For a polynomial f € Klxy,--- ,x,], its Jacobian Ideal is defined as

of  of

J(f) = <a_$17 o 7a_%>7

and the Mapping-Jacobian Ideal of f is defined as

of of
MJ(f) = — Yy — ,
(f) <y1 8$1 ) Y (933'n>
where yy,--- ,y, are newly introduced distinct variables. Note that singular points
of f are those also vanishing on all its partial derivatives, and hence
: of af
S —V(f. =L ... =V(f.J )
Ing(f) ( ? ax17 Y 8In) (f7 (f))

Lemma 1. Isomorphic varieties have the same dimension.
The Join of Two Varieties.

Definition 1. Given any two disjoint projective varieties X,Y & P, the join of X
and Y, denoted by Join(X,Y), is defined as the union of the lines joining X to Y:

Jon(X,V)= |J =7

rzeX,yeY

It is easy to see that this join Join(X,Y) is a subvariety of the Grassmannian
G(1,n) which is proved to be a projective variety, and hence the union of lines
Join(X,Y') is also a subvariety of P".

Lemma 2 ([?]). Let X, Y € P" be any two disjoint projective varieties,
gdeg(Join(X,Y)) = gdeg(X) - gdeg(Y).

Proof. 1t suffices to prove this in the special case where X and Y live in complemen-
tary linear subspaces P™ and P*~™~! C P, because any join may be realized as the
regular projection of such a join.

Let dim(X) = k and dim(Y') = [. We take Ax be a (m — k)-dimensional general
plane intersecting X transversely. Similarly, let Ay intersect Y transversely. Let
A* = Join(Ax, Ay) be the subspace spanned by Ax and Ay. Now consider

A" N Join(X,Y).

Note that a point in Join(X,Y’) gives a point in X and a point in Y. Then a point in
A* N Join(X,Y") should consist of a X-component in Ay and a Y-component in Ay.
Thus this intersection should have all lines passing through a point in X N Ax and a
point in Y N Ay.



Moreover, if Ax and Ay intersect X and Y transversely, then the intersection
A* N Join(X,Y) is generically transverse. Hence it intersects this set of lines in
precisely

IAx N X |- |Ay NY] = gdeg(X) - gdeg(Y).
So gdeg(Join(X,Y)) = gdeg(X) - gdeg(Y). ]

In affine case, we can also find a variety analogous to that in projective case.

Definition 2. Giwven any two affine varieties X C A™ and Y C A™, the product of
them 1is defined as

Prod(X,Y) = X x Y C A",

By definition, Prod (X, Y) is also an affine variety because Prod(X,Y) = V(51, S)
with X = V(S;) and Y = V(S2). Again using the proof technique similar to that
in Lemma [2, we derive the following

Lemma 3. Let X € A™ and Y € A"™™ be any two disjoint affine varieties,
gdeg(Prod(X,Y)) = gdeg(X) - gdeg(Y).

Proof. Let dim(X) = k,dim(Y") = [. Let Ax be a (m — k)-dimensional general plane
intersecting X transversely such that gdeg(X) = |[Ax N X| and Ay be a (n —m —1)-
dimensional general plane intersecting Y transversely such that gdeg(Y) = |[Ay NY].
Take A* be the general plane spanned by Ax and Ay. So the dimension of A* is
n—k—I.

Now we claim that |A* N Prod(X,Y)| gives the geometric degree of Prod(X,Y).
Via a similar argument in Lemma [2] we have

IA* N Prod(X,Y)| = [Ax N X| - |[Ay NY| = gdeg(X) - gdeg(Y).

It is left to argue that gdeg(Prod(X,Y")) = |[A*NProd(X,Y)|, that is, the intersection
of A* and Prod(X,Y) is indeed maximum. However, it is easy to see that any (n —
k —)-dimensional general plane A*' can be decomposed into A’y of dimension (m — k)
and A} of dimension (n—m—1), and extra intersections between A*' with Prod(X,Y)
will give extra intersection points in A’y N X and A}, NY. Therefore, by contradiction,
gdeg(Prod(X,Y)) = |A* N Prod(X,Y)|. O

Lemma 4. Let X andY be of dimensions rx,ry, respectively, and assume that they
do not have a common irreducible component. If rx = ry, then

gdeg(X UY) = gdeg(X) + gdeg(Y),

and if rx > ry,
gdeg(X UY) = gdeg(X).
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Proof. Let X be the projective closure of X. Then X = V,(I%), where I% is the
homogenization of the ideal Ix = I(X).

To prove this lemma, we use the definition that gdeg(X) := gdeg(X). We can
simply argue that gdeg(X UY) = gdeg(X UY) = gdeg(X UY). This is because
(Ix - Iy)" = I% - I (which is easy to see) and then

XUY =V((Ix - Iy)") = V,(Ix - I}) = V,(Ix) UV (Iy) = X UY.

