
Polynomials and Combinatorial Definitions of
Languages

Kenneth W. Regan∗

August 1996

Abstract

Using polynomials to represent languages and Boolean functions has opened
up a new vein of mathematical insight into fundamental problems of compu-
tational complexity theory. Many notable advances in the past ten years have
been obtained by working directly with these polynomials. This chapter sur-
veys important results and open problems in this area, with special attention
to low-level circuit classes and to the issues of “strong” vs. “weak” representa-
tions raised by Barrington, Smolensky, and others. Other combinatorial rep-
resentations for languages besides polynomials are worthy of attention, and a
new example characterizing parity-of-(ands-of)-threshold circuits is presented
in the last section.

1 Introduction

Turing machines and complexity measures are great for defining classes of languages,
but many researchers are finding that they are not so hot for analyzing these classes,
especially for lower bounds. As formal tools they mostly stand by themselves; they
do not build on or easily link to the great progression of mathematical concepts and
tools. Turing machines are unstructured; their work environment is a tabula rasa;
their computational process is not known to have anything like the overt properties
and hooks for analysis of other mathematical processes. Even chaos is structured.
These remarks apply to other general machine models, and in large part to Boolean
circuits.

Machine-independent characterizations of complexity classes seek to answer these
concerns. A prominent main line of research has been “capturing” these classes by
systems of first and second-order logic. The chapter by Barrington and Immerman in
this volume covers some of this, and some recent successes in lower and upper bounds

∗Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall,
Buffalo, NY 14260-2000 USA. E-mail: regan@cs.buffalo.edu. Supported in part by the National
Science Foundation under grant CCR-9409104.

1

may be found in [AF90, FSV93, Sch94]. Here we will survey a second line that seeks
to characterize languages and complexity notions directly in terms of mathematical
entities that have been studied for a long time.

Polynomials over various rings and fields have been the touchstone for many
notable advances over the past ten years. The main complexity notion for polyno-
mials is that of degree, which in turn is a chief actor in many areas of mathematics,
and the results covered here show how well it corresponds to standard complexity
measures for the languages and functions represented by the polynomials. Although
they had been used as early as 1968 by Minsky and Papert [MP68] for lower bounds
on perceptrons , polynomials really erupted onto the map with papers by Razborov
[Raz87], Smolensky1 [Smo87], and Toda [Tod89, Tod91]. The point is that in each
case, the polynomials not only captured the problems but also ushered in the alge-
braic techniques that solved the problems. A posse of papers in the next few years
[All89, AH90, Sze90, Sze93, Yao90, BT91, BT94, Tar91, ABFR91, ABFR94, BRS91a,
BRS91b, BRS95, Bar92, BBR92, BBR94, NS92, NS94, Pat92] codified the “polyno-
mial method” and expanded its significance.

Although polynomials have deservedly gotten the most press and receive most
attention here, there are other combinatorial objects that can do the same service of
combining issues of complexity theory with areas of mathematics where a great many
more answers are known. Space allows us only to be suggestive by introducing one
notion with a more geometrical flavor that takes past work on hyperplane separations
and thresholds one step further, and proving results relating it to low-level classes.

This survey covers much of the same ground as the excellent one by Beigel [Bei93],
but with a different set of emphases. First, we focus more sharply on the issue of
“strong” versus “weak” representations, and set up a framework for assessing the
effect of both the underlying ring or field and the mode of representation on the
class of languages defined. Second, we try to bring probabilistic polynomials into
this framework, continuing the foundations laid by Tarui [Tar93], and show how
tradeoffs in the theory of error-correcting codes impact on these polynomials. Third,
we emphasize applications for the small classes inside NC1; this also connects the
geometrical notion in Section 8 to the whole. Some material is adapted from the
author’s joint papers [GKR+95] and [NRS95], and some material is new.

2 Polynomials

Multi-variable polynomials are perhaps the simplest familiar mathematical objects
that are capable of representing languages. Let R be any set together with two
operations +, ∗ : R × R→ R. Then any arithmetical formula in +, ∗ using variables

1This author was greatly saddened by the news of Roman Smolensky’s passing. This came a week
after the first draft of this article was completed. I was not able to convert this into a more in-depth
study of Smolensky’s papers themselves, but I hope that the coverage of results and attention given
to the “problem of representations,” which Smolensky highlighted in [Smo93], will do service to his
memory and spur interest in the goals toward which he was working.

2



u1, . . . , un (n ≥ 0) and elements of R defines an n-variable polynomial p over R,
written p ∈ R[u1, . . . , un]. If + is associative and commutative, has an identity 0 ∈ R,
and gives every element an additive inverse—and if ∗ is associative and distributes
on both left and right over +, then R = (R,+, ∗) is a ring . If ∗ is also commutative
and has an identity 1 ∈ R, then R is a commutative ring with identity , and further
if every non-0 element has a multiplicative inverse, then R is a field . The complex
numbers C, the real numbers R, the rational numbers Q, and the integers modulo
q (denoted by Zq) for prime q are fields, but the integers Z, and Zm for composite
m ≥ 2, are “merely” commutative rings with identity. For any k ≥ 1 and prime
q, the Galois field GF(qk) is defined with R = (Zq)

k using vector addition and a ∗
operation whose definition does not concern us here; for more on all the above, see
[Jac51]. Every finite field is isomorphic to some GF(qk). GF(q) is the same as Zq,
but for k≥2, GF(qk) should not be confused with Zqk , which is not a field.

One perhaps counter-intuitive import of current research is that the more prop-
erties one adds to R, the weaker the power of polynomials over R to represent
languages. Indeed, the most recent fundamental work has been on polynomials
(and generalizations of polynomials) defined over structures weaker than rings—see
[BT88, BST90, MPT91, Nis91, AJ93, MV94]. However, our reasons for emphasizing
rings come out in Section 4. Unless otherwise specified, languages are defined over
the alphabet { 0, 1 }.
Definition 1. Given R = (R,+, ∗), let e0 and e1 be fixed elements of R, and let
S1 and S0 be nonempty disjoint subsets of R. A sequence of polynomials { pn : n ≥
1 }, with each pn ∈ R[u1, . . . , un], is said to represent a language L with scheme
(e1, e0, S1, S0) if for all n and x ∈ { 0, 1 }n,

x ∈ L =⇒ pn(x) ∈ S1,

x /∈ L =⇒ pn(x) ∈ S0.

Here pn(x) is defined by substituting, for each i (1 ≤ i ≤ n), e0 for ui if xi (i.e., the
ith bit of x) is a 0, and e1 for ui if xi is a 1.

This definition “promises” that for all x, pn(x) ∈ S0 ∪ S1. When S0 = R \ S1,
no promise is needed, and every sequence { pn } represents a unique language. Given
e1 and e0, the negation of a Boolean variable ui is expressed by (e1 + e0 − ui). By
analogy with a term in a DNF Boolean formula, we call a product of factors of the
form ui or (e1 + e0 − ui) a schematic term.

The following “complexity measures” for polynomials spring to mind.

(1) Degree: degp(n) = the degree of pn.

(2) Size: Here there are three main notions:

(2a) Number of monomials: mp(n) = the number of monomials when pn is
“multiplied out” via the distributive law.

(2b) Number of schematic terms: sp(n) = the minimum number of schematic
terms needed to write pn as a sum of schematic terms.

3

(2c) Formula size: Fp(n) = the minimum number of +, ∗ operands in a formula
for pn.

(3) Coefficient Size: Cp(n) = the maximum number of bits in a coefficient of a
monomial of pn.

The coefficient size comes into play for the infinite rings. Combining it with the
formula size, we have a measure of the number of bits required to write pn down.
Computing the other complexity measures besides the degree, given any formula for
pn, can present difficulties. Counting the monomials and estimating coefficient size
will be straightforward since our given formulas will not have tricky cancellations,
but minimum number-of-schematic-terms and minimum formula size are NP-hard
even in seemingly favorable cases, such as where pn takes only polynomially many
nonzero values and all of them are given. (See the corresponding problems about
Boolean formulas, called MINIMUM EQUIVALENT EXPRESSION and MINIMUM
DISJUNCTIVE NORMAL FORM, in [GJ79].)

In order to focus on these complexity measures as properties of the languages
or functions themselves, with regard to various rings, we first try to minimize the
dependence on representation scheme.

3 Representation Schemes and Language Classes

Nearly all the results in our references use one of the following six representation
schemes. Sign outputs are not applicable for the finite rings. The names of (1)
and (2) are adapted from Beigel’s survey [Bei93], while the other four are based on
nomenclature in [Bar92, Smo93, BBR94].
Definition 2. Chief representation schemes for R = (R,+, ∗):

(1) Standard input, sign output: e0 = 0, e1 = 1, S1 = { r ∈ R : r > 0 }, and
S0 = { r ∈ R : r < 0 }.

(2) Fourier input, sign output: e0 = +1, e1 = −1, S1 and S0 as before.

(3) Strong representation: e0 = 0, e1 = 1, S1 = { 1 }, and S0 = { 0 }.

(4) Standard nonzero representation: e0 = 0, e1 = 1, and S1 = { r ∈ R : r 6= 0 }
(so zero stands for x /∈ L, everything else for acceptance).

(5) Weak representation: e0 = 0, e1 = 1, and S1 = { 0 } (equivalently, S1 = { a },
for any fixed a ∈ R). This is complementary to (4).

(6) Truly weak representation: e0 = 0, e1 = 1, S1 is arbitrary and may differ for
different n, and S0 = R \ S1.

4



With standard inputs as in (1), multiplication corresponds to logical AND, while
with Fourier inputs as in (2), multiplication carries out XOR. Fourier inputs can also
be used in place of standard inputs in (3)–(6). A major point of both these input
schemes is that x2 = x holds in the former, x2 = 1 in the latter. Hence the only
polynomials we need to consider are multilinear , and the maximum degree involved
is n.

The promise pn 6= 0 in (1) and (2) is not important—one can meet it from the
case S0 = R\S1 by forming 2pn(x)−1. It also makes no difference if we let a negative
sign stand for true, positive for false. Hence (3) is the only one with a real promise
condition, justifying Barrington’s name “strong representation” for it. Taking a = 1
in (5) makes it clear that all of the other output schemes are met by polynomials
obeying (3). Smolensky [Smo93] identifies (4) with Barrington’s (5), but we prefer
to think of (4) as loosely analogous to “NP,” (5) to “coNP,” and (3) to “P.” Truly
weak representation is equivalent to saying that we have polynomials pn such that
for all x, y ∈ { 0, 1 }n with x ∈ L and y /∈ L, pn(x) 6= pn(y). Note that no distinction
between L and its complement is made in this condition.
Definition 3. Two representation schemes over a ring R are equivalent if for
every { pn } representing a language L using one scheme, there exist polynomials
{ qn } that represent L using the other scheme, such that degq(n) = O(degp(n)),
Fq(n) = O(Fp(n)), and Cq(n) = O(nCp(n)).

