
LOW DEGREE POLYNOMIAL EQUATIONS:ARITHMETIC, GEOMETRY AND TOPOLOGYJ�anos Koll�arPolynomials appear in mathematics frequently, and we all know from experiencethat low degree polynomials are easier to deal with than high degree ones. It is,however, not clear that there is a well de�ned class of \low degree" polynomials.For many questions, polynomials behave well if their degree is low enough, but theprecise bound on the degree depends on the concrete problem.My interest is to investigate polynomials through their zero sets. That is, usingsets of the form f(x1; : : : ; xn)jf(x1; : : : ; xn) = 0g:I intentionally refrain from specifying where the coordinates xi are. They could berational, real or complex numbers, but in some cases the xi will be polynomials ina new variable t. My focus is on the polynomial f .Consider, for instance, a polynomialf := a0 + nXi=1 aixki ; where ai 2 Zn f0g:Specifying where the coordinates are, leads us to various branches of mathematics:Arithmetic. Choose xi 2 Q. The solutions of these Fermat-type equations havebeen much studied, some cases going back to Diophantus, but we still know verylittle if n > 2.Topology. Choose xi 2 R or xi 2 C . The set of solutions is a topological manifold,and various topological properties can be related to algebraic properties of f . Forinstance, the dimension and the homology can be computed in terms of n; k. (OverR we also need to know the signs of the ai.)Complex manifolds. Choose xi 2 C . The set of solutions is a complex analyticmanifold. The holomorphic function theory of this complex manifold can be un-derstood in terms of polynomials. This is especially true in the compact versionsof this problem.Finite �elds. We can also look at solutions of f = 0 in �nite �elds. Centuries agothis was done by studying f � 0 mod p. Recently, algebraic geometry over �nite�elds found many connections with coding theory, combinatorics and computerscience.I like to think of any of the zero sets as a snapshot of the polynomial f . Theyall show something about f . Certain snapshots reveal more than others:Typeset by AMS-TEX1



2 J�ANOS KOLL�ARDo zero sets determine a polynomial? For instance, x2k1 + � � �+ x2kn +1 = 0 has nosolutions in Q, not even in R. Thus the zero set gives essentially no information.The situation is very di�erent over algebraically closed �elds. If f; g 2 C [x1 ; : : : ; xn],thenfx 2 C n jf(x) = 0g = fx 2 C n jg(x) = 0g , f and g have the sameirreducible factors.(This is an easy special case of the Nullstellensatz of [Hilbert1893].) If we want togo further, we must study solutions of f = 0 in any commutative ring R with aunit. This approach was �rst adopted by Grothendieck in [EGA60-67], though inretrospect, [Weil46] and [Rilke30,vol.2.p.175] clearly pointed in this direction. Weobtain that if f; g 2 Z[x1; : : : ; xn] are two polynomials, thenfx 2 Rnjf(x) = 0g = fx 2 Rnjg(x) = 0g(for every commutative ring R) , f = �g:Thus studying solutions in all commutative rings determines the polynomial up toa sign. This approach is very powerful, but rather technical. Therefore I will stickto studying solutions in �elds for the rest of the lecture.It turns out that there is a collection of basic questions in arithmetic, algebraicgeometry and topology all of which give the same class of \low degree" polynomials.The aim of this lecture is to explain these properties and to provide a survey of theknown results. 1. Introductory RemarksWe start with the observation that in some cases the degree alone does notprovide a good measure of the complexity of a polynomial equation. In order todevelop the correct picture, we have to understand which polynomials behave in anatypical manner.1.1 High degree polynomials that behave like low degree ones.There are at least three situations when the zero set of a high degree polynomialshares some of the properties of zero sets of low degree polynomials:1.1.1 Reducible equations. If f = gh, then the set (f = 0) is the union of thesets (g = 0) and (h = 0). Thus we can restrict ourselves to the case when f isirreducible.1.1.2 Low degree in certain variables. Let us consider an extreme case, when f hasdegree 1 in the variable xn. Then f can be written asf = f1(x1; : : : ; xn�1) + xnf2(x1; : : : ; xn�1):The substitution xn = �f1=f2 shows that the set (f = 0) behaves like the vectorspace of the �rst (n � 1) variables f(x1; : : : ; xn�1)g. This is completely true if fis linear, but in general the correspondence breaks down if f2 = 0. The latterequation involves one fewer variable, and therefore it is considered easier. Roughly



LOW DEGREE POLYNOMIAL EQUATIONS 3speaking, f should be viewed as complicated as a linear equation. In general, if fhas low degree in certain variables then it behaves like a low degree equation.1.1.3 Very singular equations. Consider for instance the equation xd1 � xd�12 = 0.Its degree in both variables is high. Nonetheless, the substitutionx1 = td�1; x2 = tdshows that solutions of xd1�xd�12 = 0 are parametrized by the values of the variablet. The same happens for any polynomial f(x1; x2) of degree d all of whose partialsup to order d�2 vanish at a certain point. In general, a high degree equation f be-haves as a low degree equation if many of the partial derivatives of f simultaneouslyvanish at many points.While all of these cases do occur, there are relatively few polynomials that behavethis way. For instance, all polynomials f(x1; x2) of degree � d form a vectorspaceVd of dimension �d+22 �. The set of polynomials which are exceptional for any of theabove 3 reasons is a subset of codimension d� 1 for d � 2.This remark shows that for most polynomials the degree is a good measurementof complexity. In order to run computer experiments, it is desirable to have a classof polynomials with very few nonzero coe�cients which are nonetheless \general".A good set of examples to keep in mind is the following.1.2 Test Examples. The equations Pi cixdi = c0 have been much studied. Unfor-tunately, they are sometimes too special. It seems that the inhomogeneous versionis much more indicative of the general case. Fix natural numbers di : i = 1; : : : ; nand c0; : : : ; cn such that Qi ci 6= 0. Then(1.2.1) nXi=1 cixdii = c0 has \low degree" i� nXi=1 1di � 1:We see in (5.5) that the above condition does coorespond to the eventual de�nition(4.1). Moreover, I claim that the behaviour of these examples correctly predicts thebroad features of the theory. You have to trust me that this purely experimentalassertion is valid.As a �rst example, let us see what a simple minded constant count gives aboutsolutions of the equations (1.2.1) over Q.1.3 Heuristic claim. Fix natural numbers di : i = 1; : : : n and rational numbersci : i = 0; : : : n. I claim that usually(1.3.1) nXi=1 cixdii = c0 has many solutions in Q i� nXi=1 1di � 1:Unfortunately there are large classes of equations where this is false. For instance,Px2i = �1 has no solutions in Q, not even in R. Looking at x21 � x22 modulo 4,we see that x21 � x22 = 2 has no rational solutions. There are several approaches to



4 J�ANOS KOLL�ARcorrect these problems; we encounter two of them later. For the moment I ignorethese counterexamples, and give a proof of (1.3.1).It is easier to look for integral solutions, so we homogenize the equation in thefollowing (somewhat unusual) way. Set d0 to be the least common multiple ofd1; : : : ; dn and let d0 = dibi. Look at the equation(1.3.2) nXi=1 ciydii = c0yd00 :There is a correspondence between solutions of (1.2.1) and of (1.3.2) given by(x1; : : : ; xn) 7! (1; x1; : : : ; xn) and (y0; y1; : : : ; yn) 7! (y1=yb10 ; : : : ; yn=ybn0 ):This shows that �nding all rational solutions of (1.2.1) is equivalent to �nding allintegral solutions of (1.3.2).Set f = �c0yd00 +Pni=1 ciydii . There is a constant C, depending on f , such that(1.3.3) jf(y0; : : : ; yn)j � C � (maxi jyijdi):Fix a large N and let the yi run through the set of integers in [�N1=di ; N1=di ]. Weget const �NPni=0(1=di) values of f in the interval [�C �N;C �N ]:If these values are uniformly distributed, we obtain the asymptotic#fXi ciydii = c0yd00 ; jyij � N1=dig � const �N�1+Pni=0(1=di) as N !1.If Pni=1(1=di) � 1 then Pni=0(1=di) > 1, and the number of solutions grows as apower of N . If Pni=1(1=di) < 1 then Pni=0(1=di) � 1 because of the special choiceof d0, thus there should be few solutions. �For which other polynomials f does this counting method work? The main partis the estimate (1.3.3). This works if f is weighted homogeneous of degree 1 withweights 1=di. That is, if we declare deg xi = 1=di then deg f � 1.There are some examples where the above simpleminded counting method doeswork, for instance, for equations of the formf(x1; : : : ; xn)� f(y1; : : : ; yn) = 0:The above argument gives a lower bound#ff(x1; : : : ; xn) = f(y1; : : : ; yn); jxij; jyij � Ng � const �N2n�d:This is interesting only if d < n since the trivial solutions xi = yi always give alower bound const �Nn.In the rest of the lecture I aim to explain the various properties that lead tothis class of equations, starting with the 2-variable case in section 2. This is called



