
For a polynomial f ∈ K[x1, · · · , xn], its Jacobian Ideal is defined as

J(f) := 〈 ∂f
∂x1

, · · · , ∂f
∂xn
〉,

and the Mapping-Jacobian Ideal of f is defined as

MJ(f) := 〈y1 −
∂f

∂x1
, · · · , yn −

∂f

∂xn
〉,

where y1, · · · , yn are newly introduced distinct variables. Note that singular points
of f are those also vanishing on all its partial derivatives, and hence

Sing(f) = V (f,
∂f

∂x1
, · · · , ∂f

∂xn
) = V (f, J(f)).

Lemma 1. Isomorphic varieties have the same dimension.

The Join of Two Varieties.

Definition 1. Given any two disjoint projective varieties X, Y ∈ Pn, the join of X
and Y , denoted by Join(X, Y ), is defined as the union of the lines joining X to Y :

Join(X, Y ) =
⋃

x∈X,y∈Y

x, y.

It is easy to see that this join Join(X, Y ) is a subvariety of the Grassmannian
G(1, n) which is proved to be a projective variety, and hence the union of lines
Join(X, Y ) is also a subvariety of Pn.

Lemma 2 ([?]). Let X, Y ∈ Pn be any two disjoint projective varieties,

gdeg(Join(X, Y )) = gdeg(X) · gdeg(Y ).

Proof. It suffices to prove this in the special case where X and Y live in complemen-
tary linear subspaces Pm and Pn−m−1 ⊂ Pn, because any join may be realized as the
regular projection of such a join.

Let dim(X) = k and dim(Y ) = l. We take ΛX be a (m− k)-dimensional general
plane intersecting X transversely. Similarly, let ΛY intersect Y transversely. Let
Λ∗ = Join(ΛX ,ΛY ) be the subspace spanned by ΛX and ΛY . Now consider

Λ∗ ∩ Join(X, Y ).

Note that a point in Join(X, Y ) gives a point in X and a point in Y . Then a point in
Λ∗ ∩ Join(X, Y ) should consist of a X-component in ΛX and a Y -component in ΛY .
Thus this intersection should have all lines passing through a point in X ∩ΛX and a
point in Y ∩ ΛY .
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Moreover, if ΛX and ΛY intersect X and Y transversely, then the intersection
Λ∗ ∩ Join(X, Y ) is generically transverse. Hence it intersects this set of lines in
precisely

|ΛX ∩X| · |ΛY ∩ Y | = gdeg(X) · gdeg(Y ).

So gdeg(Join(X, Y )) = gdeg(X) · gdeg(Y ).

In affine case, we can also find a variety analogous to that in projective case.

Definition 2. Given any two affine varieties X ⊂ An and Y ⊂ Am, the product of
them is defined as

Prod(X, Y ) = X × Y ⊂ An+m.

By definition, Prod(X, Y ) is also an affine variety because Prod(X, Y ) = V (S1, S2)
with X = V (S1) and Y = V (S2). Again using the proof technique similar to that
in Lemma 2, we derive the following

Lemma 3. Let X ∈ Am and Y ∈ An−m be any two disjoint affine varieties,

gdeg(Prod(X, Y )) = gdeg(X) · gdeg(Y ).

Proof. Let dim(X) = k, dim(Y ) = l. Let ΛX be a (m− k)-dimensional general plane
intersecting X transversely such that gdeg(X) = |ΛX ∩X| and ΛY be a (n−m− l)-
dimensional general plane intersecting Y transversely such that gdeg(Y ) = |ΛY ∩ Y |.
Take Λ∗ be the general plane spanned by ΛX and ΛY . So the dimension of Λ∗ is
n− k − l.

Now we claim that |Λ∗ ∩ Prod(X, Y )| gives the geometric degree of Prod(X, Y ).
Via a similar argument in Lemma 2, we have

|Λ∗ ∩ Prod(X, Y )| = |ΛX ∩X| · |ΛY ∩ Y | = gdeg(X) · gdeg(Y ).