The condition on Cq(n) is just strong enough to preserve polynomial coefficient
size. Now we observe that all representation schemes over finite fields are equivalent
to (3), and we use the basic idea to reduce the other cases as much as possible. We
need the following technical provision, which holds in many cases.
Definition 4. Given disjoint S1, S0 ⊆ R and disjoint T1, T0 ⊆ R, say that (S1, S0)
is polynomially mappable to (T1, T0) if there is a polynomial g in one variable over
R such that g(S1) ⊆ T1 and g(S0) ⊆ T0. Call (S1, S0) and (T1, T0) inter-mappable if
(T1, T0) is likewise mappable into (S1, S0).

Now suppose we want to convert a polynomial p over R with scheme
(a1, a0, S1, S0) into a polynomial q that represents the same language with scheme
(b1, b0, T1, T0), where we are given g mapping (S1, S0) into (T1, T0). If b1 − b0 has an
inverse in R, then we can use the linear formula

q(~x) = g(p(
(a1 − a0)~x+ a0b1 − a1b0

b1 − b0

)). (1)

To verify: if a variable xi of q is assigned b0, then the corresponding variable of p gets
the value ((a1−a0)b0 +a0b1−a1b0)/(b1−b0) = a0(b1−b0)/(b1−b0) = a0, and similarly
an assignment of b1 to an argument of q puts a1 into the corresponding argument for
the evaluation of p. This leads to a nice “robustness” theorem for fields, especially
finite fields.
Proposition 0.1. (a) Every two inter-mappable representation schemes over a

field are equivalent.

(b) All representation schemes over a finite field F are equivalent to strong repre-

5

sentation; i.e., to (3) above.

Proof. Part (a) follows by Equation (1) and gives deg(q) ≤ deg(g) deg(p). The for-
mula size of p( ······) is at most 7 times the formula size of p itself, and the composition
into g gives at most another constant-factor overhead. For part (b), let a scheme
(e1, e0, S1, S0) and a polynomial p be given. It suffices to find a univariate polynomial
g such that g(r) = 1 for r ∈ S1 and g(r) = 0 otherwise. That is done by

g(r) = 1− [
∏
s∈S1

(r − s)]‖F‖−1,

since every non-zero element raised to the power of ‖F‖ − 1 gives 1. Thus we have

q(~x) = g(p((e1 − e0)~x+ e0)).

This yields a strong representation, and deg(q) ≤ (‖F‖ − 1)2 deg p. To go from this
to any other scheme (b1, b0, T1, T0), fix any a ∈ T0 and b ∈ T1, and define

q′(~x) = (b− a)q(
x− b0

b1 − b0

) + a.

Now we observe that the construction in (a) using Equation (1) works not only
in fields, but also in many other cases. It works:

• When b1− b0 has an inverse in R—for instance, in Zm when b1− b0 is relatively
prime to m.

• When the function g can be multiplied by arbitrary powers of b1 − b0 and still
map S into T and the complement of S into the complement of T . Multiplying
by (b1 − b0)deg(p) cancels all denominators in monomials of p( ···

b1−b0 ).

Corollary 0.1. (a) For sign output, all representations for the inputs are equiva-
lent for polynomials over Z, as well as the fields Q and R. So (1) is equivalent
to (2).

(b) Fourier inputs are equivalent to standard ones for polynomials over Zm when
m is odd, in each of (3)–(6).

(c) When S0 and S1 are fixed for outputs, lower bounds on degree proved for the
standard input representation apply to all other input representations.

Proof. (a) If (b1−b0) is positive, then S = {x ∈ Z : x > 0 } is preserved under powers
of (b1 − b0), as is its complement. If (b1 − b0) is negative, then multiply by (b0 − b1)
instead. The coefficient size stays within the bounds allowed by Definition 3. Part
(b) holds because 2 is relatively prime to m when m is odd. For (c), any polynomials

6



pn representing L with a scheme (a1, a0, S) can be converted to (1, 0, S) because then
b1 − b0 = 1.

Note that we left the term-counting and monomial-counting measures out of the
definition of equivalence. The above results do not preserve the latter—they can blow
up to exponentially many monomials. We do not know what happens in general for
schematic terms. However, Equation (1) does preserve the ability to wire Boolean
inputs into small circuit gadgets that give the corresponding values in the ring, so that
wherever “number of terms” is used in the following results, robustness does hold.
Several authors use “terms” as synonymous with monomials or leave the meaning
vague; we pin it down to “schematic terms” if need be. Call { pn } sparse if the pn
can be written with polynomially many schematic terms.

To describe various kinds of circuits and circuit classes, we adopt and adapt
the notations of Goldmann, H̊astad, and Razborov [GHR92] and Maciel and Thérien
[MT93, Mac95] as follows: A stratified circuit of depth d has inputs labeled x1, . . . , xn
together with their negations x̄1, . . . , x̄n, and then has d levels . Gates at each level
receive inputs from the previous level (the inputs are level 0), and all gates at the
same level have the same type. The gate types we consider are:

• AND gates (A) and OR gates (O), of unbounded fan-in;

• “Small” AND gates (ANDsmall), defined to have fan-in (log n)O(1);

• Modk gates (Modk), standardly defined to output true iff the number of true
inputs is zero modulo k;

• Parity gates (P) or (Parity), which are the same as Mod2 gates;

• Large Threshold gates (LT), each of which has a threshold t and integer weights
wi associated to its 0-1 valued input lines ei, and outputs true iff

∑
iwiei > t.

• Small Threshold gates (T) have t, wi = rO(1), where r is the fan-in.

• Majority gates (MAJ) have all wi = 1 and t = r/2. We also include the negation
of a MAJ gate under this heading.

• Midbit gates (Midbit): a Midbit gate of fan-in r returns the dlog2 reth bit of
the number m of true inputs, where m is in binary notation.

• General symmetric gates (SYM) are any gates whose output depends only on
the number of input lines that are true. This designation includes all of the
above except T and LT gates.

The major classes defined by polynomial-size, constant-depth circuit families are
AC0, where the circuits have unbounded fan-in AND, OR, and NOT gates, ACC0,
where they may also have Modk gates (with k fixed for the family), and TC0, where
they may instead have LT gates. Since an LT gate can be simulated by a depth-two,
n13-sized gadget of MAJ gates [Hof96] (see also [GHR92]), TC0 can also be defined

7

via T gates or MAJ gates. Also for each k ≥ 1, NCk denotes the class of languages
accepted by bounded fan-in Boolean circuit families of polynomial size and O(logk n)
depth, and NC = ∪kNCk. We skirt issues of uniformity for these classes (see the
chapter by Barrington and Immerman in this volume), since uniformity goes to the
background in what follows. The known inclusions are

AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1 ⊆ NC2 ⊆ . . . ⊆ NC ⊆ P.

Only the first inclusion is known to be proper [FSS84], and even ACC0 6= NP is
unknown!

The stratified-circuit notation allows us to define more-refined classes than the
above. For example, MAJ◦A stands for polynomial-sized circuits consisting of a MAJ
gate connected to one layer of AND gates at the inputs, and LT ◦A for circuits that
may have a large threshold gate at the output instead. Both MAJ ◦ A and LT ◦ A
denote proper subclasses of TC0 (see [GHR92, Mac95]). Now we can relate the circuit
classes to polynomials.

Theorem 1 (cf. [Bei93]). (a) Let L be represented by polynomials pn over Z, Q,
or R having polynomial formula and coefficient size, using sign outputs. Then
L ∈ NC2.

(b) If the pn are sparse, then L ∈ LT◦A. Conversely, every language in LT◦A has
sparse polynomials over Z and R, using standard inputs.

(c) If standard inputs are used and the coefficients of the sparse pn have polyno-
mial magnitude (that is, have O(log n) bits), then L ∈ MAJ ◦ A. Conversely,
every language in MAJ ◦ A has sparse polynomials over Z with all (non-zero)
coefficients equal to 1.

(d) If L is represented by pn over a finite ring R, and the pn have polynomial formula
size, then L ∈ NC1. Moreover, every L ∈ NC1 is represented by polynomials
over GF(2) having polynomial formula size.

(e) In (d), if the pn are sparse, then L ∈ ACC0; also, L has SYM ◦ ANDsmall

circuits of size 2polylog(n), where again, ANDsmall means that the AND gates
have polylog(n) fan-in.

Proof Sketch. The main point of (a) is the fact that polynomial-sized arithmetical
formulas can be effectively “rebalanced” into arithmetical formulas of polynomial size
and log depth (see [Spi71, Bre74, MP92]). Since the inputs e0 and e1 are fixed for all
pn, all intermediate values have polynomially many bits, and since each arithmetical
operation is in (Boolean) NC1, the whole is in NC2. In (b), the coefficient on each
monomial becomes a weight on a line into a threshold gate, with t = 1. For (c) one
can duplicate gates below the inputs and add dummy lines. The first part of (d) is
clear by the reasoning in (a), and the converse follows by standard “arithmetizing”
of Boolean formulas. The first part of (e) is immediate over Zm, and coding tricks

8



extend it to other finite rings. The second part is due to Beigel and Tarui [BT91],
and is bundled into Theorem 12 below.

Cases (c) and (e) correspond to “Theorem 2” in [Bei93]. In (e), if the ring is Zm

and weak representation (5) in Definition 2 is used with a = 0, then the output gate
becomes a Modk gate.

Curiously, these basic relationships with circuit classes say nothing by themselves
about the degree measure. Degree corresponds to the order of a perceptron, as for-
malized and studied by Minsky and Papert [MP68]. The equivalence of perceptrons
to polynomials with bounded coefficients (and with the number of monomials plus
one equal to the size of the perceptron) is shown by Beigel [Bei93] and treated further
in [Bei94a]. One remark is that an order-d perceptron of order d, size s, and weights
of magnitude w can be converted into an order-d perceptron of size 2ds and weight
sw that has no negated inputs and no duplicate AND gates (see [Bei94b, MP68]);
this corresponds to the obvious relationship between number of schematic terms and
number of monomials. We do not discuss perceptrons further here. The impact of
having low-degree polynomials comes out in other simulations described below. In
contrast to the lack of good lower bounds for familiar machine-based complexity mea-
sures, the degree measure lends itself to tight lower and upper bounds in a number
of important cases.

4 Strong Versus Weak Representation

First, we note that to every Boolean function f(x1, . . . , xn) we can associate a
canonical polynomial σf , such that σf represents f over any ring R under strong
representation. For every assignment ~a = (a1, . . . , an) in { 0, 1 }n, let M~a(~x) =∏

i(2aixi − xi − ai + 1). This is zero except when ~x = ~a, when it is 1. Then let
σf be the sum of M~a over all ~a such that f(~a) = true. As explained by Tarui [Tar91],
because R is a ring and not a weaker structure, the R-module Fn(R) of functions
from { 0, 1 }n to R behaves much like a 2n-dimensional vector space—even if R is
not a field. In particular, the 2n multilinear monomials form a basis for this space,
so every function in Fn(R) can be written uniquely as a linear combination (with
coefficients in R) of these monomials. (Since 0 and 1 commute with every element
of a ring, we do not even need R to be a commutative ring, and the above features
hold also for Fourier inputs.) Hence σf is the unique strong representation of f . If
we know the degree and size measures of σf , that’s it—no strong representation can
do better.

