Polynomials and Combinatorial Definitions of
Languages

Kenneth W. Regan*
August 1996

Abstract

Using polynomials to represent languages and Boolean functions has opened
up a new vein of mathematical insight into fundamental problems of compu-
tational complexity theory. Many notable advances in the past ten years have
been obtained by working directly with these polynomials. This chapter sur-
veys important results and open problems in this area, with special attention
to low-level circuit classes and to the issues of “strong” vs. “weak” representa-
tions raised by Barrington, Smolensky, and others. Other combinatorial rep-
resentations for languages besides polynomials are worthy of attention, and a
new example characterizing parity-of-(ands-of)-threshold circuits is presented
in the last section.

1 Introduction

Turing machines and complexity measures are great for defining classes of languages,
but many researchers are finding that they are not so hot for analyzing these classes,
especially for lower bounds. As formal tools they mostly stand by themselves; they
do not build on or easily link to the great progression of mathematical concepts and
tools. Turing machines are unstructured; their work environment is a tabula rasa;
their computational process is not known to have anything like the overt properties
and hooks for analysis of other mathematical processes. Even chaos is structured.
These remarks apply to other general machine models, and in large part to Boolean
circuits.

Machine-independent characterizations of complexity classes seek to answer these
concerns. A prominent main line of research has been “capturing” these classes by
systems of first and second-order logic. The chapter by Barrington and Immerman in
this volume covers some of this, and some recent successes in lower and upper bounds

*Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall,
Buffalo, NY 14260-2000 USA. E-mail: regan@cs.buffalo.edu. Supported in part by the National
Science Foundation under grant CCR-~9409104.

may be found in [AF90, FSV93, Sch94]. Here we
to characterize languages and complexity notion:
entities that have been studied for a long time.
Polynomials over various rings and fields h
notable advances over the past ten years. The 1
mials is that of degree, which in turn is a chief a
and the results covered here show how well it ¢
measures for the languages and functions represe
they had been used as early as 1968 by Minsky a
on perceptrons, polynomials really erupted onto
[Raz87], Smolensky! [Smo87], and Toda [Tod89,
case, the polynomials not only captured the prol
braic techniques that solved the problems. A po
[A1189, AH90, Sze90, Sze93, Yao90, BT91, BT94,
BRS91b, BRS95, Bar92, BBR92, BBR94, NS92,
mial method” and expanded its significance.
Although polynomials have deservedly gotte
attention here, there are other combinatorial obje
combining issues of complexity theory with areas
more answers are known. Space allows us only t
notion with a more geometrical flavor that takes
and thresholds one step further, and proving rest
This survey covers much of the same ground a
but with a different set of emphases. First, we
“strong” versus “weak” representations, and set
effect of both the underlying ring or field and
class of languages defined. Second, we try to 1
this framework, continuing the foundations laic
tradeoffs in the theory of error-correcting codes i1
we emphasize applications for the small classes
geometrical notion in Section 8 to the whole. ¢
author’s joint papers [GKR™95] and [NRS95], an

2 Polynomials
Multi-variable polynomials are perhaps the simg

that are capable of representing languages. Le
operations +, * : R X R — R. Then any arithme

IThis author was greatly saddened by the news of Rom:
after the first draft of this article was completed. I was no
study of Smolensky’s papers themselves, but I hope that t
to the “problem of representations,” which Smolensky hig
memory and spur interest in the goals toward which he w

Uy, ..., u, (n > 0) and elements of R defines an n-variable polynomial p over R,
written p € Ruq, ..., u,]. If 4+ is associative and commutative, has an identity 0 € R,
and gives every element an additive inverse—and if * is associative and distributes
on both left and right over +, then R = (R, +, %) is a ring. If x is also commutative
and has an identity 1 € R, then R is a commutative ring with identity, and further
if every non-0 element has a multiplicative inverse, then R is a field. The complex
numbers C, the real numbers R, the rational numbers Q, and the integers modulo
¢ (denoted by Z,) for prime ¢ are fields, but the integers Z, and Z,, for composite
m > 2, are “merely” commutative rings with identity. For any £ > 1 and prime
q, the Galois field GF(q*) is defined with R = (Z,)* using vector addition and a
operation whose definition does not concern us here; for more on all the above, see
[Jac51]. Every finite field is isomorphic to some GF(¢*). GF(q) is the same as Z,,
but for k>2, GF(¢*) should not be confused with Z, which is not a field.

One perhaps counter-intuitive import of current research is that the more prop-
erties one adds to R, the weaker the power of polynomials over R to represent
languages. Indeed, the most recent fundamental work has been on polynomials
(and generalizations of polynomials) defined over structures weaker than rings—see
[BT88, BST90, MPT91, Nis91, AJ93, MV94]. However, our reasons for emphasizing
rings come out in Section 4. Unless otherwise specified, languages are defined over
the alphabet {0,1}.

Definition 1. Given R = (R, +,*), let eq and ey be fized elements of R, and let
S1 and Sy be nonempty disjoint subsets of R. A sequence of polynomials {p, : n >
1}, with each p, € Rlui,...,uy), is said to represent a language L with scheme
(e1,€0,51, So) if for all n and x € {0,1}",

re€L = p,(x) €S,

r¢ L = pu(z) € So.
Here p,(x) is defined by substituting, for each i (1 <1i<n), ey for u; if x; (i.e., the
ith bit of x) is a 0, and ey for u; if x; is a 1.

This definition “promises” that for all z, p,(z) € So U S;. When Sy = R\ S,
no promise is needed, and every sequence { p, } represents a unique language. Given
e1 and ey, the negation of a Boolean variable u; is expressed by (e; + eg — u;). By
analogy with a term in a DNF Boolean formula, we call a product of factors of the

form u; or (e; + eg — u;) a schematic term.
The following “complexity measures” for polynomials spring to mind.

(1) Degree: deg,(n) = the degree of p,.

(2) Size: Here there are three main notions:

(2a) Number of monomials: my(n) = the number of monomials when p, is
“multiplied out” via the distributive law.

(2b) Number of schematic terms: sp(n) = the minimum number of schematic
terms needed to write p, as a sum of schematic terms.

3

(2¢) Formula size: F,(n) = the minimum ni
for py,.

(3) Coefficient Size: C,(n) = the maximum 1
monomial of p,.

The coefficient size comes into play for the it
formula size, we have a measure of the number
Computing the other complexity measures beside
Pn, can present difficulties. Counting the monon
will be straightforward since our given formulas
but minimum number-of-schematic-terms and n
even in seemingly favorable cases, such as where
nonzero values and all of them are given. (See
Boolean formulas, called MINIMUM EQUIVALE
DISJUNCTIVE NORMAL FORM, in [GJ79].)

In order to focus on these complexity meas
or functions themselves, with regard to various
dependence on representation scheme.

3 Representation Schemes a

Nearly all the results in our references use one
schemes. Sign outputs are not applicable for t
and (2) are adapted from Beigel’s survey [Bei93]
nomenclature in [Bar92, Smo93, BBR94].

Definition 2. Chief representation schemes for 7

(1) Standard input, sign output: ey = 0, €; -
So={reR:r<0}.

(2) Fourier input, sign output: ey = +1, e; = -
(8) Strong representation: ey =0, e; =1, S =

(4) Standard nonzero representation: ey = 0, ¢
(so zero stands for x & L, everything else fa

(5) Weak representation: eg =0, e; = 1, and .
for any fized a € R). This is complementar

(6) Truly weak representation: ey = 0, e; = 1,
different n, and Sy = R\ S;.

With standard inputs as in (1), multiplication corresponds to logical AND, while
with Fourier inputs as in (2), multiplication carries out XOR. Fourier inputs can also
be used in place of standard inputs in (3)—(6). A major point of both these input
schemes is that 22 = z holds in the former, 22 = 1 in the latter. Hence the only
polynomials we need to consider are multilinear, and the maximum degree involved
is n.

The promise p, # 0 in (1) and (2) is not important—one can meet it from the

case Sp = R\ S} by forming 2p, (z) — 1. It also makes no difference if we let a negative
sign stand for true, positive for false. Hence (3) is the only one with a real promise
condition, justifying Barrington’s name “strong representation” for it. Taking a = 1
in (5) makes it clear that all of the other output schemes are met by polynomials
obeying (3). Smolensky [Smo93] identifies (4) with Barrington’s (5), but we prefer
to think of (4) as loosely analogous to “NP.,” (5) to “coNP,” and (3) to “P.” Truly
weak representation is equivalent to saying that we have polynomials p, such that
for all z,y € {0,1}" with z € L and y ¢ L, p,(x) # pa(y). Note that no distinction
between L and its complement is made in this condition.
Definition 3. Two representation schemes over a ring R are equivalent if for
every {p, } representing a language L wusing one scheme, there exist polynomials
{qn} that represent L using the other scheme, such that deg,(n) = O(deg,(n)),
Fy(n) = O(,(n)), and C,(n) = O(nC,(n)).