LOW DEGREE POLYNOMIAL EQUATIONS 5the theory of algebraic curves. Most of the theory was well-established in the 19thcentury, with the exception of the arithmetic aspects.Section 3 is devoted to the 3-variable case, which corresponds to the theory ofalgebraic surfaces. The geometric aspects have been established around the turn ofthe century, many of the topological results are recent and most of the arithmeticalquestions are open.Much less is known in higher dimensions. The open questions involve deepproblems in algebraic geometry, number theory and di�erential topology. I amcon�dent that these problems constitute a very interesting direction of research fora long time to come.2. Two Variable Polynomials = Algebraic CurvesLet us consider a 2 variable polynomial f(x; y) =P aijxiyj of degree d. Let Ca�denote its zeros, that is, Ca� := f(x; y)jf(x; y) = 0g:(The subscript a� refers to the fact that we are in a�ne 2-space A 2 .) This is not aset since I have not speci�ed where the coordinates x; y are. If the coe�cients aijare in a �eld F , then for any larger �eld E � F we can look at solutions of f = 0in E. The resulting set isCa�(E) := f(x; y) 2 E2jf(x; y) = 0g � E2:A common case is when aij 2 Q, and for the larger �eld E we choose Q;R or C .Ca�(Q) is just a set of points, but Ca�(R) � R2 naturally appears as a curve(that is, a 1-dimensional topological space). Ca�(C ) � C 2 is a Riemann surface: acomplex manifold locally like C .In studying the manifolds Ca�(R) or Ca�(C ) it is frequently inconvenient thatthey are not compact. The usual way to deal with this problem is to introduce theprojective plane P2 with homogeneous coordinates (x0 : x1 : x2). Its relationshipto the old a�ne coordinates is x = x1=x0; y = x2=x0. If the coordinates xi are ina �eld E, we obtain the corresponding projective plane EP2. The most frequentlyused ones are QP2 ;RP2 and C P2 .The homogenization of f is given by�f(x0; x1; x2) := xd0f(x1=x0; x2=x0):The corresponding zero setC(E) := f(x0 : x1 : x2) 2 EP2j �f(x0; x1; x2) = 0g � EP2turns out to be more convenient for most purposes.Based on the real picture, algebraic geometers say that C is an algebraic curve.Thus we prefer to call C the complex line (the complex plane is of course C 2 ).This leads to occasional confusion, but this is not the time to change 150 year-oldterminology.



6 J�ANOS KOLL�ARIn what follows I collect certain properties of algebraic curves de�ned by equa-tions of degree at most 2. In all cases I would like the properties to hold onlyfor curves de�ned by equations of degree at most two (assuming the genericityconditions of (1.1)).All of the characterizations listed here are standard results of the theory of al-gebraic curves and Riemann surfaces. One of the most accessible introductionsto algebraic geometry is [Shafarevich94] (or any of the other editions). For alge-braic curves see [Fulton69]. The analytic theory of Riemann surfaces is treated in[Siegel69; Gunning76]. For the arithmetic aspects I found [Serre73; Silverman86]especially useful.Characterizations of \low degree " curves.I start with the algebraic geometry condition, not because it is the most obviousfor curves, but because this provides the neatest de�nition in higher dimensions.2.1 Algebraic geometry. There is a one-to-one map given by rational functionsg : C P1 ! C(C ).In this case C is called a rational curve.Let (s : t) be the homogeneous coordinates on C P1 . If f = a0x0 + a1x1 + a2x2is linear and a2 6= 0, we can chooseg : (s : t) 7! (a2s : a2t : �(a0s+ a1t)) :For deg f = 2 assume for simplicity that f = a0x20+ a1x21+ a2x22. (This can alwaysbe achieved after a linear change of coordinates.) We can takeg : (s : t) 7! �a1s2 � a0t2 : �2a0st :p�a0=a2(a1s2 + a0t2)� :(In case you wonder where this came from, let h : C ! L be the projection ofC from the point P = (pa2 : 0 : p�a0) 2 C to the (x2 = 0) line (Mercatorprojection). g is the inverse of h.)The fact that no such g exists for higher degree equations is harder.2.2 Topology. C(C ) is homeomorphic to the sphere S2.The maps g from (2.1) also provide a homeomorphism; the hard part is again tosee that this cannot be done for higher degree equations. The precise result is thatif C is de�ned by a degree d equation then C(C ) is homeomorphic to a sphere with12 (d� 1)(d� 2) handles.2.3 Hard Arithmetic. C(Q) is \large"For this to make sense, we should start with a curveC = ( �f(x0; x1; x2) = 0) � P2;where �f has rational coe�cients.Unfortunately it is not easy to pin down what \large" exactly means. First of all,if n � 4 then C(Q) is �nite by [Faltings83]. Unfortunately, C(Q) is often in�nitefor n = 3 and frequently empty for n = 2.



LOW DEGREE POLYNOMIAL EQUATIONS 7To get the right answer, we have to develop a good measure of the size of asolution. This is most conveniently done in projective coordinates.Any point P 2 QP2 can be represented as a triple P = (x0 : x1 : x2) wherex0; x1; x2 2 Z are relatively prime. This representation is unique up to sign, thusH(P ) := maxfjx0j; jx1j; jx2jg is well-de�ned. It is called the height of P . Onede�nes the counting functionN(C;H) := #fP = (x0 : x1 : x2) 2 QP2 j �f(x0; x1; x2) = 0 and H(P ) � Hg:Roughly speaking, we look for rational solutions of f(x; y) = 0 where the numera-tors and denominators are bounded.This nearly gives the right answer. If n = 2 then C(Q) is either empty orN(C;H) grows like const �H ; if n = 3 then N(C;H) grows slower than any powerof H [N�eron65].In order to deal with the case when C(Q) is empty, we have to count solutionsin various algebraic number �elds. It is not hard to generalize the notion of heightto the case when the coordinates of P are in an algebraic number �eld E � Q (see[Silverman86,VIII.5] for a short and clear summary). We obtain a similar countingfunction NE(C;H). This �nally gives the correct generalization:2.3.1 Theorem. C is a rational curve i� NE(C;H) grows polynomially with H fora suitable number �eld E.2.4 Complex manifolds. C(C ) has genus zero.Global holomorphic di�erential forms on a compact Riemann surface have beenmuch studied, starting with the works of Euler, Abel and Riemann. On a Riemannsurface we have only 1-forms, these are locally given as f(z)dz where z is a localcoordinate and f(z) is holomorphic. Such forms are automatically closed, thus theintegral Z
 f(z)dz over a closed loop 
 � C(C )depends only on the homology class [
] 2 H1(C(C );Z). Since the fundamentalstudies of Riemann, these give the basic approach to �ner understanding of Riemannsurfaces.By de�nition, the genus is the dimension of the vector space of global holo-morphic di�erential forms. If there are no such forms, the above integrals give noinformation. Fortunately, this happens precisely when other descriptions are verysimple.2.5 Easy Arithmetic. There are many solutions over function �elds.Here we look at the behaviour of the sets C(F ) where F = C (t) is the �eld ofrational functions in one variable. Of course f =P aij(t)xiyj and the coe�cientsaij(t) themselves are rational functions. The �eld C (t) shares many properties of Q,but the results are easier to state and the proofs are much simpler. (The di�erencebetween Q and C (t) becomes apparent when studying their Galois cohomology.)The advantage of C (t) is that there are two ways of looking at solutions overC (t).



8 J�ANOS KOLL�AR(2.5.1.1) The algebraic way. Just handle everything as quotients of polynomialsin C [t].(2.5.1.2) The geometric way. An equation f(x; y) = 0 with coe�cients in C (t)can be viewed as an equation ~f(x; y; t) = 0 with coe�cients in C . This de�nes analgebraic surface S � C 3 and we have a distinguished coordinate projection to thet-axis p : S ! C t .A solution (x(t); y(t)) of f(x; y) = 0 can be identi�ed with a maph : C t ! S given by t 7! (x(t); y(t); t):h is a section of p : S ! C t and every (rational) section arises as above.The �rst indication that we can expect nicer results is the following theorem,which can be proved by a straightforward generalization of the counting argument(1.3). The �rst proof is in [Noether1871]. Later algebraic proofs, more suited togeneralizations, are in [Baker22,vol.VI.p.147] and [Tsen36].2.5.2 Theorem. If deg f � 2 then f = 0 has a solution in C (t).We may also want to know that there are many solutions. A natural approachis to look for solutions (x(t); y(t)) where certain values (x(tk); y(tk)) are speci�edin advance. This is possible only if the points (x(tk); y(tk); tk) lie on the surface S,that is, if P aij(tk)x(tk)iy(tk)j = 0. In this case we say that the pair (x(tk); y(tk))is a solution of f(x; y) = 0 at tk.As an easy exercise in the theory of algebraic surfaces we get a very strongcharacterization:2.5.3 Theorem. There is a �nite set B � C such that if t1; : : : ; ts 2 C nB are arbi-trary points and (xk ; yk) any solution of f at tk then there is a solution (x(t); y(t))of f = 0 such that (x(tk); y(tk)) = (xk ; yk) for k = 1; : : : ; s.One can reformulate the theorem to specify not just the value of (x(t); y(t)) attk but also the beginning of its Taylor expansion. With a little more care, theexceptional set B can also be eliminated (5.1).2.5.4 Remark. More generally all of this works if C (t) is replaced with any �nitedegree extension of C (t). These are exactly the �elds of meromorphic functions oncompact Riemann surfaces.2.6 Low degree equations. C can be described by an equation of degree at most2. This is of course our starting point, but in higher dimensions this becomes arather nontrivial question.It is worthwhile to note the following arithmetic implication:2.6.1 Proposition. If deg f � 2, then f(x; y) = 0 always has a solution over a degree2 �eld extension.In order to see this, pick a; b; c and consider f(x; y) = ax+by+c = 0. Eliminatingx or y we are left with a quadratic equation in one variable.