Now define Zf to be the set of polynomials that compute f (over a given R)
under the standard nonzero representation. Proposition 0.1(b) now says that over a
finite field F , all members of Zf have degree within a factor of |F| − 1 of that of σf .
Over Zm with m composite, however, there can be drastic differences. Barrington
[Bar92] gives this example with m = 6:

L = (0∗(10∗)6)∗.

9

L is weakly represented over Z6 by the degree-one polynomials pn(~x) = x1 + · · ·+xn.
However, the unique strong representations have degree n.

The differences emerge even for the basic AND and OR functions. With standard
inputs and sign output, the languages 1∗ and 0∗1(0+1)∗, standing for arbitrary fan-in
AND and OR respectively, are represented by linear polynomials over Z and the other
infinite rings; viz., OR by x1 + · · ·+ xn and AND by x1 + · · ·+ xn − (n− 1). For Zm

the known bounds are different.

Theorem 2. For polynomials over Zm, m ≥ 2:

(a) [Tar91, BST90] (Beigel [Bei93] adds “folklore”) Under strong representation,
AND and OR require degree n.

(b) [BBR94] Under the standard nonzero representation, AND still requires de-
gree n, but OR is representable in degree O(n1/k), where k is the number of
distinct prime factors of m. The best known lower bound on degree for OR is
Ω(log1/(k−1) n) [TB95].

(c) [Smo87, BST90, BBR94] If m is a prime power (so k = 1), OR is repre-
sentable in degree dn/m− 1e, and this is best possible.

(d) Under weak representation, (b) and (c) hold with the roles of AND and OR
reversed. In particular, there is no degree-preserving simulation between the
standard nonzero representation and its complement.

Proof. (a) We have σAND (u1, . . . , un) = u1 · · ·un and σOR = 1−(1−u1) · · · (1−un).
Those are the unique strong representations, and each has degree n. Now in (b), any
standard representation p of AND maps all of { 0, 1 }n \ 1n to 0. Hence the value
p(1n) = a determines the whole function—it is the monomial ax1 · · ·xn. Each of
these has degree n, and by the reasoning for σf above, there are no others. For the
other part of (b), see [Bei93] or [BBR94].

(c) For the upper bound, let d = dn/m− 1e, and use

g(u) = (u1 · · ·ud) + (ud+1 · · ·u2d) + · · ·+ (u(m−2)d · · ·un).

Then g has m − 1 monomials, each of degree at most d, and g(~x) 6= 0 ⇐⇒
OR(x1, . . . , xn). AND under the complementary weak representation is treated du-
ally. For the lower bound, note that the conversion to strong representation works
since Zm is a field and multiplies the degree by (m − 1). By (a), the degree here
cannot be lower than d. Part (d) follows from the definitions.

The polynomials constructed in [BBR94] to achieve the upper bound for OR in (b)
are symmetric, and a matching lower bound for symmetric polynomials representing
OR is proved in [BBR94]. We will see that the degree picture for AND and OR
improves considerably when we go to probabilistic polynomials, even under strong
representation. First we examine bounds for some other functions and languages.

10



5 Known Upper and Lower Bounds on Degree

The following results are taken from Beigel’s survey [Bei93], where full proofs may be
found. By the robustness results and usages established in the last section, we can
be fairly brief in stating the hypotheses.

Theorem 3 ([MP68]). The parity language 0∗1(0∗10∗1)∗0∗ requires degree n over
Z, Q, and R.

Note that the parity function x1+x2+· · ·+xn (mod 2) is a degree-one polynomial
over GF(2). Over Zm with m = 2k one can use kx1 + · · · + kxn to get a degree-one
representation with S0 = { 0 } and S1 = { k }. The case of odd m is different.

Theorem 4 ([Smo87]). Parity requires degree Ω(n1/2) over Zm for any odd m ≥ 3.

Now, following [BBR94], define Modk(x1, . . . , xn) to be false if x1 + · · ·+ xn ≡ 0
(mod k), and true otherwise. Write δ(f,m) for the minimum degree of a standard
nonzero representation of f over Zm, and ∆(f,m) for that of a “truly weak” repre-
sentation. Recall that the minimum degree of f under weak representation (i.e., with
S1 = { 0 }) is the same as δ(¬f,m).

Theorem 5. (a) [Smo87] When m = p is prime and k is not a power of p,
δ(Modk, p) = Ω(n).

(b) [BBR94] If k has a prime divisor that is not a divisor of m, then δ(Modk,m) =
nΩ(1) and also δ(¬Modk,m) = nΩ(1).

(c) (see [BBR94]) If the set of prime divisors of k is contained in that of m, then
δ(Modk,m) = O(1) and δ(¬Modk(m)) = O(1).

(d) [Tsa93] If m is not a prime power, then δ(¬Modm,m) = Ω(n).

(e) [Tsa93] If m is not a prime power, and k has a prime divisor that does not
divide m, then δ(Modk,m) and δ(¬Modk,m) are both Ω(n).

The results by Tsai [Tsa93] improved nΩ(1) bounds in [BBR94] in the case where
m is not square-free. Green [Gre95] improved the results of [BBR94, Tsa93] further
by showing that under standard nonzero representation, for all k there is a constant
Ck such that for all m that are relatively prime to k, δ(Modk,m) ≥ Ckn. That is,
the constant in “δ(Modk,m) = Ω(n)” is independent of m so long as the modulus m
is prime to k. This holds even if Definition 2(4) is made weaker by requiring only
that the polynomial p is not identically zero but gives zero whenever x /∈ L (i.e., the
Boolean function concerned, here Modk, is false). However, none of these bounds are
known at all for the degrees ∆(Modk,m) under “truly weak” representation. Tsai
also proved the following theorem.

Theorem 6 ([Tsa93]). For any integer m ≥ 2:

(a) δ(MAJ,m) ≥ n/2.

11

(b) δ(Midbit,m) = Ω(n1/2).

Some functions that (unlike parity and Modk) do belong to uniform AC0 also
require more than polylog degree over the infinite rings.

Theorem 7 ([MP68]). Over Z, Q, and R, the Boolean function f defined by
f(x0, . . . , x4m3−1) = (∀i ∈ [0 . . .m − 1])(∃j ∈ [0 . . . 4m2 − 1])xi+j requires degree
m. Hence with n = 4m3, the degree is Ω(n1/3).

For representation by polynomials over R, it is most common to use S1 = {x ∈
R : |x − 1| ≤ 1/3 }, and define S0 similarly around 0. Then OR and AND cannot
be done with degree o(

√
n) (see [Bei93]), and Paturi [Pat92] showed that the MAJ

function requires degree Ω(n). Nisan and Szegedy [NS94] showed that the degree of
this representation is polynomially related to that of strong representation. Namely,
for every Boolean function f , every polynomial representing f in this scheme has
degree at least c(deg(σf ))

1/8, where the constant c > 0 is independent of f . In
fact, they showed that both measures are polynomially related to the decision-tree
complexity of f . Similar techniques were used by Beigel [Bei94a] to show that the
language

L = (00 + 01 + 10 + 11)∗10∗

(called ODDMAXBIT in [Bei93]), which is represented over Z by the degree-one
polynomial

∑n
i=1(−2)ixn with linear-sized coefficients, cannot be represented over Z

or Q or R by low-degree polynomials with small coefficients. The exact result is that
it cannot be done in degree no(1) with coefficient size no(1) (and 2n

o(1)
monomials).

In particular, this language is not recognizable by perceptrons of polylog order, sub-
exponential weight, and quasipolynomial size (i.e., size 2polylog(n)).

Several of the lower bounds show that all polynomials of a given low degree d(n)
fail to represent a given Boolean function on a large portion of inputs x ∈ { 0, 1 }n,
such as a constant fraction of them. The next theorem gives an example.

Theorem 8 ([ABFR94]). For all d, n, and m ≤ 2n, there exists a degree-d
polynomial p over Z whose sign represents Parity(x) for m-many x ∈ { 0, 1 }n, iff
m ≤

∑
0≤k<(n+d+1)/2( nk ).

In particular, to compute parity correctly on 1/2 + ε of the inputs, for fixed
ε > 0, one needs degree Ω(

√
n). Now define Lk (k ≥ 2) to be the language of strings

x formed by catenating some number m of “blocks” of the form 0ri10k−ri , such that∑m
i=1 ri 6= 0 modulo k. Using polynomials over C in an auxiliary role, Barrington

and Straubing [BS94] obtained the following theorem.

Theorem 9 ([BS94]). There exists δ depending on k such that polynomials repre-
senting Lk (by sign over Z) on a 1− δ proportion of inputs require degree Ω(

√
n).

The most basic non-approximability results stem from the following “folklore”
lemma, versions of which may be found in [Bar92] and [Smo93].

Lemma 9.1. Every polynomial p(x1, . . . , xn) of degree at most d over a field F is
either constant, or takes value 0 on at least 2n−d(|F|−1) Boolean (i.e., 0-1) arguments.

12



In consequence, a degree-d polynomial over Z2 must disagree with OR on at least
2n−d− 1 arguments, and straightforward constructions show that this bound is tight.
Barrington [Bar92] proved a generalization.

Theorem 10 ([Bar92]). Let p have degree d and take at most r distinct values in a
field F . Then p has value 0 on at least 2n−d(r−1) 0-1 arguments.

For arbitrary rings R in place of F , Barrington proved that the statement of
Theorem 10 holds if d = 1 or r = 2, and that the weaker Lemma 9.1 holds for all d in
Zpk , for any prime p and all k [Bar92]. However, an example credited to Applegate,
Aspnes, and Rudich in [Bar92] shows that the statement fails for R = Z6 with d = 3
and n = 27: Let

p(~x) = s3(~x) + 5s2(~x) + 3s1(~x),

where si stands for the mod-6 sum of all monomials of degree i. This polynomial is a
standard nonzero representation of OR in Z6, and meets the prescribed bounds from
Theorem 2(b). For a full explanation of the failure, see [BBR94].

Smolensky [Smo93] used Hilbert functions to prove several other non-
approximability results in fields of finite characteristic.

Theorem 11 ([Smo93]). Using asymptotic notation that depends only on the charac-
teristic c and not on the size of a field F , and using standard non-zero representation:

(a) Every polynomial of degree o(n1/2) differs from MAJ on at least 2n−1 − o(2n)
Boolean arguments.

(b) If c 6= 2, then every polynomial of degree o(n1/2) differs from Parity on at least
2n−1 − o(2n) Boolean arguments.

(c) If q is prime and c 6= q, then every polynomial of degree o(n1/2) differs from
¬Modq on at least (1/q)2n − o(2n) Boolean arguments.

