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Abstract
In the DFA non-emptiness of intersection problem (DFA-NEI) we are given a list 〈A1, ...,Ak〉 of
DFA’s over a common alphabet Σ, and the goal is to determine whether

⋂k
i=1 L(Ai) 6= ∅. First,

using a suitable binary encoding for finite automata, we provide an unconditional space complex-
ity lower bound showing that DFA-NEI is not in NSPACE(o(n/ logn)). The previous best lower-
bound for DFA-NEI was that this problem does not belong to NSPACE(o(n/(logn)(log logn)))
when the input automata are specified straightforwardly by their list of transitions.

Next, we study the fine-grained complexity of k-DFA-NEI, the variant of DFA-NEI where
the number k of input automata is fixed. We provide conditional time complexity lower bounds
showing that slight improvements on state of the art parameterized algorithms for k-DFA-NEI
would have remarkable complexity theoretic consequences.

Finally, we study the fine-grained complexity of DFA-NEI when restricted to DFA’s over
a unary alphabet. We show that emptiness of intersection for two automata operating over a
unary alphabet can be solved in time O(n logn) and emptiness of intersection for three automata
operating over a unary alphabet can be solved in time O(nα/2) for every α > 2 such that triangle
finding can be solved in time O(nα).
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1 Introduction

In this work we analyse the DFA non-emptiness of intersection problem (DFA-NEI) from a
complexity theoretic perspective. In this problem, we are given a list 〈A1, ...,An〉 of finite
automata over a common alphabet Σ, and are asked to determine whether the intersection
of the languages L(A1), ...,L(An) is non-empty. This problem is well known to be PSPACE
complete [18]. For each constant k, let k-DFA-NEI be the restrictions of DFA-NEI where
the input consists of k DFA’s over Σ = {0, 1}. We note that this problem can be solved in
time O(nk) using the standard product construction.
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XX:2 Finite Automata Non-Emptiness of Intersection

Karakostas, Lipton, and Viglas showed that if non-emptiness of intersection for k de-
terministic finite automata (k-DFA-NEI) could be solved in time no(k), then NTIME[n] ⊆
DTIME[2δn] for every δ > 0 [16]. Additionally, they showed that such an upper bound would
imply faster algorithms for subset sum and integer factorization. Further, improving their
results, it was shown that if k-DFA-NEI could be solved in time no(k), then NL 6= P [31, 33].
The parameterized complexity of emptiness of intersection for DFA’s has also been addressed
in [17, 19, 28, 25, 11].

We focus on a reduction from simulating a nondeterministic space bounded Turing
machine to DFA-NEI. First, we fill in some gaps in the literature by showing that:

1. If we can solve k-DFA-NEI in time no(k), then NSPACE[n] ⊆ DTIME[2o(n)] [30].1
2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI in time O(nk−ε), then NSPACE[n] ⊆

DTIME[2δ·n] for some δ < 1 [1, 33].

Then, we consider unconditional space complexity lower bounds for DFA-NEI. More
specifically, we show that by treating the input for DFA-NEI as a suitably encoded
binary string of length n, DFA-NEI cannot be solved in NSPACE[o(n/ logn)]. Previ-
ously, the best known unconditional lower bound was that DFA-NEI does not belong to
NSPACE[o(n/(logn)(log logn))] [31]. In other words, we improve the best previously known
lower bound by a log logn factor. This is important because any asymptotic improvement
upon this lower bound would show unconditionally2 that DFA-NEI cannot be solved in
deterministic linear time. We note that when proving sublinear lower bounds for the space
complexity of computational problems the encoding of the input instances may affect the
lower bounds. Intuitively, the greater number of bits necessary to encode the input, the
worse are the lower bounds. In particular, the lower bound in [31] was proven with respect
to a straightforward encoding of the input automata as lists of transitions. In this work
we introduce a slightly more succinct representation for finite automata. The difficulty in
proving the new lower bound relies in showing that the main steps of the proof in [31] can be
lifted to the new encoding. We note however that this lifting is non-trivial and will require a
careful analysis of the involved steps.

Next, we show that if k-DFA-NEI can be solved in time no(k), then we obtain faster
algorithms for satisfiability of Boolean formulas and satisfiability of bounded fan-in Boolean
circuits. In particular, we show that if k-DFA-NEI can be solved in time no(k), then
satisfiability of Boolean circuits of depth O(n) and size 2o(n) can be solved in time 2o(n).
This is a consequence which is considered very unlike by complexity theorists. For instance, a
great deal of lower bounds for computational problems are proven under the exponential time
hypothesis (ETH) [14], which states that satisfiability of CNF formulas with n-inputs cannot
be solved in time 2o(n). We note that CNF formulas of polynomial size are a very weak
model of computation, which are unable for instance to compute the parity of their input bits.
On the other hand, circuits of linear depth can already simulate complicated cryptographic
primitives. Going further, we show that if there exists k ≥ 2 such that k-DFA-NEI can be
solved in time nk−ε for some ε > 0, then satisfiability of fan-in-2 n-input Boolean formulas
of sub-exponential size can be solved in time 2(1−δ)n for some δ > 0. This would contradict
the strong exponential time hypothesis (SETH) [14] under which many lower bounds in
parameterized complexity theory are based. Finally, using these results together with results
obtained within the context of William’s algorithms vs lower bounds framework [34, 35, 3, 2],

1 This work was not formally published.
2 Using the well known fact that deterministic linear time can be simulated in DSP ACE[n/ log n] [12].
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we infer that faster algorithms for k-DFA-NEI would imply non-uniform circuit lower bounds
that are much sharper than what is currently known.

