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1 Systems of polynomial equations
Let us consider a system of equations of the following form:

fl(ZL'l,LL’Q, . ,ZL‘n) =0

fg(l'l,x‘g, Ce ,l‘n) =0

fm(z1, 20, ... 2,) =0

where thef; are polynomials with integer coefficients. Recall that a oraral in
the variables;; is just an expression of the formj' x5 - - - x¢», with the exponents
being positive integers (zero is considered to be positive)polynomial with
integer coefficients in the variables is a linear combination of such monomials,
with integer coefficients.
Example:
2 +ax+b=0.

Here, counting the solutions is easy, because we have a ffonthe solutions.
If we want solutions in the real numbers, there are zero, orte/o of them de-
pending on the sign of the discriminamt — 4b. If we want solutions in the
complex numbers, and if we count them with multiplicitidsen the number of
solutions is always two.

Before we proceed to the case of more variables, | would tkgal something
about equations of higher degree in just one variable. Thadta for the solu-
tions of such an equation of degree two was already knowrgt@tbylonians at
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2000 BC. Similar formulas for the solutions of equations efjeee 3 and 4 were
discovered only in the 16th century. After that, a lot of tim&s spent in trying to
find formulas for the equation of degree 5. Around 1830 it wasn by Galois
that such formulas do in fact not exist (the formulas shomaive only addition,
subtraction, multiplication, division, powers and roots)
Another example:
4yt =1.

So here we have two variables and one equation. The set dis@wvithz and
y real numbers is the circle of radius one, which is clearlyrdimite set. Still, we
would like to count the solutions in some useful sense. Tlyades is to consider
solutions in certain finite numer systems, called finite feld

2 Finite fields

To see whether or not amtuple (x4, ..., z,) of real numbers is a solution of a
system of polynomial equations, we only have to perform iplitations, addi-
tions and comparison witt. In general, a sekf’ that is equipped with two binary
operations called sum (or addition) and product, and twbrdisgiven elements
called zero and one, satisfying the following properties,

1. forallz, y andz in F we have(z +y) + 2z =z + (y + 2),
for all z andy in F'we havey + = = = + y,

forallz in " we haver + 0 = z,

for all z in F' there exists g in F' such thatr + y = 0,

for all z, y andz in F we have(zy)z = z(yz),

for all x andy in F' we haveyz = xy,

forallz in F' we haver-1 = «,

for all non-zerar in F there exists g in F' such thaty = 1,
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forallz, y andz in F we haver(y + z) = xzy + xz,



is called a field. The elemengdn properties (4) and (8) are automatically unique,
and denoted-z and1/z or z 7', respectively. The sets of real and complex num-
bers, with their usual operations, are clearly fields. Aeo#txample of a field is
given by the rational numbers. Yet other examples are giyenational functions
and meromorphic functions. But there are also other exasnpliea completely
different type. For example, note that the only elementstiaead explicitly in
the list of properties aré and1. In fact, there are unique operations on the two
element se{0, 1} that make it into a field: one has to put- 1 = 0. This field,
denotedF,, is quite useful in combinatorics. One gets other exampldsite
fields as follows. For any integer > 2, one can define a sum and product on the
set{0,1,...,n—1} by taking the remainder of the usual sum and product when
divided byn. Another way to say this is that one writes integers in basend
considers only the last digit. A familiar example of thishetcase: = 12, when
one calculates with hours (5 hours after 8 o’clock it is 1 odK). Forn = 2 we
get our fieldF;. It is not hard to show that for an arbitraryall properties for this
set with these operations to be a field are satisfied, exceysilgy property (8).
It turns out that that last property is satisfied if and only.ifs a prime number
(for example, fom = 4 the elemen® has no inverse). So for each prime number
p we have constructed a finite fielt) of p elements. The classification of finite
fields says the following: the number of elements of a finitklfie a power of a
prime number, for each power of a prime number there existsig fiield with
that number of elements, and two such fields are “isomorph(i€ho fields are
said to be isomorphic if one can pair their elements in a wayréspects the sums
and products.) The field with” elements will be denotesl,-. Let us describe,
for example, the field,. Its four elements are, 1, z and1 + z. The addition is
determined byl + 1 = 0 andz + z = 0. The multiplication is determined by:
22 =1 + 2. The fieldF, can be obtained by adjoining a square root-afto I;.
Note the similarity with the construction of the complex rugns from the real
numbers.

