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1 Systems of polynomial equations

Let us consider a system of equations of the following form:f1(x1; x2; : : : ; xn) = 0f2(x1; x2; : : : ; xn) = 0
...fm(x1; x2; : : : ; xn) = 0

where thefi are polynomials with integer coefficients. Recall that a monomial in
the variablesxj is just an expression of the formxe11 xe22 � � �xenn , with the exponents
being positive integers (zero is considered to be positive). A polynomial with
integer coefficients in the variablesxj is a linear combination of such monomials,
with integer coefficients.

Example: x2 + ax+ b = 0:
Here, counting the solutions is easy, because we have a formula for the solutions.
If we want solutions in the real numbers, there are zero, one or two of them de-
pending on the sign of the discriminanta2 � 4b. If we want solutions in the
complex numbers, and if we count them with multiplicities, then the number of
solutions is always two.

Before we proceed to the case of more variables, I would like to say something
about equations of higher degree in just one variable. The formula for the solu-
tions of such an equation of degree two was already known to the Babylonians at
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2000 BC. Similar formulas for the solutions of equations of degree 3 and 4 were
discovered only in the 16th century. After that, a lot of timewas spent in trying to
find formulas for the equation of degree 5. Around 1830 it was shown by Galois
that such formulas do in fact not exist (the formulas should involve only addition,
subtraction, multiplication, division, powers and roots).

Another example: x2 + y2 = 1:
So here we have two variables and one equation. The set of solutions withx andy real numbers is the circle of radius one, which is clearly an infinite set. Still, we
would like to count the solutions in some useful sense. The key idea is to consider
solutions in certain finite numer systems, called finite fields.

2 Finite fields

To see whether or not anntuple (x1; : : : ; xn) of real numbers is a solution of a
system of polynomial equations, we only have to perform multiplications, addi-
tions and comparison with0. In general, a setF that is equipped with two binary
operations called sum (or addition) and product, and two distinct given elements
called zero and one, satisfying the following properties,

1. for all x, y andz in F we have(x+ y) + z = x + (y + z),
2. for all x andy in F we havey + x = x + y,

3. for all x in F we havex + 0 = x,

4. for all x in F there exists ay in F such thatx + y = 0,

5. for all x, y andz in F we have(xy)z = x(yz),
6. for all x andy in F we haveyx = xy,

7. for all x in F we havex�1 = x,

8. for all non-zerox in F there exists ay in F such thatxy = 1,

9. for all x, y andz in F we havex(y + z) = xy + xz,
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is called a field. The elementsy in properties (4) and (8) are automatically unique,
and denoted�x and1=x or x�1, respectively. The sets of real and complex num-
bers, with their usual operations, are clearly fields. Another example of a field is
given by the rational numbers. Yet other examples are given by rational functions
and meromorphic functions. But there are also other examples, of a completely
different type. For example, note that the only elements mentioned explicitly in
the list of properties are0 and1. In fact, there are unique operations on the two
element setf0; 1g that make it into a field: one has to put1 + 1 = 0. This field,
denotedF2 , is quite useful in combinatorics. One gets other examples of finite
fields as follows. For any integern � 2, one can define a sum and product on the
setf0; 1; : : : ; n�1g by taking the remainder of the usual sum and product when
divided byn. Another way to say this is that one writes integers in basen and
considers only the last digit. A familiar example of this is the casen = 12, when
one calculates with hours (5 hours after 8 o’clock it is 1 o’clock). Forn = 2 we
get our fieldF2 . It is not hard to show that for an arbitraryn all properties for this
set with these operations to be a field are satisfied, except possibly property (8).
It turns out that that last property is satisfied if and only ifn is a prime number
(for example, forn = 4 the element2 has no inverse). So for each prime numberp we have constructed a finite fieldFp of p elements. The classification of finite
fields says the following: the number of elements of a finite field is a power of a
prime number, for each power of a prime number there exists a finite field with
that number of elements, and two such fields are “isomorphic”. (Two fields are
said to be isomorphic if one can pair their elements in a way that respects the sums
and products.) The field withpr elements will be denotedFpr . Let us describe,
for example, the fieldF4 . Its four elements are0, 1, z and1 + z. The addition is
determined by:1 + 1 = 0 andz + z = 0. The multiplication is determined by:z2 = 1 + z. The fieldF9 can be obtained by adjoining a square root of�1 to F3 .
Note the similarity with the construction of the complex numbers from the real
numbers.