The condition on Cy(n) is just strong enough to preserve polynomial coefficient

size. Now we observe that all representation schemes over finite fields are equivalent
to (3), and we use the basic idea to reduce the other cases as much as possible. We
need the following technical provision, which holds in many cases.
Definition 4. Given disjoint S1,Sy C R and disjoint T1,Ty C R, say that (Si, So)
is polynomially mappable to (T, Ty) if there is a polynomial g in one variable over
R such that g(S1) C Ty and g(So) C Ty. Call (S1,So) and (T1,Tp) inter-mappable if
(T, Ty) is likewise mappable into (S1,Sp).

Now suppose we want to convert a polynomial p over R with scheme
(a1, ag, S1,Sp) into a polynomial ¢ that represents the same language with scheme
(b1, b0, T1,Tp), where we are given g mapping (S1,.Sy) into (71, 7p). If by — by has an
inverse in R, then we can use the linear formula

(a1 - ao)f+ a0b1 — (llbo

) 1)

q(7) = g(p(

To verify: if a variable x; of ¢ is assigned by, then the corresponding variable of p gets

the value ((al — ao)bo +a0b1 — albo)/(bl — bo) = ao(bl — bO)/<b1 — bo) = Qao, and similarly

an assignment of b; to an argument of ¢ puts a; into the corresponding argument for

the evaluation of p. This leads to a nice “robustness” theorem for fields, especially

finite fields.

Proposition 0.1. (a) Fvery two inter-mappable representation schemes over a
field are equivalent.

(b) All representation schemes over a finite field F' are equivalent to strong repre-

5

sentation; i.e., to (3) above.

Proof. Part (a) follows by Equation (1) and give
mula size of p(=) is at most 7 times the formula
into ¢ gives at most another constant-factor ove
(e1, €0, 51, So) and a polynomial p be given. It suf
g such that g(r) =1 for r € Sy and g(r) = 0 othe

gr)=1-[JJ - —>s

s€S1
since every non-zero element raised to the power
q(7) = g(p((e1 — €)@

This yields a strong representation, and deg(q) <
to any other scheme (by, by, T1, Tp), fix any a € Tg

T — |

b —

q'(F) = (b—a)q(

Now we observe that the construction in (a)
in fields, but also in many other cases. It works:

e When b; — by has an inverse in R—for insta;
prime to m.

e When the function g can be multiplied by
map S into T and the complement of S intc
by (by — by)d&®) cancels all denominators i1

Corollary 0.1. (a) For sign output, all repres
lent for polynomials over Z, as well as the f

to (2).

(b) Fourier inputs are equivalent to standard

m is odd, in each of (3)-(6).

(¢) When S and Sy are fixed for outputs, low
standard input representation apply to all o

Proof. (a) If (b —bg) is positive, then S = { z € Z
of (by — by), as is its complement. If (by — b) is 1
instead. The coefficient size stays within the bo
(b) holds because 2 is relatively prime to m when

6

pn representing L with a scheme (aq, ag, S) can be converted to (1,0, .S) because then
by — by =1. O

Note that we left the term-counting and monomial-counting measures out of the
definition of equivalence. The above results do not preserve the latter—they can blow
up to exponentially many monomials. We do not know what happens in general for
schematic terms. However, Equation (1) does preserve the ability to wire Boolean
inputs into small circuit gadgets that give the corresponding values in the ring, so that
wherever “number of terms” is used in the following results, robustness does hold.
Several authors use “terms” as synonymous with monomials or leave the meaning
vague; we pin it down to “schematic terms” if need be. Call {p, } sparse if the p,
can be written with polynomially many schematic terms.

To describe various kinds of circuits and circuit classes, we adopt and adapt
the notations of Goldmann, Hastad, and Razborov [GHR92] and Maciel and Thérien
[MT93, Mac95] as follows: A stratified circuit of depth d has inputs labeled z1, ..., z,
together with their negations i, ..., Z,, and then has d levels. Gates at each level
receive inputs from the previous level (the inputs are level 0), and all gates at the
same level have the same type. The gate types we consider are:

AND gates (A) and OR gates (O), of unbounded fan-in;
e “Small” AND gates (AND,,a11), defined to have fan-in (logn)°®;

e Mody, gates (Mody), standardly defined to output true iff the number of true
inputs is zero modulo k;

e Parity gates (P) or (Parity), which are the same as Mod, gates;

e Large Threshold gates (LT), each of which has a threshold ¢ and integer weights
w; associated to its 0-1 valued input lines e;, and outputs true iff ZZ w;e; > t.

e Small Threshold gates (T) have t,w; = r°1), where r is the fan-in.

o Magjority gates (MAJ) have all w; = 1 and ¢t = r/2. We also include the negation
of a MAJ gate under this heading.

o Midbit gates (Midbit): a Midbit gate of fan-in r returns the [log, r]th bit of
the number m of true inputs, where m is in binary notation.

e General symmetric gates (SYM) are any gates whose output depends only on
the number of input lines that are true. This designation includes all of the
above except T and LT gates.

The major classes defined by polynomial-size, constant-depth circuit families are
AC®, where the circuits have unbounded fan-in AND, OR, and NOT gates, ACC?,
where they may also have Mod,, gates (with k fixed for the family), and TC®, where
they may instead have LT gates. Since an LT gate can be simulated by a depth-two,
n'3-sized gadget of MAJ gates [Hof96] (see also [GHR92]), TC® can also be defined

7

via T gates or MAJ gates. Also for each k > 1,

accepted by bounded fan-in Boolean circuit famil;
depth, and NC = U,NC*. We skirt issues of u
chapter by Barrington and Immerman in this vo
background in what follows. The known inclusior

ACY ¢ ACC® C TC® C NC! C N¢(

Only the first inclusion is known to be proper
unknown!

The stratified-circuit notation allows us to d
above. For example, MAJo A stands for polynomi
gate connected to one layer of AND gates at the
may have a large threshold gate at the output i1
denote proper subclasses of TCY (see [GHR92, Ma
classes to polynomials.

Theorem 1 (cf. [Bei93]). (a) Let L be repres
or R having polynomial formula and coeffic
L € NC?

(b) If the p, are sparse, then L € LT oA. Conv
sparse polynomials over Z and R, using st

(¢) If standard inputs are used and the coeffic
mial magnitude (that is, have O(logn) bits
every language in MAJ o A has sparse poly
coefficients equal to 1.

(d) If L is represented by p, over a finite ring R,
size, then L € NC'. Moreover, every L €
over GF(2) having polynomial formula size.

(e) In (d), if the p, are sparse, then L € A(
circuits of size 2°P°W180Y) where again, AN
have polylog(n) fan-in.

Proof Sketch. The main point of (a) is the fact
formulas can be effectively “rebalanced” into aritl
and log depth (see [Spi71, Bre74, MP92]). Since t
Pn, all intermediate values have polynomially ma
operation is in (Boolean) NC!, the whole is in N
monomial becomes a weight on a line into a thre
can duplicate gates below the inputs and add du
clear by the reasoning in (a), and the converse f
of Boolean formulas. The first part of (e) is imr

extend it to other finite rings. The second part is due to Beigel and Tarui [BT91],
and is bundled into Theorem 12 below. O

Cases (c) and (e) correspond to “Theorem 2”7 in [Bei93]. In (e), if the ring is Z,,
and weak representation (5) in Definition 2 is used with @ = 0, then the output gate
becomes a Mody, gate.

Curiously, these basic relationships with circuit classes say nothing by themselves
about the degree measure. Degree corresponds to the order of a perceptron, as for-
malized and studied by Minsky and Papert [MP68]. The equivalence of perceptrons
to polynomials with bounded coefficients (and with the number of monomials plus
one equal to the size of the perceptron) is shown by Beigel [Bei93] and treated further
in [Bei%4al]. One remark is that an order-d perceptron of order d, size s, and weights
of magnitude w can be converted into an order-d perceptron of size 2%s and weight
sw that has no negated inputs and no duplicate AND gates (see [Bei94b, MPGS]);
this corresponds to the obvious relationship between number of schematic terms and
number of monomials. We do not discuss perceptrons further here. The impact of
having low-degree polynomials comes out in other simulations described below. In
contrast to the lack of good lower bounds for familiar machine-based complexity mea-
sures, the degree measure lends itself to tight lower and upper bounds in a number
of important cases.

4 Strong Versus Weak Representation

First, we note that to every Boolean function f(xi,...,x,) we can associate a
canonical polynomial oy, such that o represents f over any ring R under strong
representation. For every assignment @ = (ay,...,a,) in {0,1}", let Mz(Z) =

I1,2a;z; — ; — a; + 1). This is zero except when # = @, when it is 1. Then let
o be the sum of Mz over all @ such that f(@) = true. As explained by Tarui [Tar91],
because R is a ring and not a weaker structure, the R-module F,,(R) of functions
from {0,1}" to R behaves much like a 2"-dimensional vector space—even if R is
not a field. In particular, the 2" multilinear monomials form a basis for this space,
so every function in F,(R) can be written uniquely as a linear combination (with
coefficients in R) of these monomials. (Since 0 and 1 commute with every element
of a ring, we do not even need R to be a commutative ring, and the above features
hold also for Fourier inputs.) Hence o is the unique strong representation of f. If
we know the degree and size measures of oy, that’s it—mno strong representation can
do better.

