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Abstract. Fifty years ago, Artificial Intelligence got its name and a world-class chess engine became a goal. Since then, computer power, algorithms and chessic insight have combined to create chess engines that can play against the best: they are the advisors for commentators and analysers who use them casually for reference. This paper is a comparative review of three ways of formally benchmarking human performance against that of chess engines. These methods are referred to here as Move Matching, Average Differencing and Context Analysis. The strengths and weaknesses of each approach are examined in the context of results and both specific and generic issues. The authors outline their manifesto for future benchmarking work with Context Analysis and the other two approaches.
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1   Introduction

The evolution of the chess engine, from Turing-implemented simulation [1] to the current world-class best [2] is arguably one of the most concrete achievements of Artificial Intelligence, a subject given birth at the Dartmouth workshop of 1956 [3]. 
   As chess-engines improve, they have become better guides to good play. The first quantified assessment of human game play [4, 5] was in the Endgame Zone of Chess (EZC)
 where a benchmark exists to a perfect standard. Now benchmarking has extended to pre-EZC Chess [7-13] expedited by three methods of comparison:

1. MM: note how often the Moves Match, given player P and engine(s) Ei
2. AD: note the Average Difference between the engine Ei’s evaluations of the human’s chosen move and the best move as Ei sees it, and
3. CA: Analyse engines’ perception of the full move-context of the decision.
All the methods assess players purely in terms of their own move-decisions and therefore provide ways of rating skill absolutely rather than relatively in the Elo system. Sections 2-4 respectively review MM, AD and CA – methods, results, (de)merits and issues. Section 5 is the authors’ manifesto for their future work in this area. Authors’ initials are used to refer to their individual contributions.
2   MM: Move Matching
This is the simplest of the three methods and therefore the method used most readily and in practice to assess tournament play at the time. By definition, MM is the fraction of moves played where the player agrees with the choice of an engine or engines.
First, note two advantages generic to all three methods. MM is analysing quality of play by isolating and evaluating the player’s individual decisions: the opponent’s play has no direct influence on the analysis. Secondly, average games of some 40 moves still provide 25 data-points, even after ignoring moves which may be from the opening book or were played when the game-result was clear. This is statistically five times better
 than using the one data-point of game result.  A specific MM advantage is that it can be used whether the engine heuristically evaluates the position or sees a ‘win in n moves’.
MM has been used by those investigating cheating [14-19]. Typically, the player’s moves are identified by some engine at some depth of search and, possibly fuelled by their preconceptions
, onlookers can casually turn their suspicions into ‘facts’. The web fans the flames by encouraging lazy, uncritical, cut-and-paste writing by the opinionated and/or publicity-seeking
. The lack of scientific method and rigour in the discussion and detection of computer-based cheating has rightly been criticised [18] and the first author’s computational investigation of both MM and AD are reported in Section 4 below.
MM has merit and potential if some issues are addressed: these are actually generic to all three methods. First, the parameters and logs of the computations must be carefully preserved.
 Secondly, comparison with a panel of engines is better than with one engine as all evaluations are heuristic, all engines are fallible, and a specific engine may even have been trained on the games of a past player. It is certain that Fischer was not helped by Rybka 3 but it may be that Rybka 3’s evaluation function has been trained on the games of Fischer. Engines also misreport search-depth, and invest differently in position analysis before the search is deemed to begin. Thirdly, the %-match seen must be compared objectively with the distribution of %-matches by players of a similar nominal strength. The Null Hypothesis that a player is not cheating can only be rejected at the 1% level
 if at least 99 other comparable scenarios have been surveyed. Lastly, the choice of opening book
 and game decided moves to ignore should be consistent and allow easy comparison with others’ results.
The key specific disadvantage of MM is that it is binary in its verdicts: matching on a forced move proves nothing. Apparent decision-errors of 0.01 and 1.00 score the same, and the 0.01 may be the engine’s error rather than the player’s.
3   AD: Average Differencing
The Average Difference method (AD) sharpens the MM method by noting the Average Difference between the engine’s evaluations of the moves chosen by it at depth d and by the evaluated player.

