
Fitting Methods for Inferring Selection Probabilities from
Hindsight Utility Values

Kenneth W. Regan
Department of CSE

University at Buffalo
Amherst, NY 14260 USA

regan@buffalo.edu

Tamal Biswas
Department of CSE

University at Buffalo
Amherst, NY 14260 USA

tamaltan@buffalo.edu

March 13, 2013

Abstract

We consider the problem, given a vector of possible actions ai whose utilities ui = u(ai)
may not be fully apparent, and an agent Z, infer probabilities pi for Z to choose ai. For
instance, can we gauge the probability of a trader making the best investment choice, or of a
student giving the best answer on a multiple-choice exam, given extensive training data from
subjects with comparable skill sets according to parameters that determine Z? We compare
various applicable fitting methods, in the model of [Regan and Haworth, AAAI 2011] where
the choices are possible chess moves, the utilities are values given by chess programs stronger
than the human players, and the parameters for Z correspond to the Elo rating scale of skill at
chess. In this application there are metrics for quality of fit that are orthogonal to the measures
operated on by the various fitting methods, including the “percentile fitting” method introduced
in the above reference. In this application, percentile fitting markedly out-performs maximum-
likelihood estimation under these metrics, as does simple solving of equations involving the
parameters.

Keywords. Computer games, chess, decision making, probabilistic inference, machine
learning, statistics, fitting methods, maximum likelihood.

1 Introduction
Given `-many possible actions with utilities (u1, . . . , u`), can we infer probabilities (p1, . . . , p`)
for an agent Z to choose the respective actions? We assume the listed actions are mutually ex-
clusive and exhaust all options, so

∑
i pi = 1. In a simple rational-choice situation with perfect

information about utility, and ignoring for now the possibility of two or more actions with equal
best value, we would project pi = 1 for the action ai with highest ui, and pj = 0 for all other
actions. In real-world situations of bounded rationality, however, we may expect to see substantial
probability on a variety of reasonable options, and also on poor but deceptively attractive options.
Can we model this so that over sufficiently many turns t at which an action must be chosen, and

1

given parameters z quantifying the ability of Z to perceive the stipulated values ui, we can make
accurate projections of aggregate statistics?

We interpret the utility values ui as given by design, by hindsight, or by some recognized
authority, but not directly furnished to Z. We call the general problem, “converting utilities into
probabilities.” Here are three instances:

(1) Multiple-choice tests. Suppose we wish to infer the probability not only of the best answer
being selected, but also the probabilities of other answers being chosen, in terms of param-
eters z representing the education and preparedness level of test takers. It is interesting to
ask how accurately one can make this projection given only single numerical values ui rep-
resenting the value or attractiveness of each answer. This may be especially helpful when
the ui themselves represent partial-credit values for the `− 1 inferior answers.

(2) Portfolio management and trading. Here the ai are investment choices presented at a given
time, and the ui represent the returns that would have accrued at a specific later time when
the actual transaction is evaluated, had ai been chosen. The ui may also include measures
of the overall health of the portfolio at that point, and so depend on choices and outcomes in
other transactions. For now we emphasize that these other measures too are computed with
hindsight, even those that concern hedging against risk. The problem is to predict how well
a trader Z will “sniff out” what prove to be the best investments.

(3) Games of strategy. In chess and other games, the actions ai are legal moves at a given
turn t, and the ui are values given by some strong computer program for these moves. The
parameters comprising z correspond to aspects of playing skill. In chess, skill is measured
in terms of the Elo rating system [Elo78].

The experimental results reported in this paper are for application (3). We argue that they have
sobering implications for procedures that may be employed in applications (1) and (2). The main
issue is the poor performance of maximum-likelihood estimation (MLE), where the above setting
already ensures that MLE is the large-data limit of Bayesian inference. This is exacerbated when
there are differences in entropy between the inferred distributions (pi)t at different turns t.

In (1) the utility values are given by design, in (2) by hindsight, and in (3) by authority—the
chess programs have published ratings [B+13] far in excess of the best human players. In all
cases, the agent Z does not know the values ui, and the problem is to determine how well-aligned
the agent’s fallible ranking of the options is with the authoritative one. Here are some aggregate
statistics by which to measure such alignment:

(a) Best-Choice frequency (BC). On a multiple-choice test, this is the score without partial credit,
expressed as a percentage. In chess it is the frequency of move agreements with the com-
puter; it is called MM in [RH11].