We conclude our work by establishing connections between automata intersection and
hard problems in polynomial time. In particular, we show that there exists a fine-grained
reduction from triangle finding for a graph with n vertices and m edges to non-emptiness of
intersection for two DFA’s where the first DFA has m log(n) states and the second DFA has
n log(n) states. Additionally, we show that for each k, there exists a fine-grained reduction
from 3SUM for a set of n numbers in the range [−nk, nk] to non-emptiness of intersection
for three DFA’s over a binary alphabet where each DFA has at most kn log(n) states.

On the positive side, we show that emptiness of intersection for two DFA’s operating over
a unary alphabet can indeed be solved in time O(n log(n)). In other words, this problem
admits an algorithm that is much faster than the trivial O(n2) algorithm. Additionally, we
show that for every α > 2, if triangle finding can be solved in nα time, then non-emptiness
of intersection for three DFA’s over a unary alphabet can be solved in nα2 time.3 On the
opposite direction, we show that if non-emptiness of intersection for three DFA’s over a
unary alphabet can be solved in nα2 time, then triangle finding can be solved in nα time.

2 Reductions

2.1 Reducing acceptance in NSPACE[n] to DFA-NEI
We show that acceptance for nondeterministic linear space bounded Turing machines is
reducible to DFA-NEI. For any k, the reduction in Theorem 1 outputs k DFA’s each with
at most O(m2 · n2 · 2nk ) states where m denotes the number of states in the Turing machine
and n denotes the input string length.

2-tape Turing Machines: A 2-tape Turing machine with binary alphabet is a tuple
M = (Q, {0, 1}, q0, F, δ) where Q is a set of states, q0 ∈ Q is an initial state, F is a final
state, and

δ : Q× {0, 1}2 → P(Q× {−1, 0, 1}2 × {0, 1})

is a partial transition function that assigns to each triple (q, b1, b2) ∈ Q×{0, 1}2, a set of tuples
δ(q, b1, b2) ⊆ Q×{−1, 0, 1}2×{0, 1}. We say that a tuple (q, d, d′, w) ∈ Q×{−1, 0, 1}2×{0, 1}
is an instruction which sets the machine to state q, moves the input head from position p
to position p + d, the work head from position p′ to position p′ + d′, and writes bit w at
position p′ + d′ in the work head. The transition function δ specifies that if the machine M
is currently at state q, reading symbol b1 at the input tape and symbol b2 at the work tape,
then the next instruction of the machine must be an element of the set δ(q, b1, b2).

Configurations: A space-m configuration for M at input x ∈ {0, 1}∗ is a tuple

(q, h, l, y) ∈ Q× [|x|]× [m]× {0, 1}m

where intuitively, q ∈ Q is the current state of M , h ∈ [|x|] is the position of M ’s input-tape
head, l ∈ [m] is the position of M ’s work-tape head, and y ∈ {0, 1}m is the binary string
corresponding the first m bits of the work tape of M .

3 The authors would especially like the thank Joseph Swernofsky for advice and feedback that helped in
obtaining this result as well as Ronald Fagin for some early feedback and encouragement.
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Configuration Sequences: A space-m configuration sequence for M at input x ∈ {0, 1}∗
is a sequence of the form

S ≡ (q0, h0, h
′
0, y0) (q1,d1,d

′
1,r1,r

′
1,w1)−−−−−−−−−−−−→ (q1, h1, h

′
1, y1)

(q2,d2,d
′
2,r2,r

′
2,w2)−−−−−−−−−−−−→ (q2, h2, h

′
2, y2)

...
(qk,dk,d′

k,rk,r
′
k,wk)

−−−−−−−−−−−−→ (qk, hk, h′k, yk)

satisfying the following conditions.

1. For each i ∈ {0, 1, ..., k}, (qi, hi, h′i, yi) is a space-m configuration for M at input x.

2. q0 is the initial state of M , qk is a final state of M , y0 = 0m, meaning that the work
tape is initialized with zeros, and h0 = h′0 = 1, meaning that the input-tape head and
work-tape head are in the first position of their respective tapes.

3. For each i ∈ {1, ..., k}, (qi, di, d′i, wi) ∈ δ(qi−1, x[hi−1], yi−1[h′i−1]), meaning the state of
the machine at time i, the directions taken by both heads at time i, and the symbol
written at the work tape at time i are compatible with the transition function δ, and
depend only on the state at time i− 1 and on the symbols which are read at time i− 1.

4. For each i ∈ {1, ...k}, hi = hi−1 + di, h′i = h′i−1 + d′i, ri = xi[hi], r′i = yi[h′i], and yi is
obtained from yi−1 by substituting wi for the symbol yi−1[h′i−1], and by leaving all other
symbols untouched. Intuitively, this means that the configuration at time i is obtained
from the configuration at time i− 1 by the application of the transition (di, ei, qi, si).

We say that the sequence I ≡ (q1, d1, d
′
1, r1, r

′
1, w1)(q2, d2, d

′
2, r2, r

′
2, w2)...(qk, dk, d′k, rk, r′k, wk)

that induces a configuration sequence S as above is a space-m instruction sequence for M at
input x. We say that I is accepting if qk ∈ F .

I Theorem 1. Given a nondeterministic m-state 2-tape Turing machine M with binary tape
alphabet and an input string x of length n. If M uses at most n bits on the work tape, then
for every k, we can efficiently compute k DFA’s 〈A1,A2, ...,Ak〉 each with a binary alphabet
and O(m2 · n2 · 2nk ) states such that M accepts x if and only if

⋂k
i=1 L(Ai) 6= ∅.

Proof. The Turing machine M accepts x if and only if there exists an accepting space-
n instruction sequence for M at x. We build k DFA’s that read in a binary string and
collectively determine whether the string encodes an accepting space-n instruction sequence
for M at x.