A positive integern can be written as a sum1 + 1 + � � �+ 1, hence it defines,
in any field, an element that we will still denote byn. Likewise, a negative integer
can be written as a sum of�1’s, hence also makes sense in any field. One has
to be a little bit careful in doing this; for example, inFpr one hasp = 0. We
are now ready to count the solutions of a systemS of polynomial equations with
integer coefficients as in the beginning of this talk. For each prime numberp and
each integerr � 1 we defineNS(p; r) to be the number of solutions ofS in the
field Fpr . The next step is to combine these numbersNS(p; r), for fixed S and
varyingp andr, into a suitable generating function.

3



3 The zeta function of a system of equations

Let us consider the famous Riemann zeta function:�(s) =Xn�1 1ns =Yp 11� 1ps ;
with the product taken over all prime numbers. This definition makes sense for
real numberss > 1, and, more generally, for complex numberss with real part
greater than 1. Riemann’s zeta function extends to an analytic function on the
complex plane with1 removed (at1, it has a pole of order one). This continuation
satisfies a simple functional equation, relating�(s) and�(1�s). A very important
question, posed by Riemann, is whether all zeroes of this continuation that have
real part between0 and1 have real part exactly1=2. This question is very impor-
tant in our understanding of the regularity of the distribution of prime numbers.
Because the answer is not known at this moment, a lot of analytic number theory
is done in two versions: one assuming that the answer is yes, and one assuming
that it is no.

We are going to define, for each system of equationsS as above, a function�S(s), defined for complex numberss with sufficiently big real part, such that
Riemann’s zeta function is the function associated to the systemx = 0. So here is
the definition: �S(s) = exp Xp;r NS(p; r)r p�rs! :
It is easy to see that the sum in the definition converges when the real part ofs is
greater than one plus the number of variables inS. Using the fact that we have
the following power series expansion:� log(1� x) = x+ x22 + x33 + � � � ;
one sees that�S is Riemann’s zeta function if (and, in fact, only if)NS(p; r) = 1
for all p andr. The function�S contains very important properties of the system
of equationsS. It is expected that every�S has a meromorphic continuation to the
whole complex plane, with poles at prescribed places, and that certain identities,
called functional equations, are satisfied among these continuations. At this mo-
ment there are a lot of conjectures concerning the values of these zeta functions
at integers, but little is known about these values in general; in certain cases they
are expected to give information on the solutions ofS in the rational numbers.
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The fact that a meromorphic continuation exists and that thefunctional equations
are satisied in the one variable case was proved about 80 years ago. Spectacular
progress was made a few years ago by Wiles, who proved the continuations to
exist and the functional equations to hold for almost all systems of the form:y2 = x3 + ax + b:
In this case, the problem was known as the Shimura-Taniyama-Weil conjecture.
Of course, in the newspapers it was mentioned only that Wileshad proved Fer-
mat’s Last Theorem, since it was known to be implied by the Shimura-Taniyama-
Weil conjecture, but the real result is the significant progress made in understand-
ing zeta functions.

4 Geometry

The definition of the zeta function associated to a system of equationsS implies
immediately that we have the following factorization:�S(s) =Yp �S;p(s);
where the product runs over all prime numbers, and the�S;p are defined by:�S;p(s) = exp Xr�1 NS(p; r)r p�rs! :
The functions�S;p have a nice geometrical interpretation. So let us now fix a prime
numberp, and consider the function�S;p. The geometrical object in question will
be the setXS;p of solutions ofS in a fieldFp1 that is somehow the union of all
theFpr . This setXS;p comes with a map to itself, such that the solutions ofS in
the fieldFpr is the set of fixed points of therth iterate of that map. Let me describe
these things in at least some detail.