LOW DEGREE POLYNOMIAL EQUATIONS 9Final remarks about curves.It should be made clear that the above properties by no means exhaust theknown characterizations of curves of degree 1 and 2. Some of the others do notseem to have higher dimensional analogs. I just give a few examples:2.7 Bad characterizations.2.7.1 Simply connectedness.�1(C(C )) = f1g i� deg f � 2. It turns out that any smooth hypersurfaceX = (f(x0; : : : ; xn) = 0) � C Pn is simply connected for n � 3 [Lefschetz24].2.7.2 Unique factorization in the coordinate ring.The ring C [x; y]=f(x; y) is a unique factorization domain i� deg f � 2. Iff(x0; : : : ; xn) de�nes a smooth hypersurface then C [x1 ; : : : ; xn]=f(x1; : : : ; xn) is aUFD for n � 4 [Grothendieck68].2.7.3 Homogeneous spaces.If deg f = 1 then C is homogeneous under the group SL(2). If deg f = 2 thenC is homogeneous under the group O( �f ), the 3-variable orthogonal group of �f . Inhigher dimensions the varieties which are homogeneous under the action of a linearalgebraic group give rather special examples of the class that we want.2.7.4 Number of moduli.Any two lines in P2 are equivalent under a change of coordinates, and any twosmooth conics in C P2 are also equivalent. This fails for deg f � 3. In all dimensionsthis property characterizes hypersurfaces of degree at most 2, so does not hold formost of the examples in (1.3). (We need a nondiagonal perturbation to see this.)The above lists suggest several further possible approaches to low degree poly-nomials. Below I list some that do not to work, even for curves.2.8 Noncharacterizations.2.8.1 Topology over R.One could study curves such that C(R) is homeomorphic to S1. If deg f � 2 andC(R) is not empty, this is always the case. Unfortunately, there are many othercurves with this property. For instance, (x2d+ y2d = 1) � RP2 is homeomorphic toS1.2.8.2 Solutions modulo p.If f has integral coe�cients, we can ask about solvability modulo p (or moduloany number).The number of solutions in �nite �elds are described by the Weil conjectures (see[Freitag-Kiehl88] for a thorough treatment) and the degree of f does not a�ect theasymptotic behaviour much. (Though the genus can be computed if we know theexact number of solutions modulo p for many values of p.) Low degree equationshave solutions in any �nite �eld [Chevalley35], but the same holds for many othercases.2.8.3 Solutions in p-adic �elds.An equation of degree at most two is not always solvable in p-adic �elds. Forequations in many variables, solvability in p-adic �elds is an interesting question.



10 J�ANOS KOLL�ARThe rough picture (which is not quite correct) is that if f(x0; : : : ; xn) has degreed � pn then f has a solution in any p-adic �eld and this fails for larger degree. Thusthe answer does not correspond to our class. See [Greenberg69] for a discussion ofthese topics.2.9 Other approaches.2.9.1 Holomorphic maps h : C ! C(C ).If there is a map C P1 ! C(C ), then we get plenty of holomorphic maps C !C(C ). If deg f � 4 then there are no nonconstant holomorphic maps from C toC(C ). Unfortunately if deg f = 3, then there are nonconstant holomorphic mapsC ! C(C ). Thus this property characterizes a slightly di�erent class of curves.In higher dimensions the two classes di�er substantially. See [Lang86; Vojta91] forvarious properties of this class.Vojta pointed out to me that one can consider holomorphic maps h : C ! C(C )whose Nevanlinna characteristic function grows slowly, to get a characterization ofrational curves in the context of the holomorphic theory. The resulting holomorphicmaps are rational, so at the end this is equivalent to (2.1).2.9.2 The Hasse principle.One way to overcome the di�culties observed in (1.3) is to re�ne (1.3.1) asfollows:Assume that f(x1; : : : ; xn) = 0 has a (nontrivial) solution modulo m for everym and also over R. Does this imply that f has a solution in Z?(Solvability modulo m for every m is equivalent to solvability in every p-adic�eld.)If the answer is yes, one says that the Hasse principle holds for f . By theHasse{Minkowski theorem, this is the case if f is homogeneous of degree 2.The question for higher dimensions is very di�cult. It is still not clear if theHasse principle is connected with our class in higher dimensions or with somesmaller class of varieties. See [Colliot-Th�el�ene86,92] for surveys of this direction.3. Algebraic SurfacesThe next step is to study zero sets of polynomials in three variablesS := f(x; y; z)jf(x; y; z) = 0g � A 3 :It was noticed in the 19th century that the true measure of complexity of a systemof polynomial equations is the dimension of the set of solutions over C . Thus if wehave 2 equations in 4 variables, the resulting zero set(f1(x; y; z; u) = f2(x; y; z; u) = 0) � A 4behaves to a large extent like surfaces in 3-space. Any surface in 4-space can bemade into a surface in 3-space by a generic projection. If we generically projecta curve in n-space to the plane, the image has only transversal self-intersections.By contrast, if we project a surface to 3-space, the image has complicated self-intersections. According to current view, it is very hard to study a surface this



LOW DEGREE POLYNOMIAL EQUATIONS 11way. (Earlier geometers, being ignorant of this fact, proved rather deep theoremsusing projections to 3-space.) Thus we are pretty much forced to look at the generalcase of varieties:Algebraic varieties. Given polynomials f1; : : : ; fk in n variables, their common zeroset Xa� := f(x1; : : : ; xn)jf1(x) = � � � = fk(x) = 0g � A nis called an a�ne algebraic variety. Using homogeneous equations �fi we obtainprojective varietiesX := f(x0; : : : ; xn)j �f1(x) = � � � = �fk(x) = 0g � Pn:If the coe�cients of the fi are in a �eld F , we say that X is de�ned over F . X isalso de�ned over every bigger �eld E � F , hence X(E) � EPn, the set of solutionsin E, makes sense.These sets can be very complicated. In order to streamline our discussions, Imake two simplifying assumptions:All varieties will be irreducible and smooth.Over the complex numbers this means that X(C ) is a connected manifold. Theseassumptions are satis�ed if the coe�cients of the fi are chosen at random. Thegeneral case can be reduced to this one in various ways.The dimension of X can be de�ned in an abstract way. Over C it is one half ofthe topological dimension of X(C ). This gives the expected value; for instance ifX � C Pn is de�ned by a single equation then it has dimension n� 1.In order to decide which varieties are considered equivalent, we look at theexample of the Mercator projection from (2.1)Examples of birational maps.(i) Let S = (x2 + y2 + z2 = 1) � R3 . Project S from the point (0; 0; 1) to the(x; y)-plane P . This provides a one-to-one map� : S n (0; 0; 1) �=�! P �= R2 :This looks good, until we notice that projectively there are problems. The plane isusually compacti�ed as RP2 , which is not even homeomorphic to the sphere S.(ii) H = (x2 � y2 + z2 = 1) � R3 is a hyperboloid. Project H from the point(0; 0; 1) to the (x; y)-plane P . This provides a one-to-one map� : S n f(x; y; z)jz = 1g �=�! P n f(x; y)jx2 � y2 + 1 = 0g;and � and ��1 can not be extended to the removed sets in any reasonable way.Despite this, � is clearly very useful in understanding S. For many problems we canuse � to study S n f(x; y; z)jz = 1g. The missing set f(x; y; z)jz = 1g is isomorphicto the plane curve f(x; y)jx2 � y2 = 0g, which is a pair of lines.(iii) For a; b; c 2 Q, Habc = (ax2 + by2 + cz2 = 1) � A 3 is a quadric surface. Asabove, we would like to �nd a projection of H to a plane. This can be done over



