Quantum Computers By Degrees

Our take from the debate between Gil Kalai and Aram Harrow

Volker Strassen has made many famous contributions to theoretical
computer science, but one might not know that they include a
limerick. Yet the following exchange in 1998 with Peter Shor and
his wife prefaces Chapter 5 in the bellwether quantum computing
textbook| by Michael Nielsen and Isaac Chuang;:

If computers that you build are quantum,

Then spies everywhere will all want ’em.

Our codes will all fail,

And they’ll read our email,

Till we get crypto that’s quantum, and daunt ’em.
— Jennifer and Peter Shor.

To read our E-mail, how mean

of the spies and their quantum machine;

be comforted though,

they do not yet know

how to factorize twelve or fifteen. — Volker Strassen.

Today we, Dick and I, explain our own skepticism of quantum
computing, and say what we have learned from the detailed debate
between Gil Kalai and Aram Harrow.

The number 15 was factorized by IBM researchers three years later,
in 2001, though it took runs by other groups to be fully convincing
that Shor’s factoring algorithm was being implemented in a faithful
manner, with observable entanglements being created. The most
recent repetition for 15 was jpublished this year, and claims a 48%
success rate. That 15 has remained the highest number for over a
decade makes it reasonable for us to propagate Strassen’s implied
question:

When will they factorize twenty-one? Or eighteen,
or thirty?

Strassen also proved the best-known general lower bounds on arith-
metical circuits for low-degree polynomials, in conjunction with his
“close friend” Walter Baur among colleagues he[salutes in verse. As
I covered herel, the bounds arise in terms of the geometric degree of
an algebraic variety associated to the polynomial. I suspect some-
thing like Strassen’s mechanism operates in the quantum realm,
but governing entanglement rather than merely circuit size.
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Ken: Shor-Sure but Grover Not Bowled
Over

The thrust of my skepticism is that the standard gate-counting mea-
sure of the quantum circuit model understates the effort required to
operate the circuit. Of course all quantum-computing skepticism
asserts this; what’s particular to mine is the nature of the over-
looked cost factor. I am fairly confident that it is more than a
constant factor, and also that it is at most polynomial. The lat-
ter actually makes me “Shor-sure” in Scott Aaronson’s terms, i.e.
a believer in the polynomial feasibility of Shor’s algorithm. The
main questions within my skepticism is whether the extra factor
is linear or logarithmic, and if the latter, whether it is absorbed
by the log factor overhead already present in the Quantum Fault
Tolerance Theorem, or separate and paid up-front.

I was led to this by descriptions of Grover’s algorithm as running
“in sub-linear time,” wviz., O(v/N) overall work. With intuition
admittedly of early 20th Century vintage, I think a procedure that
polls N locations must expend N units of effort. I might not have
trouble in cases like solving SAT where N = 2™ and n physical
qubits are used to search N assignments that are not really in NV
“locations.”

Moreover, it is not clear whether “effort” should mean time or
work (i.e., entropy change) or something in-between, noting that
evolutions according to Schrodinger’s equation take time but are
reversible and dissipate no energy. One thing we can postulate,
however, is that an effort measure E(C) for a circuit C—quantum
or otherwise—should satisfy the following axiom:

If C' is a disjoint union of circuits C7 and Cs, with
no connections between them, then E(C) = E(Cy) +
E(Cy).

The analogous notion of disjointness for quantum systems 1, and
19 is the product state 11 ®1o. An entanglement measure £ is said
to be (strongly) additive if £(Yn @ o) = E(1) + E(W2). A rider of
such measures is that whenever ¢ is comprised of ¢; and ¢- that
are mutually entangled, then

E(p) > E(P1) + E(¥2).

At bottom my skepticism asserts that a similar inequality holds
for a natural measure E(C') that lower-bounds the “true effort”
to implement the quantum circuit C, whenever C' is broken into
entangled pieces. Let’s contrast this with “classical” circuits.



Quantum Versus Boolean Circuits

In simplistic terms, here is the main complexity distinction from
familiar Boolean circuits that I feel must be accounted for. A
Boolean circuit C' has a well-defined local value at every juncture.
If you break C' into pieces C, Cy such that no wires go from Cs to
C1, then you can call the values on each wire going from Cj to Cy
as outputs of C7 and inputs of C5, writing the function f computed
by C as the composition of f; computed by C; and f, computed
by C3. The point is that then the complexity of f equals the sum
of the complexity of f; and that of f;. The whole equals the sum
of the parts because all values are local. This intuitively holds even
under ways of breaking the circuit that have wires going both ways
between pieces.