6 Polynomials For Closure Properties

Polynomials have also been used to prove relationships among complexity classes.
Instead of n variables standing for bits in an input string, the polynomials used here
may have just one or two variables standing for numerical quantities used in defining
the classes. The first striking application of this kind was given by Toda [Tod91] in
proving that the polynomial hierarchy is contained in P#P. He constructed single-
variable polynomials Pd over Z that have the following modulus-amplifying property
for all integers k ≥ 1 and x ≥ 0:

x ≡ 0 (mod k) =⇒ Pd(x) ≡ 0 (mod kd), (2)

x ≡ −1 (mod k) =⇒ Pd(x) ≡ −1 (mod kd). (3)

Toda used P2(x) = 3x4 + 4x3 and inductively defined P2d(x) = P2(Pd(x)) for d ≥ 2,
using only moduli a power of 2. Yao [Yao90] improved the degree and showed that

13

ACC0 circuits can be simulated by probabilistic SYM◦AND circuits of quasipolyno-
mial (i.e., 2polylog(n) size, where the ANDs have polylog fan-in. Beigel and Tarui [BT91]
made Yao’s circuits deterministic without increasing their size, and constructed the
following polynomials Pd of optimal degree 2d− 1:

Pd(x) = 1− (1− x)d(
d−1∑
j=0

( d+j−1
j )xj). (4)

(These satisfy x ≡ +1 (mod k) =⇒ Pd(x) ≡ +1 (mod kd) in place of (3), but it is
easy to convert between these conditions, and this is the one we use below.) Finally,
Green, Köbler, and Torán [GKT92], following on from observations about Toda’s
theorem in [RS92], replaced the arbitrary SYM gate in these results by a Midbit
gate, and obtained the following theorem.

Theorem 12 ([GKT92, GKR+95]). Every language in Midbit◦ACC0 has Midbit◦
ANDsmall circuits of quasipolynomial size.

Proof Sketch. Let L ∈ Midbit ◦ ACC0. The first idea is that all AND and OR
gates in the ACC0 part of the circuits defining L can be replaced by probabilistic
Modm ◦ ANDsmall sub-circuits, where as before, ANDsmall means one level of AND
gates of polylog fan-in. Since only polylog-many random bits are needed to do this (see
the next section), this part can be simulated by taking a sum of quasipolynomially-
many deterministic Modm ◦ ANDsmall circuits. By a lemma in [AH90, BT91], all
the small ANDs can be interchanged with Modm gates below them and pushed into
one layer of small ANDs at the inputs. Then the “pure ACC0” part of the circuits
between the Midbit-of-sum and the small ANDs can be written in stratified form
where each level uses Modk gates for some prime k [BT91]. It remains to show that
the Midbit gate can “swallow up” a sum of Modk circuits, yielding a Midbit-of-small-
ANDs. Pushing the small ANDs beyond the next layer of Modk gates (generally a
different k) toward the inputs (as before) leaves a Midbit-of-sum-of-Modk again, and
the process is repeated until all the Modk gates are gone. We give the key lemma
for the Midbit-of-sum-of-Modk part in full since its proof shows the use of the Toda
polynomials.

Lemma 12.1. Let k be prime and let { bn } be a family of functions such that there
exists a polynomial r where for each n, bn is of the form

bn(x1, ..., xn) =
w∑
i=1

ci(x1, ..., xn),

where each ci is a Modk ◦ANDsmall circuit and w ≤ 2r(logn). Then for any polynomial
t there are polynomials p and q and a family of polynomials {hn } of degree p(log n)
such that for each n,

bn(x1, ..., xn) ≡ (hn(x1, ..., xn) div 2q(logn)) (mod 2t(logn)).

14



Proof. To simplify notation, let p, p′, q, r, s, and t denote p(log n), p′(log n), q(log n),
r(log n), s(log n), and t(log n), respectively. Each Modk ◦ANDsmall circuit ci outputs
1 if and only if a certain sum σi of the AND-gates is nonzero mod k. Now each σi
can be regarded as a polynomial in variables (x1, . . . , xn) over Zk of degree equal to
the fan-in of the small ANDs, and since k is prime, we may arrange via Lemma 0.1
that σi(~x) is always 0 or 1 (mod k). Now using the “Toda polynomials” Pd in (4)
above, it follows that

bn(x) =
w∑
i=1

[
Pd(σi) mod kd

]
.

We choose d = p′(log n) where p′ is a polynomial such that kp
′
> 2r+t+2. Then

bn(x) ≤ 2r < kp
′
. Now the outer sum in the equation above for bn is less than kp

′
, so

the “mod” can be moved outside; i.e.,

bn(x) ≡

[
w∑
i=1

Pp′(σi)

]
(mod kp

′
).

Writing fn(x) =
w∑
i=1

Pp′(σi), we have

fn(x) = an(x)kp
′
+ bn(x)

for some an(x). Note that for some polynomial s, fn(x) < 2s. Also note that since
σi is a polynomial of polylog degree, there is some polynomial p such that fn is a
polynomial of degree p(log n) in the variables x1, ..., xn. Define the degree p(log n)
polynomial hn as follows:

hn(x) = i(n)
⌈
2q/kp

′
⌉
fn(x) + 2qfn(x),

where i(n) ≡ −kp′ (mod 2t) and q is a polynomial such that q ≥ s + t + 2. Then
d2q/kp′efn(x) = an(x)2q + b′n(x), where b′n(x) < 2q−t−1. Hence

hn(x) ≡ 2qbn(x) + i(n)b′n(x) (mod 2q+t),

where i(n)b′n(x) < 2q−1. This completes the proof of Lemma 12.1 and the sketch of
Theorem 12.

The class MP (also called MidbitP) introduced in [RS92, GKR+95] was motivated
to find the sharpest upper bound for the polynomial hierarchy in Toda’s theorem. A
language L belongs to MP if there exists a polynomial-time NTM N such that for
all strings x, x ∈ L ⇐⇒ the middle bit of the standard binary representation of
#accN(x) is a “1.” Here #accN(x) stands for the number of accepting computations
of N on input x, while GapN(x) (see [FFK91]) stands for #accN(x) minus the number
of non-accepting computations. A useful equivalent definition of MP is obtained by
combining observations in [GKR+95] and [FFL93]. Say that an integer r is “top

15

modulo 2k” if (r mod 2k) belongs to [2k−1 . . . 2k − 1]. Then L ∈ MP iff there exist N
and a polynomial-time computable function g such that for all x,

x ∈ L ⇐⇒ GapN(x) is top modulo 2g(x). (5)

This compares well with the standard definition of PP as the class of languages L
such that for some N and all x,

x ∈ L ⇐⇒ GapN(x) > 0. (6)

Both PP and MP are closed under complements. The closure of PP under inter-
section follows via (6) from the existence of an integer-valued function h such that
for all polynomial-time NTMs N1 and N2 and all x,

h(GapN1
(x),GapN2

(x), x) > 0 ⇐⇒ GapN1
(x) > 0 ∧ GapN2

(x) > 0, (7)

and such that there is a polynomial-time NTM N3 whose gap function GapN3
(x)

equals the left-hand side of (7). One would like to have a polynomial A such that for
all integers r and s, A(r, s) > 0 ⇐⇒ r > 0 ∧ s > 0, but no such A exists [MP68].
However, we only need this to hold for those r and s that can possibly arise as values
of GapN1

(x) and GapN2
(x). For some k depending only on N1 and N2, these must be

in the range [−2m . . . 2m], where m = |x|k. The following polynomials Am fitting this
bill were found by Beigel, Reingold, and Spielman [BRS91a, BRS95], and were based
on one-variable rational functions (i.e., quotients of two polynomials) that compute
sign(x) on similar ranges found by Newman [New64].

Am(r, s) :=
1

4
(Pm(r) + Pm(−r))(Pm(s) + Pm(−s))

−Pm(r)(Pm(s) + Pm(−s))− Pm(s)(Pm(r) + Pm(−r)),

=
1

4
(3Pm(r)− Pm(−r))(3Pm(s)− Pm(−s)) − 4Pm(r)Pm(s)

where

Pm(r) = (r − 1)
m∏
i=1

(r − 2i)2.

For more details, see [BRS95]. Unlike the Toda polynomials, the coefficients of Am
do not belong to Z. However, all values on integral arguments belong to Z, so we call
Am integer-valued , and the degree of Am is polynomial in m. As shown in [BRS95],
this suffices for constructing the required polynomial-time NTM N3. Fortnow and
Reingold extended this construction to show that PP is closed under polynomial-
time truth-table reductions [FR91]. Ogihara [Ogi95] has recently extended these
polynomials to show that the log-space analogue PL of PP is self-low, i.e., that PLPL =
PL.

Now let us turn attention to the problem of whether MP is closed under inter-
section. This time, what we want is a polynomial bound on degree in the following
statement.

16



In terms of k, what is the minimum degree of an integer-valued polynomial
p(x, y) such that for some polynomial t and all x and y, p(x, y) is top
modulo 2t(k) ⇐⇒ both x and y are top modulo 2k?

Note that p may have rational coefficients so long as it is integer-valued. The sim-
plest polynomial we know that satisfies this congruence relation (with t(k) = k) is
p(x, y) =

(
x

2k−1

)(
y

2k−1

)
2k−1, which has degree 2k. M. Coster and A. Odlyzko [personal

communication, 3/91] found solutions with degree O(φk), where φ is the golden ratio
1.618 . . . , and with coefficients likewise appreciably smaller than the above. If such p
can be found with degree polynomial in k, then p can be written as a polynomial-sized
sum of small binomial coefficients in x and y, which can then be used in building the
polynomial-time NTM needed to show MP closed under intersection.

A related question is: What is the minimum degree required to achieve, with all
quantities defined modulo m,

p(x, y) = 0 ⇐⇒ (x = 0 ∧ y = 0)?

With integer coefficients, this is possible iff m is square-free—and then p can have
degree 2. For the case m = 2k (and rational coefficients), D.A.M. Barrington [per-
sonal communication, 11/95] gives an argument that makes an Ω(

√
m) = Ω(2k/2)

lower bound on degree highly plausible, for both this and the “top mod 2k” prob-
lem with t(k) = k. The main idea is that there is a unique way to write p(x, y) in

the form
∑

i,j ai,j
(
x
i

)(
y
j

)
with integral ai,j. A well-known fact is that

(
2k

i

)
is divisi-

ble by 2k/ord2(i), where ord2(i) stands for the largest power of 2 dividing i. With
x = y = m/2, all the terms with both ord2(i) and ord2(j) at most

√
m/2 are divisible

by m. Thus in particular, all terms with 1 ≤ i, j ≤
√
m/2 disappear in the congruence

mod m. The only low-degree terms that can squeak through this analysis are those
with i = 0 or j = 0, and these give us single-variable polynomials (with zero constant
term) q(x) and r(y) such that p(m/2,m/2) is congruent to p(0, 0) + q(m/2) + r(m/2)
modulo m. If the q and r terms can be made to “go away,” we have the desired
contradiction.

Note that this would not contradict the above upper bound since it amounts
to Ω(1.414 . . .k). The tantalizing aspect, however, is that even this argument has no
effect when t(k) ≥ 2k. It may yet be possible to build two-variable “modulus-shifting”
polynomials to meet the above requirement for closure of MP under intersection, and a
direct and efficient-enough construction might collapse some counting classes between
PP
⊕P and PPP, as discussed at the end of Section 3 of [GKR+95].

