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Abstract

This note strengthens and simplifies Lutz’s resource-bounded ver-
sion of the Borel-Cantelli lemma for density systems and martingales.
We observe that the technique can be used to construct martingales
that are “additively honest,” and also martingales that are “multi-
plicatively honest.” We use this to improve the “Weak Stochasticity
Theorem” of Lutz and Mayordomo: their result does not address the
issue of how rapidly the bias away from 1/2 converges toward zero
in a “stochastic” language, while we show that the bias must vanish
exponentially.

1 Introduction

Lutz [15] developed a resource-bounded version of the classical first Borel-
Cantelli lemma. Lutz’s formulation, and its subsequent use in [16, 17, 19, 21],
is in terms of the “density systems” that he originally used to define his
resource-bounded measure theory in [15]. The above-cited papers all note
the equivalent formulation of the measure theory in terms of martingales,
along lines pioneered for complexity theory by Schnorr [27, 28, 29], and full
details of the equivalence may be found in the first chapter of the dissertation
by Mayordomo [21].

This note presents a martingale version of Lutz’s lemma that is consid-
erably simpler and easier to apply than the original. It is also stronger in
several respects: it establishes significant “honesty” properties of the mar-
tingales that are constructed, and it replaces Lutz’s condition that certain
sequences have “polynomially bounded modulus of convergence” by the sim-
pler condition that values of the “payoff sequence” used in the lemma can
be written down (or approximated) in polynomial time. Our second proof of
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one direction of the lemma, which avoids the need to compute partial sums
of the payoff sequence in building the “multiplicatively honest” martingale,
appears to be new.

In the second part of this paper, we apply our lemma to establish a
stronger form of the “Weak Stochasticity Theorem” of Lutz and Mayordomo
[17, 19]. Informally speaking, Lutz and Mayordomo defined a language L C
¥* to be “weakly stochastic” over a (uniform or nonuniform) complexity class
C if for every C-bounded recognizer R, the limit as n — oo of the proportion
of strings x € X" on which R correctly decides whether = € L converges
to 1/2. Their definitions, theorem, and proof do not address the question
of the speed of the convergence to 1/2, and in particular whether the bias
away from 1/2 is negligible or not. Negligible bias, meaning that for every
polynomial p(n) the bias multiplied by p(n) still converges to zero, is an
important concept in the study of pseudorandom generators and one-way
functions (see [13, 11, 12, 24, 25]). We show, in fact, that for a measure-one
class of languages L € E, not only is L weakly stochastic over the same
nonuniform classes as in [17, 19], but also the bias vanishes as 1/2%", where
a can be chosen as any constant less than 1/2.

Section 2 defines the needed concepts from resource-bounded measure
theory, and defines our notions of “additively honest” and “multiplicatively
honest” for martingales. Section 3 and Section 4 present our main theorems.
Section 5 discusses possible further applications of our results.

2 Definitions

The notation and conventions we use are essentially standard. All languages

and functions are assumed to be defined over the finite alphabet ¥ = {0,1}.
The empty string is denoted by A. The relation w C x means that strong
w is a prefix of string z. We identify a language A with its characteristic
function x4. Using the standard lexigraphic ordering of ¥*, we also regard
Xa as a member of the set {0,1}* of infinite binary strings. Then w C A
abbreviates w C x4, and we call w a characteristic prefiz of A. For any 0-1
string w, the cylinder C,, is defined to be the class of languages A such that
w C A. (Note that C,, is uncountable.)

For all n > 0 we also identify A=" with the segment wu,, of x4 of length
2™ that represents the membership or nonmembership in A of all strings
of length n, and likewise identify AS™ with wugu; - - -u,. Note that each u,
belongs to the set F), of Boolean functions on {0, 1}".