Now define Z¢ to be the set of polynomials that compute f (over a given R)
under the standard nonzero representation. Proposition 0.1(b) now says that over a
finite field F, all members of Z; have degree within a factor of |F| — 1 of that of o;.
Over Z,, with m composite, however, there can be drastic differences. Barrington
[Bar92] gives this example with m = 6:

L = (0*(10%)%)*.

9

L is weakly represented over Zg by the degree-one
However, the unique strong representations have

The differences emerge even for the basic ANI
inputs and sign output, the languages 1* and 0*1(
AND and OR respectively, are represented by line
infinite rings; viz., OR by =1 + - - - + x,, and AND
the known bounds are different.

Theorem 2. For polynomials over Z,,, m > 2:

(a) [Tar91, BST90] (Beigel [Bei93] adds “foll
AND and OR require degree n.

(b) [BBR94] Under the standard nonzero rep
gree n, but OR is representable in degree
distinct prime factors of m. The best knou

Q(log!/*=Y n) [TB95].
(c) [Smo87, BST90, BBR94] If m is a prir

sentable in degree [n/m — 1], and this is be

(d) Under weak representation, (b) and (c) hc
reversed. In particular, there is no degrec
standard nonzero representation and its cor

Proof. (a) We have o 4 yp(u1,...,upn) = w1 -ty
Those are the unique strong representations, and
standard representation p of AND maps all of {
p(1") = a determines the whole function—it is
these has degree n, and by the reasoning for o -
other part of (b), see [Bei93] or [BBRY4].

(c) For the upper bound, let d = [n/m — 1],

g(w) = (ur -+~ ua) + (ugpr -~ - u2a) +

Then ¢ has m — 1 monomials, each of degree
OR(z1,...,z,). AND under the complementary
ally. For the lower bound, note that the convers
since Z,, is a field and multiplies the degree by
cannot be lower than d. Part (d) follows from th

The polynomials constructed in [BBR94]| to achi
are symmetric, and a matching lower bound for s
OR is proved in [BBR94]. We will see that th
improves considerably when we go to probabilis
representation. First we examine bounds for som

10

5 Known Upper and Lower Bounds on Degree

The following results are taken from Beigel’s survey [Bei93], where full proofs may be
found. By the robustness results and usages established in the last section, we can
be fairly brief in stating the hypotheses.

Theorem 3 ([MP68]). The parity language 0*1(0*10*1)*0* requires degree n over
Z, Q, and R.

Note that the parity function x1+x9+- - -+, (mod 2) is a degree-one polynomial
over GF(2). Over Z,, with m = 2k one can use kx + - - - + kx, to get a degree-one
representation with Sop = {0} and S; = {k}. The case of odd m is different.

Theorem 4 ([Smo87]). Parity requires degree Q(n'/?) over Z,, for any odd m > 3.

Now, following [BBR94], define Mody(x1, ..., x,) to be false if x1 4+ -+ +x, =0
(mod k), and true otherwise. Write §(f,m) for the minimum degree of a standard
nonzero representation of f over Z,,, and A(f, m) for that of a “truly weak” repre-
sentation. Recall that the minimum degree of f under weak representation (i.e., with
S1={0}) is the same as 6(—f, m).

Theorem 5. (a) [Smo87] When m = p is prime and k is not a power of p,
d(Modg, p) = Q(n).

(b) [BBRI4] If k has a prime divisor that is not a divisor of m, then 6(Mody, m) =
) and also §(—~Mody, m) = n*V),

(c) (see [BBR94]) If the set of prime divisors of k is contained in that of m, then
0(Mody, m) = O(1) and §(—Modg(m)) = O(1).

(d) [Tsa93] If m is not a prime power, then 6(—=Mod,,, m) = Q(n).

(e) [Tsa93] If m is not a prime power, and k has a prime divisor that does not
divide m, then §(Modg, m) and §(—=Mody, m) are both Q(n).

The results by Tsai [Tsa93] improved n") bounds in [BBR94] in the case where
m is not square-free. Green [Gre95] improved the results of [BBR94, Tsa93] further
by showing that under standard nonzero representation, for all k£ there is a constant
C such that for all m that are relatively prime to &k, §(Modg, m) > Cgn. That is,
the constant in “6(Mody, m) = ©(n)” is independent of m so long as the modulus m
is prime to k. This holds even if Definition 2(4) is made weaker by requiring only
that the polynomial p is not identically zero but gives zero whenever x ¢ L (i.e., the
Boolean function concerned, here Mody, is false). However, none of these bounds are
known at all for the degrees A(Mody, m) under “truly weak” representation. Tsai
also proved the following theorem.

Theorem 6 ([Tsa93]). For any integer m > 2:

(a) §(MAJ,m) > n/2.

11

(b) 5(Midbit, m) = Q(n'/2).

Some functions that (unlike parity and Moc
require more than polylog degree over the infinite

Theorem 7 ([MP68]). Over Z, Q, and R,
flxo, . xgms1) = (Vi € [0...m —1])(Fj €
m. Hence with n = 4m3, the degree is Q(n'/3).

For representation by polynomials over R, it
R: |z —1] <1/3}, and define Sy similarly arot
be done with degree o(y/n) (see [Bei93]), and P:
function requires degree Q(n). Nisan and Szeged
this representation is polynomially related to tha
for every Boolean function f, every polynomial
degree at least c(deg(of))Y/®, where the constas
fact, they showed that both measures are polyn
complexity of f. Similar techniques were used &
language
L=(00+01+10+

(called ODDMAXBIT in [Bei93]), which is rep:
polynomial Y7 (—2)‘z,, with linear-sized coeffic
or Q or R by low-degree polynomials with small
it cannot be done in degree n°") with coefficien
In particular, this language is not recognizable b
exponential weight, and quasipolynomial size (i.e

Several of the lower bounds show that all pol
fail to represent a given Boolean function on a I:
such as a constant fraction of them. The next th

Theorem 8 ([ABFR94]). For all d, n, and
polynomial p over Z whose sign represents Pari
m < 20§k<(n+d+1)/2<2)‘

In particular, to compute parity correctly c
€ > 0, one needs degree Q(y/n). Now define Ly, (/
z formed by catenating some number m of “bloc

ot ri # 0 modulo k. Using polynomials over
and Straubing [BS94] obtained the following thec

Theorem 9 ([BS94]). There exists § depending
senting Ly (by sign over Z) on a 1 — 0 proportior

The most basic non-approximability results
lemma, versions of which may be found in [Bar9:

Lemma 9.1. Every polynomial p(xy,...,x,) of
either constant, or takes value 0 on at least 274

12

In consequence, a degree-d polynomial over Z, must disagree with OR on at least
27=4 _ 1 arguments, and straightforward constructions show that this bound is tight.
Barrington [Bar92] proved a generalization.

Theorem 10 ([Bar92]). Let p have degree d and take at most r distinct values in a
field F. Then p has value 0 on at least 2"~4"=1) (-1 arguments.

For arbitrary rings R in place of F, Barrington proved that the statement of
Theorem 10 holds if d = 1 or r = 2, and that the weaker Lemma 9.1 holds for all d in
Z,:, for any prime p and all & [Bar92]. However, an example credited to Applegate,
Aspnes, and Rudich in [Bar92] shows that the statement fails for R = Zg with d = 3
and n = 27: Let

p(Z) = s3(Z) + 5s2(Z) + 31 (Z),
where s; stands for the mod-6 sum of all monomials of degree 7. This polynomial is a
standard nonzero representation of OR in Zg, and meets the prescribed bounds from
Theorem 2(b). For a full explanation of the failure, see [BBR94].

Smolensky [Smo93] used Hilbert functions to prove several other non-
approximability results in fields of finite characteristic.

Theorem 11 ([Smo93]). Using asymptotic notation that depends only on the charac-
teristic ¢ and not on the size of a field F, and using standard non-zero representation:

(a) Every polynomial of degree o(n'/?) differs from MAJ on at least 2"~* — o(2")
Boolean arguments.

(b) If ¢ # 2, then every polynomial of degree o(n'/?) differs from Parity on at least
2= — o(2") Boolean arguments.

(c) If q is prime and ¢ # q, then every polynomial of degree o(n/?) differs from
—Mod, on at least (1/¢q)2" — o(2") Boolean arguments.