The fieldFp1 , called an algebraic closure ofFp , is obtained by adjoining toFp all the roots of all polynomials in one variable with integercoefficients. In the
field Fp1 we havep = 0. This simple identity has the following consequence:

let x and y be elements of a field in whichp = 0; then one has(x+ y)p = xp + yp.
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To prove this result, one remarks that for1 � i � p�1 the binomial coefficient�pi� = p!=i!(p�i)! is divisible byp. For an integera, considered as an element of
a field in whichp = 0, we find:ap = (1 + 1 + � � �+ 1)p = (1p + 1p + � � �+ 1p) = a;
which is known as Fermat’s little theorem. (This identity gives us an efficient
way to prove that a number is composite. For givena andn, with 0 � a � n,
to compute the remainder ofan upon division byn takes at most about3 log(n)
multiplications of integers between0 andn and the same number of elementary
divisions byn of integers between0 andn2. This explains that there are lots of
numbers that are known to be not prime, but of which no factorization is known.)
Let nowr � 1 be an integer, and let us consider the set of solutions inFp1 of the
equationxpr = x. It is clear that the set of solutions is closed under multiplication.
The identity(x+ y)p = xp + yp above shows that it is closed under addition, too.
It is therefore not a big surprise that we have:Fpr is the set ofx in Fp1 satisfyingxpr = x.

Let us now consider again the setXS;p of solutions ofS in Fp1 . Suppose that(x1; : : : ; xn) is inXS;p. Then we have, for1 � i � m:fi(xp1; xp2; : : : ; xpn) = (fi(x1; x2; : : : ; xn))p = 0;
which shows that(xp1; xp2; : : : ; xpn) is in XS;p. It follows then that we have a mapf from XS;p to itself, that sends(x1; x2; : : : ; xn) to (xp1; xp2; : : : ; xpn), and thatNS(p; r) is the number of fixed pointsf r, therth iteration off .

Now there is a formalism, invented in the beginning of this century by Lef-
schetz, to count fixed points. It says that to a set such asXS;p one should (try to)
associate a finite dimensional vector space, called a cohomology space, in such a
way that a map likef induces a linear map from this vector space to itself, such
that the trace of that map is the number of fixed points off . (The linear map is
given by a square matrix, the trace of it is the sum of its diagonal coefficients.
There is in fact a technical condition: the fixed points should not be degenerate.)

In ordinary calculus in say three variables, such vector spaces represent ob-
structions against vector fields with zero curl to be gradients of functions, against
vector fields with zero divergence to be curls of vector fields, and against functions
being the divergence of a vector field.

A famous result obtained in this way, that was in fact the origin of the whole
theory, is Brouwer’s fixed point theorem:
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Every continuous map from the unit diskf(x; y) j x2+ y2 � 1g in R2
to itself has at least one fixed point.

In the end of the 40’s André Weil started to investigate systematically what the
consequences would be for functions such as�S;p if Lefschetz’s formalism would
work in the setting of algebraic geometry over finite fields. He showed that the�S;p would in fact be rational functions in the variablep�s, i.e., that there would be
polynomialsP andQ in one variable and with integer coefficients, depending onS
andp, such that�S;p(s) = P (p�s)=Q(p�s). Weil also conjectured properties ofP
andQ, such as their degrees and the absolute values of their roots, in geometrical
terms, and he proved these conjectures in some cases. BeforeGrothendieck, in the
end of the 50’s, however, nobody knew how to construct the cohomology spaces
for this. In the 60’s, Grothendieck and his school carried out Grothendieck’s ideas
and proved most of Weil’s conjectures. The last of Weil’s conjectures was proved
by Deligne in 1974. These results have since then had many applications. For ex-
ample, one can count solutions over finite fields in order to get information such as
the dimension of the cohomology spaces. One gets good estimates for trigonomet-
ric sums. There are relations with error correcting codes and other combinatorics.
There has been an important feedback to complex algebraic geometry.

But the story is not finished. As I have already said, we know little about the
product�S of all the�S;p. Just a few months ago, Alain Connes (who was a Miller
visiting professor some years ago, I think) seems to be making progress in the
direction of a geometrical interpretation of zeta functions in the one variable case.
The geometry is what he calls “non-commutative”, and the cohomology spaces
are infinite dimensional Hilbert spaces. Anyway, Connes hasreduced the proof
of the Riemann Hypothesis to proving a certain trace formulain a geometrical
setting that is more general than the one where it is known at this moment.
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