(b) Aggregate Error (AE). On an exam with partial credit, this is the total number of points lost.
In trading it is the total monetary shortfall from optimal investment choices. In chess it is
the sum, over all moves (where the computer judges the player chose an inferior move), of
the difference in value between the optimal move and the chosen one. Chess programs stan-
dardly give these values in units of centipawns—figuratively hundredths of a pawn, where-
upon AE represents the total number of pawns “lost” by the players in the set of positions t.
Where there is no confusion we also use AE for the per-move average error.

2

(c) Ordinal Ranks (OR). Besides the BC frequency f1, these give the frequency f2 of choosing
the second-best option, f3 for third-best, f4 for fourth-best, and so on. Of course there may be
no parity between second-best choices: some may be “close” while others are large errors.
Projections of OR may take the difference in value into account, so that it is permissible
to mix these kinds of data points. Likewise permissible is to assume all turns have the
same number ` of options, padding those having fewer with “dummy options” having large
negative values, which will translate to essentially-zero probability in projections.

Note that OR entails indexing choices by their values: u1 ≥ u2 ≥ · · · ≥ u`. Also note that the
projected probabilities pt,i over t ∈ T alone suffice to generate projected values for these statistics,
namely

f̂k =
1

T

∑
t

pt,k; âe =
1

T

∑
t

pt,k(u1 − uk).

We consider models in which the projected probabilities pt,i are given by a function P of the
utility values ut,i and the parameters comprising ~z; we assume the latter are independent of t. Three
properties, at least the first two desirable, are:

(i) Independence. For all t, the generated values (pt,1, . . . , pt,`) depend only on (ut,1, . . . , ut,`)
and ~z.

(ii) Extensionality of utility. For all t and Z, ut,i = ut,j =⇒ pt,i = pt,j .

(iii) Monotonicity. For all t and i, if ut,i is replaced by a greater value u′, then for all Z, p′t,i ≥ pt,i.

Note that (iii) is different from saying that always pt,1 ≥ pt,2 ≥ · · · ≥ pt,`, though that fol-
lows from (ii) and (iii) as-stated. The reason for doubting (iii) is the application to Z of all skill
levels—it says that improving the hindsight quality of an answer makes it no less attractive, which
runs counter to the idea in chess that “weaker players prefer weaker moves.” One reason indepen-
dence is desirable is that it yields inherent standard deviations and hence confidence intervals for
projections of these statistics:

σBC =

√√√√ T∑
t=1

pt,1(1− pt,1) (1)

σAE =

√√√√ 1

T

T∑
t=1

∑
i≥2

pt,i(1− pt,i)(ut,1 − ut,i). (2)

We regard the components of ~z as fittable parameters whose values are determined by regres-
sion over training sets giving actual choices made by agents. After ~z are fitted to values z, the fitted
model computes

(pt,1, . . . , pt,`) = Pz(ut,1, . . . , ut,`).

Issues that arise in training, including the choice of fitting method, are the focus of this paper.

3

2 Training Data and Fitting Metrics
Every piece of training data is an item

I = (u1, . . . , u`; i; e)

where i is the index of the option that was chosen, and e gives supplementary information about
the person or agent who made the choice. In examinations, e may be prior information about past
grades or test results, or alternatively may be posterior information such as the overall score on the
exam itself. In chess, e can be the Elo rating of the player making the move, either before or after
the games by that player included in the training set. We index an item and its components by the
turn t, and sometimes write just t in place of I , calling the item a tuple.

In this paper we postulate a mapping E(Z) from the agent space to the values e that come
with the training data. This mapping need not be invertible—indeed when two or more scalar
parameters comprise ~z this is not expected. Its main point is that when regressing on a subset of
items whose values e are all equal (or close to equal) to obtain z, comparing E(z) and e acts as
a check on the results. They need not be equal—perhaps E itself has been fitted by a final linear
regression against e and the particular e is an outlier in this fit—but lack of closeness is a reason to
doubt the method used to fit z.