7 Probabilistic Polynomials

A probabilistic polynomial in n variables over a ring R is formally defined, following
Tarui [Tar93], as a mapping σ from a sample space U to the set R[x1, . . . , xn] of
polynomials in variables x1, . . . , xn with coefficients in R. The degree of σ is defined

17

to be the maximum, over all j ∈ U , of the degree of the polynomial σj. We write
Prj∈U [. . . ] to indicate sampling according to the uniform distribution on U .

Definition 5. A probabilistic polynomial σ represents a language L within error δ,
using scheme (e1, e0, S1, S0), if for all n and x ∈ { 0, 1 }n,

x ∈ L =⇒ Prj∈U [σj(x) ∈ S1] ≥ 1− δ,
x /∈ L =⇒ Prj∈U [σj(x) ∈ S0] ≥ 1− δ.

Here we will use the standard (1, 0) input representation, and consider both
strong and weak representation for outputs. We will also consider cases where R is
the field GF(2k) and k may increase with n, so that the overhead in Proposition 0.1
becomes a factor. However, we will then convert from weak representations over
GF(2k) to representations over GF(2), where strong and weak are the same. Over
GF(2), schematic terms are products of xi and (1 − xi), and we simply call them
“terms.” The following two results are well-known.

Proposition 12.1 (see [Tar93]). Let σ be a probabilistic polynomial in n variables
over Zm (with standard nonzero representation) that has degree d and sample space
{ 0, 1 }r, and such that for each j, σj is written with at most c terms. Then there is
an equivalent Modm ◦AND circuit C with n “actual inputs” and r “random inputs,”
such that the AND layer has at most c2r gates, each of fan-in at most d+ r.

Proof. Each possible value of j can be regarded as a binary string of length r. For each
j and each term in σj involving variables xi1 , . . . , xid , assign an AND gate with d+ r
wires to the inputs. The first d wires go to the actual inputs or their complements
that appear in the term, and the other r wires go to the random inputs or their
complements, each according to whether the corresponding bit of j is 1 or 0. Then
this AND gate evaluates to 1 iff the values of the random inputs are precisely j, and
the corresponding clause in σj contributes 1. The Modm of all the AND gates for this
j is the same as the value of σj(x) modulo m. All AND gates for other values of j
output zero, so connecting everything to a single Modm gate yields the correct values
for all j and x.

The circuits in turn can be regarded as polynomials over Zm that have n “actual
arguments” and r “random arguments.” This shows the essential equivalence between
Tarui’s convenient formalism using distributions and the older notion of a single
polynomial with “probabilistic arguments.”

For the case m = 2, there is a deterministic simulation that is more efficient than
Theorem 12 given above.

Proposition 12.2 ([All89, AH90]). If the probabilistic polynomial σ represents f
over GF(2) with success probability > 1/2, then the probabilistic circuit C simulating σ
in Proposition 12.1 can be converted to a deterministic depth-three MAJ◦MAJ◦AND
circuit C ′ that has c2r AND gates, each of fan-in d, and c22r MAJ gates in the second
layer.

18



Proof. This follows from the simulation of a MAJ of u-many Parity gates, where each
Parity has fan-in at most m (an even number), by a depth-2 circuit comprised of
um+ 1 MAJ gates [All89, AH90].

H̊astad and Goldmann [HG91] proved that any depth-3 circuit of this kind (even
with the MAJORITY gates replaced by arbitrary unweighted threshold gates) that
computes the GF(2) polynomial

∑n
i=1

∏d
j=1 xij must have size at least 2Ω(n/(d+1)4d+1),

which translates to 2n
Ω(1)

if d ≤ (1/3) log n. Razborov and Wigderson [RW93] showed
that any such circuit that computes the GF(2) polynomial

∑n
i=1

∏logn
j=1

∑n
k=1 xijk must

have nΩ(logn) size, regardless of the bottom fan-in d. This still leaves open the possibil-
ity of achieving polynomial size in the depth-3 construction for functions in (uniform)
AC0, or for achieving polynomial size with a higher constant depth (cf. [HHK91]).

Now we look concretely at polynomials for OR. First note that under the sign
output representation, OR is trivially represented over Z by the degree-one polynomial∑n

i=1 xi. Under strong representation, however, the degree jumps all the way to n,
over Zm as well as Z. For probabilistic polynomials, however, strong representation
is much less costly.

Theorem 13 ([ABFR94]). OR is strongly represented over Z within error ε by
probabilistic polynomials of degree O(log(1/ε) log n).

Proof. We vary somewhat from the proof in [ABFR94]: Let ` = dlog2 ne. For each
k, 0 ≤ k ≤ `, let Rk ⊆ { 1, . . . , n } be randomly selected by independently placing
i ∈ Rk with probability 1/2k. This gives us for each k a randomly-selected polynomial
ρk(x1, . . . , xn) =

∑
i∈Rk xi. Finally define

σ(x1, . . . , xn) = 1−
∏̀
k=0

(1− ρk(x1, . . . , xn)). (8)

Now when all xi are 0, with probability 1 this polynomial gives 0. When the set S of
xi that are 1 is nonempty, an easy analysis of the two values of k that straddle log2 |S|
shows that with probability at least 1/4, some ρk takes value 1, so the product is zero,
so σ takes value 1. Finally, to amplify the 1/4 to 1− ε, replace the product in (8) by
a product of dlog2(4/ε)e independent copies of

∏
k(1− ρk(x1, . . . , xn)).

This uses O(n log(1/ε)) random bits. As is well known, one only needs the random
variables defining the sets Rk to be pairwise-independent, and a standard universal
hashing construction needs only O(log n) random bits for the success probability 1/4,
hence O(log n log(1/ε)) random bits overall. This construction works for probabilistic
strong representation over Zm as well as Z.

The question we ask is: Can one do better in the degree and random-bits mea-
sures? We show that the answer is yes for polynomials over any finite field, including
Zp with p prime, by a construction involving error-correcting codes. Such codes were

19

used by Tarui [Tar93] in non-constructive arguments about probabilistic polynomi-
als, and by Naor and Naor [NN93] in other contexts. Here we emphasize the way
probabilistic polynomials are constructed from the codes. For sake of comparison, we
first show how the basic “parity trick” of Naor and Naor [NN93] can be applied to
eliminate the product over k in (8): Using `+ 1 more random bits b0, . . . , b`, define

σ(x1, . . . , xn) =
∑̀
k=0

bkρk(x1, . . . , xn)) (mod 2).

Then σ(~0) = 0 with probability one. For all arguments ~x 6= 0, think of some ρk that
gives value 1. The bit bk alters the overall sum by 1 depending on its value. Hence with
probability at least 1/8, σ(~x) = 1 (mod 2). Thus we have a degree-one probabilistic
polynomial achieving constant success probability for OR. This amplifies by repeated
trials to degree O(log(1/ε)) for success probability 1− ε, using O(log n) log(1/ε) ran-
dom bits. Hence this saves an O(log n) factor on degree compared to Theorem 13,
although we have strong representation over Z2 instead of over Z.

Open Problem 1. Can ∨ be strongly represented within error ε over Z by proba-
bilistic polynomials of degree log(1/ε) · o(log n)?

This relates to whether the randomized reduction from SAT to Unique SAT by
Valiant and Vazirani [VV86] can be made as efficient as the reduction to Parity SAT
as optimized in [NRS95] (see also [NN93, Gup93]).

The construction via error-correcting codes that we present next achieves slightly
better constants in the bounds compared to the above. The success probability for
degree-one representation over Z2 is improved from 1/8 to 1/2 − η, where η has a
minimal effect on the other bounds. The number of random bits beats the bound
of 2 log n needed for pairwise independence, i.e., needed to construct a family of
universal2 hash functions from n bits to n bits.

7.1 Error-Correcting Codes

In this subsection, let Σ be an alphabet whose cardinality is a prime power q = pk.
The Hamming distance dH(x, y) of two strings x, y ∈ Σ∗ of equal length is defined to
be the number of positions in which x and y differ. For any N, d ≥ 1, an (N, d) code
over Σ is a set C ⊆ ΣN such that for all distinct x, y ∈ C, dH(x, y) ≥ d. Elements
of C are called codewords . We identify Σ with the finite field F = GF(pk), and then
ΣN can be regarded as a vector space of dimension N over F .

Definition 6. A linear code over F with parameters [N,K, d] is an (N, d) code C
that forms a vector subspace of ΣN of dimension K over F . Two other important
parameters are the rate R = K/N , and the density δ = d/N .

The use of [. . . ] to distinguish linear codes is standard in coding theory. Where
intent is clear we write [N,K, δ] in place of [N,K, d]. Given any K-dimensional vector
subspace C ⊆ ΣN , denote by dC the maximum d such that C is an [N,K, d] code,

20



and write δC = dC/N . Thus dC equals min{ dH(x, y) : x, y ∈ C, x 6= y }, and so is
called the minimum distance of the code C. The weight wt(x) of a string x ∈ ΣN

is the number of nonzero entries, which is the same as dH(x, 0). A well-known fact
is that in a linear code C, the minimum distance is equal to the minimum weight of
a non-zero codeword. This is because for all x, y ∈ C, x − y is also in C. Thus the
density δC gives the minimum proportion of non-0 entries in any non-zero codeword.
Where intent is clear we write just d and δ for dC and δC .

Definition 7. A generator matrix G for an [N,K, d] code C is a K×N matrix over
F whose rows G(i, ·), 1 ≤ i ≤ K, form a basis for C.

Now we indicate how we intend to make N and K scale with our input lengths
n.

Definition 8. Let [Cn]∞n=1 be a sequence of [Nn, Kn, dn] codes over F . Then the Cn
are said to be small codes if Nn = nO(1), and large codes if they are not small and
Nn = 2n

O(1)
.

For probabilistic polynomials we use small codes, with Kn = n:

Proposition 13.1. Let G generate an [N, n, δ] code over F . Then the probabilistic
polynomial σ with sample space the columns of G, defined by

σj(x1, . . . , xn) =
n∑
i=1

G(i, j)xi, (9)

represents OR(x1, . . . , xn) over F with success probability at least δ.

Proof. If all xi are 0, then for all j, σj(x1, . . . , xn) = 0, so this probabilistic polynomial
gives one-sided error. Now let S = { i : xi = 1 } be nonempty. To S there corresponds
the unique codeword wS =

∑n
i=1 G(i, ·). Since wS is nonzero, with probability at least

δ over j sampled uniformly from { 1, . . . , N }, wS(j) 6= 0. And wS(j) = σj(x1, . . . , xn).

Note that σ has the columns of G as its sample space and is linear. Also, 1 − σ
represents NOR, σ(1−x1, . . . , 1−xn) represents NAND, and 1−σ(1−x1, . . . , 1−xn)
represents AND. These probabilistic polynomials are also linear with constant success
probability. The number r of random bits used is dlog2 Ne. Expressed in terms of
the rate R = K/N , with K = n, r = log n + log(1/R). Thus if the rate is constant,
r = log n + O(1), while if N is polynomial in K, r = O(log n). This motivates the
next definition, part (a) of which is standard in coding theory.