12 J�ANOS KOLL�ARsome �eld, for instance we can project from (0; 0; 1=pc). The formulas for � and��1 involve pc, hence they are of little use if we intend to study H(Q).If a; b; c < 0 then Habc(R) is empty, thus there is no map g : R2 ! H(R).De�nition of birational maps. Let X � A n and Y � Am be a�ne varieties. Let xi(resp. yj) be coordinates on A n (resp. Am ).A rational map g : A n 9 9 KAm is given asg : (x1; : : : ; xn) 7! (g1(x); : : : ; gm(x));where the gi are rational functions in the variables x1; : : : ; xn. Notice that suchmaps need not be everywhere de�ned. If the coe�cients of the gi are in a �eld F ,we say that g is de�ned over F .If g(X) � Y , then g restricts to a map g : X 9 9 KY .We say that g : X 9 9 KY is birational if there are subvarieties A ( X and B ( Ysuch that g restricts to a one-to-one map g : X nA! Y nB.Informally speaking, X and Y are birational if they are isomorphic up to lowerdimensional varieties.Rational maps of projective varieties can be de�ned similarly. We can mimicthe above de�nitions with projective coordinates (in which case the gi have to behomogeneous).A general introduction to algebraic geometry can be found in [Shafarevich94;Hartshorne77]. The analytic theory can be found in [Wells73; Gri�ths-Harris78].The books [Beauville78; BPV84] are devoted to algebraic surfaces. The topologicalaspects are discussed in [Donaldson-Kronheimer90; Friedman-Morgan94].Characterizations of \low degree" surfaces.Let S � Pn be a projective surface de�ned by homogeneous equations f1 = � � � =fk = 0. For simplicity we always assume that S is smooth and connected.For surfaces, algebraic geometry provides the basic de�nition. Our task is to seeto what extent the other variants (2.2{6) can be generalized to give an equivalentcondition.3.1 Algebraic geometry. S is rational over C .The precise de�nition of rational is the following:3.1.1 De�nition. Let S be a smooth projective surface de�ned over C . We say thatS is rational if there is a birational map g : C P2 9 9 KS(C ).If S is de�ned over a sub�eld F � C , we say that S is rational over F if there isa birational map g : P2 9 9 KS de�ned over F .Historically this de�nition appeared as a rather hard theorem. There are threeclasses of surfaces which are very similar to rational surfaces, but it is not obviousthat they are indeed rational. These three classes are:(3.1.2.1) cubic surfaces S3 � P3;(3.1.2.2) surfaces S which admit a map f : S ! P1 whose general �ber is P1;(3.1.2.3) surfaces which are images of maps h : P2 9 9 KPn.Cubic surfaces were shown to be rational by [Clebsch1866]. The second case wassettled in [Noether1871] and the third class was treated in [Castelnuovo1894].



LOW DEGREE POLYNOMIAL EQUATIONS 133.2 Topology. Homeomorphism versus di�eomorphism.Understanding algebraic surfaces in terms of their topology turned out to beextremely di�cult.Some classical questions can be interpreted in topological terms, but this mayhave been �rst explicitly done in [Hirzebruch54]. One of the simplest problems isto give a topological characterization of the complex projective plane. This was�nally done in [Yau77]:3.2.1 Theorem. Assume that S(C ) is homeomorphic to C P2 . Then S is also iso-morphic to C P2 .The di�culties of this very special case discouraged attempts to move further inthis direction.A fundamental problem in general is that a birational map g : S1 9 9 KS2 doesnot induce a homeomorphism. This question can be understood in terms of theconnected sum operation as follows:3.2.2 Proposition. If S1(C ) and S2(C ) are birational then there are natural numbersr; s such that S1(C )#(C P2)r is di�eomorphic to S2(C )#(C P2)s;where # denotes connected sum and C P2 is C P2 with reversed orientation. Wecan assume in addition that minfr; sg � 1 and even minfr; sg = 0 with a fewexceptions.In particular we obtain:3.2.3 Proposition. If S is rational then S(C ) is di�eomorphic toC P2#(C P2)r or to C P1 � C P1 :(It is not hard to see that (C P1 � C P1)#C P2 is di�eomorphic to C P2#(C P2)2,that is why we have only one series in (3.2.3).)By analogy with (2.2) one can ask if the converse is also true. It was noticed sometime ago that the answer is no if we use homeomorphism instead of di�eomorphism[Dolgachev66]. As Donaldson theory started to discover the di�erence betweendi�eomorphism and homeomorphism in real dimension 4, the hope emerged thatthe converse of (3.2.3) holds for di�eomorphisms.This has been one of the motivating questions of the di�erential topology ofalgebraic surfaces. After many contributions, the �nal step was accomplished by[Pidstrigach95; Friedman-Qin95]. With the new methods of Seiberg-Witten theory,the proof is actually quite short [Okonek-Teleman95]:3.2.4 Theorem. Let S be a smooth, projective algebraic surface over C . ThenS is rational , S(C ) is di�eomorphic toC P2#(C P2)r or C P1 � C P1 :



14 J�ANOS KOLL�AR3.3 Hard Arithmetic. S(Q) is \large".Let S be a surface de�ned over a number �eld F , most frequently F = Q. Asfor curves, for any number �eld E � F we de�ne the counting functionNE(S;H) := #fP 2 S(E) � EPnjH(P ) � Hg:We hope that S is rational over C i� NE(S;H) grows as a power of H for some E.Unfortunately this is not quite correct, and there are two related problems.(3.3.1.1) Look at the surface T := (xd+ yd = zd+ud) � P3. One can check thatT (C ) is smooth. T has high degree, but NQ(T;H) grows quadratically with H . Acloser inspection reveals that this growth is caused by (�nitely many) lines on thesurface (for instance (x � z = y � u = 0)) which contain many rational points. Ifwe remove these lines, there are very few rational solutions left.(3.3.1.2) The growth rate of NE(T;H) is not a birational invariant of T . Hereagain the problems are caused by �nitely many rational curves on T .The examples suggest that we should re�ne the hope as follows:3.3.2 Conjecture. [FMT89; Batyrev-Manin90] If T is rational (over C ) then thereis a number �eld E, 0 < � 2 Q and r 2 N such thatNE(T nA;H) is asymptotic to const �H�(logH)rfor every su�ciently large subvariety A ( T .It is furthermore conjectured that � and r are determined by the geometry of Tin a simple way [Batyrev-Manin90]. (For higher dimensions these re�nements areproblematic, see (4.3).)A weaker form of (3.3.2) is easy:3.3.3 Theorem. If T is rational (over C ) then there is a number �eld E and � > 0such that NE(T nA;H) > const �H� for every subvariety A ( T .The converse of (3.3.2{3) is not quite true. The conceptually correct formulationwill be given in (4.3.2{3). For surfaces the following form su�ces (cf. [FMT89]).3.3.4 Conjecture. Assume that (over C ) T is not rational and not birational toC�P1 where C is an elliptic curve. Then for every number �eld E and 0 < �, thereis a subvariety A ( T such thatNE(T nA;H) < const �H�:Very little is known in this direction since we have no general methods to showthat nonrational surfaces have only few rational points.3.4 Complex manifolds. Global holomorphic di�erential forms.Global holomorphic di�erential forms on a complex manifold have been muchstudied. On a surface we can have 1-forms and 2-forms. These are locally given asf1dz1 + f2dz2; respectively fdz1 ^ dz2;



LOW DEGREE POLYNOMIAL EQUATIONS 15where z1; z2 is a local coordinate system and the fi are holomorphic. In this context,they were �rst considered in [Clebsch1868] and systematically studied in [Picard-Simart1897].As in the curve case, the integrals of these forms over 1- and 2-cycles give basicinvariants of a variety [Hodge41]. This approach was developed into a very pow-erful method of studying complex manifolds, called Hodge theory. If there are noglobal holomorphic di�erential forms on a surface, then Hodge theory does not sayanything.It is easy to see that if S is rational then there are no global holomorphic dif-ferential forms on S(C ). Conversely, one can hope that this property characterizesrational surfaces.This is close to being true, and there are two ways of developing a completeanswer.(3.4.1.1) It is known that there are only �nitely many families of exceptions,though the complete list is not yet known.(3.4.1.2) The second approach, which is more promising in higher dimensions, isto study multivalued di�erential forms as well. On a surface a multivalued 2-formis locally written as f(z1; z2)dz1 ^ dz2 where f is a multivalued analytic function.Thus we may ask about the existence of 2-valued di�erential forms etc. We havethe following:3.4.2 Theorem. [Castelnuovo1898] S is rational i� there are no global holomorphic1-forms and no global holomorphic 2-valued 2-forms on S(C ).It is technically easier to talk about global sections of symmetric or tensor powersof the cotangent bundle. In this language the above result reads:3.4.2' Theorem. S is rational i� H0(S;
1S) = 0 and H0(S; (
2S)
2) = 0.3.5 Easy Arithmetic. There are many solutions over function �elds.Let F = C (t) and S � FPn be given by the equations f1 = � � � = fk = 0 wherethe fi are homogeneous polynomials in x0; : : : ; xn with coe�cients in F . Let �Fdenote the algebraic closure of F .The �rst good news is that the analog of (2.5.2) holds:3.5.1 Theorem. [Manin66; Colliot-Th�el�ene86] If S is rational (over �F ) then S(F )is not empty.As for curves, we may want to prove that there are in fact many solutions. Inperfect analogy with (2.5) we have:3.5.2 Theorem. [KoMiMo92b] Assume that S is rational (over �F ). There is a �niteset B � C such that if t1; : : : ; ts 2 C n B are arbitrary points and (x0k ; : : : ; xnk) isany solution of f1 = � � � = fk = 0 at tk then there is a solution (x0(t); : : : ; xn(t)) off = 0 such that (x0(tk); : : : ; xn(tk)) = (x0k; : : : ; xnk) for k = 1; : : : ; s.It would be desirable to generalize to the case when we also specify the beginningof the Taylor expansion of (x0(t); : : : ; xn(t)) at certain points. The case when Shas a conic bundle structure is quite easy (see [CTSSD87, I.3.9] for a similar hardarithmetic proof). The general case is not known.All these results hold if C (t) is replaced with any �nite degree extension of C (t).