Consider splitting the work tape of M into k equal sized blocks each consisting of nk work
tape cells. A block-i space-n configuration for M at input x consists of the state, input tape
head, work tape head, and the contents of the work tape from position lboundi := i · nk + 1
to position rboundi := (i+ 1) · nk . We construct k DFA’s 〈A1,A2, ...,Ak〉 where each DFA
Ai keeps track of the current block-i space-n configuration for M at input x. The DFA’s
read in space-n instructions one at a time and transition accordingly where each instruction
is encoded as a unique bit string of length O(log(m)).

The start state of DFA Ai represents the block-i space-n configuration (q0, 1, 1, 0
n
k ) where

q0 is the start state of M . Further, a state representing a block-i space-n configuration
(qj , hj , h′j , blockj) is accepting if qj is an accepting state of M . Suppose that the DFA Ai is
currently at a state representing a block-i space-n configuration (qj , hj , h′j , blockj) and reads
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in a space-n instruction (q, d, d′, r, r′, w). The DFA Ai transitions to a state representing a
block-i space-n configuration (qj+1, hj+1, h

′
j+1, blockj+1) if:

1. (q, d, d′, w) ∈ δ(qj , r, r′) and q = qj+1

2. hj+1 = hj + d and h′j+1 = h′j + d′

3. 1 ≤ hj , h′j , hj+1, h
′
j+1 ≤ n

4. r = x[hj ]

5. if lboundi ≤ h′j ≤ rboundi, then r′ = blockj [h′j − lboundi] and w = blockj+1[h′j − lboundi]

Collectively the DFA’s determine whether the input string encodes an accepting space-
n instruction sequence for M at x. Therefore, the Turing machine M accepts x if and
only if there exists an accepting space-n instruction sequence for M at x if and only if⋂k
i=1 L(Ai) 6= ∅. Further, the DFA’s each have at most O(m2 · n2 · 2nk ) states because there

are O(m) space-n instructions and O(m · n2 · 2nk ) block-i space-n configurations. J

I Corollary 2. We obtain the following directly from the preceding theorem:

1. If we can solve k-DFA-NEI in time no(k), then NSPACE[n] ⊆ DTIME[2o(n)].
2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI in time O(nk−ε), then NSPACE[n] ⊆

DTIME[2δ·n] for some δ < 1.4

2.2 Cutwidth & a binary encoding for automata
We formally define finite automata, cutwidth for finite automata, and a binary encoding for
finite automata. We use these notions in the following subsection to provide an improved
unconditional space complexity lower bound for DFA-NEI.

Let Σ be a finite set of symbols. A non-deterministic finite automaton (NFA) over Σ is a
tuple A = (Q, Σ, q0,F , ∆) where Q is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is a
set of final states, and ∆ ⊆ Q×Σ ×Q is a transition relation. We say that a word w ∈ Σ∗
is accepted by A if there exists a sequence of transitions

q0
w[1]−−→ q1

w[2]−−→ ...
w[m]−−−→ qm

such that qm ∈ F , and for each j ∈ {1, ...,m}, the transition qj−1
w[j]−−→ qj belongs to ∆.

We let L(A) be the set of all words accepted by A. We say that A is a deterministic finite
automaton (DFA) if for each pair (q, a) ∈ Q × Σ, there is at most one5 q′ ∈ Q such that
q
a−→ q′ is a transition of ∆.
Let A = (Q, Σ, q0,F , ∆) be a finite automaton. If X is a subset of Q, then we let

Cut(X) = {(q, a, q′) | q ∈ X, q′ ∈ Q\(q, a, q′) ∈ ∆} be the set of transitions with one state
in X and another state in Q\X. Let m denote the number of states in Q. Now, consider a
bijection α : [m]→ Q. The cutwidth of A with respect to α is defined as

cw(A, α) = max
j∈[m]

|Cut({α(1), α(2), ..., α(j)})|.

4 See related results in [1, 33].
5 Notice that we do not require for there to be a q′. In other words, unlike some common conventions, we
do not require for there to be a transition for every alphabet character. We omit dead states.
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The cutwidth of A is defined cw(A) = minα cw(A, α) where α ranges over all bijections from
[m] to Q. For readers familiar with the notion of cutwidth of graphs, we remark that the
cutwidth of an automaton A is simply the cutwidth of the graph induced by the transition
relation of A.

We define a binary string encoding for DFA’s. Given a DFA A with n states over an
alphabet of size c along with an indexing6 of A’s states q1, q2, ..., qm and alphabet characters
a1, a2, ..., ac. The string encoding of A includes three substrings separated by deliminators
representing the start state, list of final states, and list of transitions. The start state qi is
encoded by the index i in binary. The list of final states is encoded as a sequence of indexes
for final states in binary separated by delimiters. The list of transitions is encoded as a
sequence where each transition (qi, aj , qk) for alphabet character aj , source state qi, and
target state qk is represented by a string consisting of j and k − i in binary separated by
delimiters. The string representations of transitions are then in a sequence ordered by source
state and alphabet character. Delimiters are used to separate transitions and also to group
transitions that have the same source state.

Further, we replace each alphabet character with a binary string to convert this string
encoding into a binary string encoding. This leads to a constant factor blowing up to the
encoded string lengths. For the remainder of this work, we assume that all input DFA’s are
encoded relative to this binary encoding.

I Lemma 3. Using the preceding binary encoding, a DFA A with an alphabet of size c, m
states, and an indexing of states q1, q2, ..., qm with cutwidth w is encoded as a string of length
at most O(min{m · w · log(c), c ·m · (log(m) + log(c))} ).