The obvious advantage is that, despite requiring no more computation time than MM, this method is fairer and more robust. Smaller errors are more likely and less significant. Also, a move which is narrowly ‘suboptimal’ may be so only because the fallible engine has made a heuristic mistake in ranking the best moves. 
Nevertheless, AD is a relatively blunt instrument. Intrinsically, forced moves provide no information about player capability and obvious moves provide little. The context is relevant, not only the alternative moves but the time on the clock, which regrettably is absent from game-records to date. 
A logistic subtlety is that the player may not play one of the top MultiPV moves evaluated by the engine
, and may even blunder to what is clearly seen by the machine as a loss in n.
,
 A solution is to use the evaluation of the worst of the MultiPV moves examined, or better, to either use the evaluation of the successor position at depth d-1 or force an evaluation of the move chosen.
An AD computation, restricted to the games of the successive World Championship matches or tournaments has been reported [8]. The computation and even more so the conclusions
 of Guid and Bratko were criticised by readers, e.g. [10, 22], and some issues were revealed even if not all the arguments were valid. 

AD clearly measure the difference between players and the benchmark chess-engine rather than errors. A chess-engine might have been trained on the games of some players, giving it a greater affinity to their style of play. A player with a quieter, more strategic and tactic-avoiding style of play is likely to score better in AD terms than a tactician who maximizes their chances of a win by steering the game into advantageously difficult territory. Finally, it is necessary to recall that evaluations are merely substitutes for perfect knowledge, and a measure of how clearly an engine sees a specific advantage: these evaluations do not necessarily converge to a value as search-depth increases. Crafty at depth 12 [8] was clearly inferior to many other engines and to the World Champions it purported to rank: its ability to rank meaningfully is therefore counterintuitive and needs to be justified.     
Guid and Bratko’s results show that their relative ranking of World Champions varied according to the depth of search used. There was therefore no reason to think that Crafty’s ranking at depth 12 was definitive even if the outliers seemed established.
 It may be that their results are near-correct but [9] and, more so, [30] only justify inferior benchmarks achieving some pairwise ranking at lower confidence levels.
4   Move Matching and Average Differencing: some results

The first author, KWR, has sought to put the casual move-matching observations of the public into the best possible context, and then see to what extent that context is informative. His approach [18-19], with some highlights in Table 1, has been to:

· employ and record an engine-panel at defined search-depths,

· examine scenarios where cheating (presumably) did not occur,
· examine scenarios where cheating was suspected of occurring, and
· follow up with a full Context Analysis, as described in the next section.

The panel of engines employed includes Hiarcs v10, Deep Junior 10.1 UCI, Rybka v3 and Toga II versions 1.2.1
 and 1.4b7. Strategic goals here are to analyse all scenarios with the same panel of engines, intercepting their evaluations at defined and fixed search depths and examining the sensitivity of statistical results to search-depth. However, Rybka 3 is relatively quick
, is currently the best chess-engine available
 and therefore the engine people have referred to recently. Therefore, the vast amount of games have so far only been analysed with Rybka. So that experiments might easily be repeated and reproduced, computations have been run in single-thread mode to defined search-depths and not for specific time-periods with settings which prevented machine learning and inheritance of information. Moves have been analysed in game-order so that the engine, like the player, has no foresight of the game line to come.
Both MM and AD data were logged. To avoid the possible domination of results by large numbers, positions were ignored once the rest of a game was deemed to be outside the [-3, 3] evaluation-band: this is not the same criterion as in [9].
Space does not allow the reproduction here of all the results [32] but the net has been cast wide to include in scope the following players and events:
· all World Championship matches as in [31] excluding FIDE knockout events,

· all 1990s Candidates’ Matches plus selected ones from 1965-1980,

· all Candidates’ Tournaments 1950-1985 plus the Leningrad 1973 Interzonal,

· Linares 1990-2008, Corus and Super-GM events since 1988,

· all available games by Greco, Philidor, Staunton and Morphy,
· the World Computer Chess Championships of 1995, 2005 and 2008,

· the Correspondence Chess Championships of 1965-9, 1994-9 and 2003-7, and

· performances by some players accused of but not convicted of cheating.

First impressions are not surprising:  Average Difference data seems to be more in line with competitive results than Move Matching data, but both give a misleading impression of the outcome of an event on occasions. Karpov’s victory in the 1979 Montreal ‘Tournament of the Stars’ is analysed in the next section.