For quantum circuits this is not so because of entanglement. The
simplest example is a two-qubit circuit consisting of an Hadamard
and a controlled-NOT gate, on the basis input |00).
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At the right-hand ends one speaks of two qubits, but neither qubit
has an individual value. Attempting to define a local value for ei-
ther qubit entails tracing out the other one, which leaves a classical
random bit. Saying the values are two classical random bits is false
in view of the entanglement. Hence the whole is not the sum of its
local parts. But summing local steps is what we do in complex-
ity measures. Thus I contend the true complexity picture must be
something other than what the diagram leads us to believe.

The “quantum grille” T described here supplies a local variable for
each juncture of the circuit, but on pain of involving computations
that are generically #P-complete, well beyond the believed power
of the circuits.

While there is consensus on quantifying entanglement between two
systems, there are a wide unresolved variety of proposed multi-
partite entanglement measures, such as for n-qubit (pure) states in
general. Hence there is no salient notion of entanglement produced
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by circuits either. One subtlety is that mapping a non-entangled
state to an entangled one is not a circuit invariant, even in the
binary case. The above circuit applied to the product state %(|O>—|—
[1))|0) produces the product state |00). But finding a best measure
of “entangling capacity” for a circuit is something we should try to
do.

Two Ways to Break Quantum Circuits

To supply first the intuition for why Strassen’s degree measure
may be relevant, let us look more closely at how quantum circuits
C might be pieced apart. Let’s use notation:

e n for the number of qubits; ng for inputs if we need to dis-
tinguish them from ancilla qubits.
e N =2": Ny = 2" if needed.

e k for the maximum (or typical) arity of a gate—usually k = 2
or k = 3 so we can ignore this.

e s for the number of quantum gates—or alternately, the sum
of 2 over all gates.

e ) for the number of Hadamard gates, or similar non-deterministic
gates. (More formally, h = logy R? where R is the product of
normalizing constants in the gates.)

d for the number of levels in the circuit, so % <d<s.

Flying by intuition not definition for now, let’s consider how E(C)
might grow as we break down and re-assemble the circuit, in two
different ways.

e By qubits: Break off each qubit line. It may be entangled with
the rest of the circuit. Using the simple gate-counting measure to
represent the “heft” of what the line is entangled with, we get s as
the cost of each line, for an upper bound of sn on E(C).

e By levels: Now we first argue that we can ignore the issue of
entanglements between levels by thinking of each level as a dis-
crete timestep and submerging it into the issue of maintaining the
quantum state entering each timestep. Thus we estimate E(C)
by d times the effort needed to maintain an n-qubit state. We
analogize this to the description complexity of (approximating) the
n-qubit state, and take a special cue from |graph states, which are
important in quantum error-correcting codes.


http://en.wikipedia.org/wiki/Graph_state

In this 2005 paper, by Caterina Mora and Hans Briegel, general
n-qubit graph states are argued to have description complexity of
order about n?. This gives dn? for the whole again. The prepara-
tion complexity measure of Peter Hgyer, Meidi Mhalla, and Simon
Perdrix for graph states promises lower effort, but may be circular
in this context as its its value is stated as the gate-counting size
of a quantum circuit that does the preparation. However, the by-
levels breakdown allows that the answer could be lower like O(dn)
or O(dnlogn).

Information bounds may answer the intuition

There is a separate consideration that is also highlighted by graph
states. An n-vertex directed graph G can encode n(n — 1) ~ n?
bits of information according to its edges and non-edges. However,
the n-qubit graph state prepared from G does not allow extracting
more than n bits of classical information, by Holevo’s theorem.
This may argue that the “heft” at each level is really only n after
all, which over d levels yields dn, and leaves just the gate-count s
when d = ©(s/n).

Privately, Aram has told me of work on a paper that addresses fine-
grained concerns of encoding graphs by qubits, and it is possible
that this may go even further than Holevo’s bound to blunt the
complexity intuition here. However, for now we say that the “by-
levels” breakdown argues that the effort measure E(C') (at least for
C involving graph states) is typified by d- n- “some factor,” where
the factor may be constant, n, or something in-between. We now
apply Strassen’s measure to intuit where an “in-between” factor
might come from.