Definition 9. (a) A sequence [Cn]∞n=1 of codes over F is asymptotically good if
there are constants R, δ > 0 such that (∀∞n)Rn ≥ R ∧ δn ≥ δ.

(b) The sequence is almost-good if δ > 0 exists giving (∀∞n)δn ≥ δ, and the lengths
Nn are polynomial in Kn.

21

The emphasis in Proposition 13.1 is on the density, rate, and the complexity of
computing individual entries G(i, j). This stands apart from the main application of
coding theory, which is to take a plaintext message w of length K, encode w into the
codeword x = wG, transmit x over a channel that may alter it to x′, and have the
receiver decode x′ to recover w. So long as dH(x, x′) < d/2, the “nearest codeword”
decoding algorithm given x′ will find x and then w. The higher one can make δ
and R, the more erroneous symbols one can correct and the less the transmission
overhead. In recent breakthrough work, Spielman [Spi95] constructed asymptotically
good codes with Kn = Nn = O(n) that give encoding and decoding in linear time.
However, we do not know whether the computation of entries of his Gn(i, j) can be
done in (uniform) AC0. The codes used by Sudan [Sud92] to streamline the “PCP”
results of [ALM+92] are almost-good, and put G(i, j) into AC0 when used as small
codes. They suffice for the next result.

Theorem 14. There are AC0-uniform linear probabilistic polynomials that represent
OR over GF(2) with constant success probability using O(log n) random bits.

Proof. We scale down the main theorem in section 3 of [NRS95] from “large codes” to
“small codes” with K = n as follows: Let h = dlog2 Ke, ` = dlog2 he, and m = dh/`e.
That is, we identify { 1, ..., K } with (a subset of) { 0, 1 }h for the row labels, and
break each i ∈ { 0, 1 }h into m strings i1 · · · im, where each has length `. Here we may
suppose that the last one, im, is padded out to length ` with 0s. The first idea is
that each such i corresponds to a monomial in m formal variables z1, . . . , zm, namely
zi11 · · · zimm , where now i1, . . . , im are regarded as numbers between 0 and h− 1. Note
that all such monomials are distinct and have total degree D less than mh.

Now let η > 0 be arbitrary, let s = dlog2(mh/η)e, and let F be the finite field
GF(2s). The column space of our matrix G over GF(2) is given by

J = { (a1, . . . , am, v) : a1, . . . , am, v ∈ F },

which is in 1-1 correspondence with strings j of length (m+ 1)s. Then for all rows i
and columns j = (a1, . . . , am, v) we define:

G(i, j) = (ai11 · · · aimm ) • v, (10)

where the powers and products are over F , but • stands for the dot-product of two
binary strings, which brings the final result down into GF(2). Since the field elements
in (10) are binary strings of length only 2 loglog n+O(1), and m < log n, precomputed
tables yield uniform AC0 circuits (and we suspect the whole is in DLOGTIME as
treated in [BIS90]). The number of random bits to generate j is (m+ 1)s ' ms =

h

log h
log(

h2

η log h
) = 2h− h loglog h

log h
+

h

log h
log(1/η) < 2 log n.

Hence the codes are almost-good, with length N a tad below n2.

22



We claim thatG generates a code of the required dimension and density. Since the
distinct monomials are linearly independent in F [z1, . . . , zm], they generate a space of
dimension K over F . For the density we use the key lemma from the aforementioned
“PCP” papers, often ascribed to Schwartz [Sch80] but anticipated by Zippel [Zip79]:
For every two distinct polynomials p and q of total degree at most D over a field F ,
and every I ⊆ F ,

|{~a ∈ Fm : p(~a) = q(~a) }| ≤ D|I|m−1.

With I = F , it follows that every nonzero polynomial p in our space takes on at
least |F|m − D|F|m−1 nonzero values. Dividing by |F|m says that the proportion
of nonzero values is at least 1 − D/|F| = 1 − mh/2s = 1 − η. Now consider the
codeword wp corresponding to p, and. consider a nonzero value p(a1, . . . , am) = u.
This corresponds to a range of 2s-many columns indexed by (a1, . . . , am, v) over all
v ∈ F . Since u 6= 0, exactly half of those v give u • v = 1. Hence the density of the
codeword wp is at least (1 − η)/2, and this fulfills the claim made about the code.
(Technically, G is the “concatenation” of the code over F with the so-called binary
“Hadamard code” defined by the dot-product function over GF(2).)

Finally, Proposition 13.1 gives us the desired linear probabilistic polynomials, for
AND, NOR, NAND as well as OR, with constant one-sided error arbitrarily close to
1/2, and with polynomial sample-space size.

We do not know of a sequence of good small codes that is AC0-uniform. B.-
Z. Shen [She93] shows how to construct asymptotically good binary codes by an
algebraic technique that (in an analogous situation) chops many columns out of J
without reducing the density of the code, but we do not know how uniform the
“chops” are.

In the case of large codes with K = 2n, the computation of G(i, j) in (10) involves
field elements of size O(log n). Since both the sequences (a1, . . . , am) and (i1, . . . , im)
can be read left-to-right, the entire computation can be done in one-way log-space.
Thus NL random-logspace reduces to ⊕L, and this immediately implies Wigderson’s
theorem that NL/poly ⊆ ⊕L/poly [Wig94]. We would like to know whether this
computation can be done in TC0.

Matters become more complex when the error tolerance ε is not constant but
shrinks rapidly with n. A example application is simulating AC0 circuits of depth b
and size nc within a target error e. We may suppose that each gate is a NAND gate
of fan-in at most n. The idea is to substitute “the same” probabilistic polynomial σ
of degree d and error εn for each gate. Composing these polynomials then yields a
single probabilistic polynomial τ of degree db in the input variables x1, . . . , xn of the
circuit that computes it with error at most εnn

c. This works even though the “errors
at each gate” are not independent; note that τ has the same sample space as σ. Thus
we wish to arrange εn ≤ e/nc.

We could do O(log(1/εn)) independent trials in this example, thus making d '
c log n and using r(n) = O(log n log(1/εn)) = O(log2 n) random bits. Plugging this
in to the construction in Theorem 14 improves the original degree bounds of Beigel,

23

Reingold, and Spielman [BRS91a, BRS95], and stays slightly ahead of the result of
Gupta [Gup93], but still falls well short of the optimal bounds shown to be achievable
by the non-constructive argument of Tarui [Tar93].

However , there is a very interesting possibility of achieving better bounds in a
uniform manner by using larger fields F . It is known that whenever δ < 1 − 1/|F|,
sequences of good codes over F with δn ≥ δ exist. If we have 1/2k ≤ ε = 1 − δ,
then the argument of Proposition 13.1 immediately gives us a linear probabilistic
polynomial τ over GF(2k) that computes OR using r(n) = log n+O(1) random bits.
The following then gives an alternative way to obtain a small-degree σ over GF(2)
for OR. Let ork be the unique polynomial that represents (deterministically!) k-bit
OR over GF(2).

Proposition 14.1. Let G be an n×N generator matrix for a code of density δ over
GF(2k), and let G′ be the straightforward way of regarding G as an n × kN matrix
over GF(2). Then the probabilistic polynomial σ defined by

σj(x1, . . . , xn) = ork

(
n∑
i=1

G′(i, kj − k + 1)xi, . . . ,
n∑
i=1

G′(i, kj)xi

)
(11)

represents OR(x1, . . . , xn) over GF(2) with error at most δ, and has degree k and
sample space { 1, . . . , N }.

Note that σ has the same sample space as τ . There is a way to regard G as a kn×kN
matrix G′′ over GF(2), but the difference between G′ and G′′ seems not to matter
much.

Now we want to ask: What happens to “good” codes over GF(2k) when k scales
upward with n? What must at least happen to the “+O(1)” in r(n) above is shown
by a coding-theory bound called the Singleton bound : in an [N,K, d] code (over any
field), K + d ≤ N + 1. Written another way with ε = 1 − d/N , the bound becomes
N ≥ (K − 1)/ε, and putting K = n, this says that the number of random bits used
must satisfy

r(n) ≥ log2(n− 1) + log2(1/ε).

This is much better than the r(n) = log(n) log(1/ε) from repeated trials. There
are codes that meet this bound—such codes are called maximum distance separable
(MDS). The question now becomes: Can we construct MDS (or nearly MDS) codes
of high density over GF(2k)? This and the question of how the densities δk and rates
Rk for good codes in Definition 9 may scale with k lead into deep areas of coding
theory, for which [MS77] is a standard reference. The issues here about working with
larger fields of the same characteristic (here, GF(2k) versus GF(2)) seem connected
to similar issues in Smolensky’s paper [Smo93] (see Theorem 11 cited above). We
believe that there is room in the theory of error-correcting codes for new discoveries
that will add to our knowledge about complexity classes.

24



8 Other Combinatorial Structures

If we blur the distinction between a language L and its complement ∼L, we can regard
L as a “two-coloring” of Σ∗. We seek connections to a powerful body of mathematics
that is bound up with generalizations of a familiar theorem about two-colorings of
the plane:

Any map formed by simple closed curves and infinite straight lines in
the plane can be colored with two colors, so long as all intersections are
“general”—meaning that for every pair of curves or lines, the intersections
(if any) between them form a collection of isolated crossing points.

Versions of this theorem extend to higher dimensions. To use them, we need to
identify Σ∗ with a subset of real space. We decide to take Σ = { 0, 1 } and identify
Σn with the vertices of the unit cube in Rn, for each n.

The generalization of “infinite straight line” to Rn is a hyperplane, meaning an
affine translation of an (n − 1)-dimensional subspace of Rn. Every hyperplane is
defined by an equation of the form

∑n
i=1 xiwi = t. The (upper) open half space asso-

ciated to the hyperplane consists of points ~x satisfying
∑n

i=1 xiwi > t. Note that this
inequality defines a threshold gate. A polytope is an intersection of open half-spaces
that defines a bounded nonempty region of space, together with its surface consisting
of those points belonging to the hyperplanes that are added in forming the topological
closure of this region. (This wording makes all polytopes “full-dimensional.”) Every
polytope is convex. Familiar examples of polytopes in R3 are the tetrahedron, cube,
octahedron, and prism, but not a cylinder, cone, or sphere.

For simplicity, we will not work with the theories of algebraic curves and algebraic
topology that provide full generalizations of simple closed curves in the plane, but will
confine attention to polytopes. Say a collection of polytopes is in “general position”
if no polytope has a hyperplane that goes through a vertex of the unit n-cube, and
no two polytopes share a hyperplane nor any lower-dimensional facet. (See [MP68]
for more on this.) Then we have an analogue of the above two-coloring theorem:

Every finite collection of polytopes in general position defines a two-
coloring of Rn, and every vertex of the unit n-cube has a well-defined
color.

Definition 10. A language L belongs to PALT if there are polynomial-sized col-
lections Pn of polytopes in general position, with each member of Pn defined by
polynomially-many half-spaces, such that for all n, all points in L=n have one color,
and all points in ∼L=n have the other color.