Table 1. Move-matching by Regan in a variety of scenarios.
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Singh, D.P. 2006-04-03: 43rd Indian Nat. Ch.

DJ 10.1 UCI 18 66.76 49.64 58.19 458 341 799

DJ 10.1 UCI 21 67.78 51.82 59.80 465 356 821

HIARCS 10 15 60.20 53.86 57.03 413 370 783

RYBKA 3 13 62.24 51.67 56.96 427 355 782

TOGA II 1.2.1 15 67.49 50.36 58.92 463 346 809

TOGA II 1.4b7 18 63.56 53.57 58.56 436 368 804

Panel Various 64.67 51.82 58.24 2662 2136 4798

Ejsmont 2007-07-11: Tadeusz Gniot Memorial

DJ 10.1 UCI 18 72.12 49.04 60.58 75 51 126

DJ 10.1 UCI 21 73.08 45.19 59.13 76 47 123

HIARCS 10 15 71.15 56.73 63.94 74 59 133

RYBKA 2.3.2a 15 88.46 45.19 66.83 92 47 139

RYBKA 3 13 81.73 47.12 64.42 85 49 134

TOGA II 1.2.1 15 81.73 45.19 63.46 85 47 132

TOGA II 1.4b7 18 75.00 50.00 62.50 78 52 130

Panel Various 77.61 48.35 62.98 565 352 917

Super GMs 2005+: 167 top games since San Luis

TOGA II 1.2.1 15 56.00

Allwermann 1998-12-30: Boeblingen, 9 games

DJ 10.1 UCI 18 58.60 48.93 53.81 167 137 304

RYBKA 3 13 61.75 49.64 55.75 176 139 315

SHREDDER 9.1 15 63.51 47.50 55.58 181 133 314

TOGA II 1.2.1 15 60.70 46.07 53.45 173 129 302

Panel various 61.14 48.04 54.65 697 538 1235

Fischer 20g streak 1970

RYBKA 3 13 67.41 55.77 61.62 484 396 880

Keres in 'Ker-Botv' 1948-01-02: WCC

RYBKA 3 ?? 48.10 46.92 47.51 101 99 200

Keres in 'Ker-nonBotv' 1948-01-02: WCC

RYBKA 3 ?? 56.99 56.93 56.96 269 267 536

Azmaiparashvili 1995: 'Café Strumica 4x6 Tournament'

RYBKA 3 13 60.65 54.59 57.64 282 250 532

SHREDDER 9.1 15 62.80 54.15 58.50 292 248 540

Panel Various 61.72 54.37 58.07 574 498 1072


Summary tables are in preparation for:

· the top MM performances with players matched against Rybka 3,
· the top AD performances with players’ apparent errors evaluated by Rybka 3,
· the pre-1973 performances in the top 120 MM and/or AD results above

All this data provides a back-cloth for any suggestions that players might be receiving advice from chess-engines but there is statistical work to do. The estimated or a priori likelihood of a player playing a move depends on the player’s ELO and the actual move-choices available, a move-context which is ignored by MM and AD. Even the frequency with which say an ELO 2400 player chooses the engine’s first, second or third choice
 is only an aggregate figure which will ignore the specific position on the board. 

A recent event underlines the problem. Mamedyarov [33] lost quickly and accused his opponent of being informed by Rybka because his moves largely coincided with those of Rybka.  Closer analysis shows that the moves were relatively obvious and therefore the likelihood high that there would be such a coincidence. Coincidence does not imply causality.

5   CA: Context Analysis
The aim here is to analyse the decisions of player P in the context
 of the quantifiable choices available and their quantifications by a panel of agents. The authors are comparing two approaches here, one associating the players’ performances with fallible, stochastic agents with defined levels of skill, and the other, q.v. Section 5.2, focused on prediction of player’s moves as relevant to suspected cases of cheating. 

Let a set of moves m be available to positions p with values v as estimated by a panel of engines, and let the moves be indexed so that vi ( vi+1, i.e. m1 seems the most attractive move to the player to move. Further, let a Likelihood Function L(m, c) define the likelihood of a hypothetical Agent A ( A(c0), e.g. Rybka or Toga, choosing move mi in the context m. A Monte Carlo Bernoulli trials experiment defines a distribution function for Move Matching and Average Difference when comparing the choices of agent A(c0) and player P over a sequence of positions. 