When the estimation method does not guarantee that the projected means agree with the sample
means, for BC and AE in particular, then the difference from the sample becomes a measure of
goodness (or rather badness) of fit. We express the deviations from the sample means as multiples
of the inherently projected standard deviations, that is as multiples of σBC and σAE . Technically
this assumes independence of turns, but this assumption is not a strong consideration because we
are not using them to infer z-scores for hypothesis tests. They are mainly a convenient choice of
units when comparing results between training sets of different sizes.

Our main independent metric for goodness of fit involves the projected ordinal frequencies f̂k
for 1 ≤ k ≤ ` and the sample values fk. The ordinal rank fit (ORF) is given by

∑̀
k=1

(f̂k − fk)2.

In tables, the frequencies are expressed as percentages—equivalently, the ORF score is multiplied
by 10,000. We do not weight ORF by the number of items with i = k (i.e., by fk itself), but we
consider a fitting method that tries to minimize this score.

The metrics and training and fitting methods all extend naturally when items It for different
turns t are given different weights wt. The weight wt gives some measure of the value or difficulty
of the decision.

In the multiple-choice test setting, when the ui represent points values in scoring the exam as
well as predictors for choosing answers, the value can also be represented as a multiplier on the
ui themselves. In the portfolio trading setting, the ui already reflect the total dollar value being
invested. In the chess case, however, the corresponding notion of “value” of a move depends
on extraneous information about the state of the game. Hence we instead consider the idea of
weighting decisions by difficulty. The most difficult case, intuitively, is when there are many
options of near-optimal value. This applies equally to multiple-choice exam questions, investment
choices, and chess moves. This is reflected by the entropy of the projected distribution (p1, . . . , p`).

4

The only demurral is that there might not be much at stake, if all options are close to equal,
or if there is a sharp jump from near-optimal choices to ones that are clearly markedly inferior. In
chess this can happen if a position is “dead drawn,” except for recognizably silly moves that give
away a piece for nothing. In the present paper we do not try to avoid this objection, as it arises
rarely in the training data. Hence we stay with the entropy weights

ewt =
∑̀
k=1

pt,k log2(1/pt,k)

as a measure of difficulty. Since the ewt factor through as multipliers on the above scores, we do
not need to change the notation for them.

3 Fitting Methods
In all cases we are given training data consisting of items. Since the data are fixed, we can regard
the probabilities pt,j as functions of Z alone.

3.1 ML and Bayes
The Maximum Likelihood method is now to fit ~z to maximize the probability of the selected options
it in the training data. By independence this means to maximize∏

t

pt,it ,

which is equivalent to minimizing the log-sum∑
t

ln(1/pt,it).

We write zML for some value of Z that minimizes this logsum, and call P (zML) the max-likelihood
probabilities.

For completeness, we derive the result that Bayesian iteration approaches the ML estimator
in this setting. Let A(z) denote the event that the agent in the training data with chosen options
~i = i1, i2, . . . arises from Z = z. By Bayes’ Theorem, assuming the space Z is finite,

Pr(A(z) |~i) =
Pr(~i | A(z))Pr(A(z))

Pr(~i)

=
Pr(~i | A(z))Pr(A(z))∑
z Pr(A(z))Pr(

~i | A(z))

=

∏
t Pr(it | A(z))Pr(A(z))∑

z Pr(A(z))
∏

t Pr(it | A(z))

=

∏
t pt,it(z)Pr(A(z))∑

z

∏
t pt,it(z)Pr(A(z))

.

5

The standard “know-nothing prior” assumption Pr(A(z)) = 1/|Z| lets us simplify this even further
to

Pr(A(z) |~i) =
∏

t pt,it(z)∑
z

∏
t pt,it(z)

.

Note that the global independence assumption not only creates a simple product over t but also
makes the value independent of the order of presentation of the data for each t. Thus the Bayesian
probability of Z = z is just the normalized likelihood function.

Write Nz for
∏

t pt,it(z). Upon iterating the data d times, we get

Pr(A(z) |~id) = Nd
z∑

z N
d
z

.