A positive integem can be written as a suin+ 1 + - - - + 1, hence it defines,
in any field, an element that we will still denote hyLikewise, a negative integer
can be written as a sum efl’s, hence also makes sense in any field. One has
to be a little bit careful in doing this; for example, ¥)- one hasp = 0. We
are now ready to count the solutions of a systewf polynomial equations with
integer coefficients as in the beginning of this talk. Formepime numbep and
each integer > 1 we defineNs(p, r) to be the number of solutions ¢f in the
field F,». The next step is to combine these numh&gp, r), for fixed S and
varyingp andr, into a suitable generating function.
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3 The zeta function of a system of equations

Let us consider the famous Riemann zeta function:

1 1
g(S) = Z E = H 1—T7
n>1 P P

with the product taken over all prime numbers. This defimtinakes sense for
real numbers; > 1, and, more generally, for complex numbersith real part
greater than 1. Riemann’s zeta function extends to an aodlyiction on the
complex plane with removed (at, it has a pole of order one). This continuation
satisfies a simple functional equation, relatirtg) and( (1 —s). A very important
guestion, posed by Riemann, is whether all zeroes of thiragation that have
real part betweefi and1 have real part exactly/2. This question is very impor-
tant in our understanding of the regularity of the distribatof prime numbers.
Because the answer is not known at this moment, a lot of doalytber theory
is done in two versions: one assuming that the answer is yelspae assuming
that it is no.

We are going to define, for each system of equatiSres above, a function
(s(s), defined for complex numberswith sufficiently big real part, such that
Riemann’s zeta function is the function associated to tseesyr = 0. So here is

the definition:
_ Ns@,1) s
Cs(s) = exp (Z P ) :

p,r
It is easy to see that the sum in the definition converges wieneal part of is
greater than one plus the number of variables'inUsing the fact that we have
the following power series expansion:

ZL‘2 1‘3
log(l—z)=a+ 5 + 3 +---,

one sees thajs is Riemann’s zeta function if (and, in fact, only ifjs(p,r) = 1
for all p andr. The function(s contains very important properties of the system
of equationsS. It is expected that everly has a meromorphic continuation to the
whole complex plane, with poles at prescribed places, aatcdrtain identities,
called functional equations, are satisfied among thesem@iions. At this mo-
ment there are a lot of conjectures concerning the valuekeasfet zeta functions
at integers, but little is known about these values in gdneraertain cases they
are expected to give information on the solutionsSoin the rational numbers.
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The fact that a meromorphic continuation exists and thafuithetional equations
are satisied in the one variable case was proved about 88 ggar Spectacular
progress was made a few years ago by Wiles, who proved thénoatibns to
exist and the functional equations to hold for almost altsys of the form:

y* = 2® +ax +b.

In this case, the problem was known as the Shimura-TaniyAlgibeonjecture.
Of course, in the newspapers it was mentioned only that Wiéeks proved Fer-
mat’s Last Theorem, since it was known to be implied by thertsina- Taniyama-
Weil conjecture, but the real result is the significant pesgrmade in understand-
ing zeta functions.

4 Geometry

The definition of the zeta function associated to a systengoagonssS implies
immediately that we have the following factorization:

Cs(s) = [ [ ¢snl9),

where the product runs over all prime numbers, and theare defined by:

Csp(s) = exp (Z LS(;D’ T)p_”) .

r>1

The functiongs , have a nice geometrical interpretation. So let us now fix@eri
numberp, and consider the functiofy ,. The geometrical object in question will
be the setXs, of solutions ofS' in a fieldF,~ that is somehow the union of all
theF,.. This setXg, comes with a map to itself, such that the solutions of
the fieldF,- is the set of fixed points of theh iterate of that map. Let me describe
these things in at least some detalil.

The fieldF,~, called an algebraic closure &}, is obtained by adjoining to
[, all the roots of all polynomials in one variable with integeefficients. In the
field F,~ we havep = 0. This simple identity has the following consequence:

let z andy be elements of a field in which = 0; then one has
(. +y)P =aP +yP.