If Reference Fallible Agent A(ci) is deemed by some process to be equivalent to player Pi, then players Pi and Pj may be positioned relative to each other by the parameter-sets ci and cj. If the Cartesian space defined by {c} is one dimensional, this trivially results in both a ranking and an absolute rating of the players P(. Even in an n-dimensional space, the players may lie on a locus which effectively ranks them.
The concept of a Reference Fallible Agent Space (RFAS) [4, 5] was a response to Jansen [23-27] who first discussed Opponent Fallibility but did not devise a space or even a spectrum of fallible opponents. The application domain was the Endgame Zone of Chess, chosen for its perfect information. It has since been applied to pre-EZC chess [7, 10-12] at the cost of more complex Likelihood Functions, statistical analysis and the consideration of levels of confidence.
Agent A(c) and Likelihood Function L(m, c) may be derived either by a study of actual apparent errors made by players at different Elo levels, or by the dumbing down of a chess-engine in a manner which may or may not be informed by the pattern of apparent errors made by players. The mathematical details are in [12].
The space of dumbed-down engines lead to an association by Bayesian Inference of players P with agents A. Figure 1 illustrates the Bayesian mapping PA: P ( PA(P) ( A, and Table/Figure 2 from [11] show that players
 of increasing Elo ratings map to increasing ac
. The method CA was then used [12] to characterise the career of Korchnoi, to position the locus and endpoint of certain games between players P1 and P2 in an ac1-ac2 space, and to compare people’s competence in different epochs.
 
The positioning of games in two dimensions rather than one seems a good idea and can be done in real time. A proposal here is therefore that a real-time tournament dashboard would help tournament directors and commentators to identify quickly games featuring excellent and/or untoward play, as well as blunders.
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Fig. 1. Agent association PA: P ( A.

Table 2. Mapping Elo e Virtual Players into the Apparent Competence scale.
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1 Elo_2100 2090 2110 1994-1998 217 12,751 1.04 1.10 1.0660 .00997 1.126

2 Elo_2200 2190 2210 1971-1998 569 29,611 1.11 1.15 1.1285 .00678 1.167

3 Elo_2300 2290 2310 1971-2005 568 30,070 1.14 1.18 1.1605 .00694 1.203

4 Elo_2400 2390 2410 1971-2006 603 31,077 1.21 1.25 1.2277 .00711 1.253

5 Elo_2500 2490 2510 1995-2006 636 30,168 1.25 1.29 1.2722 .00747 1.297

6 Elo_2600 2590 2610 1995-2006 615 30,084 1.27 1.33 1.2971 .00770 1.336

7 Elo_2700 2690 2710 1991-2006 225 13,796 1.29 1.35 1.3233 .01142 1.341
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Fig. 2. Virtual players at various Elo ratings, charted in apparent competence terms.
The Context Analysis method of benchmarking is, in contrast to MM and AD, a response to the data available involving parameterised modelling. It does not change, e.g., the assessment of the player’s apparent competence mc when forced moves are played. It does not overly reduce ac when two moves are nearly equi-optimal.

The absolute scale(s) provided by the CA method enable world champions to be compared in apparent competence terms, though we have set our sights lower and focused instead on developing CA methods and applying them to questions where major amounts of data are available. It is clear that Elo 2400 players have not always played with the same apparent competence, and that the standard appears to have been markedly lower in the last five years with some resurgence recently. The apparent competence ac of players may be judged, and e.g., Null Hypotheses about cheating accepted or rejected, but only in a sufficient context of similar results for like players.
5.1   Improving the Bayesian modelling of player P
Although there is a mapping PA:P ( A, the stochastic agent A does not make the same moves as P, nor does it necessarily have the same ‘error pattern’ as A. It does not have as high an Elo rating as P because P’s distance from the root engine E is increased by the fallibility of E.
,

Because method CA is a modelling approach, a future direction is to examine how to improve the model. Note that, so far, no information about the pattern of apparent errors of player P has been input in creating the agent-space in which P is modelled. The Bayesian approach is constrained to the original hypotheses {H(} and the choice of parameter c1 (= 0.1) and c3 (likely to be 0.5 originally) are arbitrary.