Proof. We show two upper bounds on the length of the binary encoding of A. First, the
encoding has length at most O(c ·m · (log(m) + log(c))) because there are m states where
each state has at most c outgoing transitions such that each transition is encoded using
O(log(m) + log(c)) bits.

Second, we use the cutwidth to define a recurrence relation for an upper bound of the
total string length. The recurrence relation is R(1) = O(1) and

R(m) = 2 ·R(m/2) +O(w · (log(c) + log(m))).

We obtain this recurrence by partitioning the set of states into two equal size sets. Because
the cutwidth is w, there are at most w transitions between the sets which could have length
up to O(log(c) + log(m)) each. Then, within each set, the transitions can be represented
using at most R(m/2) bits. By applying elementary manipulations to the recurrence and
applying masters theorem, we get R(m) = O(m · w · log(c)). J

I Corollary 4. Using the preceding binary encoding, a DFA A with a binary alphabet, m
states, and an indexing of states q1, q2, ..., qm with bounded cutwidth is encoded as a string of
length at most O(m).

2.3 An Improved Space Lower Bound for DFA-NEI
The following theorem improves upon Theorem 7 from [31].

6 Notice that the indexing of A’s states is just a bijection from [m] to Q.
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I Theorem 5. Consider any fixed nondeterministic 2-tape Turing machine M with binary
tape alphabet. Let an input string x of length n be given. If M uses at most n bits on the
work tape, then we can efficiently compute 2 · n+ 1 DFA’s 〈A1,A2, ...,A2n+1〉 each with a
binary alphabet, O(log(n)) states, and bounded cutwidth such that M accepts x if and only if⋂2n+1
i=1 L(Ai) 6= ∅.

Proof. In a space-n instruction sequence, each space-n instruction has the form (q, d, d′, r, r′, w).
We consider an extended space-n instruction sequence where each extended space-n instruction
has the form (q, d, d′, h, h′, r, r′, w) where h, h′ ∈ [n].

The Turing machine M accepts x if and only if there exists an accepting extended space-n
instruction sequence for M at x. We build 2n+ 1 DFA’s that read in a binary string and
collectively determine whether the string encodes an accepting extended space-n instruction
sequence for M at x.

We construct 2n+ 1 DFA’s 〈A1,A2, ...,A2n+1〉 as follows. For each i ∈ [n], the DFA Ai
reads in a sequence of extended space-n instructions. On each instruction, if the instruction is
satisfactory, then the DFA cycles back to the start state. The start state is the only accepting
state. Suppose that the DFA Ai is currently at the start state and reads in an extended
space-n instruction (q, d, d′, h, h′, r, r′, w). The DFA Ai follows a sequence of transitions back
to the start state if the following are satisfied:

1. if i = hj , then h = hj+1, h = hj + dj , 1 ≤ hj , hj+1 ≤ n, and x[hj ] = r

2. if i = h′j , then h′ = h′j+1, h′ = h′j + d′j , and 1 ≤ h′j , h′j+1 ≤ n

Since (q, d, d′, h, h′, r, r′, w) can be encoded by a bit string of length O(log(n)) and we need at
most a constant number of branches from the start state back to itself in Ai’s state diagram,
there are at most O(log(n)) states and the DFA has constant cutwidth.

For each i ∈ [n], DFA An+i reads in a sequence of extended space-n instructions. On
each instruction, if the instruction is satisfactory, then the DFA cycles back to either the
0-state or the 1-state. The start state is the 0-state and both the 0-state and the 1-state
are accepting states. Suppose that the DFA An+i is currently at the bj-state for bj ∈ {0, 1}
and reads in an extended space-n instruction (q, d, d′, h, h′, r, r′, w). The DFA An+i follows
a sequence of transitions back to bj+1-state for bj+1 ∈ {0, 1} if the following is satisfied:

1. if i = h′j , then r′ = bj and w = bj+1.

Since (q, d, d′, h, h′, r, r′, w) can be encoded by a bit string of length O(log(n)) and we need at
most a constant number of branches from bj-state to bj+1-state for each pair bj , bj+1 ∈ {0, 1}
in An+i’s state diagram, there are at most O(log(n)) states and the DFA has constant
cutwidth.

The DFA A2n+1 has states that represent each (qj , hj , h′j) which is a subsequence of a
space-n configuration. The start state represents (q0, 1, 1) where q0 is a start state of M .
The accepting states represent (qj , hj , h′j) where qj is an accepting state of M . Suppose that
the DFA A2n+1 is currently at a state representing (qj , hj , h′j) and reads in an extended
space-n instruction (q, d, d′, h, h′, r, r′, w). The DFA A2n+1 transitions to a state representing
(qj+1, hj+1, h

′
j+1) if (q, d, d′, w) ∈ δ(qj , r, r′) and q = qj+1. The DFA A2n+1 has O(1) states

and cutwidth because the machine M is fixed.
Collectively the DFA’s determine whether the input string encodes an accepting extended

space-n instruction sequence for M at x. Therefore, the Turing machine M accepts x if and
only if there exists an accepting extending space-n instruction sequence for M at x if and
only if

⋂2n+1
i=1 L(Ai) 6= ∅. J

ICALP 2018
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By combining the results of Corollary 5, Theorem 6, and the nondeterministic space
hierarchy theorem [26], we obtain the following unconditional space complexity lower bound.

I Corollary 6. DFA-NEI can not be solved in space o(n/ log(n)) where n denotes the length
of the binary encoding of the input for DFA-NEI.

