In
other words,π(x)Circ(π1(y)) is a permutation ofxCirc(y).

Let us now do the converse directions. Supposeπ is a retrievable permutation, and letπ1 be
a permutation of they variables such thatπ(x)Circ(π1(y)) is a permutation ofxCirc(y). Since
the x-indices andy-indices of each term of thej entry of xCirc(y) have to sum to the same
number j, there must existsb0;b1; : : : ;bn�1 so that the indices of each term of thejth entry
of π(x)Circ(π1(y)) sum tob j , for each j = 0;1; : : : ;n�1. Observe thatfb0;b1; : : : ;bn�1g =f0;1; : : : ;n�1g. The jth entry ofπ(x)Circ(π1(y)) equals

xπ(1)yπ1(n�1+ j)+xπ(2)yπ1(n�2+ j)+ : : :xπ(n�1)yπ1(1+ j)+xπ(0)yπ1( j);
which we can rewrite as

n

∑
i=1

xπ(n�i)yπ1(i+ j):
So we have the following condition satisfied:(8 j; i 2 Zn); π1(i + j)+π(n� i) = b j : (1)

This implies that for anys; t 2 Zn, we have(8i 2 Zn); π1(i +s) = π1(i + t)+(bs�bt):
In particular, (8i 2 Zn); π1(i) = π1(i +1)+(b0�b1);
and (8i 2 Zn); π1(i +1) = π1(i +2)+(b1�b2);
which is equivalent to saying(8i 2 Zn); π1(i) = π1(i +1)+(b1�b2):
Repeating this for alls andt with t = s+1, we get there exists some numberg2 Zn so that
g= b0�b1 = b1�b2 = : : := bn�2�bn�1 = bn�1�b0. The numberg must be a generator of
Zn, since otherwise not every element ofZn would be in the range ofπ1. We can conclude that
we can write

b j = b0�g j;
for all j = 0;1; : : : ;n�1. However, specifying condition (1) withi = 0, we have(8 j 2 Zn); π1( j)+π(0) = b j :
Soπ1 is defined by (8 j 2 Zn); π1( j) = (b0�π(0))�g j:
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Which implies by condition (1) thatπ is defined, for eachi = 0;1: : : ;n�1, by

π(n� i) = b0�π1(i)= b0� (b0�π(0))+gi= π(0)+gi:
Hence we have that for eachi 2 Zn,

π(i) = π(0)+g(n� i)= π(0)+(�g)i:
Since(�g) is also a generator ofZn, we conclude thatπ is of the form stated by the theorem.

By the above it can thus be seen that the retrievable permutations form a groupRn. Namely,
composingπ1(i) = b1+g1i with π2(i) = b2+g2i one gets

π1(π2(i)) = b1+g1π2(i)= b1+g1b2+g1g2i:
The generators ofZn are precisely all integers (modulo n) that are relatively prime ton. So the
productg1g2 is again a generator, this showing the composition is of the required form. The
inverse of a permutationπ(i) = b+gi is given byπ�1(i) = c+hi, wherec is the unique number
such thatgc=�b, andh is the unique number so thatgh= 1 in Zn.

Each choice forb andg yield a distinct permutationπ, sojRnj= nφ(n), whereφ is theEuler
totient function, giving the number of natural numbers relatively prime ton. This is maximized
for primen, in which casejRnj= n2�n. Modulo cyclic shifts,Rn is isomorphic to thecharacter
group Z�n (integers fromf1;2; : : : ;n�1g relatively prime ton under multiplication) through
regular representation g7! π(i) = gi. Namely, lettingHn be the sugroup of all cyclic shifts, i.e.
permutations of the formπ(i) = b+ i, thenRn=Hn' Z�n .


