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Abstract

Given events Et each with some number nt ≥ 2 of different outcomes, fixed data Dt on the
possible outcomes, the index it of the observed outcome, and overall parameter(s) Z, we have
a function P (Z;Dt) = { pt,j : 1 ≤ j ≤ nt } giving projected probabilities for each outcome
of each event. The aim is to fit Z to make the projected probabilities P (Z,−) imply projected
frequencies as close as possible to the observations. We envision the Dt to be simple, such
as vectors of hindsight utility values ut,j for each outcome. Hence rather than learning how
to select the best outcome, this application is to model fallible stochastic agents whose past
choices are recorded by the it.

When all nt and Dt are equal, so that pt,j = pj depends only on j, one should clearly
fit Z to minimize distance between the pj and the observed frequencies of the outcomes j,
and various fitting methods have good agreement. When the events are heterogeneous, how-
ever, the goal is less clear and the methods can diverge substantially. The “Percentile Fitting”
method introduced in [Regan and Haworth, AAAI 2011] is developed further, and shown to
out-perform maximum-likelihood and several other frequentist methods in the same applica-
tion, namely where the outcomes are possible moves mj in chess positions Et and the utilities
ut,j are values given for mj by strong chess programs. Consequences for the expected-value
statistic

∑
j pt,jut,j , and conformance of experimental results to theoretical error bars for the

new technique, are also studied.

Keywords. Computer games, chess, sequential decision making, probabilistic inference,
machine learning, data mining, statistics.

1 Introduction
A running controversy in statistical modeling pits frequentist against Bayesian approaches, with
maximum likelihood (ML) sometimes being considered separate from either.1 This paper gives
an application that provides both a wide variety of approaches for fitting its parameters, and a
way to judge their performance on large data. We fully define the frequentist method introduced
as “Percentile Fitting” (PF) in [RH11], show theoretically that it employs cumulative-distribution
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1For one instance, see [Pet07].
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information that Bayesian and ML methods do not, and demonstrate empirically that it gives better
fits in this application. The data sets for our experiments comes from computer analysis of chess
games, but there is no dependence on chess beyond obtaining the utility values from the computer
program of various options (moves) available in a given situation (chess position).

The application samples decision events E in which choices mi are made by fallible agents A
among competing options m1,m2, . . . ,mn. In terms of fixed data D1, . . . , Dn about those options
and variable parameters Z calibrating the skill of A, the goal is to infer probabilities p1, . . . , pn of
choosing each option, say by an independent agent A′ known only to have the same Z values as A.
The training data comprises multiple such events, which we index as Et from t = 1 to t = T . The
events are assumed to be globally independent throughout this paper.

In the simplest case, every event has the same arity n and data D1, . . . , Dn. Then one defines
the frequencies fj = |{ t : it = j }|/T for j = 1 to n. Since the data are all alike, the projected
probabilities p1, . . . , pn should be the same for all events. In case of complete freedom to project
them, the simple frequentist prescription is to take pj = fj for all j. The point of this paper is to
analyze two ways in which the modeling can become less simple:

1. The function P (Z) = (p1, . . . , pn) has range only a restrictive subset of the probability
space.

2. The events Et are heterogeneous, by which we mean that the arity nt and data Dt,1, . . . , Dt,nt

may vary widely.

We define several particular fitting methods, observe that they all agree in the simple case, show
that the former change is already enough to distinguish them, and show marked effects of the latter
change in a natural application with substantial data size.

These results all hold under specializing the data items Dt,i to be real numbers ut,i representing
utility values, ordering the indexing of outcomes to give ut,1 ≥ ut,2 ≥ . . . ≥ ut,nt for all t, and
restricting attention to projection functions P that give pt,1 ≥ pt,2 ≥ . . . ≥ pt,nt for all t. That is,
the analysis respects the condition that the model be monotone in the sense that higher utility for
an outcome never lowers its projected probability. This also makes clear that the objective is not
to find the outcome with greatest utility, but rather to model the probabilistic behavior of agents by
inference from their past choices recorded in training data.

In the utility case we can make the arities equal by taking n to be the maximum nt and padding
all shorter tuples with nonce options having effectively negative-infinite utility. Heterogeneity still
prevents regarding mt,j and mu,j for u 6= t as “the same outcome j.” Making all nt equal is just
a formal convenience, and the frequentist methods do not assume it. It does simplify saying that
our applications have the general rubric of converting utility vectors (u1, . . . , un) into probability
vectors (p1, . . . , pn).

We describe the fitting methods studied here in a general way that applies to all cases, except
that the final method is defined with respect to a fixed ordering of the outcomes for each event—
intendedly but not necessarily the utility ordering.