3 Emptiness of Intersection and Conditional Lower Bounds

In this section we apply results obtained in Theorem 1 and Corollary 2 to show that even a
slight improvement in running time of the classic algorithm for non-emptiness of intersection
of finite automata would yield faster than state of the art algorithms for satisfiability of
Boolean formulas and Boolean circuits. Further applying Williams’ algorithms vs lower
bounds framework, we are able to show that faster algorithms for non-emptiness of intersection
of finite automata implies non-uniform circuit lower bounds.

3.1 Satisfiability for Boolean Formulas
In the satisfiability problem for Boolean formulas (SAT), we are given a Boolean formula.
The goal is to determine if there exists an assignment that satisfies the formula. It is common
to restrict the inputs for SAT to formulas in conjunctive normal form (CNF-SAT). Further,
it is common to restrict the inputs for SAT to formulas in conjunctive normal form with
clause width at most k (k-CNF-SAT) for some number k.

The Exponential Time Hypothesis (ETH) asserts that for some ε > 0, 3-CNF-SAT cannot
be solved in time (1+ε)n [14]. The strong exponential time hypothesis (SETH) asserts that for
every ε > 0, there is a large enough integer k such that k-CNF-SAT cannot be solved in time
(2−ε)n [14, 15, 8]. ETH has been used to rule out the existence of subexponential algorithms
for many decision problems [14], parameterized problems [9, 21], approximation problems
[23], and counting problems [10]. On the other hand, SETH has been useful in establishing
tight lower bounds for many problems in P such as Edit Distance [4], k-Dominating
Set[24], non-emptiness of intersection for deterministic finite automata [32] and many other
problems [3, 29].

I Lemma 7. Satisfiability for n-input Boolean formulas of size s is solvable by a non-
deterministic 2-tape Turing machine with binary alphabet using at most n+O(log(s)) bits
on the work tape.7

Proof. The machine uses n tape cells to guess an assignment x ∈ {0, 1}n to the input
variables. Then, using an additional of O(log s) tape-cells, the machine evaluates8 the
Boolean formula from the input tape on the assignment from the work tape. J

By combining the reduction from Theorem 1 with the Turing machine from Lemma 7,
we obtain the following theorem.

I Theorem 8. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be solved in time
O(nk−ε), then SAT is solvable in time poly(s) · 2n(1−δ) for some δ > 0.

7 In addition, both QBF and satisfiability for n-input non-deterministic branching programs are solvable
by nondeterministic 2-tape Turing machines with binary alphabet using at most n + O(log(s)) bits on
the work tape.

8 This evaluation problem is referred to as the Boolean formula value problem (BFVP)[22, 6, 7].
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It was shown in [33] that if there exists some k ≥ 2 and ε > 0 such that k-DFA-NEI
can be solved in in time O(nk−ε), then SETH is false. The following corollary states that an
improvement in the running time of the standard algorithm for intersection of a constant
number of DFAs would indeed have much stronger consequences.

I Corollary 9. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be solved in time
O(nk−ε), then satisfiability for n-input fan-in-2 Boolean formulas of size 2o(n) can be solved
in time 2n(1−δ) for some δ > 0.

Note that while CNFs of bounded width are a very weak computational model, formulas
of sub-linear depth and sub-exponential size can already simulate any circuit in the class
NC. Therefore the consequence of Corollary 13 would contradict the NC-SETH hypothesis,
a more robust version of SETH which states that satisfiability of circuits of polynomial size
and polylogarithmic depth cannot be solved in time 2n(1−δ) for any δ > 0 [2]. In the next
subsection we show that the existence of an algorithm running in time no(k) for k-DFA-NEI
would imply faster satisfiability algorithms for even larger classes of circuits.

3.2 Satisfiability for Boolean Circuits
In the circuit value problem (CV), we are given an n-input fan-in-2 Boolean circuit C
and a string x ∈ {0, 1}n. The goal is to determine whether the circuit C(x), obtained by
initializing the input variables of C according to x, evaluates to 1. Let the size of C denote
the number of gates of C. The next lemma, which is a classic result in complexity theory [5],
states that the circuit value problem for circuits of depth d and size s can be solved in space
O(d) +O(log s) on a 2-tape Turing machine.

I Lemma 10 (Borodin [5]). There is a deterministic 2-tape Turing machine M over the
alphabet {0, 1}, that takes as input a pair 〈C, x〉 where x is a string in {0, 1}n and C is
an n-input fan-in-2 Boolean circuit of depth d and size s, and determines, using at most
O(d) +O(log s) work-tape cells, whether C(x) evaluates to 1.

In the satisfiability problem for Boolean circuits, we are given an n-input fan-in-2 Boolean
circuit C. The goal is to determine whether there exists a string x ∈ {0, 1}n such that
C(x) evaluates to 1. As a consequence of Lemma 10, we have that satisfiability for circuits
of depth d can be decided by a nondeterministic 2-tape Turing machine using at most
n+O(d) +O(log s) tape cells.

I Lemma 11. There is a nondeterministic 2-tape Turing machine M over the alphabet
{0, 1}, that takes as input an n-input fan-in-2 Boolean circuit C of depth d and size s, and
determines, using at most n+O(d) +O(log s) tape cells, whether C is satisfiable.

Combining the reduction from Theorem 1 with the preceding Lemma, we obtain the
following.

I Theorem 12. If we can solve k-DFA-NEI in time no(k), then we can solve satisfiability
for fan-in-2 Boolean circuits of size s and depth d in time poly(s) · 2o(d).