6 Polynomials For Closure Properties

Polynomials have also been used to prove relationships among complexity classes.
Instead of n variables standing for bits in an input string, the polynomials used here
may have just one or two variables standing for numerical quantities used in defining
the classes. The first striking application of this kind was given by Toda [Tod91] in
proving that the polynomial hierarchy is contained in P#F. He constructed single-
variable polynomials P; over Z that have the following modulus-amplifying property
for all integers £ > 1 and x > 0:

r=0 (modk) = Pyz)=0 (mod k%), (2)
r=-1 (modk) = Pylz)=-1 (mod k%). (3)

Toda used Py(z) = 3z* + 42® and inductively defined Pyy(x) = Py(Py(x)) for d > 2,
using only moduli a power of 2. Yao [Yao90] improved the degree and showed that

13

ACC? circuits can be simulated by probabilistic |
mial (i.e., 2P°V1°¢(") gize where the ANDs have pol:
made Yao’s circuits deterministic without increa:
following polynomials P, of optimal degree 2d —

U
—

Py(z) =1-(1-2)%(

<.
I
o

(These satisfy = +1 (mod k) = Py(z) = +.
easy to convert between these conditions, and thi
Green, Kobler, and Tordn [GKT92|, following «
theorem in [RS92], replaced the arbitrary SYM
gate, and obtained the following theorem.

Theorem 12 ([GKT92, GKR"95]). Every lan,
ANDygnan circuits of quasipolynomial size.

Proof Sketch. Let L € Midbit o ACC’. The -
gates in the ACC® part of the circuits defining
Mod,,, o ANDy,,.;; sub-circuits, where as before,
gates of polylog fan-in. Since only polylog-many ré
the next section), this part can be simulated by
many deterministic Mod,, o ANDy,,q; circuits.
the small ANDs can be interchanged with Mod,,
one layer of small ANDs at the inputs. Then th
between the Midbit-of-sum and the small AND:
where each level uses Mod; gates for some prime
the Midbit gate can “swallow up” a sum of Mod,,
ANDs. Pushing the small ANDs beyond the ne:
different k) toward the inputs (as before) leaves a
the process is repeated until all the Mody gates
for the Midbit-of-sum-of-Mody part in full since -
polynomials.

Lemma 12.1. Let k be prime and let {b, } be a
exists a polynomial where for each n, b, is of il

w

by (21, .oy) = ch(:ﬂ

i=1

where each ¢; is a Mod, o ANDau circuit and w
t there are polynomials p and q and a family of 1
such that for each n,

bp(x1, .oy) = (hp(x1, ...y xy) div 20

14

Proof. To simplify notation, let p, p', g, r, s, and t denote p(logn), p'(logn), q(logn),
r(logn), s(logn), and t(logn), respectively. Each Mody, o ANDy,,qy circuit ¢; outputs
1 if and only if a certain sum o; of the AND-gates is nonzero mod k. Now each o;
can be regarded as a polynomial in variables (x1,...,z,) over Z; of degree equal to
the fan-in of the small ANDs, and since k is prime, we may arrange via Lemma 0.1
that 0;(Z) is always 0 or 1 (mod k). Now using the “Toda polynomials” P; in (4)
above, it follows that

w

bu(z) =Y [Pa(0;) mod k] .

i=1

We choose d = p/(logn) where p/ is a polynomial such that k¥ > 2't*+2. Then
ba(z) < 2" < k”". Now the outer sum in the equation above for b, is less than k”, so
the “mod” can be moved outside; i.e.,

w

ZPP'(Oi)

i=1

b(z) = (mod k).

Writing f,(x) = > Py(0;), we have

Fal@) = an(2)k? + ba(2)

for some a,(x). Note that for some polynomial s, f,(x) < 2°. Also note that since
0; is a polynomial of polylog degree, there is some polynomial p such that f, is a
polynomial of degree p(logn) in the variables 1, ...,z,. Define the degree p(logn)
polynomial h,, as follows:

hale) = i) |20/k | Ju(@) + 20, (o)

where i(n) = —k” (mod 2') and ¢ is a polynomial such that ¢ > s +t + 2. Then
[2¢/kP"] fo(2) = an(2)27 + V,(x), where V,(x) < 2971, Hence

hy(2) = 2%, (z) +i(n)b,(x) (mod 29,

where i(n)b,(z) < 277!, This completes the proof of Lemma 12.1 and the sketch of
Theorem 12. O

The class MP (also called MidbitP) introduced in [RS92, GKR*95] was motivated
to find the sharpest upper bound for the polynomial hierarchy in Toda’s theorem. A
language L belongs to MP if there exists a polynomial-time NTM N such that for
all strings z, * € L <= the middle bit of the standard binary representation of
#acen(x) is a “1.” Here #acen(x) stands for the number of accepting computations
of N on input , while Gapy () (see [FFK91]) stands for #accy () minus the number
of non-accepting computations. A useful equivalent definition of MP is obtained by
combining observations in [GKR195] and [FFL93]. Say that an integer r is “top

15

modulo 2% if (r mod 2¥) belongs to [2F~1. .. 2k -
and a polynomial-time computable function g su

x €L <= Gapy(x) is top

This compares well with the standard definition
such that for some N and all z,

rx €L < Gapy(a

Both PP and MP are closed under compleme
section follows via (6) from the existence of an i
for all polynomial-time NTMs N; and N, and all

h(Gapy, (z), Gapy, (z),z) > 0 <= Gap,

and such that there is a polynomial-time NTM
equals the left-hand side of (7). One would like tc
all integers r and s, A(r,8) >0 <= r>0 A s
However, we only need this to hold for those r an
of Gapy, (z) and Gapy, (x). For some & dependin,
in the range [—2™...2™], where m = |z|*. The fc
bill were found by Beigel, Reingold, and Spielmar
on one-variable rational functions (i.e., quotients
sign(x) on similar ranges found by Newman [Nev

An(r,8) = 3(Palr) + Pa(=r)(Ea(s) 1
=P (1) (Pn(s) + Pp(—s)) —

= 1BPalr) — Pa(=)(3Puls

where

Pu(r) = (r = 1)] J(r - 29
i=1
For more details, see [BRS95]. Unlike the Toda
do not belong to Z. However, all values on integr:
A, integer-valued, and the degree of A,, is poly:
this suffices for constructing the required polync
Reingold extended this construction to show th
time truth-table reductions [FR91]. Ogihara [(
polynomials to show that the log-space analogue P
PL.
Now let us turn attention to the problem of
section. This time, what we want is a polynomi:
statement.

16

In terms of k, what is the minimum degree of an integer-valued polynomial
p(x,y) such that for some polynomial ¢ and all z and y, p(z,y) is top
modulo 2!%*) <= both 2 and y are top modulo 2¥?

Note that p may have rational coefficients so long as it is integer-valued. The sim-
plest polynomial we know that satisfies this congruence relation (with t(k) = k) is
p(z,y) = (471) (,21)25", which has degree 2%. M. Coster and A. Odlyzko [personal
communication, 3/91] found solutions with degree O(¢*), where ¢ is the golden ratio
1.618. .., and with coefficients likewise appreciably smaller than the above. If such p
can be found with degree polynomial in &, then p can be written as a polynomial-sized
sum of small binomial coefficients in « and y, which can then be used in building the
polynomial-time NTM needed to show MP closed under intersection.

A related question is: What is the minimum degree required to achieve, with all
quantities defined modulo m,

p(z,y) =0 < (x=0 A y=0)?

With integer coefficients, this is possible iff m is square-free—and then p can have
degree 2. For the case m = 2% (and rational coefficients), D.A.M. Barrington [per-
sonal communication, 11/95] gives an argument that makes an Q(y/m) = Q(2%/2)
lower bound on degree highly plausible, for both this and the “top mod 2*” prob-
lem with ¢(k) = k. The main idea is that there is a unique way to write p(z,y) in
the form ZZ Qi (f) (i’) with integral a; ;. A well-known fact is that (2:?) is divisi-
ble by 2%/ordy(i), where ords(i) stands for the largest power of 2 dividing i. With
x =y =m/2, all the terms with both ords (i) and ord,(j) at most /m/2 are divisible
by m. Thus in particular, all terms with 1 < 7,7 < y/m/2 disappear in the congruence
mod m. The only low-degree terms that can squeak through this analysis are those
with ¢ = 0 or j = 0, and these give us single-variable polynomials (with zero constant
term) ¢(z) and r(y) such that p(m/2,m/2) is congruent to p(0,0) + g(m/2) 4+ r(m/2)
modulo m. If the ¢ and r terms can be made to “go away,” we have the desired
contradiction.

Note that this would not contradict the above upper bound since it amounts
to Q(1.414...%). The tantalizing aspect, however, is that even this argument has no
effect when ¢(k) > 2k. It may yet be possible to build two-variable “modulus-shifting”
polynomials to meet the above requirement for closure of MP under intersection, and a
direct and efficient-enough construction might collapse some counting classes between
PP®F and PPP | as discussed at the end of Section 3 of [GKR*95].