It is left to argue that gdeg(Prod(X, Y )) = |Λ∗∩Prod(X, Y )|, that is, the intersection
of Λ∗ and Prod(X, Y ) is indeed maximum. However, it is easy to see that any (n −
k− l)-dimensional general plane Λ∗′ can be decomposed into Λ′X of dimension (m−k)
and Λ′Y of dimension (n−m−l), and extra intersections between Λ∗′ with Prod(X, Y )
will give extra intersection points in Λ′X∩X and Λ′Y ∩Y . Therefore, by contradiction,
gdeg(Prod(X, Y )) = |Λ∗ ∩ Prod(X, Y )|.

Lemma 4. Let X and Y be of dimensions rX , rY , respectively, and assume that they
do not have a common irreducible component. If rX = rY , then

gdeg(X ∪ Y ) = gdeg(X) + gdeg(Y ),

and if rX > rY ,

gdeg(X ∪ Y ) = gdeg(X).
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Proof. Let X be the projective closure of X. Then X = Vp(I
h
X), where IhX is the

homogenization of the ideal IX = I(X).
To prove this lemma, we use the definition that gdeg(X) := gdeg(X). We can

simply argue that gdeg(X ∪ Y ) = gdeg(X ∪ Y ) = gdeg(X ∪ Y ). This is because
(IX · IY )h = IhX · IhY (which is easy to see) and then

X ∪ Y = Vp((IX · IY )h) = Vp(I
h
X · IhY ) = Vp(I

h
X) ∪ Vp(IhY ) = X ∪ Y .

Now this lemma becomes to prove gdeg(X ∪ Y ) = gdeg(X) + gdeg(Y ) if rX = rY or
gdeg(X ∪ Y ) = gdeg(X) if rX > rY . This can be proved using Hilbert polynomial,
and the details can be found in [?].

Measuring “Entangleness.”

Lemma 5. Given f ∈ K[x1, · · · , xn] and g ∈ K[w1, · · · , wm] be two polynomials of
disjoint variables, then

Sing(fg) = Sing(f) ∪ Sing(g).

Proof. Note that when f and g are of disjoint variables

Sing(fg) = V (fg, g
∂f

∂x1
, · · · , g ∂f

∂xn
, f

∂g

∂w1

, · · · , f ∂g

∂wm

).

We first show that
Sing(fg) ⊂ (Sing(f) ∪ Sing(g)).

If a point P ∈ Sing(fg), at least P ∈ V (f) or V (g). If P ∈ V (f), f(P ) = 0.

(g
∂f

∂xi
)(P ) = g(P )

∂f

∂xi
(P ) = 0

implies g(P ) = 0 or else ∂f
∂xi

(P ) = 0 for all i. That is, either

P ∈ (V (f) ∩ V (g)) or P ∈ Sing(f).

Since f and g are of disjoint variables, V (f)∩V (g)) ⊂ Sing(f). Similarly, if P ∈ V (g),
we have P ∈ Sing(g). Therefore, P ∈ (Sing(f) ∪ Sing(g)).

Conversely, we show

(Sing(f) ∪ Sing(g)) ⊂ Sing(fg).

If P ∈ Sing(f), we have

f(P ) =
∂f

∂xi
(P ) = 0.

With these,

(fg)(P ) = g(P )
∂f

∂xi
(P ) = f(P )

∂g

∂wi

(P ) = 0.
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So P ∈ Sing(fg). Similarly, if P ∈ Sing(g) then P ∈ Sing(fg).
Putting everything together, we have

Sing(fg) = Sing(f) ∪ Sing(g).

Lemma 6. Given f(X) ∈ K[x1, · · · , xn], by extending the affine space and introduc-
ing new variable t, then

gdeg

(
g(W )t− 1, y1 − g

∂f

∂x1
, · · · , yn − g

∂f

∂xn

)
= gdeg (g(W )t− 1,MJ(f)) .

Proof. Without loss of generality, assume working in A2n+m+1 with

f ∈ K[x1, · · · , xn, y1, · · · , yn, w1, · · · , wm, t].

Note that

V

(
g(W )t− 1, g(W )(y1 −

∂f

∂x1
), · · · , g(W )(yn − g

∂f

∂xn
)

)
= V (g(W )t− 1,MJ(f)) .