It was shown in [11, 33] that if k-DFA-NEI can be solved in time no(k) then satisfiability
of CNF formulas with n variables and polynomially-many clauses can be solved in time 2o(n).
In other words, they have shown that k-DFA-NEI in time no(k) would falsify the exponential-
time hypothesis (ETH). The next corollary strengthens substantially this consequence, by
showing that such a faster algorithm for k-DFA-NEI would indeed imply that satisfiability
of circuits of linear depth and sub-exponential size could be solved in sub-exponential time.
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I Corollary 13. If we can solve k-DFA-NEI in time no(k), then we can solve satisfiability
for fan-in-2 Boolean circuits of size s = 2o(n) and depth O(n) in time 2o(n).

3.3 Circuit Lower Bounds
Recall the following Theorems from the literature on circuit lower bounds [35, 2].

I Theorem 14 ([35, 2]). Suppose that there is a satisfiability algorithm for bounded fan-in
formulas of size nk running in O(2n/nk) time, for all constant k > 0. Then NTIME[2O(n)]
is not contained in non-uniform NC1.

Combining Theorem 8 with Theorem 15, we obtain the following.

I Theorem 15. If there exists k ≥ 2 such that k-DFA-NEI in time O(nk/ logc n) for every
constant c > 0, then NTIME[2O(n)] does not have non-uniform NC1 circuits.

In [2], it is shown that faster algorithms for Edit Distance or LCS lead to circuit lower
bounds. Within their arguments, they show something more general. They show that faster
algorithms for satisfiability of formulas of sub-exponential size imply non-uniform circuit
lower bounds. Using our reduction from formula-SAT to k-DFA-NEI provided in Theorem
8 (and Corollary 9), we obtain the following conditional lower bounds analog to Corollary 1
of [2].

I Theorem 16. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI in time O(nk−ε),
then the complexity class ENP does not have9:

1. non-uniform 2o(n)-size Boolean formulas and

2. non-uniform o(n)-depth circuits of bounded fan-in.

Furthermore, NTIME[2O(n)] is not in non-uniform NC.

Below, we show that an algorithm running in time no(k) for k-DFA-NEI would imply
non-uniform lower bounds for Boolean circuits of linear depth and sub-exponential size.

I Theorem 17 ([35], Theorem 8 of [2]). Let S(n) be a time constructible and monotone non-
decreasing function such that n ≤ S(n) ≤ 2o(n). Let C be a class of circuits. Suppose there is
an SAT algorithm for n-input circuits which are arbitrary functions of three O(S(n))-size
circuits from C, that runs in time O(2n/(n10 · S(n))). Then ENP does not have S(n)-size
circuits from C.

Note that if we take three circuits of linear depth and sub-exponential size and combine
their outputs using an arbitrary 3-bit gate, then the resulting circuit still have linear depth
and sub-exponential size. Therefore a satisfiability algorithm running in time 2o(n) for
fan-in-2 Boolean circuits of linear depth and sub-exponential size would imply that there are
functions in ENP which cannot be computed by such circuits. Note that this would be a
remarkable consequence in complexity theory since to date it is not even known whether
all functions in ENP can be computed by non-uniform circuits of linear size. In view of our
discussion, Theorem 18 below is a corollary of Theorem 17 and Corollary 13.

I Theorem 18. If k-DFA-NEI can be solved in time no(k) then ENP does not have non-
uniform circuits of depth O(n) and size 2o(n).

9 Recall that ENP is the class of functions that can be computed by Turing machines that operate in
time 2O(n) with help of an NP oracle. Note that the strings that are passed to each call of the oracle
may have size up to 2O(n).
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4 Hardness within Polynomial Time

Hardness within polynomial time has been a recent focus within fine-grained complexity
theory. Problems such as triangle finding and 3SUM have made their place as canonical hard
problems in polynomial time [3]. We connect the hardness of 2-DFA-NEI and 3-DFA-NEI
to the hardness of triangle finding and 3SUM. This further reinforces the suggestion from
[20] that 2-DFA-NEI is a hard problem in polynomial time.

4.1 Non-Emptiness of Intersection for Two DFA’s
We have seen in Sections 2 and 3 that solving 2-DFA-NEI in time faster than n2−ε would
imply that NSPACE[n] ⊆ DTIME[2δ·n] for some δ < 1, and would imply non-uniform circuit
lower bounds that are much sharper than those that are currently known. We strengthen
these results by providing a reduction from triangle finding to non-emptiness of intersection
for two DFA’s over a binary input alphabet.

I Theorem 19. There exists a fine-grained reduction from triangle finding for a graph with
n vertices and m edges to non-emptiness of intersection for two DFA’s where the first DFA
has m log(n) states and the second DFA has n log(n) states.

As a result, we get that faster algorithms for non-emptiness of intersection lead to faster
algorithms for triangle finding. For example, if we could solve the preceding non-emptiness
of intersection problem in n

3
4m

3
4 time, then we could solve triangle finding in n2.25 time

which would be better than any currently known upper bound.
Since non-emptiness of intersection for two DFA’s over a binary input alphabet is hard

and we don’t have any new approaches for solving it, we pursue a restricted version of the
problem. In particular, we restrict the DFA’s to a unary input alphabet. A DFA over a
unary alphabet has a simple structure that some may describe as a pan10 consisting of a
segment11 and a cycle. The segment is simply a sequence of states one following another in
a linear fashion. A DFA over a unary alphabet can be thought of as a disjunction of numeric
constraints where an input string is a number represented in unary that either satisfies some
constraint (i.e. is accepted by the automaton) or does not satisfy any of the constraints (i.e.
is rejected by the automaton).

Let n denote a natural number in unary that will act as a possible input for the DFA.
Let ls and lc denote the segment and cycle lengths, respectively. The final states of the DFA
represent the constraints. If the final state is along the segment at the ith position, then the
constraint is n = i − 1. If the final state is within the cycle at the jth position, then the
constraint is n ≥ ls ∧ n− ls ≡ i mod lc. Notice that all of the final states along the segment
represent constraints that are only satisfied by fixed values while all of the final states within
the cycle represent constraints on the remainder modulo the cycle length.