By definition, PALT is closed under complements. If we want to distinguish “the
language of {Pn }” from its complement, we may exploit the fact that the partition

25

of Rn by Pn has only one infinite region, and define L(Pn) by those points on the
unit cube that have the same color as this region. We can always complement L by
adding one polytope that encloses the unit cube.

Now we can characterize this idea in terms of the circuit classes defined at the
end of Section 3.

Proposition 14.2. A language L belongs to PALT iff L is recognized by polynomial-
sized Parity ◦ AND ◦ LT circuits.

Proof. Let L in PALT, and let Pn define L=n. Each polytope is definable by an AND
of LT gates. By a standard lemma in [MP68], each LT gate can be replaced by an
LT gate that gives the same outputs on the vertices of the unit cube in Rn, such
that the weights and threshold for the latter gate all have O(n log n) bits. Hence
the circuits obtained by attaching a single parity gate to all the AND-of-LTs are
polynomial-size P ◦ A ◦ LT circuits. Now we claim that two vertices x and y of
the unit cube have different colors iff the number of polytopes P ∈ Pn such that
exactly one of x, y belongs to the interior of P is odd. This claim implies that the
P ◦ A ◦ LT circuit computes the same language as the coloring. To verify the claim,
consider the straight line segment ` from x to y. Now all intersection points of `
with the surfaces of polytopes are isolated, for if ` were to lie along the surface of
a polytope, then some hyperplane involved would go through x and y, in violation
of general positioning. Two different polytopes may intersect ` at a given point, but
each intersection, counting this kind of multiplicity, represents a color change. Hence
the total number of intersections, counting multiplicities, is odd. Since a polytope
that has both or neither of x, y in its interior contributes 0 or 2 to this total, the
claim is proved.

Going the other way, given a P ◦ A ◦ LT circuit, each AND gate defines an
intersection of open half spaces. By adding some LT gates that output true for all
assignments in { 0, 1 }n, we can make this intersection into an equivalent polytope.
The lemma from [MP68] can also be used to tweak the polytopes into general position
without changing any values on the unit cube.

Thus PALT is a small-depth, polynomial-size circuit class. It seems to lie “just
above” the polynomial-size circuit classes for which strong lower bounds are currently
known, such as those treated in [HG91, GHR92, MT93, Mac95]. All of the latter
classes are contained in polynomial-size TC0 depth-3. Much attention has focused
on the problem of whether NC1 = TC0

3. We find it just conceivable that NC1 might
equal PALT. Since PALT ⊆ TC0

4 by the obvious simulation of AND gates by MAJ
gates and the known simulation of Parity by two levels of MAJ [CSV84], this would
imply NC1 = TC0

4. However, we do not know whether PALT ⊆ TC0
3. The best

depth simulation we know was furnished by Alexis Maciel and refined in personal
communications with Maciel and Mikael Goldmann.

Theorem 15. For any m > 0, Modm ◦AND ◦ LT has quasipolynomial-sized circuits
consisting of a Midbit gate connected to one layer of MAJ gates at the inputs. In

26



particular, PALT ⊆ qTC0
3, where the “q” indicates quasipolynomial size.

Proof. As shown in [CSV84], by using iterated addition to simulate the weights in an
LT gate, LT ⊆ AC0 ◦MAJ. Thus

Modm ◦ AND ◦ LT ⊆ Modm ◦ AC0 ◦MAJ.

Now by Theorem 12, Modm ◦ AC0 ⊆ q(Midbit ◦ ANDsmall), where all AND gates
in the corresponding level are small , i.e., have polylog fan-in. Now each MAJ gate
involved has fan-in at most r = nO(1). We want to simulate each small-AND of MAJ
by a single SYM gate of quasipolynomial fan-in. Theorem 3.6 of [Mac95], which is a
slight extension of the relevant special case of results in [Bei94b] and [HHK91], does
this by brute-force coding of all (r + 1)polylog(n) possible vectors of sums of the input
bits to the polylog(n)-many MAJ gates, with a different integer for each vector. The
coding produces a function of these integers, which becomes a symmetric function of
npolylog(n)-many input lines. The codings used in [Bei94b, Mac95] do not produce a
threshold function of these integers, so they do not yield a single MAJ gate. However,
because all of the MAJ and small-AND gates above can be normalized to have the
same fan-in via “dummy inputs,” the number k of values on which each new SYM
gate outputs true can be the same for all SYM gates in the circuit. Thus

Modm ◦ AND ◦ LT ⊆ q(Midbit ◦ SYM).

By a lemma of Hájnal et al. [HMP+87], every symmetric 0-1 valued function h in m
“own” variables can be written as

h(z1, . . . , zm) = g(M1(z1, . . . , zm), . . . ,M2k(z1, . . . , zm)),

where (1) i1 < i2 < · · · < ik are the k values of z1 + · · · + zm on which h outputs
1, (2) for each j, 1 ≤ j ≤ k, M2j(z1, . . . , zm) = 1 ⇐⇒ z1 + · · · + zm ≥ ij and
M2j−1(z1, . . . , zm) = 1 ⇐⇒ z1 + · · · + zm ≤ ij, and (3) g is the linear 2k-variable
integer polynomial g(r1, . . . , r2k) = r1 + · · · + r2k − k. Each of the Mj functions is
computable by a single MAJ gate using extra “dummy” inputs (and using the fact
that negated inputs are available), so we can abbreviate this as h = g ◦MAJ. So the
whole circuit is now a quasipolynomial-size Midbit ◦ g ◦MAJ.

Now finally we claim that since g is linear , the Midbit ◦ g portion of the circuit
can be replaced by a single Midbit gate. This is because the original single Midbit
gate M outputs the middle bit of the binary sum of its inputs, and each input line
g(r1, . . . , r2k) is itself a sum, minus k. Hence we can gather all the inputs to all g’s
into a “positive section” of inputs to a new gate M ′, and all of the “−k”s into a
“negative section,” so that the new M ′ outputs the middle bit of the gap between
the number of inputs in its positive section that are on and the number of inputs in
its negative section, all of which are on. Here we are helped for ease of verification
by the fact that we have made k the same for each of the quasipolynomially-many

27

inputs g1, . . . , gq to the original M , so that the new M ′ outputs the middle bit of(
q∑
i=1

2k∑
j=1

rj,i

)
− qk.

Analogous to the way that the class MidbitP is robust under changing the definition
to the middle bit of a GapP function, this M ′ can be transformed into a Midbit gate
(with all its input lines treated “positively”). This leaves us with a quasipolynomial-
size Midbit ◦MAJ circuit. Finally, applying the same lemma from [HMP+87] to the
symmetric gate M ′ produces a quasipolynomial-size circuit of the form g′◦MAJ◦MAJ,
which is clearly in qTC0

3.

PALT seems to be worthy of further research. Some open questions: Is it con-
tained in polynomial-size TC0 depth-3? Does it contain (uniform) AC0? We note
that given collections P1 defining L1 and P2 defining L2, one can construct a col-
lection P3 defining L1 ∩ L2 by taking all pairwise intersections of polytopes in P1

and P2. However, the size blowup in the collections by this method is too great to
answer these questions. The real technical matter of interest seems to be what kind
of projections can be done from Rn to Rm with m < n.

A simpler class PLT can be defined in terms of two-colorings obtained from
collections of hyperplanes alone. Similar to Proposition 14.2, these are equivalent
to polynomial-size Parity ◦ LT circuits, which are a proper subclass of TC0 depth-3.
The class of languages defined by a single hyperplane in Rn (for each n) is called
LT1 by Agrawal and Arvind [AA95], who show that if NP polynomial-time bounded
truth-table reduces to LT1, then NP = P. Clearly PALT polynomial-time truth-table
reduces to LT1, but this reduction is neither bounded nor conjunctive nor disjunctive,
so even the stronger results in [AA95] seem not to apply, and we do not know how
PALT relates to P and NP. A truth-table reduction to LT1 is essentially the same as a
polynomial-size linear decision tree, as studied by Björner, Lovász, and Yao [BLY92].
The exponential size lower bounds in [BLY92] and [Yao94] are for decision problems
about arbitrary points in Rn, however, and we do not know whether they carry over
to problems restricted to points on vertices of the unit cube. Still, there seems to be
much promise that geometrical methods of the kind used in [AA95, BLY92, Yao94]
can be brought to bear on Boolean complexity via this route.

Acknowledgments Alexis Maciel furnished the initial version of Theorem 15, dur-
ing the 1995 Montreal-McGill Workshop on Computational Complexity in Barbados,
March 1995. I also thank Maciel and Mikael Goldmann for subsequent discussion of
this theorem and PALT in general. Richard Beigel provided me an updated draft of
his survey [Bei93]. David Mix Barrington gave me helpful discussions and clarifica-
tions of much of the material, and the anonymous referee did the same. Barrington
and Andrew Odlyzko (the latter for Mattijas Coster) sent interesting personal com-
munications on the open problems in Section 6. Finally, I thank Eric Allender for
bringing some useful results and matters to my attention.

28



References

[AA95] M. Agrawal and V. Arvind. Reductions of self-reducible sets to depth-
1 weighted threshold circuit classes, and sparse sets. In Proc. 10th An-
nual IEEE Conference on Structure in Complexity Theory, pages 264–276,
1995.

[ABFR91] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of
voting polynomials. In Proc. 33rd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 402–409, 1991.

[ABFR94] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of
voting polynomials. Combinatorica, 14:1–14, 1994.

[AF90] M. Ajtai and R. Fagin. Reachability is harder for directed than for undi-
rected finite graphs. J. Symb. Logic, 55:113–150, 1990.

[AH90] E. Allender and U. Hertrampf. On the power of uniform families of
constant-depth circuits. In Proc. 15th International Symposium on Math-
ematical Foundations of Computer Science, volume 452 of Lect. Notes in
Comp. Sci., pages 158–164. Springer Verlag, 1990.

[AJ93] E. Allender and J. Jiao. Depth reduction for noncommutative arithmetic
circuits (extended abstract). In Proc. 25th Annual ACM Symposium on
the Theory of Computing, pages 515–522, 1993.

[All89] E. Allender. A note on the power of threshold circuits. In Proc. 30th
Annual IEEE Symposium on Foundations of Computer Science, pages
580–584, 1989.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifica-
tion and hardness of approximation problems. In Proc. 33rd Annual IEEE
Symposium on Foundations of Computer Science, pages 14–23, 1992.

[Bar92] D. Mix Barrington. Some problems involving Razborov-Smolensky poly-
nomials. In M. Paterson, editor, Boolean Function Complexity, volume
169 of LMS Lecture Note Series, pages 109–128. London Math. Soc., 1992.
Proceedings of an LMS Symposium in Durham, July 1990.

[BBR92] D. Mix Barrington, R. Beigel, and S. Rudich. Representing Boolean func-
tions as polynomials modulo composite numbers. In Proc. 24th Annual
ACM Symposium on the Theory of Computing, pages 455–461, 1992.