7 Probabilistic Polynomials

A probabilistic polynomial in n variables over a ring R is formally defined, following

Tarui [Tar93], as a mapping o from a sample space U to the set Rlxy,...,x,] of
polynomials in variables 1, ..., z, with coefficients in R. The degree of ¢ is defined
17

to be the maximum, over all j € U, of the degr
Prjeu]. . .] to indicate sampling according to the -

Definition 5. A probabilistic polynomial o repr
using scheme (e1, o, S1,5), if for alln and x €

reLl = Prjeyloj(x)
r¢ L = Prjcyo;(z)

Here we will use the standard (1,0) input
strong and weak representation for outputs. We
the field GF(2*) and k may increase with n, so t|
becomes a factor. However, we will then conve
GF(2%) to representations over GF(2), where st
GF(2), schematic terms are products of x; and
“terms.” The following two results are well-know

Proposition 12.1 (see [Tar93]). Let o be a pr
over Z, (with standard nonzero representation)
{0,1}", and such that for each j, o; is written
an equivalent Mod,, o AND circuit C' with n “act
such that the AND layer has at most c2" gates, e

Proof. Each possible value of j can be regarded as
J and each term in o; involving variables z;,, .. .,
wires to the inputs. The first d wires go to the
that appear in the term, and the other r wires
complements, each according to whether the cor
this AND gate evaluates to 1 iff the values of the
the corresponding clause in o; contributes 1. The
J is the same as the value of ¢;(z) modulo m. !
output zero, so connecting everything to a single
for all j and x.

The circuits in turn can be regarded as polyn
arguments” and r “random arguments.” This sho
Tarui’s convenient formalism using distribution:
polynomial with “probabilistic arguments.”

For the case m = 2, there is a deterministic si
Theorem 12 given above.

Proposition 12.2 ([A1189, AH90]). If the pro
over GF(2) with success probability > 1/2, then th
i Proposition 12.1 can be converted to a determir
circuit C' that has ¢2" AND gates, each of fan-in
layer.

18

Proof. This follows from the simulation of a MAJ of u-many Parity gates, where each
Parity has fan-in at most m (an even number), by a depth-2 circuit comprised of
um + 1 MAJ gates [All89, AHI0]. O

Hastad and Goldmann [HG91] proved that any depth-3 circuit of this kind (even
with the MAJORITY gates replaced by arbitrary unweighted threshold gates) that
computes the GF(2) polynomial > | H?Zl x;; must have size at least 20n/(d+1)4™+)

which translates to 2" if d < (1/3) log n. Razborov and Wigderson [RW93] showed
that any such circuit that computes the GF(2) polynomial > | H;‘):gl" > h Tijr must
have nf1°8™) size regardless of the bottom fan-in d. This still leaves open the possibil-
ity of achieving polynomial size in the depth-3 construction for functions in (uniform)
AC?, or for achieving polynomial size with a higher constant depth (cf. [HHK91]).

Now we look concretely at polynomials for OR. First note that under the sign
output representation, OR is trivially represented over Z by the degree-one polynomial
> i, x;. Under strong representation, however, the degree jumps all the way to n,
over Z,, as well as Z. For probabilistic polynomials, however, strong representation
is much less costly.

Theorem 13 ([ABFR94]). OR is strongly represented over Z within error € by
probabilistic polynomials of degree O(log(1/¢)logn).

Proof. We vary somewhat from the proof in [ABFR94]: Let ¢ = [log,n]. For each
k, 0 <k </ let R, C{1,...,n} be randomly selected by independently placing
i € Ry, with probability 1/2*. This gives us for each k a randomly-selected polynomial
ou(T1, .., Ty) = ZieRk z;. Finally define

oy, w) = 1= (0= prla, .. 20)). (8)

k=0

Now when all z; are 0, with probability 1 this polynomial gives 0. When the set S of
x; that are 1 is nonempty, an easy analysis of the two values of k that straddle log, |S]
shows that with probability at least 1/4, some pj, takes value 1, so the product is zero,
so o takes value 1. Finally, to amplify the 1/4 to 1 — ¢, replace the product in (8) by
a product of [logy(4/€)] independent copies of [], (1 — pr(z1,...,2,)). O

This uses O(nlog(1/¢€)) random bits. As is well known, one only needs the random
variables defining the sets Ry to be pairwise-independent, and a standard universal
hashing construction needs only O(logn) random bits for the success probability 1/4,
hence O(lognlog(1/¢)) random bits overall. This construction works for probabilistic
strong representation over Z,, as well as Z.

The question we ask is: Can one do better in the degree and random-bits mea-
sures? We show that the answer is yes for polynomials over any finite field, including
Z,, with p prime, by a construction involving error-correcting codes. Such codes were

19

used by Tarui [Tar93] in non-constructive argur
als, and by Naor and Naor [NN93] in other con
probabilistic polynomials are constructed from th
first show how the basic “parity trick” of Naor ¢
eliminate the product over k in (8): Using ¢ + 11

l
0'(371, C. ,l‘n) = Zbkpk(xl’ ..
k=0

Then 0(6) = 0 with probability one. For all argu
gives value 1. The bit by, alters the overall sum by 1
probability at least 1/8, o(Z) = 1 (mod 2). Thus
polynomial achieving constant success probability
trials to degree O(log(1/€)) for success probabilit;
dom bits. Hence this saves an O(logn) factor o
although we have strong representation over Zs i

Open Problem 1. Can V be strongly represen
bilistic polynomials of degree log(1/¢) - o(logn)?

This relates to whether the randomized reduct:
Valiant and Vazirani [VV86] can be made as effic
as optimized in [NRS95] (see also [NN93, Gup93]
The construction via error-correcting codes tl
better constants in the bounds compared to the
degree-one representation over Z, is improved fi
minimal effect on the other bounds. The numb
of 2logn needed for pairwise independence, i.e
universal, hash functions from n bits to n bits.

7.1 Error-Correcting Codes

In this subsection, let > be an alphabet whose c
The Hamming distance dg(x,y) of two strings ,
be the number of positions in which z and y diffe
over ¥ is a set C C ¥V such that for all distinc
of C' are called codewords. We identify 3 with th
YN can be regarded as a vector space of dimensic

Definition 6. A linear code over F with paran
that forms a vector subspace of LN of dimensior
parameters are the rate R = K/N, and the densi

The use of [...] to distinguish linear codes is
intent is clear we write [N, K, 6] in place of [N, K,
subspace C C XV, denote by d¢ the maximum

20

and write 0c = dg/N. Thus do equals min{ dy(x,y) : x,y € C,x # y }, and so is
called the minimum distance of the code C. The weight wt(x) of a string z € XV
is the number of nonzero entries, which is the same as dy(z,0). A well-known fact
is that in a linear code C', the minimum distance is equal to the minimum weight of
a non-zero codeword. This is because for all z,y € C', x — y is also in C. Thus the
density d¢ gives the minimum proportion of non-0 entries in any non-zero codeword.
Where intent is clear we write just d and ¢ for d¢ and d¢.

Definition 7. A generator matrix G for an [N, K,d] code C is a K X N matriz over
F whose rows G(i,-), 1 <i < K, form a basis for C.

Now we indicate how we intend to make N and K scale with our input lengths
n.

Definition 8. Let [C,]22, be a sequence of [Ny, Ky, d,] codes over F. Then the C,
are said to be small codes if N, = n®®Y, and large codes if they are not small and
N, = 2"

For probabilistic polynomials we use small codes, with K,, = n:

Proposition 13.1. Let G generate an [N,n,d] code over F. Then the probabilistic
polynomial o with sample space the columns of G, defined by

oi(z1,...,xn) =ZG(i,j)azi, 9)

represents OR(x1, ..., x,) over F with success probability at least §.

Proof. If all z;; are 0, then for all j, o;(x1, ..., x,) = 0, so this probabilistic polynomial
gives one-sided error. Now let S = {7 : ; = 1} be nonempty. To S there corresponds
the unique codeword wg =y | G(i,-). Since wg is nonzero, with probability at least
§ over j sampled uniformly from {1,..., N}, ws(j) # 0. And ws(j) = o;(z1, ..., 2n).

O

Note that o has the columns of G as its sample space and is linear. Also, 1 — o
represents NOR, o(1—x1,...,1—x,) represents NAND, and 1 —o (1 —21,...,1—x,)
represents AND. These probabilistic polynomials are also linear with constant success
probability. The number r of random bits used is [log, N]. Expressed in terms of
the rate R = K/N, with K = n, r = logn + log(1/R). Thus if the rate is constant,
r = logn + O(1), while if N is polynomial in K, » = O(logn). This motivates the
next definition, part (a) of which is standard in coding theory.

Definition 9. (a) A sequence [C,]52, of codes over F is asymptotically good if

n=1

there are constants R, > 0 such that (Y°n)R, > R A 6, > .

(b) The sequence is almost-good if § > 0 exists giving (V°n)d, > 0, and the lengths
N, are polynomial in K,.