2 Fitting Methods
In all cases we are given training data consisting of values nt and Dt,i for T -many events Et, which
in the utility case consists of a set U of vectors (ut,1, . . . , ut,nt) for each t, which we also call tuples.
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Since the data are fixed, we can regard the probabilities pt,j as functions of Z alone, and suppress
Z too where convenient.

2.1 ML and Bayes
The Maximum Likelihood method is now to fit Z to maximize the probability of the selected
options it in the training data. By global independence this means to maximize∏

t

pt,it

which is equivalent to minimizing the log-sum∑
t

ln(1/pt,it).

The notation and goal are unperturbed by the tuples being heterogeneous. We write zML for some
value of Z that minimizes this logsum, and call P (zML) the max-likelihood probabilities.

Broadly speaking, Bayesian iteration in this setting satisfies generally-known conditions under
which it gives convergence to the ML estimator [good reference needed]. For completeness and
later use, we derive this. Let A(z) denote the event that the agent in the training data with chosen
options~i = i1, i2, . . . arises from Z = z. By Bayes’ Theorem, assuming the space Z is finite,

Pr(A(z) |~i) =
Pr(~i | A(z)) Pr(A(z))

Pr(~i)

=
Pr(~i | A(z)) Pr(A(z))∑
z Pr(A(z)) Pr(

~i | A(z))

=

∏
t Pr(it | A(z)) Pr(A(z))∑

z Pr(A(z))
∏

t Pr(it | A(z))

=

∏
t pt,it(z) Pr(A(z))∑

z

∏
t pt,it(z) Pr(A(z))

.

The standard “know-nothing prior” assumption Pr(A(z)) = 1/|Z| lets us simplify this even further
to

Pr(A(z) |~i) =
∏

t pt,it(z)∑
z

∏
t pt,it(z)

.

Note that the global independence assumption not only creates a simple product over t but also
makes the value independent of the order of presentation of the data for each t. Thus the Bayesian
probability of Z = z is just the normalized likelihood function.

Write Nz for
∏

t pt,it(z). Upon iterating the data d times, we get

Pr(A(z) |~id) = Nd
z∑

z N
d
z

.
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Because ad = o(bd) whenever a < b and the vector of values Nz is finite, the right-hand side as
d −→∞ converges pointwise to the Dirac delta function for the value z maximizing Nz, which is
just z = zML as before. (This also holds true under any fixed prior A(z).)

Thus the peaks of the Bayesian probability curves approach the ML estimators. Large homo-
geneous training sets can be expected to behave like d-fold iterations of a smaller training set. In
this paper we emphasize large-data situations, for which this convergence applies. Thus in this
applicationm we regard ML as already capturing the objective of Bayesian iteration, and hence
from here we do not distinguish the methods.

Note that in both cases, only the probabilities of the selected options mt,it are involved in the
formulas. The basis for the critique in this paper is that the ML and Bayesian approaches are not
using all available information.

Thus we move on to frequentist approaches. We define d(x, y) to be (the square of) a distance
function, not necessarily supposing d(x, y) = (x−y)2 for use with least-squares estimation. Since
there is no notion of “same outcome,” the first issue becomes how best to preserve the intuition of
building frequencies for the outcomes. A second issue is scedasticity: some “bins” will have many
more data points. We attempt to solve both issues by imposing a uniform percentile grid on the
tabulations.

2.2 Percentile Fitting
The “Percentile Fitting” method of [RH11] attempts to avoid these choices and weighting issues.
The method is to minimize a distance integral of the form∫ q=1

q=0

d(q, fq(z))

where fq(z) is the hit score for percentile q defined as follows. The hit score is the average of the
hit scores for each tuple t, so suppressing t we need only define fq(z) for one vector of projected
probabilities P (z) = (p1(z), p2(z), . . . , pn(z)). Here is where the fixed ordering of outcomes is
used. Let i = it be the selected outcome for that tuple. Define

p =
i−1∑
j=1

pj(z) (1)

r = p+ pi(z) (2)

and then define

fq(z) =


1 if q ≥ r
q−p
r−p if p ≤ q ≤ r

0 if q ≤ p.

(3)

Here is the frequentist intuition. Consider any fixed value of q, say q = 0.60, and consider
any projected tuple (p1(z), p2(z), . . . , pn(z)). The parameter(s) z represent a way of stretching or
compressing sub-intervals of width pk(z) in the unit interval. Let us suppose first that q is exactly
at the upper end of interval pk, meaning that p1(z)+p2(z)+ · · ·+pk(z) = q. Then we interpret z as
representing the assertion that the probability of one of the first k options being chosen is exactly
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q. That is to say, if i ≤ k then we call the tuple a “hit,” else it is a “miss.” So this particular z is
asserting that the probability of a hit is q, and that is the z that we wish to find.