Because ad = o(bd) whenever a < b and the vector of values Nz is finite, the right-hand side as
d → ∞ converges pointwise to the Dirac delta function for the value z maximizing Nz, which is
just z = zML as before. (This also holds true under any fixed prior A(z).)

Thus the peaks of the Bayesian probability curves approach the ML estimators. Large homoge-
neous training sets can be expected to behave like d-fold iterations of a smaller training set. Thus
in this application, it seems that ML already captures the objectives of Bayesian iteration.

Note that in both cases, only the probabilities of the selected options mt,it are involved in the
formulas. The ordinal information in it is not used. The basis for the critique in this paper is that
the ML and Bayesian approaches are not using all available information.

We move on to simple frequentist approaches. We define d(x, y) to be (the square of) a distance
function, not necessarily supposing d(x, y) = (x−y)2 for use with least-squares estimation. Since
there is no notion of “same outcome,” the issue becomes how best to preserve the intuition of
building frequencies for the outcomes. One idea is to impose a percentile grid on them.

3.2 Percentile Fitting
The “Percentile Fitting” method of [RH11] attempts to avoid these choices and weighting issues.
The method is to minimize a distance integral of the form∫ q=1

q=0

d(q, fq(z))

where fq(z) is the hit score for percentile q defined as follows. The hit score is the average of the
hit scores for each tuple t, so suppressing t we need only define fq(z) for one vector of projected
probabilities P (z) = (p1(z), p2(z), . . . , p`(z)). Here is where the fixed ordering of outcomes is
used. Let i = it be the selected outcome for that tuple. Define

p =
i−1∑
j=1

pj(z); r = p+ pi(z),

fq(z) =


1 if q ≥ r
q−p
r−p if p ≤ q ≤ r

0 if q ≤ p.

6

Here is the frequentist intuition. Consider any fixed value of q, say q = 0.60, and consider
any projected tuple (p1(z), p2(z), . . . , p`(z)). The parameter(s) z represent a way of stretching or
compressing sub-intervals of width pk(z) in the unit interval. Let us suppose first that q is exactly
at the upper end of interval pk, meaning that p1(z)+p2(z)+ · · ·+pk(z) = q. Then we interpret z as
representing the assertion that the probability of one of the first k options being chosen is exactly
q. That is to say, if i ≤ k then we call the tuple a “hit,” else it is a “miss.” So this particular z is
asserting that the probability of a hit is q, and that is the z that we wish to find.

If q sits midway inside interval pk, then we must consider how to score z in the case i = k.
To interpolate correctly, let b be the ratio of the real-number distance of q from the left end of the
interval to its width pk. Then score this case as b of a hit. Thus z and q represent the assertion that
the expected hit score for the tuple at percentile q is none other than q itself.

For each z and q, this prescription defines a criterion for scoring a hit for each tuple, and asserts
that this expectation is q. Since the expectation is the same for each tuple, we have intuitively
achieved the effect of the simple-frequency case, and can aggregate over the tuples. The frequency
function fq(z) defined above tabulates the actual hit scores from the data. The degree of fit given
by z for percentile q is then quantified as the distance between q itself and fq(z).

Treating q itself as a continuous parameter leads to minimizing the above integral. The one
arbitrary choice we see is whether this should be weighted in terms of q. Minimizing∫ q=1

q=0

H(q)d(q, fq(z))

instead is natural because having H(0) = H(1) = 0 reinforces the idea that the hit percentage
projections are automatically correct at the endpoints q = 0 and q = 1. Apart from this, our
intuitive point of using percentiles is that they skirt issues of skedasticity. We abbreviate this
method as PF.

3.3 Fitting to Equate Means for BC and AE
The projected probabilities also yield a projected utility u(z) =

∑
j ujpj(z). This can readily be

summed or averaged over all tuples. Thus one can also fit z by equating the projected u(z) with the
actual utility u achieved in the training data. This is affinely related to minimizing the AE metric
defined above.