21

The emphasis in Proposition 13.1 is on the «
computing individual entries G(i, 7). This stands
coding theory, which is to take a plaintext messag
codeword z = wG, transmit = over a channel th
receiver decode ' to recover w. So long as dy(z.
decoding algorithm given x’ will find z and the
and R, the more erroneous symbols one can co
overhead. In recent breakthrough work, Spielman
good codes with K,, = N,, = O(n) that give enc
However, we do not know whether the computat
done in (uniform) AC®. The codes used by Suda
results of [ALM192] are almost-good, and put G
codes. They suffice for the next result.

Theorem 14. There are AC’-uniform linear pro
OR over GF(2) with constant success probability

Proof. We scale down the main theorem in sectior
“small codes” with K = n as follows: Let h = [lo,
That is, we identify {1,..., K } with (a subset
break each i € {0,1}" into m strings iy - - - i, wh
suppose that the last one, 7,,, is padded out to
that each such ¢ corresponds to a monomial in m
2t zim where now i, . .. , i, are regarded as n
that all such monomials are distinct and have tot

Now let n > 0 be arbitrary, let s = [log,(m
GF(2°). The column space of our matrix G over

J={(a1,...,am,v) :ay,...

which is in 1-1 correspondence with strings j of I
and columns j = (aq, ..., any,v) we define:

G(i.5) = (at" - ay;
where the powers and products are over F, but
binary strings, which brings the final result down
in (10) are binary strings of length only 2 loglogn -
tables yield uniform AC® circuits (and we suspe
treated in [BIS90]). The number of random bits 1

h h?

log(B hloglog h
log h &

) = 2h

nlogh log h

Hence the codes are almost-good, with length N

22

We claim that G generates a code of the required dimension and density. Since the
distinct monomials are linearly independent in Flz1,. .., z,], they generate a space of
dimension K over F. For the density we use the key lemma from the aforementioned
“PCP” papers, often ascribed to Schwartz [Sch80] but anticipated by Zippel [Zip79]:
For every two distinct polynomials p and ¢ of total degree at most D over a field F,
and every I C F,

{aeF™:p(a) = q(@} < DI,

With I = F, it follows that every nonzero polynomial p in our space takes on at
least |F|™ — D|F|™~! nonzero values. Dividing by |F|™ says that the proportion
of nonzero values is at least 1 — D/|F| = 1 — mh/2® = 1 —n. Now consider the
codeword w, corresponding to p, and. consider a nonzero value p(as,...,a,) = u.
This corresponds to a range of 2°-many columns indexed by (ay, ..., anm,v) over all
v € F. Since u # 0, exactly half of those v give u e v = 1. Hence the density of the
codeword w, is at least (1 — n)/2, and this fulfills the claim made about the code.
(Technically, G is the “concatenation” of the code over F with the so-called binary
“Hadamard code” defined by the dot-product function over GF(2).)

Finally, Proposition 13.1 gives us the desired linear probabilistic polynomials, for
AND, NOR, NAND as well as OR, with constant one-sided error arbitrarily close to
1/2, and with polynomial sample-space size. O

We do not know of a sequence of good small codes that is AC’-uniform. B.-
Z. Shen [She93] shows how to construct asymptotically good binary codes by an
algebraic technique that (in an analogous situation) chops many columns out of J
without reducing the density of the code, but we do not know how uniform the
“chops” are.

In the case of large codes with K = 2", the computation of G(z, 7) in (10) involves
field elements of size O(logn). Since both the sequences (ay, ..., an) and (i1,. ..,)
can be read left-to-right, the entire computation can be done in one-way log-space.
Thus NL random-logspace reduces to ©L, and this immediately implies Wigderson’s
theorem that NL/poly C @L/poly [Wig94]. We would like to know whether this
computation can be done in TCP.

Matters become more complex when the error tolerance e is not constant but
shrinks rapidly with n. A example application is simulating AC® circuits of depth b
and size n¢ within a target error e. We may suppose that each gate is a NAND gate
of fan-in at most n. The idea is to substitute “the same” probabilistic polynomial o
of degree d and error €, for each gate. Composing these polynomials then yields a
single probabilistic polynomial 7 of degree d® in the input variables x,, ..., z, of the
circuit that computes it with error at most €,n°. This works even though the “errors
at each gate” are not independent; note that 7 has the same sample space as o. Thus
we wish to arrange €, < e/n°.

We could do O(log(1/e,)) independent trials in this example, thus making d =~
clogn and using r(n) = O(lognlog(1/e,)) = O(log®n) random bits. Plugging this
in to the construction in Theorem 14 improves the original degree bounds of Beigel,

23

Reingold, and Spielman [BRS91a, BRS95], and ¢
Gupta [Gup93], but still falls well short of the opt
by the non-constructive argument of Tarui [Tar9:

However, there is a very interesting possibil
uniform manner by using larger fields F. It is ki
sequences of good codes over F with 6, > J ex
then the argument of Proposition 13.1 immedia
polynomial 7 over GF(2¥) that computes OR usi
The following then gives an alternative way to c
for OR. Let or, be the unique polynomial that 1
OR over GF(2).

Proposition 14.1. Let G be an n x N generator
GF(2¥), and let G' be the straightforward way of
over GF(2). Then the probabilistic polynomial o

oi(x1,...,2n) = ory, (Z G'(i,kj —k +
i—1

represents OR(x1,...,x,) over GF(2) with erro
sample space {1,...,N }.

Note that ¢ has the same sample space as 7. Ther
matrix G” over GF(2), but the difference betwe
much.

Now we want to ask: What happens to “goo
upward with n? What must at least happen to t
by a coding-theory bound called the Singleton bo
field), K + d < N + 1. Written another way wit:
N > (K —1)/¢, and putting K = n, this says th
must satisfy

r(n) > logy(n — 1) + I

This is much better than the r(n) = log(n)log
are codes that meet this bound—such codes are
(MDS). The question now becomes: Can we con:
of high density over GF(2¥)? This and the questi
Ry, for good codes in Definition 9 may scale wit
theory, for which [MS77] is a standard reference.

larger fields of the same characteristic (here, GF
to similar issues in Smolensky’s paper [Smo93] |
believe that there is room in the theory of error-
that will add to our knowledge about complexity

24

8 Other Combinatorial Structures

If we blur the distinction between a language L and its complement ~L, we can regard
L as a “two-coloring” of ¥*. We seek connections to a powerful body of mathematics
that is bound up with generalizations of a familiar theorem about two-colorings of
the plane:

Any map formed by simple closed curves and infinite straight lines in
the plane can be colored with two colors, so long as all intersections are
“general”’—meaning that for every pair of curves or lines, the intersections
(if any) between them form a collection of isolated crossing points.

Versions of this theorem extend to higher dimensions. To use them, we need to
identify ¥* with a subset of real space. We decide to take ¥ = {0,1} and identify
> with the vertices of the unit cube in R", for each n.

The generalization of “infinite straight line” to R™ is a hyperplane, meaning an
affine translation of an (n — 1)-dimensional subspace of R™. Every hyperplane is
defined by an equation of the form)" | z;w; = t. The (upper) open half space asso-
ciated to the hyperplane consists of points Z satisfying Y, x;w; > ¢. Note that this
inequality defines a threshold gate. A polytope is an intersection of open half-spaces
that defines a bounded nonempty region of space, together with its surface consisting
of those points belonging to the hyperplanes that are added in forming the topological
closure of this region. (This wording makes all polytopes “full-dimensional.”) Every
polytope is convex. Familiar examples of polytopes in R? are the tetrahedron, cube,
octahedron, and prism, but not a cylinder, cone, or sphere.

For simplicity, we will not work with the theories of algebraic curves and algebraic
topology that provide full generalizations of simple closed curves in the plane, but will
confine attention to polytopes. Say a collection of polytopes is in “general position”
if no polytope has a hyperplane that goes through a vertex of the unit n-cube, and
no two polytopes share a hyperplane nor any lower-dimensional facet. (See [MP68]
for more on this.) Then we have an analogue of the above two-coloring theorem:

Every finite collection of polytopes in general position defines a two-
coloring of R"™, and every vertex of the unit n-cube has a well-defined
color.

Definition 10. A language L belongs to PALT if there are polynomial-sized col-
lections P,, of polytopes in general position, with each member of P, defined by
polynomially-many half-spaces, such that for all n, all points in L=™" have one color,
and all points in ~L=" have the other color.

By definition, PALT is closed under complements. If we want to distinguish “the
language of { P, }” from its complement, we may exploit the fact that the partition

25

of R™ by P, has only one infinite region, and d
unit cube that have the same color as this regior
adding one polytope that encloses the unit cube.

Now we can characterize this idea in terms «
end of Section 3.

Proposition 14.2. A language L belongs to PAIL
sized Parityo AND o LT circuits.