16 J�ANOS KOLL�AR3.6 Low degree equations.First we may ask: is every rational surface de�ned by low degree equations? Theanswer is no, there are just too many rational surfaces. It is more reasonable toask:Is every rational surface T birational to a surface S which is de�ned by lowdegree equations?By de�nition, any rational surface is birational to C P2 over C , but this is ratheruseless in studying arithmetic properties of S. Thus we should be more precise andask:3.6.1 Question. Let T be a rational surface de�ned over a �eld F . Is T alwaysbirational over F to a surface S which is de�ned by low degree equations?In this form the question is very interesting and fruitful. The answer is given intwo steps.3.6.2 Minimal models of surfaces. [Enriques1897]The �rst step is to simplify the geometry of an arbitrary smooth projective sur-face T (C ) by birational maps. The classical name for this procedure is \adjunction".Later it was called \contraction of (-1)-curves", and the currently fashionable termis \minimal model program".For any surface T we aim to �nd a birational morphism f : T ! S such that Sis as simple as possible. (For instance, we may want to make the Betti numbers ofS(C ) small.) S is called a minimal model of T (in general it is not unique).If T is de�ned over a �eld F , then we can choose S so that f and S are alsode�ned over F . (It is remarkable that the original method of Enriques automaticallyworks over any �eld, while the later variants need additional arguments.)Next we study the geometry of the minimal models S assuming that S is rationalover C . The �nal result is that there are 4 classes of such surfaces.3.6.3 Theorem. [Enriques1897; Manin66; Iskovskikh80c] Let T be a surface de�nedover a �eld F � C such that T is rational over C . Then any minimal model of Tfalls in one of four classes. (For simplicity, I use a�ne coordinates.)(3.6.3.1) (One low degree equation)S = (f(x; y; z) = 0) � A 3 where f satis�es one of the weighted degree conditions:deg(x; y; z) = (1; 1; 1) and deg f � 3 (e.g. x3 + y3 + z3 + 1);deg(x; y; z) = (1; 1; 2) and deg f � 4 (e.g. x4 + y4 + z2 + 1);deg(x; y; z) = (1; 2; 3) and deg f � 6 (e.g. x6 + y3 + z2 + 1):(3.6.3.2) (Two low degree equations)S = (f1(x; y; z; u) = f2(x; y; z; u) = 0) � A 4 where deg fi = 2.(3.6.3.3) (Two equations with low degree in certain variables)S = (f1(x; y) = f2(x; y; z; u) = 0) � A 4 where deg f1 = 2 and the degree of f2 inthe (z; u) variables is 2. (The degree of f2 in the (x; y) variables can be high.)In these three cases a general choice of f; f1; f2 always gives a rational surface.



LOW DEGREE POLYNOMIAL EQUATIONS 17(3.6.3.4) (Miscellaneous)These are inconvenient to pin down with equations. They are all birationalto a surface S = (f(x; y; z) = 0) � A 3 where deg f � 9, but f has to be veryspecial. It is much better to notice that all these remaining cases are birational toa homogeneous space under a linear algebraic group.These results imply the following arithmetic assertion:3.6.4 Theorem. Let S be a surface de�ned over a �eld F � C which is rational overC . Then there is a �eld extension E � F such that deg[E : F ] � 9 and S(E) is notempty. 4. Higher Dimensional VarietiesAfter surfaces, the next step is the study of algebraic threefolds. The theory ofthreefolds is much more complicated than the theory of surfaces, but in the last 20years a rather satisfactory approach to threefolds was developed. We know muchless about higher dimensions, but all the conjectures predict that higher dimensionalvarieties behave exactly like threefolds, although the proofs are unknown to us.Of course it may happen that a few examples will completely change this picture,but for the moment there is no point in discussing threefolds and higher dimensionalvarieties separately.In the surface case one can always consider only irreducible and smooth surfaces.Starting with dimension three, the smoothness assumption is too strong, but thisis a technical question which has very little to do with the essential points of ourdiscussion.For simplicity, I mostly consider smooth varieties. At a few places, where singu-larities do cause trouble, I mention this explicitly.The aspects of higher dimensional algebraic geometry that are discussed hereare treated in the books [CKM88; Koll�ar96a]. Some other works dealing withrelated topics are [Ueno75; Koll�ar et al.92]. For symplectic topology see [McDu�-Salamon94,95].Characterizations of \low degree" varieties.Let X � Pn be a smooth projective variety de�ned by homogeneous equationsf1 = � � � = fk = 0.As for surfaces, the algebraic geometry condition gives the basic concept, buthere it takes some work to establish the correct de�nition.4.1 Algebraic geometry. X(C ) is rationally connected.Already in the surface case it is not easy to show that all low degree surfacesare rational. Therefore it did not come as a big surprise that in higher dimensionsrational varieties are too special. A cubic hypersurface Xn3 � C Pn+1 certainlyhas low degree. M. Noether knew that there is a map p : C Pn 9 9 K Xn3 whichis generically 2:1, but nobody was able to prove that Xn3 is rational for n � 3.(And indeed, X33 is not rational [Clemens-Gri�ths72].) This leads to the followingnotion:4.1.1 De�nition. X is unirational (over C ) if there is a rational map p : C Pn 9 9 KX(C ) with dense image, where n = dimX .



18 J�ANOS KOLL�ARVery low degree hypersurfaces in C Pn are unirational [Morin40b]. Unfortunately,it seems that the class of unirational varieties is still too restrictive.A new concept was proposed in [KoMiMo92b]. Instead of trying to emulateglobal properties of C Pn , we concentrate on rational curves. C Pn has lots of rationalcurves (lines, conics and many higher degree ones). These are images of mapsC P1 ! C Pn . The de�ning property of the new class should be the existence oflots of maps C P1 ! C Pn . There are several a priori ways of making this precise.Fortunately, many of these are equivalent:4.1.2 Theorem. [KoMiMo92b] Let X be a smooth projective variety over C . Thefollowing are equivalent:(4.1.2.1) There is an open subset ; 6= U � X(C ) such that for every x1; x2 2 Uthere is a morphism f : C P1 ! X satisfying x1; x2 2 f(C P1).(4.1.2.2) For every x1; x2 2 X(C ) there is a morphism f : C P1 ! X satisfyingx1; x2 2 f(C P1).(4.1.2.3) For every x1; : : : ; xn 2 X(C ) there is a morphism f : C P1 ! X satisfy-ing x1; : : : ; xn 2 f(C P1).(4.1.2.4) Let p1; : : : ; pn 2 C P1 be distinct points. For each i let fi : D(pi) !X(C ) be a holomorphic map from a small disc around pi to X(C ). Let ni be naturalnumbers. Then there is a morphism f : C P1 ! X such that the Taylor series of fiand of f jD(pi) coincide up to order ni for every i.(4.1.2.5) There is a morphism f : C P1 ! X such that f�TX is ample (see [ibid]for a de�nition of ample).4.1.3 De�nition. A smooth projective variety X is called rationally connected if itsatis�es the equivalent properties in (4.1.2).Thus among n-dimensional varieties we have 3 classes, with the following easycontainment relations:frationalg � funirationalg � frationally connectedg:Much e�ort went into understanding the precise relationship between these classes.Since 1910, several authors claimed to have produced examples of rationally con-nected but nonrational threefolds, but the �rst correct proofs appeared only around1970. By now the situation is quite satisfactory:4.1.4 Examples of rationally connected varieties which are not rational.(4.1.4.1) Dimension three.The �rst examples were quartic 3-folds X4 � C P4 [Iskovskikh-Manin71] and cu-bic 3-folds X3 � C P4 [Clemens-Gri�ths72]. Further development by [Beauville77;Iskovskikh80b; Bardelli84] gave a quite complete picture in dimension three.(4.1.4.2) Conic bundles.After some very special examples [Artin-Mumford72], a general theory was de-veloped in [Sarkisov81,82]. This shows that Xd;2 � C Pn � C P2 is not rational ford� 1. Further examples are in [Koll�ar96b].(4.1.4.3) Quadric bundles.Only some special examples are known [CTO89; Peyre93].(4.1.4.4) Hypersurfaces