Strassen’s Measure

Strassen’s measure p(f) for a function f(z1,...,z,) is the geo-
metric degree of the mapping
of of
V=U—=—1 'y Yn— =),
(=gt = 5

where the y; are fresh variables. This is definable as the maximum
finite value of ||V NA|| for an n-dimensional affine linear subspace of
C?". Aided by Walter Baur on a lemma connecting the complexity
of f to that of its partial derivatives, Strassen proved (see this| for
more details):
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Theorem 0.1. Every arithmetic cricuit computing f must have at
least m = 3 log,(u(f)) multiplication gates.

For example with f = 2¢ 4+ -2, we can define A by setting

y; = 1 (or rather, y; = n — 1) for each 4, so that V N A consists
of all n-tuples of (d — 1)st complex roots of unity. Since there are
(d — 1)™ such tuples, we have u(f) > (d — 1)", and in fact this is
tight because (d — 1)" is the maximum possible geometric degree
for a mapping V' defined by equations of degree d—1 in n variables.
Thus we have m = Q(nlog d), which for d = n°® gives Q(nlogn).

This is still the best-known lower bound for general low-degree
polynomials such as the permanent, even though it holds for this
simple function f. There are notions of “arithmetic degree” that
take exponentially higher values, but analogues of Strassen’s theo-
rem either fail or are unknown for them. What further significance
might these ideas of “degree” have?

Application to Quantum Circuits

My work introduced in this post|associates to every quantum circuit
C (whose gates satisfy a minimal “balance” condition) a polyno-
mial Pc in variables z; ; for ¢ ranging over qubits and j over the
d levels. The polynomial Pg is a product of polynomials for each
level, but this becomes a simpler product P/, of polynomials p, for
each gate g upon performing substitutions that leave n + h vari-
ables. Each P, has degree 2¢ where a is the arity of g. So for the
overall arity bound k, P5 has degree bounded by 2%s, which for
bounded k£ we may just call s.

The maximum possible geometric degree is then (n + h)ka7 but
there is reason to believe it is also tight for many natural and simple
circuits, as for the simple polynomial f above. Taking logs gives
us the following analogue of Strassen’s circuit size lower bound:

m = 28slog,(n + h).

When h = ©(s) and k is constant, this is ~ slogys. Thus if m
is a lower bound on the hypothesized true-effort measure E(C),
then the effort has an extra non-constant factor on top of the gate-
counting measure.

One plus point of defining F(C) = log, u(p) for some polynomial
p, itself a product of terms, associated to C' is that when the circuit
is a disjoint union of C7,Cy we can expect the respective pp, ps to
have disjoint variable sets, and give p = py1p2. Then we have

p(p1p2) = p(p1)p(p2),
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so E(C) = E(Cy) + E(Cs) as desired. The question is whether Pg
or P/, (by invariance under projections or substitutions as described
here they should be equivalent) is the “right” polynomial to serve
as p. Since the whole framework is a discrete version of Richard
Feynman’s “sum-over-paths” paradigm, it is possible that a more-
relevant polynomial to use as p has a variable for each path, whose
value represents the contribution of that path. In that case, if the
polynomial’s degree is still s (notwithstanding 2¥s), we would have

m = slogy(n + 2") ~ sh.

This would yield the case discussed above of the extra factor being
linear rather than logarithmic. And this extra factor h would, I
contend, show as an immediately felt scaling obstacle, even more
than the log s factor.

In any event, the above supplies grounds for my contention that the
gate-counting measure undershoots by a non-constant factor that
is immediately felt for small n. It is not a “galactic” consideration
like the amount of (classical) circuitry that an fit in a given volume
being physically asymptotically quadratic rather than cubic owing
to the Bekenstein bound. It also appears to be felt on top of,
rather than subsumed by, the O(logs) factor from fault-tolerant
encodings.

Lessons From the Debate

One strong lesson emphasized in every argument by Aram is that
sustaining a skeptical position on quantum computing ultimately
requires establishing a new property of physics. I had originally
thought I was avoiding this by demurring only from the quantum
circuit model and its simple counting measure. Now I appreciate
that my position is willy-nilly asserting a property lurking in the
geometry of quantum field theory, at least Feynman’s version of
it. I have asked about such a possibility for years, and have found
hints in papers such as this| and related ones by Michael Nielsen,
this by Howard Brandt, and this/by Joseph Landsberg, but have not
yet struck gold. My attraction to Gil Kalai’s skeptical papers was
that they might supply a physical mechanism behind the abstract
reasoning, but this is what Aram finds lacking.

Open Problems
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