In cases where the objective is to see how often the agent makes the optimal choice, as well
as modeling its average (falloff in) utility (from optimal), one can write two equations in the pa-
rameters Z. When Z comprises just two parameters, one can fit by solving two equations in two
unknowns, equating u = u(z) and the first-choice hit frequency h1 = |{ t : it = 1 }|/T with the
average of pt,1(z). This hybrid fitting method bypasses all of the above options, and hence acts as
a helpful check on them. We abbreviate it FF for “first-choice and falloff.”

3.4 Fitting the Ordinal Ranks
We can fit to minimize the ORF statistic, or alternatively its frequency-weighted version∑

k fk(fk− f̂k)2. For data such as below where about half the “mass” is on index 1—that is, when
the best answer or trade or chess move is found at least half the time (at least when items have unit

7

weights)—the latter policy is a compromise on simply solving to make the BC projection agree
with the sample mean. The compromise policy avoids overfitting, and avoids heteroskedasticity
issues with ORF itself.

Still, we study the fitting policy of minimizing ORF to emphasize the importance of getting
accurate projections for the “tail” of the distribution of choices: bad mistakes on exams, disastrous
trades, “blunders” at chess. We call this policy IF for “index fit,” and the frequency-weighted
version IM for “index mass.” We could also consider hybrids of FF and IF or IM, but stop short of
doing so in order to highlight the simpler comparisons.

3.5 Model Tuning
There is a larger issue of whether differences between fitting methods and metrics is an indication
of the underlying model itself being out-of-tune. One may be trying to fit a curve that simply
does not have the right “shape.” In cases where there is no clear-cut notion of “tuning,” these
considerations can become subjective. However, when there is a fitting method that provides
reasonably low (here meaning good) scores on all the fitting distance metrics being considered,
then we can take that as a measure of “goodness of tune.” Poor scores for a different fitting method
then can be regarded as pertaining more to the method than to the model. We intend this paper to
address those situations in which perfection of modeling is far from being attained, yet reasonably
accurate results are obtainable under suitable choices of methods.

4 Some Theoretical Considerations
In case the parameter space for Z allows a dense set of probability vectors, the simple case of
repeated data (or equal utility vectors) allows exact fitting, and gives the same optimal z under any
method.

Theorem 4.1 Percentile Fitting agrees with Maximum Likelihood for homogeneous data and free
parameterization of probabilities.

Proof. Take f1, . . . , f` to be the frequencies from the data. The logsum minimand for ML then
becomes

e(z) = f1 ln(1/p1(z)) + f2 ln(1/p2(z)) + · · · f` ln(1/p`(z)).

This is known to be minimized by setting pj(z) = fj for each j, in accordance with the basic
frequency idea, and the freedom assumption on z allows this to be realized. It remains to show that
PF achieves the same minimum z.

For this z, let q be any percentile. If q falls on the endpoint r of any interval pk = pk(z), then
as r = p1 + p2 + · · · pk = f1 + f2 + · · · fk, the training data gives fq(z) = r = q. Since other
values of q occupy the same medial position in the same interval over all of the equal tuples, the
interpolation gives fq(z) = q for all q, so the PF minimand is zero.

Also h1 = f1 = p1(z) and u =
∑

j ujfj =
∑

j ujpj(z) = u(z), so the FF equations hold.

8

4.1 Differences Among ML/Bayes and PF
Now we give an example showing that this equivalence can be disturbed by constraining the pa-
rameters. Indeed it seems to be the simplest example that can possibly show a difference. Let
each tuple have outcomes m1,m2,m3, and let the probabilities be given by p1(z) = p2(z) = z,
p3(z) = 1− 2z, with one numerical parameter z ∈ [0, 1]. Consider training data with t = 2 equal
tuples, in which m1 and m3 are chosen once each.

The ML maximand is z(1− 2z) and is maximized at z = 1/4.
Percentile fitting gives a different answer, however. The PF minimand is a three-piece integral.

The first piece integrates d(q, 1
2
q
z
) from q = 0 to q = z. The second piece integrates d(q, 1

2
)

from q = z to q = 2z. The third piece integrates d(q, 1
2
+ 1

2
q−2z
1−2z) from q = 2z to q = 1.

For d(x, y) = (x − y)2, symbolic computation with MathematicaTM shows this is minimized for
z = 3/10, not z = 1/4.