Hence it suffices to prove

gdeg

(
g(W )t− 1, y1 − g

∂f

∂x1
, · · · , yn − g

∂f

∂xn

)
= gdeg

(
g(W )t− 1, g(W )(y1 −

∂f

∂x1
), · · · , g(W )(yn −

∂f

∂xn
)

)
.

Let

X = V

(
g(W )t− 1, g(W )(y1 −

∂f

∂x1
), · · · , g(W )(yn −

∂f

∂xn
)

)
,

Y = V

(
g(W )t− 1, y1 − g

∂f

∂x1
, · · · , yn − g

∂f

∂xn

)
.

Now define φ to be the following morphism from X to Y :

yi 7→ yi · g(W ),

and φ−1 : Y → X to be:

yi 7→
yi

g(W )
.

Theorem 7. Let f ∈ K[x1, · · · , xn] and g ∈ K[w1, · · · , wm] be two polynomials of
disjoint variables. The following are true:
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(a) gdeg(J(fg)) ≤ gdeg(f) · gdeg(g),

(b) gdeg(MJ(fg)) ≥ gdeg(MJ(f)) · gdeg(MJ(g)),

(c) gdeg(Sing(fg)) = gdeg(Sing(f)) + gdeg(Sing(g)).

Proof.
(a). Since f and g are of disjoint variables,

gdeg(J(fg)) = gdeg(g
∂f

∂x1
, · · · , g ∂f

∂xn
, f

∂g

∂w1

, · · · , f ∂g

∂wm

).

Now via Bézout’s Theorem,

gdeg(J(fg)) ≤ gdeg(g
∂f

∂x1
, · · · , g ∂f

∂xn
) · gdeg(f

∂g

∂w1

, · · · , f ∂g

∂wm

).

Note that

V (g
∂f

∂x1
, · · · , g ∂f

∂xn
) = V (J(f)) ∪ V (g),

and then by Lemma 4, we have

gdeg(g
∂f

∂x1
, · · · , g ∂f

∂xn
) = gdeg(g)

because V (g) is a hypersurface and thus dim(V (g)) > dim(V (J(f))). Similarly, we
also get

gdeg(f
∂g

∂w1

, · · · , f ∂g

∂wm

) = gdeg(f).

Therefore,
gdeg(J(fg)) ≤ gdeg(f) · gdeg(g).

(b).

Theorem 8.

gdeg(MJ(fg)) ≤(
gdeg(g(W )s− 1,MJ(f)) + deg(g(W ))

)
·
(

gdeg(f(X)t− 1,MJ(g)) + deg(f(W ))
)

Proof.

V (y1 − g
∂f

∂x1
, · · · , yn − g

∂f

∂xn
)

= V (g(W )s− 1, y1 − g
∂f

∂x1
, · · · , yn − g

∂f

∂xn
) ∪ V (g(W ), y1 = 0, · · · , yn = 0)
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By isomorphism,

dim(V (g(W )s−1, y1−g
∂f

∂x1
, · · · , yn−g

∂f

∂xn
)) = dim(V (g(W )s−1, y1−

∂f

∂x1
, · · · , yn−

∂f

∂xn
)),

and simple calculations gives

dim(V (g(W )s− 1, y1 −
∂f

∂x1
, · · · , yn −

∂f

∂xn
)) = dim(g(W ), y1 = 0, · · · , yn = 0).

Since

gdeg(g(W )s−1, y1−g
∂f

∂x1
, · · · , yn−g

∂f

∂xn
) = gdeg(g(W )s−1, y1−

∂f

∂x1
, · · · , yn−

∂f

∂xn
),

and by Lemma 4,

gdeg(y1 − g
∂f

∂x1
, · · · , yn − g

∂f

∂xn
)

= gdeg(g(W )s− 1, y1 −
∂f

∂x1
, · · · , yn −

∂f

∂xn
) + gdeg(g(W ), y1 = 0, · · · , yn = 0)

= gdeg(g(W )s− 1,MJ(f)) + deg(g(W ))

= gdeg(g(W )s− 1) · gdeg(MJ(f)) + gdeg(g(W )).
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