[BBR94] D. Mix Barrington, R. Beigel, and S. Rudich. Representing Boolean func-
tions as polynomials modulo composite numbers. Computational Com-
plexity, 4:367–382, 1994.

29

[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proc. 8th
Annual IEEE Conference on Structure in Complexity Theory, pages 82–
95, 1993. Revised version, 1995.

[Bei94a] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational
Complexity, 4:339–349, 1994.

[Bei94b] R. Beigel. When do extra majority gates help? polylog(n) majority gates
are equivalent to one. Computational Complexity, 4:314–324, 1994.

[BIS90] D. Mix Barrington, N. Immerman, and H. Straubing. On uniformity
within NC1. J. Comp. Sys. Sci., 41:274–306, 1990.

[BLY92] A. Björner, L. Lovász, and A. Yao. Linear decision trees: volume estimates
and topological bounds. In Proc. 24th Annual ACM Symposium on the
Theory of Computing, pages 170–177, 1992.

[Bre74] R. Brent. The parallel evaluation of general arithmetic expressions. J.
Assn. Comp. Mach., 21:201–206, 1974.

[BRS91a] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back. In
Proc. 6th Annual IEEE Conference on Structure in Complexity Theory,
pages 286–291, 1991.

[BRS91b] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
In Proc. 23rd Annual ACM Symposium on the Theory of Computing, pages
1–9, 1991.

[BRS95] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
J. Comp. Sys. Sci., 50:191–202, 1995.

[BS94] D. Mix Barrington and H. Straubing. Complex polynomials and circuit
lower bounds for modular counting. Computational Complexity, 4:325–
338, 1994.

[BST90] D. Mix Barrington, H. Straubing, and D. Thérien. Non-uniform automata
over groups. Inform. and Comp., 89:109–132, 1990.

[BT88] D. Mix Barrington and D. Thérien. Finite monoids and the fine structure
of NC1. J. Assn. Comp. Mach., 35:941–952, 1988.

[BT91] R. Beigel and J. Tarui. On ACC. In Proc. 32nd Annual IEEE Symposium
on Foundations of Computer Science, pages 783–792, 1991.

[BT94] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366,
1994.

30



[CSV84] A. Chandra, L. Stockmeyer, and U. Vishkin. Constant-depth reducibility.
SIAM J. Comput., 13:423–439, 1984.

[FFK91] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. In
Proc. 6th Annual IEEE Conference on Structure in Complexity Theory,
pages 30–42, 1991.

[FFL93] S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure property.
In Proc. 10th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, volume 665 of Lect. Notes in Comp. Sci., pages 484–493. Springer
Verlag, 1993.

[FR91] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. In
Proc. 6th Annual IEEE Conference on Structure in Complexity Theory,
pages 13–15, 1991.

[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Sys. Thy., 17:13–27, 1984.

[FSV93] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs. monadic
co-NP. In Proc. 8th Annual IEEE Conference on Structure in Complexity
Theory, pages 19–30, 1993.

[GHR92] M. Goldmann, J. H̊astad, and A. Razborov. Majority gates vs. general
weighted threshold gates. Computational Complexity, 2:277–300, 1992.

[GJ79] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[GKR+95] F. Green, J. Köbler, K. Regan, T. Schwentick, and J. Torán. The power
of the middle bit of a #P function. J. Comp. Sys. Sci., 50:456–467, 1995.

[GKT92] F. Green, J. Köbler, and J. Torán. The power of the middle bit. In Proc.
7th Annual IEEE Conference on Structure in Complexity Theory, pages
111–117, 1992.

[Gre95] F. Green. Lower bounds for depth-three circuits with equals and mod-
gates. In Proc. 12th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 900 of Lect. Notes in Comp. Sci. Springer Verlag,
1995.

[Gup93] S. Gupta. On isolating an odd number of elements and its applications
to complexity theory. Technical Report OSU-CISRC-6/93-TR24, Dept.
of Comp. Sci., Ohio State University, 1993.

[HG91] J. H̊astad and M. Goldmann. On the power of small-depth threshold
circuits. Computational Complexity, 1:113–129, 1991.

31

[HHK91] T. Hofmeister, W. Hohberg, and S. Köhling. Some notes on threshold cir-
cuits and multiplication in depth 4. In Proc. 8th International Conference
on Fundamentals of Computation Theory, pages 230–239, 1991.

[HMP+87] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold
circuits of bounded depth. In Proc. 28th Annual IEEE Symposium on
Foundations of Computer Science, pages 99–110, 1987.

[Hof96] T. Hofmeister. A note on the simulation of exponential threshold weights.
In Proc. 2nd International Computing and Combinatorics Conference
(COCOON’96), volume 1090 of Lect. Notes in Comp. Sci., pages 136–
141. Springer Verlag, 1996.

[Jac51] N. Jacobson. Lectures in Abstract Algebra, Vols. 1–3. Van Nostrand, 1951.

[Mac95] A. Maciel. Threshold Circuits of Small Majority-Depth. PhD thesis,
McGill University, School of Computer Science, 1995.

[MP68] M. Minsky and S. Papert. Perceptrons. MIT Press, 1968. Revised and
expanded in 1988.

[MP92] D. Muller and F. Preparata. Parallel restructuring and evaluation of ex-
pressions. J. Comp. Sys. Sci., 44:43–62, 1992.

[MPT91] P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata-theoretic
viewpoint. Computational Complexity, 1:330–359, 1991.

[MS77] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes.
North-Holland, Amsterdam, 1977.

[MT93] A. Maciel and D. Thérien. Threshold circuits for iterated mutliplication:
using AC0 for free. In Proc. 10th Annual Symposium on Theoretical As-
pects of Computer Science, volume 665 of Lect. Notes in Comp. Sci., pages
545–554. Springer Verlag, 1993.

[MV94] M. Mahajan and V. Vinay. Non-commutative computation, depth reduc-
tion, and skew circuits. In Proc. 14th Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 880 of
Lect. Notes in Comp. Sci. Springer Verlag, 1994.

[New64] D. Newman. Rational approximation to |x|. Michigan Math. Journal,
11:11–14, 1964.

[Nis91] N. Nisan. Lower bounds for non-commutative computation: extended
abstract. In Proc. 23rd Annual ACM Symposium on the Theory of Com-
puting, pages 410–418, 1991.

32



[NN93] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions
and applications. SIAM J. Comput., 22:838–856, 1993.

[NRS95] A. Naik, K. Regan, and D. Sivakumar. On quasilinear time complexity
theory. Theor. Comp. Sci., 148:325–349, 1995.

[NS92] N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. In Proc. 24th Annual ACM Symposium on the Theory of
Computing, pages 462–467, 1992.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. Computational Complexity, 4:301–313, 1994.

[Ogi95] M. Ogihara. The PL hierarchy collapses. Technical Report UR CS TR 587,
Department of Computer Science, University of Rochester, June 1995.

[Pat92] R. Paturi. On the degree of polynomials that approximate symmetric
Boolean functions. In Proc. 24th Annual ACM Symposium on the Theory
of Computing, pages 468–474, 1992.

[Raz87] A. Razborov. Lower bounds for the size of circuits of bounded depth with
basis {∧,⊕}. Math. Notes Acad. Sci. USSR, 41:333–338, 1987.

[RS92] K. Regan and T. Schwentick. On the power of one bit of a #p function.
In Proc. 4th Annual Italian Conference on Theoretical Computer Science,
pages 317–329. World Scientific, Singapore, 1992.

[RW93] A. Razborov and A. Wigderson. nΩ(logn) lower bounds on the size of
depth-3 threshold circuits with AND gates at the bottom. Inf. Proc.
Lett., 45:303–307, 1993.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J.
Assn. Comp. Mach., 27:701–717, 1980.

[Sch94] T. Schwentick. Graph connectivity and monadic NP. In Proc. 35th Annual
IEEE Symposium on Foundations of Computer Science, pages 614–622,
1994.

[She93] B.-Z. Shen. A Justesen construction of binary concatenated codes than
asymptotically meet the Zyablov bound for low rate. IEEE Trans. Info.
Thy., 39(1):239–242, January 1993.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. In Proc. 19th Annual ACM Symposium on
the Theory of Computing, pages 77–82, 1987.

33

[Smo93] R. Smolensky. On representations by low-degree polynomials. In Proc.
34th Annual IEEE Symposium on Foundations of Computer Science,
pages 130–138, 1993.

[Spi71] M. Spira. On time-hardware complexity tradeoffs for Boolean functions. In
Proceedings of the Fourth International Symposium on Systems Sciences,
pages 525–527, 1971.

[Spi95] D. Spielman. Linear-time encodable and decodable error-correcting codes.
In Proc. 27th Annual ACM Symposium on the Theory of Computing, pages
388–397, 1995.

[Sud92] M. Sudan. Efficient checking of polynomials and proofs and the hardness
of approximation problems. PhD thesis, University of California, Berkeley,
1992.

[Sze90] M. Szegedy. Functions with bounded symmetric communication complex-
ity and circuits with mod m gates. In Proc. 22nd Annual ACM Symposium
on the Theory of Computing, pages 278–286, 1990.

[Sze93] M. Szegedy. Functions with bounded symmetric communication complex-
ity, programs over commutative monoids, and ACC. J. Comp. Sys. Sci.,
47:405–423, 1993.

[Tar91] J. Tarui. Randomized polynomials, threshold circuits, and the polynomial
hierarchy. In Proc. 8th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 480 of Lect. Notes in Comp. Sci., pages 238–250.
Springer Verlag, 1991.

[Tar93] J. Tarui. Probabilistic polynomials, AC0 functions, and the polynomial-
time hierarchy. Theor. Comp. Sci., 113:167–183, 1993.

[TB95] G. Tardos and D. Mix Barrington. A lower bound on the mod 6 degree
of the OR function. In Proceedings of the Third Israel Symposium on the
Theory of Computing and Systems (ISTCS’95), pages 52–56, 1995.

[Tod89] S. Toda. On the computational power of PP and⊕P. In Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science, pages 514–519,
1989.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Com-
put., 20:865–877, 1991.

[Tsa93] S.-C. Tsai. Lower bounds on representing Boolean functions as poly-
nomials in Zm. In Proc. 8th Annual IEEE Conference on Structure in
Complexity Theory, pages 96–101, 1993.

34



[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions.
Theor. Comp. Sci., 47:85–93, 1986.

[Wig94] A. Wigderson. NL/poly ⊆ ⊕L/poly . In Proc. 9th Annual IEEE Conference
on Structure in Complexity Theory, pages 59–62, 1994.

[Yao90] A. Yao. On ACC and threshold circuits. In Proc. 31st Annual IEEE
Symposium on Foundations of Computer Science, pages 619–627, 1990.

[Yao94] A. Yao. Decision tree complexity and Betti numbers. In Proc. 26th Annual
ACM Symposium on the Theory of Computing, pages 615–624, 1994.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. EU-
ROSAM ’79, volume 72 of Lect. Notes in Comp. Sci., pages 216–226.
Springer Verlag, 1979.

35