5 Experimental Domain
We adopt the chess model of Regan and Haworth [RH11], for several reasons:

1. Chess games and results are public—there are no copyright or privacy considerations.

2. The decisions are taken under conditions of actual competition, not simulations.

3. The human subjects have similar training and backgrounds, and the games have no system-
atic or substantial outside influences (put another way, the modeling can be free of “nuisance
terms”).

4. There is a well-defined skill metric, namely the chess Elo rating system.

5. The utility values are assigned by a recognized human-neutral authority, namely the cham-
pion chess program Rybka 3 [RK08].

6. The data sets are unique—comprising all games recorded between players with ratings e near
the same Elo century mark in official chess events under “standard individual tournament
conditions” in a specified time period. There is no arbitrariness of choosing data from certain
kinds of exams or kinds of financial markets.

7. The data sets and statistical analyzing code are freely available by request, though they are
not (yet) public.

8. The training sets each contain over 5,000 data points, some over 20,000.

The model has two parameters, called s for “sensitivity” and c for “consistency.” The items
use the error quantities δi = u1 − ui for fitting (they index from i = 0 rather than i = 1). The
probabilities are projected by implicitly solving the equations

log(1/pi)

log(1/p1)
= e−(

δi
s
)c

9

along with
∑

i pi = 1. Further details about how the δi values are obtained and about the com-
position of the training sets are available in [RH11, RMH11]. The regressions published in those
papers to compute an “Intrinsic Elo Rating”E(z) = E(s, c) from a training set are not current with
the provided software as of 12/18/2012, even besides the change from PF to FF as the reference
fitting method between the above papers. However, the differences are not large enough to be a
concern—and the regressions for e = E(z) in these papers are weak anyway with only six points
e = 2200, 2300, 2400, 2500, 2600, 2700 (projections below 2200 are extrapolated). Again we are
using E(z) only as a rough check.

We used the training sets for the years 2006–2009, for ratings E from 2700 all the way down
to 1600. This ensures some variety in the levels of human subjects, which gives more weight to
common phenomena. We ran each of five fitting methods FF, PF, ML, IF, and IM, each with unit
and with entropy weights, on the set for each century point. We have room to report the results for
2700, 2400, 2100, and 1800; the others were substantially the same.

6 Comparison of Fitting Methods: Empirical Results

The legends on fitting methods are FF for solving the two equations f̂1 = f1 and âe = ae in the
two unknowns s, c (guaranteeing unbiased estimators for BC and AE), PF for percentile fit, ML for
maximum likelihood, IF for index-fit without skedasticity adjustment, and IM for index-mass (with
adjustment). The Nelder-Mead minimization method of [G+09] was applied for minimization to
precision 0.0001; hence the tables report four decimal places.

Table 1: Comparing fits with unit weights

2700 set: 6,892 turns

Fit E(z) ORF ×σBC ×σAE

FF 2689 0.0499 -0.0004 0.0008
PF 2580 0.029 1.0815 -4.6792
ML 2418 0.2665 6.0971 -10.8041
IF 2466 0.0025 0.0393 -8.2837
IM 2459 0.0026 0.0066 -8.471

2400 set: 19,929 turns

Fit E(z) ORF ×σBC ×σAE

FF 2421 0.0249 -0.0006 0.0018
PF 2335 0.0182 1.3522 -5.4644
ML 2087 0.1496 7.8135 -18.5049
IF 2275 0.0105 0.1571 -8.6114
IM 2243 0.0112 0.0422 -10.1977

2100 set: 9,728 turns

Fit E(z) ORF ×σBC ×σAE

10

FF 2027 0.0217 -0.0019 -0.0034
PF 1969 0.0205 0.0727 -2.1879
ML 1653 0.1367 4.6025 -12.437
IF 1978 0.0204 0.085 -1.8592
IM 1941 0.0212 0.0375 -3.136

1800 set: 15,930 turns

Fit E(z) ORF ×σBC ×σAE

FF 1729 0.0183 -0.0029 0.0049
PF 1686 0.0303 -1.2289 -1.7197
ML 1331 0.1074 3.1323 -14.6344
IF 1823 0.0145 -0.0363 4.2969
IM 1790 0.015 0.0256 2.7243

What stands out most is the poorness of the maximum-likelihood estimator as implemented
above, especially for estimating the aggregate error (AE) statistic. The two index fits are also poor
on this. Whereas, the FF test, simply solving two equations, achieves ordinal-rank fit scores that
are close to the optima achievable by the IF (or IM) method. The percentile fit (PF) is fairly close
in quality, but gives biased estimates. The differences are even greater under entropy weighting.