Proof. Let L in PALT, and let P,, define L=". Ea
of LT gates. By a standard lemma in [MP68], e
LT gate that gives the same outputs on the ver
that the weights and threshold for the latter ga
the circuits obtained by attaching a single pari
polynomial-size P o A o LT circuits. Now we c
the unit cube have different colors iff the numb
exactly one of x,y belongs to the interior of P i
P o A o LT circuit computes the same language a
consider the straight line segment ¢ from x to 1
with the surfaces of polytopes are isolated, for i
a polytope, then some hyperplane involved woul
of general positioning. Two different polytopes n
each intersection, counting this kind of multiplicit
the total number of intersections, counting mult
that has both or neither of z,y in its interior c
claim is proved.

Going the other way, given a P o A o LT «
intersection of open half spaces. By adding som
assignments in {0,1}", we can make this inters
The lemma from [MP68] can also be used to tweal
without changing any values on the unit cube.

Thus PALT is a small-depth, polynomial-siz
above” the polynomial-size circuit classes for whic
known, such as those treated in [HG91, GHR92
classes are contained in polynomial-size TC® dej
on the problem of whether NC' = TCS. We find
equal PALT. Since PALT C TCY by the obvious
gates and the known simulation of Parity by two
imply NC!' = TCY. However, we do not know
depth simulation we know was furnished by Ale
communications with Maciel and Mikael Goldma

Theorem 15. For any m > 0, Mod,, o ANDo LU
consisting of a Midbit gate connected to one lay

26

particular, PALT C qTCQ, where the “q” indicates quasipolynomial size.

Proof. As shown in [CSV84], by using iterated addition to simulate the weights in an
LT gate, LT C AC° o MAJ. Thus

Mod,, © AND o LT C Mod,, o AC® 0 MAJ.

Now by Theorem 12, Mod,, o AC? C q(Midbit o ANDga), where all AND gates
in the corresponding level are small, i.e., have polylog fan-in. Now each MAJ gate
involved has fan-in at most 7 = n®"). We want to simulate each small-AND of MA.J
by a single SYM gate of quasipolynomial fan-in. Theorem 3.6 of [Mac95], which is a
slight extension of the relevant special case of results in [Bei94b] and [HHK91], does
this by brute-force coding of all (r + 1)P°1e(®) possible vectors of sums of the input
bits to the polylog(n)-many MAJ gates, with a different integer for each vector. The
coding produces a function of these integers, which becomes a symmetric function of
nPoWoe()_many input lines. The codings used in [Bei94b, Mac95] do not produce a
threshold function of these integers, so they do not yield a single MAJ gate. However,
because all of the MAJ and small-AND gates above can be normalized to have the
same fan-in via “dummy inputs,” the number k of values on which each new SYM
gate outputs true can be the same for all SYM gates in the circuit. Thus

Mod,,, o AND o LT C ¢(Midbit o SYM).

By a lemma of Héjnal et al. [HMP*87], every symmetric 0-1 valued function h in m
“own” variables can be written as

Mz, ooy zm) = g(Mi(z1, o5 2m), oo Mok (21, -5 2m)),

where (1) i; < 9 < -+ < i are the k values of z; + - -+ + 2, on which h outputs
1, (2) for each j, 1 < j < k, Myj(1,...,2m) =1 <= 2z + -+ 2z, > 4; and
Myj_1(z1,...,2m) =1 <= 21+ -+ 2, < i, and (3) g is the linear 2k-variable
integer polynomial g(ry,...,79) = r1 + -+ + 19 — k. Each of the M; functions is
computable by a single MAJ gate using extra “dummy” inputs (and using the fact
that negated inputs are available), so we can abbreviate this as h = g o MAJ. So the
whole circuit is now a quasipolynomial-size Midbit o g o MAJ.

Now finally we claim that since g is linear, the Midbit o g portion of the circuit
can be replaced by a single Midbit gate. This is because the original single Midbit
gate M outputs the middle bit of the binary sum of its inputs, and each input line
g(r1,...,rop) is itself a sum, minus k. Hence we can gather all the inputs to all ¢’s
into a “positive section” of inputs to a new gate M’, and all of the “—k”s into a
“negative section,” so that the new M’ outputs the middle bit of the gap between
the number of inputs in its positive section that are on and the number of inputs in
its negative section, all of which are on. Here we are helped for ease of verification
by the fact that we have made k the same for each of the quasipolynomially-many

27

inputs g1, ..., g, to the original M, so that the n

q 2k
(3] -
i=1 j=1
Analogous to the way that the class MidbitP is r
to the middle bit of a GapP function, this M’ car
(with all its input lines treated “positively”). Thi
size Midbit o MAJ circuit. Finally, applying the
symmetric gate M’ produces a quasipolynomial-si;
which is clearly in ¢TCY.

PALT seems to be worthy of further researc
tained in polynomial-size TC® depth-3? Does it
that given collections P; defining L; and P, de
lection Pj defining L1 N Ly by taking all pairwi
and Py. However, the size blowup in the collect;
answer these questions. The real technical matte
of projections can be done from R” to R™ with 1

A simpler class PLT can be defined in ter:
collections of hyperplanes alone. Similar to Prc
to polynomial-size Parity o LT circuits, which are
The class of languages defined by a single hype
LT, by Agrawal and Arvind [AA95], who show tl
truth-table reduces to LTy, then NP = P. Clearly
reduces to LT, but this reduction is neither boun
so even the stronger results in [AA95] seem not
PALT relates to P and NP. A truth-table reductic
polynomial-size linear decision tree, as studied by
The exponential size lower bounds in [BLY92] an
about arbitrary points in R"™, however, and we dc
to problems restricted to points on vertices of the
much promise that geometrical methods of the k
can be brought to bear on Boolean complexity vi

Acknowledgments Alexis Maciel furnished th
ing the 1995 Montreal-McGill Workshop on Comj
March 1995. T also thank Maciel and Mikael Gol
this theorem and PALT in general. Richard Beig
his survey [Bei93]. David Mix Barrington gave 1
tions of much of the material, and the anonymot
and Andrew Odlyzko (the latter for Mattijas Co:
munications on the open problems in Section 6.
bringing some useful results and matters to my a

28

References

[AA95]

[ABFRO1]

[ABFR94]

[AF90]

[AHO0]

[AJ93]

[AL1S]

[ALM*92]

[Bar92]

[BBR92]

[BBR94]

M. Agrawal and V. Arvind. Reductions of self-reducible sets to depth-
1 weighted threshold circuit classes, and sparse sets. In Proc. 10th An-
nual IEEE Conference on Structure in Complexity Theory, pages 264-276,
1995.

J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of
voting polynomials. In Proc. 33rd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 402-409, 1991.

J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of
voting polynomials. Combinatorica, 14:1-14, 1994.

M. Ajtai and R. Fagin. Reachability is harder for directed than for undi-
rected finite graphs. J. Symb. Logic, 55:113-150, 1990.

E. Allender and U. Hertrampf. On the power of uniform families of
constant-depth circuits. In Proc. 15th International Symposium on Math-
ematical Foundations of Computer Science, volume 452 of Lect. Notes in
Comp. Sci., pages 158-164. Springer Verlag, 1990.

E. Allender and J. Jiao. Depth reduction for noncommutative arithmetic
circuits (extended abstract). In Proc. 25th Annual ACM Symposium on
the Theory of Computing, pages 515-522, 1993.

E. Allender. A note on the power of threshold circuits. In Proc. 30th
Annual IEEE Symposium on Foundations of Computer Science, pages
580-584, 1989.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifica-
tion and hardness of approximation problems. In Proc. 33rd Annual IEEE
Symposium on Foundations of Computer Science, pages 14-23, 1992.

D. Mix Barrington. Some problems involving Razborov-Smolensky poly-
nomials. In M. Paterson, editor, Boolean Function Complexity, volume
169 of LMS Lecture Note Series, pages 109-128. London Math. Soc., 1992.
Proceedings of an LMS Symposium in Durham, July 1990.

D. Mix Barrington, R. Beigel, and S. Rudich. Representing Boolean func-
tions as polynomials modulo composite numbers. In Proc. 2/th Annual
ACM Symposium on the Theory of Computing, pages 455-461, 1992.

D. Mix Barrington, R. Beigel, and S. Rudich. Representing Boolean func-
tions as polynomials modulo composite numbers. Computational Com-
plezity, 4:367-382, 1994.