LOW DEGREE POLYNOMIAL EQUATIONS 19X5 � C P5 is considered in [Pukhlikov87]; the method should give all Xn � C Pn .These techniques also give many more examples as in (1.3), see [CPR96]. Verygeneral hypersurfacesXd � C Pn+1 for 2n=3+2 � d � n+1 are treated in [Koll�ar95].(4.1.4.5) Hypersurface bundlesXc;d � C Pm � C Pn+1 where c � 2m and 2n=3+ 2 � d � n+1 are considered in[Koll�ar96b].As this list suggests, most rationally connected varieties are not rational. Someof the varieties on the above list are unirational, thus rational and unirational areindeed di�erent notions. Despite the long list of settled cases, there are many openproblems. I mention two about hypersurfaces; they indicate how little is known.4.1.5 Some unsolved cases.(4.1.5.1) Is the general cubic n-fold Xn3 � C Pn+1 rational for n � 4? The caseof cubic 4-folds has received a lot of attention. It is known that some special onesare rational [Morin40a; Tregub93]. In particular this would show that rationalityis not deformation invariant.(4.1.5.2) Is there any rational (smooth) hypersurface of degree at least 4? Thereis very little evidence either way.The biggest unsolved question in this picture is the following:4.1.6 Conjecture. Most rationally connected varieties are not unirational.At the moment, there is not a single example known. The simplest case to studymay be general quartic threefolds X4 � C P4 .Assume that X is unirational, that is, there is a map p : C Pn 9 9 KX . The imagesof linear subspaces show that through a general point of x 2 X there are unirationalsubvarieties of every dimension. Even this weaker property may fail in general:4.1.7 Question.LetXd � C Pn be a hypersurface of degree d � n (thusX is rationally connected).Is it true that for every point x 2 X there is a rational surface x 2 Sx � X?It is easy to see that this is the case if �d+12 � � n, and probably also for slightlylarger values of d.I do not see any obvious way to construct rational surfaces when d is close to n.Finally I mention another problem concerning rationally connected varieties.4.1.8 Conjecture. Let f : X ! Z be a morphism between smooth projective vari-eties. Assume that Z and the general �ber F are rationally connected. Then X isrationally connected.It is easy to see that the special case when Z = P1 implies the general one, thus(4.5.1) implies (4.1.8).4.2 Topology. Di�eomorphism versus symplectomorphism.Guided by the results of the surface case, one can look for three types of theoremsin higher dimension:4.2.1 Basic Questions.(4.2.1.1) Determine all algebraic varieties of a given topological type.



20 J�ANOS KOLL�AR(4.2.1.2) Relate the topological properties of birationally equivalent varieties.(4.2.1.3) Characterize rationally connected varieties in terms of their topology.As in (3.2), the best example in the �rst direction is the following result of[Hirzebruch-Kodaira57; Yau77]4.2.2 Theorem. If X(C ) is homeomorphic to C Pn then X is isomorphic to C Pn .There are very few such results known, and the proofs use rather lucky coinci-dences. One may want to have a more modest aim in mind, and try to show thatthe topological structure of X(C ) determines X up to �nite ambiguity. I noticedthe following special case some time ago (a proof is given in (5.3)):4.2.3 Theorem. Let M be a compact di�erentiable manifold with dimH2(M;Q) =1. Then there are only �nitely many families of algebraic varieties X such thatX(C ) is di�eomorphic to M .For M arbitrary this no longer holds. This is already shown by the exampleof minimal ruled surfaces, but a more convincing negative result was observed by[Friedman-Morgan88b]. This shows that di�eomorphism of algebraic 3-folds is notas strong as for surfaces:4.2.4 Example. Let Si be smooth projective surfaces such that Si(C ) is simplyconnected. Set Xi := Si � C P1 .For di�erentiable manifolds of real dimension 6, homeomorphism frequently im-plies di�eomorphism [Wall66; Sullivan77; Zubr80]. We �nd that if Si(C ) and Sj(C )are homeomorphic, then X1(C ) and X2(C ) are even di�eomorphic. This gives sev-eral unpleasant examples:(4.2.4.1) Let S1 be a rational surface which is homeomorphic to a nonrationalsurface S2 (3.2). Then X1 is rational, hence also rationally connected and X2 isnot even rationally connected.(4.2.4.2) One can construct in�nitely many surfaces Si such that the Si(C ) areall homeomorphic, but the Si are quite di�erent as algebraic surfaces [Okonek-V.d.Ven86; Friedman-Morgan88a]. Thus the manifolds Xi(C ) are all di�eomorphic,but the varieties Xi do not �t into �nitely many families.4.2.5 The Topology of Birational Maps.Let X1 and X2 be smooth projective varieties, birational to each other. Incontrast with the surface case, it is not known how the manifolds X1(C ) and X2(C )are related. There are certain surgery type operations, called blow-ups, that takethe role of connected sum with C P2. Unfortunately it is not known whether onecan go from X1(C ) to X2(C ) by repeated application of blow-ups. This is a hardproblem.The minimal model program establishes a class of surgery type operations thatcan be used to go from X1(C ) to X2(C ). At the moment these operations are notwell understood from the topological point of view. Furthermore, the intermediatestages involve singular topological spaces. In dimension three they are all rationalhomology manifolds [Koll�ar91, 2.1.7], but even this fails in higher dimensions.As example (4.2.4) shows, the di�eomorphism type alone does not characterizerationally connected varieties. In order to obtain a suitable analog of (3.2.4), it isnecessary to study an additional structure on X(C ):



LOW DEGREE POLYNOMIAL EQUATIONS 214.2.6 Symplectic manifolds.A symplectic manifold is a pair (M2n; !) where M is a di�erentiable manifold ofdimension 2n and ! is a 2-form ! 2 �(M;^2T �) which is d-closed and nondegen-erate. That is, d! = 0 and !n is nowhere zero.Any smooth projective variety admits a symplectic structure. This can be con-structed as follows. On C n+1 consider the Fubini{Study 2-form!0 := p�12� "P dzi ^ d�ziP jzij2 � (P �zidzi) ^ (P zid�zi)(P jzij2)2 # :It is closed, nondegenerate on C n+1 nf0g and invariant under scalar multiplication.Thus !0 descends to a symplectic 2-form ! on C Pn = (C n+1 n f0g)=C � .If X � C Pn is any smooth variety, then the restriction !jX makes X(C ) into asymplectic manifold.The resulting symplectic manifold (X(C ); !jX) depends on the embedding X ,!C Pn , but the dependence is rather easy to understand:We say that two symplectic manifolds (M;!0) and (M;!1) are symplectic defor-mation equivalent if there is a continuous family of symplectic manifolds (M;!t)starting with (M;!0) and ending with (M;!1).To every smooth projective variety the above construction associates a symplecticmanifold (X(C ); !jX) which is unique up to symplectic deformation equivalence.This allows us to formulate the proper generalization of (3.2.4):4.2.7 Conjecture. Let X0 and X1 be smooth projective varieties de�ned over Csuch that (X0(C ); !0 ) is symplectic deformation equivalent to (X1(C ); !1). ThenX0 is rationally connected i� X1 is.The evidence for this conjecture comes from three sources:The �rst thing to check is that (4.2.7) holds if there is a continuous family ofalgebraic varieties fXt; t 2 [0; 1]g. This case is settled:4.2.8 Theorem. [KoMiMo92b, 2.4] Let fXt; t 2 [0; 1]g be a continuous family ofsmooth projective varieties. Then X0 is rationally connected i� X1 is.Second, one should try to analyze the examples (4.2.4). This was studied indetail by [Ruan94] who showed that the symplectic structure of S � C P1 can beused to study the di�erentiable structure of S in many cases.The third piece of evidence is given by the following closely related result, whoseformulation requires a de�nition.4.2.9 De�nition. A smooth projective variety X over C is called uniruled, if itsatis�es the following equivalent conditions:(4.2.9.1) There is an open subset ; 6= U � X(C ) such that for every x 2 U thereis a morphism f : C P1 ! X satisfying x 2 f(C P1).(4.2.9.2) For every x 2 X(C ) there is a morphism f : C P1 ! X satisfyingx 2 f(C P1).The proof of the next result is outlined in (5.4):



22 J�ANOS KOLL�AR4.2.10 Theorem. Let X0; X1 be smooth projective varieties de�ned over C suchthat (X0(C ); !0) is symplectic deformation equivalent to (X1(C ); !1). Then X0 isuniruled i� X1 is.(4.2.7) holds if dimH2(X0;Q) = 1, since then X is rationally connected i� it isuniruled [KoMiMo92a].It should be noted that if X0 is Fano (4.6.2.1), X1 need not be Fano, as shownby the examples of rational ruled surfaces.It would also be interesting to �nd some topological properties of rationallyconnected varieties. The only general result is the following:4.2.11 Theorem. [Campana91b; KoMiMo92b] Let X be a rationally connected va-riety. Then X(C ) is simply connected.4.3 Hard Arithmetic. X(Q) is \large".As for surfaces, the guiding principle is the following conjecture, which is anatural generalization of a problem of [Batyrev-Manin90].4.3.1 Conjecture. If X is rationally connected (over C ) then there are r 2 N, 0 <� 2 Q and a number �eld F 0 � F such thatNE(X nA;H) is asymptotic to const �H�(logH)rfor every su�ciently large subvariety A ( X , and for every number �eld E � F 0.The key point is that � is positive. Even the following weaker form is completelyopen:4.3.1' Conjecture. If X is rationally connected then there is an � > 0 such thatNE(X nA;H) > H� (for H � 1),for every subvariety A ( X , and for every su�ciently large number �eld E.There are many special cases where (4.3.1) holds [FMT89; Batyrev-Manin90;Batyrev-Tschinkel95]. There is a more precise version of the conjecture [Batyrev-Manin90] asserting that the numbers �; r are computable from the geometry ofT . This has been checked in certain cases, but a recent example of [Batyrev-Tschinkel96] shows that the conjecture for the value of r is incorrect.A precise computation of the growth of the number of integral solutions of theequations x31 + x32 + x33 = y31 + y32 + y33x1 + x2 + x3 = y1 + y2 + y3is contained in [Vaughan-Wooley95]. This corresponds to (4.3.1) for a certain sin-gular cubic threefold. The results con�rm (4.3.1), but they also seem to contradictthe more re�ned conjecture about r. Further special cases are treated in [EMS96].The converse of (4.3.1) again fails, but not by much:



LOW DEGREE POLYNOMIAL EQUATIONS 234.3.2 Conjecture. Assume that X is not uniruled (over C ). Then for every number�eld E and 0 < �, there is a subvariety A ( X such thatNE(X nA;H) < const �H�:4.3.3 The general case. The problem for a general variety X can be reduced to theabove two cases as follows.Assuming (4.1.8), there is a map f : X 9 9 KZ such that Z is not uniruled andthe �bers of f are rationally connected [KoMoMi92b].Thus we can study the points of X in E in two steps. First we have to �nd theE-points of Z using (4.3.2). Then for every P 2 Z(E) we study the E-points inthe �ber f�1(P ), which is rationally connected.4.4 Complex manifolds. Global holomorphic di�erential forms.As in the surface case, one can study multivalued global holomorphic di�erentialforms on X(C ). It is easy to see that if X is rationally connected, then there areno such forms:4.4.1 Proposition. Let X be a smooth projective variety over C . Assume that X isrationally connected. ThenH0�X; �
1X�
m� = 0 for every m > 0.The converse is conjectured to be true, but it is known only in dimension three:4.4.2 Theorem. [KoMiMo92b] Let X be a smooth projective threefold over C . Thefollowing are equivalent:(4.4.2.1) X is rationally connected;(4.4.2.2) H0�X; �
1X�
m� = 0 for every m > 0.In contrast with (3.5), the current proofs of (4.4.2) require the vanishing for allvalues of m. It is quite likely that �nitely many of these values are su�cient, butthere is no conjecture for the precise bound. [KoMiMo92b] contains further resultsin this direction.4.5 Easy Arithmetic. There are many solutions over function �elds.Let F = C (t) and X � FPn be a subvariety. Let �F denote the algebraic closureof F .The higher dimensional analog of (3.5.1) is open:4.5.1 Conjecture. If X is rationally connected then X(F ) is not empty.This is known in many special instances (see, e.g. [Koll�ar96a, IV.6]), but theseresults give very few hints about the general case.This of course means that we are also unable to prove that X has many pointsin F . Surprisingly, one can prove that if X(F ) is not empty, then it is very large.I formulate the result in the geometric version, which is more precise.4.5.2 Theorem. [KoMiMo92b, 2.13] Let X be a projective variety over C and f :X ! C a morphism onto a smooth curve. Assume that f has a section � : C ! X .



24 J�ANOS KOLL�ARLet c1; : : : ; ck 2 C be closed points such that f�1(ci) are smooth and rationallyconnected. Pick arbitrary points pi 2 f�1(ci).Then f has a section s = sp1;:::;pk : C ! X such that s(ci) = pi for every i.The following more general version is open. In analogy with the number theoreticterminology (cf. [Mazur92]), it should be called \weak approximation for rationallyconnected varieties over function �elds".4.5.3 Conjecture. Let X be a smooth projective variety over C and f : X ! C amorphism onto a smooth curve whose general �bers are rationally connected. Letc1; : : : ; ck 2 C be closed points and ci 2 D(ci) � C small discs around ci. Picklocal sections si : D(ci)! X and natural numbers ni.Then f has a section s : C ! X such that the Taylor series of sjD(ci) agreeswith the Taylor series of si up to order ni, for every i.In the special case when X = C � Y , this follows from (4.1.2.4).4.6 Low degree equations.As in the surface case, the principal question is the following:4.6.1 Question. Let X be a rationally connected variety de�ned over a �eld F . IsX always birational over F to a variety Y which is de�ned by low degree equations?In contrast with the surface case, this is interesting even for F = C .In analogy with (3.6), �rst we need:4.6.2. Minimal model program.This is a general method to simplify the structure of an arbitrary smooth pro-jective variety. Already in dimension 3 it is rather complicated (cf. [Mori82,88]),and in higher dimensions remains conjectural. See [Koll�ar87,90] for introductions.The program can be performed over any �eld F with minor modi�cations.For rationally connected varieties we end up with a variety Y (birational to X)satisfying one of the following conditions:(4.6.2.1) Y is a Fano variety, that is, �KY is ample. Unfortunately, Y may besingular. The singularities are rather mild (terminal and Q-factorial), but they docause certain problems.(4.6.2.2) There is a morphism p : Y ! Z such that Z and the �bers of p arerationally connected.In the second case we hope to reduce problems about X to questions about Zand about the �bers of f . Thus we mainly concentrate on the �rst case. Some ofthe basic questions are settled:4.6.3 Theorem. (4.6.3.1) [Nadel91; Campana91a; KoMiMo92a,c] For any n thereare only �nitely many families of smooth Fano varieties of dimension n.(4.6.3.2) [Kawamata92] There are only �nitely many families of singular Fanothreefolds arising in (4.6.2.1).In both cases the proof yields explicit (though huge) bounds on the number offamilies and also on the degrees of the de�ning equations of the Fano varieties.In dimension three there is a complete list of all smooth Fano varieties, but nosuch list exists in the singular case. In any case, classifying Fano threefolds up



LOW DEGREE POLYNOMIAL EQUATIONS 25to isomorphism may not be the sensible thing to do. Our original variety X isdetermined by Y only up to birational equivalence; thus it makes sense to classifyrationally connected threefolds up to birational equivalence. [Alexev94; Corti96]contain signi�cant steps in this direction.4.6.4 Listing by low degree equations.Smooth Fano threefolds were studied by G. Fano in a series of articles spanningfour decades starting in 1908. A modern account of these works was given in[Iskovskikh80a,b]. The results of [Mukai89] give a better description, especiallyover nonclosed �elds. For singular Fano threefolds there is no general theory; aseries of examples can be found in [Fletcher89].If there is a morphism p : X ! Z as in (4.6.2.2), then the results of (3.6) give usde�ning equations as in (3.6.3). Instead of listing all cases, I just give two examples:(4.6.4.1) S = (f1(u; v) = f2(x; y; z; u; v) = 0) � A 5 ,where deg f1 = 2 and the degree of f2 in the (x; y; z) variables satsi�es one of theconditions of (3.6.3.1) (The degree of f2 in the (u; v) variables can be high.)(4.6.4.2) S = (f1(x1; x2) = f2(x1; : : : ; x4) = f3(x1; : : : ; x6) = 0) � A 6 ,where deg f1 = 2, the degree of f2 in the (x3; x4) variables is 2 and the degree off3 in the (x5; x6) variables is 2. (The degrees in the other variables can be high.)In both cases a general choice of the fi gives a rationally connected variety.These results imply the following arithmetic consequence:4.6.5 Theorem. There is a constant D(3) with the following property:Let X be a rationally connected threefold de�ned over a �eld F � C . Then thereis a �eld extension E � F such that deg[E : F ] � D(3) and X(E) is not empty.One can write down an explicit bound for D(3), though I have not done it.Conjecturally, a similar result holds in any dimension.5. AppendixThe aim of this appendix is to outline the proofs of some statements which arenew or for which I could not �nd a suitable reference.5.1 Proposition. Let B be a smooth proper curve over C and f : S ! B a properruled surface. Let bi 2 B be di�erent points and D(bi) a small disc around bi. Letsi : D(bi)! S be holomorphic (or formal) sections and ni natural numbers.Then there is a section s : B ! S such that sjD(bi) agrees with si up to orderni for every i.Proof. S is birationally trivial; that is, there is a birational map � : P1 �B 9 9 KS.We obtain local sections s0i := ��1 � si : D(bi)! P1 �B:Assume that it takes k blow-ups to resolve the indeterminacies of �. Let s0 : B !P1 � B be a section such that s0jD(bi) agrees with s0i up to order ni + k for everyi. Then we can take s := � � s0.Thus it is su�cient to �nd s0. Equivalently, we need to �nd a map �s : B ! P1with prescribed local behavior �si : D(bi) ! P1. By a generic coordinate change inP1 we can assume that �si(bi) 2 C for every i.