Now this lemma becomes to prove gdeg(X UY) = gdeg(X) + gdeg(Y) if rx = ry or
gdeg(X UY') = gdeg(X) if rxy > ry. This can be proved using Hilbert polynomial,
and the details can be found in [?]. O

Measuring “Entangleness.”

Lemma 5. Given f € Klxy, -+ ,x,] and g € Kwy, -+ ,wy] be two polynomials of
disjoint variables, then

Sing(fg) = Sing(f) U Sing(g).

Proof. Note that when f and ¢ are of disjoint variables

0 Bl 0 0
Sing(fg) = (fgg(?f ~~,gaf 35 879)

We first show that
Sing(fg) C (Sing(f) U Sing(g)).

If a point P € Sing(fg), at least P € V(f) or V(g). If P € V(f), f(P) =0.

of of
(95)(P) = 9(P)5-(P) =0

implies g(P) = 0 or else %(P) = 0 for all 7. That is, either
Pe(V(f)nV(g)) or P € Sing(f).

Since f and g are of disjoint variables, V(f)NV(g)) C Sing(f). Similarly, if P € V(g),
we have P € Sing(g). Therefore, P € (Sing(f) U Sing(g)).
Conversely, we show

(Sing(f) U Sing(g)) C Sing(fg).

If P € Sing(f), we have

With these,




So P € Sing(fg). Similarly, if P € Sing(g) then P € Sing(fg).
Putting everything together, we have

Sing(fg) = Sing(f) U Sing(g).

Lemma 6. Given f(X) € K[z, -+ ,x,], by extending the affine space and introduc-

ing new variable t, then

0 0
wdeg (9V)0 — Lo =g =g ) = e (W)~ L),

Proof. Without loss of generality, assume working in A2+ with

fGK[$1,"' y Tny Y1y 5y Yn, W1, - - 7wm7t]'
Note that
of of
-1 N _
v (o9 = 10070 = 500, a0V - a5

Hence it suffices to prove

of of
gdeg (g(W)t — 1,9 — Ggur Y~ gaxn)

= gdeg <9(W)t —LgW)(y — 5_9{1)’ e g(W) (yn — gi)) :

Let

X=V (g(W)t —Lg(W)(y - 3—;% g (W) — gai)) ’

0 0
Y=V<9(W)t—17y1— 7{ ,yn—ga%)

Now define ¢ to be the following morphism from X to Y:

yi > yi - g(W),
and ¢~ : Y — X to be:
Yi
Yi = .
g(W)
Theorem 7. Let [ € K[zy, - ,x,] and g € Klwy, -+ ,wy,] be two polynomials of

disjoint variables. The following are true:
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(a) gdeg(J(fg)) < gdeg(f) - gdeg(g).
(b) gdeg(MJ(fg)) > gdeg(MI(f)) - gdeg(MI(g)),

Proof.
(a). Since f and g are of disjoint variables,
_ af of , dg dg
gdeg(‘](fg)) - gdeg(g@xl ) 7gaxna aw17 ) fawm)
Now via Bézout’s Theorem,
of of dg dg
d < odeo(g— ... g—L).ad I A .Y
gdeg(J(fg)) < g eg(gaxl, ,ga$n) g eg(fawl, ’fawm>
Note that o7 o

and then by Lemma [ we have

of of .
gdeg(ga—xl, X ,ga—xn) = gdeg(g)

because V(g) is a hypersurface and thus dim(V'(g)) > dim(V (J(f))). Similarly, we
also get

0 0
deg(f o+ f5.) = adea(f).

Therefore,
gdeg(J(fg)) < gdeg(f) - gdeg(g).

(b). O

Theorem 8.

gdeg(MJ(fg)) <
(edeg(g(W)s = 1, MI(F) + deg(g(W)) ) - (edeg(f(X)t = 1,MI(g)) + deg(f (7))

Proof.
of ... of



regan
Underline


By isomorphism,

: 0 0
A (V (V)51 n=g 5+ =g 5)) =

and simple calculations gives

) 8f of .
dim(V(g(W)s — 1,y; — &Ul Ce  Yp — 8_93”)) = dim(g(W),y1 =0
Since
8f of . 8f
gdeg(g(W)s—1,1 Gggr " Un gaxn) gdeg(g(W)s—1, 41— Frn

and by Lemma [4]

R AR

= gdeg(g(W)s — 1,

= gdeg(g(W)s — 1,MJ(f)) + deg(g
= gdeg(g(W)s — 1) - gdeg(MJ([)

W)
gdeg(g(W)).
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