If q sits midway inside interval pk, then we must consider how to score z in the case i = k.
To interpolate correctly, let b be the ratio of the real-number distance of q from the left end of the
interval to its width pk. Then score this case as b of a hit. Thus z and q represent the assertion that
the expected hit score for the tuple at percentile q is none other than q itself.

For each z and q, this prescription defines a criterion for scoring a hit for each tuple, and asserts
that this expectation is q. Since the expectation is the same for each tuple, we have intuiitvely
achieved the effect of the simple-frequency case, and can aggregate over the tuples. The frequency
function fq(z) defined above tabulates the actual hit scores from the data. The degree of fit given
by z for percentile q is then quantified as the distance between q itself and fq(z).

Treating q itself as a continuous parameter leads to minimizing the above integral. The one
arbitrary choice we see is whether this should be weighted in terms of q. Minimizing∫ q=1

q=0

H(q)d(q, fq(z))

instead is natural because having H(0) = H(1) = 0 reinforces the idea that the hit percentage pro-
jections are automatically correct at the endpoints q = 0 and q = 1. Apart from this, our intuitive
point of using percentiles is that they skirt issues of skedasticity. Our experiments approximated
this integral by summing over q in steps of 0.02, and in comparing the bins method, used simple
bins of width 0.02. We abbreviate this method as PF.

2.3 Fitting the Derived Utility Statistic
In case the data are utility vectors (u1, . . . , un), the projected probabilities also yield a projected
utility from the tuple:

u(z) =
∑
j

ujpj(z).

This can readily be summed or averaged over all tuples. Thus one can also fit z by equating the
projected u(z) with the actual utility u achievedin the training data. In cases where the objective
is to see how often the agent makes the optimal choice, as well as modeling its average (falloff
in) utility (from optimal), one can write two equations in the parameters Z. When Z comprises
just two parameters, one can fit by solving two equations in two unknowns, equating u = u(z)
and the first-choice hit frequency h1 = |{ t : it = 1 }|/T with the average of pt,1(z). This hybrid
fitting method bypasses all of the above options, and hence acts as a helpful check on them. We
abbreviate it FF for “first-choice and falloff.”

3 Agreement and Differences in the Simple Homogeneous Tu-
ple Case

.
In case the parameter space for Z allows a dense set of probability vectors, the simple case of

repeated data (or equal utility vectors) allows exact fitting, and gives the same optimal z under any
method.
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Percentile Fitting agrees with Maximum Likelihood for homogeneous data and
free parameterization of probabilities. Under suitable choices of bins, so does proba-
bility binning, and the optimum makes h1 = avgtpt,1(z) and u = u(z).

Proof. Take f1, . . . , fn to be the frequencies from the data. The logsum minimand for ML then
becomes

e(z) = f1 ln(1/p1(z)) + f2 ln(1/p2(z)) + · · · fn ln(1/pn(z)).

This is known to be minimized by setting pj(z) = fj for each j, in accordance with the basic
frequency idea, and the freedom assumption on z allows this to be realized. It remains to show that
PF achieves the same minimum z.

For this z, let q be any percentile. If q falls on the endpoint r of any interval pk = pk(z), then
as r = p1 + p2 + · · · pk = f1 + f2 + · · · fk, the training data gives fq(z) = r = q. Since other
values of q occupy the same medial position in the same interval over all of the equal tuples, the
interpolation gives fq(z) = q for all q, so the PF minimand is zero.

Also h1 = f1 = p1(z) and u =
∑

j ujfj =
∑

j ujpj(z) = u(z), so the FF equations hold.
Finally define bins with ak being the average over probabilities in bin k. Since every tuple yields
the same probability projections, every probability in the bin occurs T times, counting cases of
pi = pj for i 6= j separately. It follows that ak is also the overall frequency of hits in the bin, so the
PB minimand is also zero.

3.1 Differences Among ML/Bayes and
Now we give an example showing how far the equivalence can be disturbed by constraining the
parameters. Let each tuple have outcomes m1,m2,m3, and let the probabilities be given by p1(z) =
z, p2(z) = p3(z) = (1− z)/2 for one numerical parameter z ∈ [0, 1]. Consider training data with
t = 5 equal tuples, in which m1 is chosen twice, m2 twice, and m3 once.

The ML logsum minimand is 2 ln(z) + 3 ln((1 − z)/2). Note that this is in fact independent
of the frequencies of m2 and m3 provided they sum to 3/5. A little calculus puts z = 0.40 as the
optimum.

The PF minimand is a three-piece integral. The first piece integrates d(q, 2
5
q
z
) from q = 0 to

q = z. When z = 0.40, the reasoning of the proof of Theorem 3 shows that this first piece gives
zero. The remaining two pieces do not, however, with the 2/5 hit rate of m2 and 1/5 hit rate of m3

both differing by 0.10 from their allocated widths of 0.30.
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