In general, the non-emptiness of intersection problem for DFA’s over a binary alphabet
is PSPACE-complete while the non-emptiness of intersection problem for DFA’s over a
unary alphabet is NP -complete12 [27]. This suggests that there may exist subquadratic time
algorithms for non-emptiness of intersection for two DFA’s over a unary alphabet. In fact,

10This intuition was communicated to the authors from Michael Blondin.
11The segment may be empty.
12Recently, additional fine-grained hardness results for problems related to unary finite automata were

shown in [11].
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we show that the non-emptiness of intersection problem for two DFA’s over a unary alphabet
is solvable in near linear time.

I Theorem 20. Non-Emptiness of Intersection for two DFA’s over a unary alphabet is
solvable in O(n log(n)) time.

4.2 Non-Emptiness of Intersection for Three DFA’s
Further, we consider the non-emptiness of intersection problem for three DFA’s. Following
the previous results [33, 11], it is known that a subcubic time algorithm for non-emptiness of
intersection for three DFA’s would imply that the strong exponential time hypotheses is false.
We strengthen these hardness results by providing a reduction from 3SUM to non-emptiness
of intersection for three DFA’s over a binary input alphabet.

I Theorem 21. Let a natural number k be given. There exists a fine-grained reduction from
3SUM for a set of n numbers in the range [−nk, nk] to non-emptiness of intersection for
three DFA’s over a binary alphabet where each DFA has at most kn log(n) states.

Next, we consider the non-emptiness of intersection for three DFA’s operating on a unary
alphabet. Surprisingly, we were able to exactly characterize the complexity of triangle finding.
In particular, we were able to show that the complexity of intersection non-emptiness for
three DFA’s over a unary alphabet is the square root of the complexity of triangle finding. In
other words, we show a fine-grained equivalence that precisely characterizes the relationship
between the exponents expressed in the complexities of non-emptiness of intersection for
three DFA’s over a unary alphabet and triangle finding.13

I Theorem 22. Let a real number α > 2 be given. If we can solve triangle finding in nα

time, then we can solve non-emptiness of intersection for three DFA’s over a unary alphabet
in nα2 time.

I Theorem 23. Let a real number α > 2 be given. If we can solve non-emptiness of
intersection for three DFA’s over a unary alphabet in nα2 time, then we can solve triangle
finding in nα time.
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Restatement of Theorem 19 . There exists a fine-grained reduction from triangle finding
for a graph with n vertices and m edges to non-emptiness of intersection for two DFA’s
where the first DFA has m log(n) states and the second DFA has n log(n) states.

Proof. Let a graph G with n vertices and m edges be given. We construct DFA’s D1 and
D2 over a binary input alphabet such that D1 has at most m log(n) states, D2 has at
most n log(n) states, and G contains a triangle if and only if D1 and D2 have a non-empty
intersection.

We construct D1 so that it reads in a sequence of four vertices encoded as bit strings.
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there are at most m edges in G, there are only 2m possible paths each of length at most
2 log(n). If the first two vertices form an edge in G, then the DFA remembers the second
vertex by transitioning to a state corresponding to this vertex. All of the 2m paths with this
second vertex go to the same state. Then, the DFA reads the third vertex checking if it has
an edge with the second vertex. Similarly, if such an edge does exist in G, then the DFA
transitions to a state corresponding to the third vertex. And, so on checking that the third
and fourth vertices form an edge in G.

We construct D2 so that it reads the first vertex and remembers it. Then, the DFA reads
the second and third vertices ignoring them. This requires a straight path of states of length
2 log(n). Finally, the DFA reads the fourth vertex checking that it is the same as the first
vertex. J

Restatement of Theorem 20 . Non-Emptiness of Intersection for two DFA’s over a
unary alphabet is solvable in O(n log(n)) time.

Proof. Let two DFA’s D1 and D2 over a unary alphabet be given. Consider all of the final
states of D1 and D2. If any of the final states fall on the segment of D1 or D2, we can
quickly (in linear time) check to see if any of these states represent strings that are in the
intersection. If none of them do, then we continue on.

We get the cycle length for D1’s cycle and D2’s cycle. We denote these cycle lengths by
c1 and c2, respectively. Each final state along the cycle (offsetted by the handle) represents
a remainder modulo the cycle length. Then, determining if there is a unary string in the
intersection is equivalent to determining if there is a remainder r1 computed from a final
state of D1 and a remainder r2 computed from a final state of D2 such that there exists x
satisfying x ≡ r1 mod c1 and x ≡ r2 mod c2.

Next, we compute the greatest common divisor d of c1 and c2. We go through each final
state of D1 along the cycle and compute the remainder modulo d. We create a set of all
possible remainders S1. Similarly, we create a set S2 of all possible remainders modulo d for
D2.

Finally, S1 intersect S2 is non-empty if and only if D1’s language and D2’s language have
a non-empty intersection. As a result, we can apply a standard approach for checking set
intersection. Using a RAM machine we can accomplish this in n log(n) time while it would
take n log2(n) time for a two tape Turing machine. The blow-up in time in the latter case
comes from applying merge sort which makes n log(n) comparisons that each take log(n)
time. J

Restatement of Theorem 21 . Let a natural number k be given. There exists a fine-
grained reduction from 3SUM for a set of n numbers in the range [−nk, nk] to non-emptiness
of intersection for three DFA’s over a binary alphabet where each DFA has at most kn log(n)
states.