26 J�ANOS KOLL�ARChoose another point b0. One can always �nd regular functions on the a�necurve B n fb0g with prescribed local behaviour at the points bi. �5.2 Proof of (4.1.2.4). We need to show that (4.1.2.4) is implied by (4.1.2.3). As a�rst step, I prove the following weaker version:(5.2.1) Let p1; : : : ; pn 2 C P1 be disctinct points. For each i let fi : D(pi) !X(C ) be a holomorphic map from a small disc around pi to X(C ). Let ni benatural numbers. Then there is a morphism g : C P1 ! X and holomorphic mapshi : D(pi) ! C P1 such that the Taylor series of fi and of g � hijD(pi) coincide upto order ni for every i.To see this, let D � C be the unit disc and f; g : D ! C n two holomorphic mapswith coordinate functions f j ; gj . Assume that f(0) = g(0) = 0 2 C n . Let B0C n !C n be the blow-up of 0 2 C n . f and g lift to holomorphic maps �f; �g : D ! B0C n .Explicit local computation shows the following:(5.2.2.1) If �f and �g agree up to order n, then so do f and g.(5.2.2.2) If f1(t) = g1(t) = t and �f and �g agree up to order n� 1, then f and gagree up to order n.Using (5.2.2.1) for repeated blow-ups, we �rst reduce (5.2.1) to the case whenthe fi are immersions. Then up to a local coordinate change we may assume thatf1i (t) = t for every i. We can now prove (5.2.1) by induction onPni, since (4.1.2.3)gives it for Pni = 0.The only subtle point is the reduction step from order 1 to order 0. Let p 2 D �C P1 be a disc. Given an immersion f : D ! X , let x = f(p) and � : BxX ! X bethe blow-up with exceptional divisor E � BxX . Assume that we have �g : C P1 !BxX such that �f and �g agree up to order 0 at p. We would like to conclude thatf and g := �g � � agree up to order 1 at p. (5.2.2.2) gives this, if g is an immersion.Thus we have to choose �g : C P1 ! BxX to be transversal to E. This is slightlystronger than (4.1.2.3), but can easily be arranged (see the proofs of II.3.14 andIV.3.9 in [Koll�ar96a]).Once we have (5.2.1), we just need to �nd a map h : C P1 ! C P1 which approx-imates every hi up to order ni and set f := g � hThe f we found is a multiple cover of a curve in X . As in [Koll�ar96a, IV.3.9] wecan perturb f to obtain another solution of (4.1.2.4) where f jC P1 n fp1; : : : ; png isan embedding. �5.3 Proof of (4.2.3). Assume that X(C ) is di�eomorphic toM . We use the formula[Hirzebruch66,20.3.6*](5.3.1) �(OX) =Xs�0 12n+2s(n� 2s)!c1(X)n�2sAs(p1; : : : ; ps)[M ];where the As are certain polynomials of the Pontrjagin classes of M and A0 = 1.From Hodge theory we know thatj�(OX)j �X dimC H i(X;OX) �X dimC H i(M; C );and so �(OX) is bounded in terms of M . Since b2(M) = 1, we can �x an ampledivisor H in Pic(X) and then c1(X) � rH for some rational number r. (5.3.1)



LOW DEGREE POLYNOMIAL EQUATIONS 27becomes a polynomial equation for r. As �(OX) runs through all the possiblevalues, we get only �nitely many possible values for r. Therefore the self-intersectionnumber (Hn) and the intersection number (c1(X) �Hn�1) are bounded dependingon M only. The result now follows from Matsusaka's Big Theorem (in the formgiven in [Koll�ar-Matsusaka83]). �The proof provides an e�ective bound on the number of families of algebraicstructures on a given manifold M , but the bound is enormous even in the simplestcases.5.4 Proof of (4.2.10). The proof is an application of the theory of Gromov{Witteninvariants. I recall the main concepts in the needed special case. See [McDu�-Salamon94,95] for details of the general theory.LetX be a smooth projective variety over C . Fix a point x 2 X , a homology classA 2 H2(X(C );Z) and very ample divisors in general position Hi � X , i = 1; : : : ; k.Let y0; : : : ; yk 2 C P1 be general points. For suitable k, there may be only �nitelymany mapsf : C P1 ! X such that f�[C P1 ] = A; f(y0) = x; and f(yi) 2 Hi; i = 1; : : : ; k:We de�ne an invariant(5.4.1) ~FA;X(x;H1; : : : ; Hk; y0; : : : ; yk) := the number of such maps.Gromov's theory of pseudo-holomorphic curves shows that one can make a sim-ilar de�nition where X is replaced by a symplectic manifold (M;!) endowed witha general almost complex structure. The corresponding invariant is denoted by(5.4.2) ~�A;M;!(x;H1; : : : ; Hk; y0; : : : ; yk):It is one of the Gromov{Witten invariants of (M;!). In fact, this is an invariant ofthe symplectic deformation equivalence class.In general the algebraic number (5.4.1) and the symplectic number (5.4.2) aredi�erent. Under suitable conditions they are equal, and this means that we can getinformation about rational curves on X from the symplectic structure (X(C ); !X )(4.2.6). This idea was used by [Ruan93] to show that the extremal rays of Moritheory can be described using the symplectic structure. We need the followingtwo results. (In [Ruan93] they are proved under the extra assumption that thesymplectic structure is semi-positive. This is no longer necessary.)5.4.3 Theorem. Let X be a smooth projective variety over C and (M;!) the cor-responding symplectic manifold.(5.4.3.1) If ~�A;M;!(x;H1; : : : ; Hk; y0; : : : ; yk) 6= 0, then there is a rational mapf : C P1 ! X such that f�[C P1 ] = A, f(y0) = x and f(yi) 2 Hi; i = 1; : : : ; k.(5.4.3.2) ~FA;X(x;H1; : : : ; Hk; y0; : : : ; yk) = ~�A;X(C);!X (x;H1; : : : ; Hk; y0; : : : ; yk)if the following conditions are satis�ed:(5.4.3.2.1) If g : C P1 ! X is any map such that g�[C P1 ] = A and g(y0) = x,then H1(C P1 ; g�TX) = 0.



28 J�ANOS KOLL�AR(5.4.3.2.2) If C1; : : : ; Cm � X are rational curves such that P[Ci] = A andx 2 C1, then m = 1.We can now prove (4.2.10).Let (M;!) be the common symplectic structure of X0 and of X1. Fix a verygeneral point x 2 X0. Fix a very ample divisor H � X0 and let x 2 C � Xbe a rational curve such that (C � H) is minimal (C exists since X0 is uniruled).Set A := [C]. By [KoMiMo92c,1.1], the condition (5.4.3.2.1) holds and (5.4.3.2.2)follows from the minimality of (C �H). Let k be the dimension of the space of mapsg : C P1 ! X such that g�[C P1 ] = A and g(y0) = x. LetH1; : : : ; Hk � X0 be generaldivisors linearly equivalent to H . By construction, ~FA;X(x;H1; : : : ; Hk; y0; : : : ; yk)is de�ned and is nonzero. Thus ~�A;M;!(x;H1; : : : ; Hk; y0; : : : ; yk) 6= 0.By (5.4.3.1) this implies that there is a rational curve through any very generalpoint of X1, and thus X1 is also uniruled. �Finally we prove that condition (1.2) correctly identi�es the class of rationallyconnected varieties among diagonal hypersurfaces.5.5 Proposition. Let X be any smooth compacti�cation of the a�ne hypersurface( nXi=1 cixdii + c0 = 0) � C n :(5.5.1) X is rationally connected i� P 1=di � 1.(5.5.2) The Kodaira dimension of X is nonnegative i� P 1=di < 1.Proof. Consider �rst the case n = 2, assuming d1 � d2. View X as a d1-sheetedcover of the line rami�ed along c2xd22 + c0 = 0. The Hurwitz formula gives that2g(X) = (d1 � 1)(d2 � 2) + (rami�cation at in�nity):This implies (5.5) for n = 2.If n � 3 then as in (1.3), we view these as hypersurfaces in weighted projectivespaces. Let d = lcm(di), d = diai and set a0 = 1, d0 = d. A (nonsmooth)compacti�cation is given by the projective weighted hypersurfaceY := nXi=0 cixdii � P(a0; : : : ; an):As long as Q ci 6= 0, these hypersurfaces are isomorphic (over C ), thus Y can beviewed as a general member of the linear system jxd00 ; : : : ; xdnn j. This implies thatY has only quotient singularities and Picard number 1 for n � 4.Assume that d < P ai. KY = O(d �P ai), thus Y is Q-Fano. ThereforeY is uniruled by [Miyaoka-Mori86]. Let p : �Y ! Y be a desingularization and�f : �Y 0 ! Z the MRC �bration [KoMiMo92b]. The �bers of p are all rationallyconnected (cf. [Koll�ar96a, VI.1.6.2]), thus �f descends to f : Y 0 ! Z. If n � 4,then as in [Koll�ar96a,IV.4.14], we obtain that Z is a point, hence Y is rationallyconnected. If n = 3 then we use that h1(X;OX) = h1(Y;OY ) = 0. A smoothuniruled surface S with h1(S;OS) = 0 is rational, hence X is rational.
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