To prove this result, one remarks that for< 7 < p—1 the binomial coefficient
(i.’) = p!/i!(p—i)!is divisible byp. For an integer, considered as an element of
a field in whichp = 0, we find:

A =1+1+-+1)P=1"+1"+---+17) = q,

which is known as Fermat’s little theorem. (This identityeg us an efficient
way to prove that a number is composite. For giveandn, with 0 < a < n,

to compute the remainder af upon division byn takes at most aboutlog(n)
multiplications of integers betwedhandn and the same number of elementary
divisions byn of integers betweefi andn?. This explains that there are lots of
numbers that are known to be not prime, but of which no fazé&dion is known.)
Let nowr > 1 be an integer, and let us consider the set of solutiof%.inof the
equation?” = z. Itis clear that the set of solutions is closed under muttalon.
The identity(z + y)? = 2 + y? above shows that it is closed under addition, too.
It is therefore not a big surprise that we have:

F,- is the set ofr in F,~ satisfyingz?" = z.

Let us now consider again the s&k, of solutions ofS in [F,~. Suppose that

(z1,...,2,) i8N Xg,. Then we have, fot < i < m:

fi(le)axga s ,[L‘g) = (fi(xlax% s axn))p - 07
which shows thafz?, 5, ..., 22) is in Xg,. It follows then that we have a map
f from Xg, to itself, that sendszi,zs,...,x,) to (z7,25,...,2%), and that

Ns(p,r) is the number of fixed pointg”, therth iteration off.

Now there is a formalism, invented in the beginning of thiatoey by Lef-
schetz, to count fixed points. It says that to a set suckigsone should (try to)
associate a finite dimensional vector space, called a cologyspace, in such a
way that a map likef induces a linear map from this vector space to itself, such
that the trace of that map is the number of fixed pointg.of The linear map is
given by a square matrix, the trace of it is the sum of its dimegaoefficients.
There is in fact a technical condition: the fixed points sdodt be degenerate.)

In ordinary calculus in say three variables, such vectocepaepresent ob-
structions against vector fields with zero curl to be gradie functions, against
vector fields with zero divergence to be curls of vector fieldsl against functions
being the divergence of a vector field.

A famous result obtained in this way, that was in fact theiaraf the whole
theory, is Brouwer’s fixed point theorem:
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Every continuous map from the unit digkz, y) | 2% +y? < 1} in R?
to itself has at least one fixed point.

In the end of the 40’s André Weil started to investigate eysdtically what the
consequences would be for functions sucldgsif Lefschetz’s formalism would
work in the setting of algebraic geometry over finite fieldse showed that the
(s, Would in fact be rational functions in the variable®, i.e., that there would be
polynomialsP and( in one variable and with integer coefficients, dependingon
andp, such thats,(s) = P(p~*)/Q(p~*). Weil also conjectured properties &f
and(), such as their degrees and the absolute values of their, in@sometrical
terms, and he proved these conjectures in some cases. Befutteendieck, in the
end of the 50’s, however, nobody knew how to construct theoaiogy spaces
for this. In the 60’s, Grothendieck and his school carrieti@wthendieck’s ideas
and proved most of Weil's conjectures. The last of Weil'sjeatures was proved
by Deligne in 1974. These results have since then had marigcappns. For ex-
ample, one can count solutions over finite fields in order targermation such as
the dimension of the cohomology spaces. One gets good estifiea trigonomet-
ric sums. There are relations with error correcting codesa@her combinatorics.
There has been an important feedback to complex algebrainefey.

But the story is not finished. As | have already said, we knatlelabout the
product(s of all the(s,. Just a few months ago, Alain Connes (who was a Miller
visiting professor some years ago, | think) seems to be ngafingress in the
direction of a geometrical interpretation of zeta funci@gmthe one variable case.
The geometry is what he calls “non-commutative”, and theocoblogy spaces
are infinite dimensional Hilbert spaces. Anyway, Connesrbdsiced the proof
of the Riemann Hypothesis to proving a certain trace formmla geometrical
setting that is more general than the one where it is knowissthoment.