Table 2: Comparing fits with entropy weights

2700 set: 6,892 turns

Fit E(z) ORF ×σBC ×σAE

FF 2681 0.069 -0.0005 0.0067
PF 2612 0.0667 0.5396 -3.9494
ML 1863 0.3832 5.9989 -28.5197
IF 2598 0.0449 -0.1216 -4.5738
IM 2608 0.0495 -0.0189 -4.0811

2400 set: 19,929 turns

Fit E(z) ORF ×σBC ×σAE

FF 2400 0.0245 0.0001 0.0114
PF 2369 0.0256 0.4614 -2.5458
ML 1554 0.3268 8.924 -47.0187
IF 2399 0.0248 0.043 -0.021
IM 2371 0.0225 0.0477 -2.331

2100 set: 9,728 turns

Fit E(z) ORF ×σBC ×σAE

11

FF 2000 0.0256 0.0009 0.004
PF 2000 0.0209 -0.9911 0.1092
ML 1138 0.3118 5.1245 -31.4804
IF 2127 0.0337 -0.0714 6.9611
IM 2105 0.0317 0.0299 5.6754

1800 set: 15,930 turns

Fit E(z) ORF ×σBC ×σAE

FF 1704 0.0242 -0.0017 -0.0022
PF 1731 0.0225 -3.1544 1.8705
ML 820 0.3323 6.7039 -38.5982
IF 1989 0.0267 -0.4083 19.0187
IM 1984 0.0274 -0.0184 18.5923

7 Conclusions
The mystery that needs further elucidation is, why does Maximum Likelihood perform so badly
here? Note that the results it gives are nevertheless self-consistent across the data spectrum. This
is shown by the progression of E(Z) figures for ML: 2700: 2418, 2400: 2087, 2100: 1653, 1800:
1331, and similarly for the unreported runs in-between. If used in isolation, with its own confidence
intervals, it would provide a workable model of skill unto itself, re-calibrating the EML(Z) figures
accordingly. One might not be aware of how it is “out-voted” by the other fitting methods in
absolute terms. This owes to the general setting presented in this paper being amenable to a wealth
of fitting techniques and separate metrics for evaluating their quality.

We hope to spur from this a deeper comparative examination of methods used in psychometric
test scoring (such as [WH01, ON06], and financial analysis, among other applications. We also
speculate that the skill assessment methods used in chess–which expressly correspond to statistical
win-loss results in competition—can be carried over to these other domains, exploiting the rigor
and definiteness of the chess model and its data.

References
[B+13] Graham Banks et al. CCRL rating lists. http://www.computerchess.org.uk/ccrl/, 2013.

[Elo78] Arpad Elo. The Rating of Chessplayers, Past and Present. Arco Pub., New York, 1978.

[G+09] M. Galassi et al. GNU Scientific Library Reference Manual (3rd Ed.). GNU, 2009.

[ON06] R. Ostini and M. Nering. Polytomous Item Response Theory Models. Sage Publications,
Thousand Oaks, California, 2006.

12

[RH11] K. Regan and G.McC. Haworth. Intrinsic chess ratings. In Proceedings of AAAI 2011,
San Francisco, 2011.

[RK08] V. Rajlich and L. Kaufman. Rybka 3 chess engine, 2008. http://www.rybkachess.com.

[RMH11] K. Regan, B. Macieja, and G. Haworth. Understanding distributions of chess perfor-
mances. In Proceedings of the 13th ICGA Conference on Advances in Computer Games,
2011. Tilburg, Netherlands.

[WH01] F. Wichmann and N. Jeremy Hill. The psychometric function: I. Fitting, sampling, and
goodness of fit. Perception and Psychophysics, 63:1293–1313, 2001.

13