We use the same notation for language and function classes when the
context is clear. Among complexity classes whose notations differ between
sources, we write QP for DTIME[2PY°8"] (this is often called quasipoly-
nomial time), B for DTIME[2°()], and EXP for the class DTIME[2PV (™).
P/poly denotes the class of languages accepted by some family of polyno-
mial size circuits. Given a language A and bounds ¢(n), u(n), if there is a



deterministic Turing machine M and a sequence o = (ag, a1, ..., Qp, ... ) of
“advice strings,” each «,, of length at most u(n), such that for all n and
x € {0,1}", M on input x#«q,, correctly decides whether x € L within ¢(n)
steps, then we say L is acceptable in time t(n) and advice u(n), and write
A € DTIME[t(n)]/ADV[u(n)]. Then P/poly is the same as the class of
languages acceptable in polynomial time with polynomial advice. For more
details about these and related complexity classes, see [8].

All logarithms in this paper are to the base 2. For readability we often
write N for 2". Then the cardinality of {0,1}" is N, and that of F}, is 2%.
In probability terms of the form Pr,cg|...], it is assumed that z is selected
under the uniform distribution on the set S.

2.1 Resource-bounded measure

Lutz’s resource-bounded measure theory is patterned along the lines of clas-
sical measure theory (see [22, 9, 23]). Complexity classes correspond to point
sets in the topological space whose basic open sets are the cylinders C,,. The
general form of Lutz’s theory, expounded recently by Mayordomo [21], de-
fines conditions for a class C to be measurable by a function class A, and to
have measure e, written pua(C) = e, where 0 < e < 1. The restriction to A
removes the problem that uniform complexity classes are countable, and in
classical measure theory, all countable point sets have measure zero. Since
all complexity classes we discuss are closed under finite variations, and by
a form of the Kolmogorov zero-one law proved in [21] have measure zero or
one, we need only discuss conditions for classes to have measure zero.

The A-measures of Lutz were originally defined in terms of “density sys-
tems” [15], but subsequent papers mentioned above give equivalent formu-
lations in terms of “martingales.” Here, a martingale is a function d from
{0,1}* into the nonnegative reals that satisfies the following “exact average
law”: for all w € {0,1}*,

d(w0) + d(w1)

d(w) = S S (1)

(See Lutz [15, 16] and references therein.) Let I stand for the nonnegative
dyadic rationals; i.e., those numbers of the form n/2" for integers n,r > 0.

Definition 1 (compare [15, 21]) Let A be a complezity class of functions.
A class C of languages is A-measurable and has A-measure zero, written
ua(C) = 0, if there is a martingale d : {0,1}* — I computable in A such
that C C S*°[d], where

S*ld) = {A: E@% d(w) = 400} (2)

One also says that C is A-null if ua(C) = 0. In general, we say that d
succeeds on A if A € S*®[d]. Put another way, the success class S*[d] is the
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class of languages A that satisfy
(VK > 0)(3N > 0)(Vw C A)[|lw| > N = d(w) > K]. (3)

Intuitively, the martingale d is a “betting strategy” that starts with a cap-
ital sum d(A) > 0 and makes infinite profit along the characteristic prefixes of
every A € S*[d]. By (1), for all w € {0,1}*, |d(wl) —d(w)| = |d(w0) —d(w)|,
and this represents the amount b(w) “bet” on the membership of the string =
indexed by the bit a in wa. Here b(w) = 0 is allowed, but usually we will have
b(w) > 0. If z € A and d(wl) = d(w) + b(w), then the wagerer successfully
“bet” on x belonging to A, while if d(wl) = d(w) — b(w) then the wagerer
along A figuratively bet wrong on the zth round. If z ¢ A then the wagerer
along A “predicted” x’s membership correctly iff d(w0) = d(w) + b(w).

Given a language class D whose structure we wish to investigate, there
are rules for selecting an appropriate function class A to define a measure on
D. Let D be defined by a collection F of resource bounds such that

For all r € F, the function 7’ defined by r'(n) = (r(n))? is also in F. (4)

Then A(D) is the class of functions defined by corresponding resource bounds
of the form r(logn) for r € F. For example, we have:

D=F, A =P,
D = EXP, A = QP.