Proof. Let a natural number k be given. Let a set of n numbers in the range [−nk, nk] be
given. We construct DFA’s D1, D2, and D3 as follows. The DFA’s will read in a binary
string that encodes three numbers, but this encoding will not be in sequence. Rather, the
binary encodings of the three numbers will be interleaved one bit at a time to make the input
string. Also, the numbers are represented in binary such that the left most bit is the least
significant bit.

The first DFA will verify that the first number (corresponding to the bit positions with
remainder 0 mod 3) is a number in the set. While the second DFA will verify that the second
number (corresponding to the bit positions with remainder 1 mod 3) is a number in the set
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and the third DFA will verify that the third number (corresponding to the bit positions with
remainder 2 mod 3) is a number in the set. Further, one of the DFA’s is designated to also
add the first two bits and check if it equals the third while carrying a remainder of 0 or 1
with it. If all three numbers are in the set and the first two numbers add up to the third
number, then there exists a three sum. Otherwise, there does not. J

Restatement of Theorem 22 . Let a real number α > 2 be given. If we can solve triangle
finding in nα time, then we can solve non-emptiness of intersection for three DFA’s over a
unary alphabet in nα2 time.

Proof. Let DFA’s over a unary alphabet D1, D2, and D3 be given. We may ignore the
DFA’s segments if we first check to make sure there is no small number in their intersection.
Next, we consider the segment lengths s1, s2, and s3 along with cycle lengths c1, c2, and c3
for DFA’s D1, D2, and D3, respectively. We compute the greatest common divisor d of c1,
c2, and c3. Let c′1 := c1

d , c
′
2 := c2

d , and c
′
3 := c3

d .
For each i ∈ [d− 1] ∪ {0}, we construct a tripartite graph Gi. Let such a natural number

i be given. The graph Gi consists of three groups of vertices of sizes g1 := gcd(c′1, c′2),
g2 := gcd(c′2, c′3), and g3 := gcd(c′3, c′1), respectively. The vertices in the first group are label
from 0 to g1 − 1. The vertices in the second group are label from 0 to g2 − 1. Similarly, the
vertices in the third group are label from 0 to g3 − 1.

Consider the edges between the first and second group of vertices of Gi. The vertices
x ∈ [g1 − 1] ∪ {0} and y ∈ [g2 − 1] ∪ {0} from the first and second groups, respectively,
are connected by an edge if there exists a final state along D2’s cycle at position l so that
l ≡ i mod d, l ≡ x mod g1, and l ≡ y mod g2.

Similarly, edges are define between the second/third groups and third/first groups. Since
gcd(g1, g2, g3) = 1, we have that g1 · g2 ≤ c′2, g2 · g3 ≤ c′3, and g3 · g1 ≤ c′1. As a result, there
are at most c′2 edges between the first and second groups, at most c′3 edges between the
second and third groups, and at most c′1 edges between the third and first groups.

We constructed graphs {Gi}i∈[d−1]∪{0} so that there exists a string in the intersection of
D1, D2, and D3 if and only if there exists i ∈ [d− 1] ∪ {0} such that Gi contains a triangle.
Now, we can iteratively go through each of the d graphs searching for triangles. For a given
graph Gi, we can apply an approach similar to fast rectangular matrix multiplication (as
described in [13]).

We proceed as follows. We pick the smallest group of vertices from Gi. Without
loss of generality, we choose the second group of vertices containing g2 vertices. Since
g2 = min(g1, g2, g3) and g1 · g2 ≤ c′2, we have that g2 ≤

√
c′2.

We reduce the triangle finding problem forGi to solving triangle finding for g1·g3
g2

2
subgraphs

each with O(g2) vertices. We do this by splitting the g1 vertices of the first group of Gi into
g1
g2

subsets each with g2 vertices and splitting the g3 vertices of the third group of Gi into g3
g2

subsets each with g2 vertices. There are g1·g3
g2

2
combinations consisting of a subset of the first

group and a subset of the third group. Each combination corresponds with a subgraph of Gi
containing roughly 3 · g2 vertices. Therefore, using the nα time algorithm for triangle finding,
we can solve triangle finding for all of these subgraphs in roughly g1 · g3 · gα−2

2 total time.
If n represents the total input size, then we have g1 · g3 ≤ c′1 ≤ n

d and g2 ≤
√
c′2 ≤

√
n
d .

Therefore, we can solve triangle finding for Gi in (nd )α2 time. Since we need to carry out this
procedure d times (once for each graph Gi), in total, the computation takes d · (nd )α2 ≤ nα2
time. J

Restatement of Theorem 23 . Let a real number α > 2 be given. If we can solve non-
emptiness of intersection for three DFA’s over a unary alphabet in n

α
2 time, then we can



M. Oliveira and M. Wehar XX:17

solve triangle finding in nα time.

Proof. Let a graph G with n vertices be given. We first choose three prime numbers p1,
p2, and p3 greater than or equal to n. We correspond each vertex in G to a number in [n].
Then, we construct three DFA’s over a unary alphabet so that they read in a number whose
remainders mod p1 · p2, p2 · p3, and p3 · p1 represent choices for the first, second, and third
edges in a possible triangle, respectively.

The DFA D1 will be a cycle of length p1 · p2 that checks if the input number’s remainder
mod p1 · p2 corresponds with an edge of G. The DFA D2 will be a cycle of length p2 · p3 that
checks if the input number’s remainder mod p2 · p3 corresponds with an edge of G. And,
similarly, the DFA D3 will be a cycle of length p3 · p1 that checks if the input number’s
remainder mod p3 · p1 corresponds with an edge of G. Then, there exists a number satisfying
all three DFA’s if and only if there exists a triangle in G. J
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