If the error-patterns of P and PA(P)(A are EPP and EPA, model fidelity may be measured in terms of  ║EPP - EPA║
 and the ‘set’ parameters, e.g. c2 and c3, may be iterated towards greater fidelity, q.v. Fig. 3. At this point, we expect domain expertise to play a part, taking a view as to where, when and why players actually make apparent errors. This will perhaps change the agent space in a non-parametric way, e.g., hypothesising that the moves have been made by a stochastic combination of two engines {piEi | i = 1,2; p1 + p2 = 1} and therefore increasing the number of dimensions of the agent space from nd to nd + 2. However, the experimental approach is to progress from simpler models via understanding to more complex models.
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Fig. 3. Optimising Player Modelling.
5.2   Fitting Players’ Apparent Errors directly to a model

KWR's model represents the probability pi of the engine's ith-best move being selected by the equation pi = p^{gc(di/σ)}, where p = Prob[engine's best move] and di is the evaluation difference between the engines’ best and ith-best moves.

The fitted curve is gc(di/σ) = exp((di/σ)c).  Here σ and c are the parameters being regressed.  σ is a scaling parameter: lower σ means the player can distinguish finer differences in evaluation and hence has more skill.  The exponent c is felt most in cases where di/σ is large, i.e. where the ith-best move is a relative blunder.  Higher c means lower probability of executing a blunder, hence more skill.

This approach requires computing and recording evaluations of all or most moves in a given position, at least those that fall within an inferiority cap.  Rybka 3 has such a cap parameter, called MultiPV_cp, which was set to 400 centipawns, for data in 20-PV mode.

Once the curve is fitted and the fitting error is ascertained after regression, the model generates predictions for MM and AD in any (other) games submitted to it, for players of skill represented by the fitted values of σ and c.  Currently the fitting error of MM, on the main reference data of 9,020 moves from 134 games in world championship events since 2005, is known to be within 0.5%.  The predictions represent game turns t as independent tosses of a coin with bias pi,t for the ith move of interest in turn t), and hence come with Bernoulli trial standard-deviations.  The expected number of matches to Rybka 3 is thus the sum, over all game turns t, of the inferred probability pt of an unaided player of the fitted skill class making the best-listed move, and the variance is V ( Σt pt(1 – pt).  

A prime illustration of this model is Karpov’s performance at the Montreal 1979 Tournament of Stars, which he co-won with Tal with 12 points from 18 games despite having by far the lowest MM (.499) in the field of 10.  The model predicts an MM of 0.511 for Karpov, and 0.527 for his opponents.  Both numbers are significantly different from the global average of 0.575 in the reference data at 95% confidence, even when fitting error is taken into account. Karpov's actual 49.9% was well within one standard deviation of the mean of 0.575.
Karpov’s opponents mean MM was 0.472 but were not uniformly of world-championship standard.  From this we conclude that:

· Karpov's games in the event were significantly less clear-cut than average,
both for himself and for his opponents,
· this difference is captured by CA but missed entirely by MM, and
· his play overall was within world-championship standards.
This example illustrates the need for some kind of contextual analysis in evaluating performances in individual events where there is less data, precisely the scenario which pertains when there is a case of suspected cheating.
6   Statistical Issues

There are a number of statistical issues to be addressed in connection with methods MM, AD and CA:

1) the effect of the fallibility of the chess-engines used to benchmark,

2) the divergent nature of some evaluations as the engine closes on a win, and

3) the management of suitable Null Hypotheses about benchmarked players.
There are two ways to examine the effect of the fallibility of the chess engines:

1) compare the pattern of Differences as seen by an engine at depths d1 and d2
coupled with the Differences E(d1)- E(d2) as seen by E(d1) and E(d2), and
2) add normally-distributed ‘noise’ to the evaluations of engine E.
A conjecture here is that, given a ‘better’ engine BE independent of E and effectively benchmarking both E and P:
Var(dP,E) ( Var(dP,BE) + Var(dE,BE) – 2.Cov(dP,BE, dE,BE), and

AD(dP,E) is a function of AD(dP,BE) and AD(dE,BE).   

If the errors of P and E were independent, the covariance term would be zero. The probability that P1 and P2 are correctly ranked given a finite sample of data will be determined by the intrinsic similarity of P1 and P2 and by the accuracy of engine E as represented by Var(dE,BE). 