29

[Beig3)]

[Bei94a]

[Bei94b]

[BIS90]

[BLY92]

[Bre74]

[BRS91a]

[BRSO1b)

[BRS95]

[BS94]

[BST90]

[BTSS]

[BT91]

[BT94]

R. Beigel. The polynomial method i
Annual IEEE Conference on Structu
95, 1993. Revised version, 1995.

R. Beigel. Perceptrons, PP, and the p
Complezity, 4:339-349, 1994.

R. Beigel. When do extra majority ga
are equivalent to one. Computational

D. Mix Barrington, N. Immerman, -
within NCY. J. Comp. Sys. Sci., 41:2'

A. Bjorner, L. Lovész, and A. Yao. Lin
and topological bounds. In Proc. 24
Theory of Computing, pages 170-177,

R. Brent. The parallel evaluation of
Assn. Comp. Mach., 21:201-206, 197/

R. Beigel, N. Reingold, and D. Spielm
Proc. 6th Annual IEEE Conference
pages 286291, 1991.

R. Beigel, N. Reingold, and D. Spielm
In Proc. 23rd Annual ACM Symposiun
1-9, 1991.

R. Beigel, N. Reingold, and D. Spielm
J. Comp. Sys. Sci., 50:191-202, 1995.

D. Mix Barrington and H. Straubing
lower bounds for modular counting.
338, 1994.

D. Mix Barrington, H. Straubing, and
over groups. Inform. and Comp., 89:1

D. Mix Barrington and D. Thérien. F
of NC. J. Assn. Comp. Mach., 35:94

R. Beigel and J. Tarui. On ACC. In P
on Foundations of Computer Science,

R. Beigel and J. Tarui. On ACC. Co
1994.

30

[CSV84]

[FFK91]

[FFL93)

[FRO1]

[FSS84]

[FSV93]

[GHR92]

[GJ79]

[GKR*95)

[GKT92]

[Gre95]

[Gup93]

[HGO1]

A. Chandra, L. Stockmeyer, and U. Vishkin. Constant-depth reducibility.
SIAM J. Comput., 13:423-439, 1984.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. In
Proc. 6th Annual IEEE Conference on Structure in Complexity Theory,
pages 30-42, 1991.

S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure property.
In Proc. 10th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, volume 665 of Lect. Notes in Comp. Sci., pages 484-493. Springer
Verlag, 1993.

L. Fortnow and N. Reingold. PP is closed under truth-table reductions. In
Proc. 6th Annual IEEE Conference on Structure in Complexity Theory,
pages 13-15, 1991.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Sys. Thy., 17:13-27, 1984.

R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs. monadic
co-NP. In Proc. 8th Annual IEEE Conference on Structure in Complexity
Theory, pages 19-30, 1993.

M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general
weighted threshold gates. Computational Complezity, 2:277-300, 1992.

M. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

F. Green, J. Kobler, K. Regan, T. Schwentick, and J. Toran. The power
of the middle bit of a #P function. J. Comp. Sys. Sci., 50:456-467, 1995.

F. Green, J. Kébler, and J. Tordan. The power of the middle bit. In Proc.
7th Annual IEEE Conference on Structure in Complexity Theory, pages
111-117, 1992.

F. Green. Lower bounds for depth-three circuits with equals and mod-
gates. In Proc. 12th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 900 of Lect. Notes in Comp. Sci. Springer Verlag,
1995.

S. Gupta. On isolating an odd number of elements and its applications
to complexity theory. Technical Report OSU-CISRC-6/93-TR24, Dept.
of Comp. Sci., Ohio State University, 1993.

J. Hastad and M. Goldmann. On the power of small-depth threshold
circuits. Computational Complexity, 1:113-129, 1991.

31

[HHKO1]

[HMP+87]

[Hof96]

[Jach1]

[Mac95]

[MP68]

[MP92

[MPTY1]

IMST77]

[MT93]

IMV94]

[New64]

[Nis91]

T. Hofmeister, W. Hohberg, and S. K
cuits and multiplication in depth 4. In
on Fundamentals of Computation The

A. Hajnal, W. Maass, P. Pudlak, M.
circuits of bounded depth. In Proc.
Foundations of Computer Science, pa,

T. Hofmeister. A note on the simulati
In Proc. 2nd International Computi
(COCOON’96), volume 1090 of Lect
141. Springer Verlag, 1996.

N. Jacobson. Lectures in Abstract Alge

A. Maciel. Threshold Circuits of S
McGill University, School of Compute

M. Minsky and S. Papert. Perceptro
expanded in 1988.

D. Muller and F. Preparata. Parallel
pressions. J. Comp. Sys. Sci., 44:43—(

P. McKenzie, P. Péladeau, and D. Th¢

viewpoint. Computational Complezity

F. MacWilliams and N. Sloane. The
North-Holland, Amsterdam, 1977.

A. Maciel and D. Thérien. Threshold
using AC? for free. In Proc. 10th An
pects of Computer Science, volume 665
545-554. Springer Verlag, 1993.

M. Mahajan and V. Vinay. Non-comn
tion, and skew circuits. In Proc. 14th
of Software Technology and Theoretic
Lect. Notes in Comp. Sci. Springer Ve

D. Newman. Rational approximatio:
11:11-14, 1964.

N. Nisan. Lower bounds for non-co:
abstract. In Proc. 23rd Annual ACM
puting, pages 410-418, 1991.

32

[NN93]

[NRS95]

[NS92]

[NS94]

[0gi95]

[Pat92]

[Raz87]

[RS02]

[RW93]

[Sch80]

[Sch94]

[She93]

[Smo87]

J. Naor and M. Naor. Small-bias probability spaces: efficient constructions
and applications. SIAM J. Comput., 22:838-856, 1993.

A. Naik, K. Regan, and D. Sivakumar. On quasilinear time complexity
theory. Theor. Comp. Sci., 148:325-349, 1995.

N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. In Proc. 24th Annual ACM Symposium on the Theory of
Computing, pages 462-467, 1992.

N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. Computational Complezity, 4:301-313, 1994.

M. Ogihara. The PL hierarchy collapses. Technical Report UR CS TR 587,
Department of Computer Science, University of Rochester, June 1995.

R. Paturi. On the degree of polynomials that approximate symmetric
Boolean functions. In Proc. 24th Annual ACM Symposium on the Theory
of Computing, pages 468-474, 1992.

A. Razborov. Lower bounds for the size of circuits of bounded depth with
basis {A,®}. Math. Notes Acad. Sci. USSR, 41:333-338, 1987.

K. Regan and T. Schwentick. On the power of one bit of a #p function.
In Proc. 4th Annual Italian Conference on Theoretical Computer Science,
pages 317-329. World Scientific, Singapore, 1992.

A. Razborov and A. Wigderson. nf1°¢™ Jower bounds on the size of
depth-3 threshold circuits with AND gates at the bottom. Inf. Proc.
Lett., 45:303-307, 1993.

J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J.
Assn. Comp. Mach., 27:701-717, 1980.

T. Schwentick. Graph connectivity and monadic NP. In Proc. 35th Annual
IEEE Symposium on Foundations of Computer Science, pages 614-622,
1994.

B.-Z. Shen. A Justesen construction of binary concatenated codes than
asymptotically meet the Zyablov bound for low rate. IEEE Trans. Info.
Thy., 39(1):239-242, January 1993.

R. Smolensky. Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. In Proc. 19th Annual ACM Symposium on
the Theory of Computing, pages 77-82, 1987.

33

[Smo93]

[Spi71]

[Spi95)]

[Sud92]

[Sze90]

[Sze93]

[Tar91]

[Tar93)

[TBY5)]

[Tods9)

[Tod91]

[Tsa93]

R. Smolensky. On representations by
84th Annual IEEE Symposium on |
pages 130-138, 1993.

M. Spira. On time-hardware complexit
Proceedings of the Fourth Internation
pages 525-527, 1971.

D. Spielman. Linear-time encodable a
In Proc. 27th Annual ACM Symposiun
388-397, 1995.

M. Sudan. Efficient checking of polyn
of approxzimation problems. PhD thesi;
1992.

M. Szegedy. Functions with bounded s
ity and circuits with mod m gates. In !
on the Theory of Computing, pages 2’

M. Szegedy. Functions with bounded s
ity, programs over commutative monc
47:405-423, 1993.

J. Tarui. Randomized polynomials, th
hierarchy. In Proc. 8th Annual Sympos
puter Science, volume 480 of Lect. N
Springer Verlag, 1991.

J. Tarui. Probabilistic polynomials, /
time hierarchy. Theor. Comp. Sci., 11

G. Tardos and D. Mix Barrington. A
of the OR function. In Proceedings of
Theory of Computing and Systems (L.

S. Toda. On the computational power
IEEE Symposium on Foundations of
1989.

S. Toda. PP is as hard as the polynor
put., 20:865-877, 1991.

S.-C. Tsai. Lower bounds on repres
nomials in Z,,. In Proc. 8th Annual
Complezity Theory, pages 96-101, 19¢

34

[VV86]

[Wig94]

[Ya090]

[Ya094]

(Zip79]

L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions.
Theor. Comp. Sci., 47:85-93, 1986.

A. Wigderson. NL/poly C ©L/poly. In Proc. 9th Annual IEEE Conference
on Structure in Complezity Theory, pages 59-62, 1994.

A. Yao. On ACC and threshold circuits. In Proc. 31st Annual IEEE
Symposium on Foundations of Computer Science, pages 619-627, 1990.

A. Yao. Decision tree complexity and Betti numbers. In Proc. 26th Annual
ACM Symposium on the Theory of Computing, pages 615-624, 1994.

R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. EU-
ROSAM 79, volume 72 of Lect. Notes in Comp. Sci., pages 216-226.
Springer Verlag, 1979.

35