Guid and Bratko [8] chose not to assess move-decisions in positions already valued outside [-2, 2]. This is perhaps vindicated by a result [11] that players who eventually draw show marginally greater apparent competence than those who win. It is logical  in a clearly winning situation to derisk the win rather than play optimally ‘on the edge’ and this is often observed. There are no extra points for winning quickly. 
There is a risk that the statistical results are dominated by a few large numbers and therefore not as robust as they might be. In comparing players, a technique might be to discount their worst agreed errors one by one and see if their ranking remains the same. Alternatively, a limit could be put on the penalty for an apparently bad move.    
What is the Statistical Significance of the analyses being produced by the MM, AD and CA methods? If one is to conclude that a player is not playing typically for an Elo e player, one has to compare the sample of play available with a large number of similar samples. And then one has to decide whether the performance is genuine or not: no-one ever suggested that Fischer was cheating. Every record-breaker is causing the hypothesis of typical performance to be rejected, and is probably doing so quite legitimately. It would appear that at best, the statistical methods here can highlight and provide advice during events but not decisive evidence in court.
7   Summary and Way Forward
We have examined the relative merits of the three methods and are now using MM and AD to focus our application of two CA methods. We have addressed key questions frequently asked in the chess community:

· have specific Elo ratings always represented the same playing standard?

· Is it possible to have an absolute rating scale rather than an Elo?

· What is the profile of a player’s competence over time?

· Can we identify in real time which players are playing best?

· Can we identify performances which are extreme in any sense?

· Can we identify games which are the best in an absolute sense?

Our expectation is that CA methods are sharper than MM and AD methods in that they can be focused with greater confidence on smaller scale scenarios – player’s performances, events, games, even moves – where less data is available.
Acknowledgments. Our thanks to those who have helped us along the way, either with computational infrastructure or in a chess-specific way:  Ian Bland, Stefan Meyer-Kahlen, and utility and game providers across the Web.
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� Defined to be that part of chess where value/depth Endgame Tables (EGTs) exist [6].


� Assuming that a statistical result n times as accurate requires n2 times the data.


� This is the ‘Canals on Mars’ syndrome.


� Or by the meta-cheaters who seek to disturb the equilibrium of their opponents.


� Computational repeatability requires engine, type, version, ‘set up’ and search-depth.


� 1%, or whatever level is a necessary if not sufficient level to assuage reasonable doubt?


� [8] ignores the first 12 moves and positions outside [-2, 2]; [13] ignores the first 8 moves. 


� Though some engines allow one to nominate a move to be evaluated.


� n = 0: Bronstein accidentally touching his King in his WCC match v Botvinnik [20]. 


� n = 0: Kramnik allowed a mate in one by Fritz [21].


� ‘Who is best?’ requires a definition of ‘best play’: the players are playing to beat their opponents: they are not demonstrating ‘perfect play’ to Kaissa, the goddess of Chess.


� Capablanca appears to make the smallest average error, and Steinitz the greatest.


� As used by GH/GdF to Context Analyse a large set of move-decisions by Bayesian methods.


� KWR’s principle computer is a 4-core 64-bit Intel machine with 8GB of RAM.


� And therefore presumably maximises the confidence that can be associated with results.


� Data available as a byproduct of the GH/GdF computation on Context Analysis.


� The following non-logic appears on a colleagues’ door as a dreadful warning to students:


All Penguins are black and white; some old TV shows are black and white; therefore some penguins are old TV shows. Logic! Another thing that penguins aren’t very good at.


� MM/AD have included study of engines’ propensity to change move-choice during search.


� The virtual Elo e player was defined [11]: a composite of players in Elo [e - 10, e + 10].


� Note the high numbers of positions deployed to show this result with relative certainty.


� For example, before and after they were suspected of cheating [14-18]


� Errors by the fallible engine E are seen, when P chooses correctly, as P’s errors.


� Haworth [10] has proposed a ‘DGPS’ way to remove some of this error by comparing the Elo ratings of engine E( and engine PA(E() in a suitably long match between them. 


� A metric defining the difference between two distributions is needed here.


� There are richer rating models than Elo such as Trueskill( [28] and Whole History Rating [29] but these are also relative rating methods dependant on the player-pool.