Lutz writes 1(C|D) = 0 if pap)(C ND) = 0, saying that C has measure zero
in D. This is an intuitive and technically interesting way of saying that C
(or CND) is “small” as a subclass of D. Likewise, C is said to have measure
one, in D, if y(D\C | D) =0.

Mayordomo [21] gives a full demonstration that the martingale definition
of “A-measure zero” given above is equivalent to the original one, so long as
(4) holds and A contains P. She showed that the definition is robust under
several changes, most notably: replacing the limit in (2) by a lim-sup, and
replacing (1) by the “inexact average law”

d(w) = d(w0) —;— d(wl). (5)

One can also show that for every A-martingale d, there is another A-
martingale d’ such that S®[d'] = S*°[d] and d’ has no zero values. (Measures
defined on classes D smaller than E are not so robust, and we refer the reader
to Allender and Strauss [1, 2] for a full treatment." )

In a personal communication, 12/94, the second author of [2] reports that our results
in Section 3 carry over to their measures on P.



2.2 Honest martingales

To connect our concept to standard notions of “honesty” in complexity the-
ory, we redefine the above formalism so that bounds are expressed in terms
of n rather than N. The new formalism is essentially the same as that for
“holographic proofs” in [7, 5, 4, 30, 6], with w playing the role of the “proof.”
Namely, define a query machine M to have a standard TM input tape, any
number of standard worktapes, and a query tape that provides “random-
access” to bits of a string w given as an auxiliary input. M is given as input
the length N of w in standard dyadic notation, and is allowed to write in-
tegers ¢« < N on its query tape, receiving in answer the bit w;. The string
N is the same as the string xy whose membership or non-membership in
languages with initial segment w is indexed by the last bit of w. Recall the
discussion of “betting strategies” in Section 2.1. For all w, let n,, stand for
the length of the string indexed by the bit ¢ in we; i.e., n, = |log,(Jw|+1)].
(In the following, we assume, without loss of generality by above remarks,
that d(w) is always nonzero.)

Definition 2 Given a martingale d : {0,1}* — R*, call the function b(w) :=
d(wl) — d(w) the associated betting strategy, and call the function b'(w) =
b(w)/d(w) the associated proportional betting strategy.

(a) The martingale d is additively honest if the function b(w) is computable
by a query machine that on input N = |w|+1l queries only those parts
of w that index strings of length n.,,.

(b) The martingale d is multiplicatively honest if the property in (a) is true
of the function b/ (w) instead.

Recall that we pictured a query machine computing d(w) as receiving input
N, but a machine M computing b(w), which is trying to predict the result
of the next string after those indexed by w, receives input N+1. Thus the
honesty restriction is that M may only write down bit-probe addresses of
the same length as N+1. Since these addresses must also be < N it follows
in particular that when |w| = 2" — 1, meaning that w has just completed
segment n—1 of a language L, the query machine must select the amount
b(w) [respectively, the proportion b'(w) of whatever the current capital is] to
bet on ‘0" € L’ without querying any bits of w at all. Note also that b(w)
and b'(w) are signed quantities; a negative bet on, say, ‘0" € L’ is the same as
a positive bet on ‘0™ ¢ L.” One can relax the restriction, expressed in terms
of n, to accord with familiar notions of “linearly honest” and “polynomially
honest,” but the strong length-n-only restriction suffices for our purposes.



3 An improved Borel-Cantelli lemma for
martingales

For sake of intuition, consider a betting game played in countably many
rounds 7 = 1,2,3,... against a Leprechaun. 2 The Leprechaun fixes in
advance, for all r, the factor k. > 1 by which he will multiply the player’s
bet b, if the player is Lucky in round r. The Leprechaun promises that the
player will be Lucky infinitely often, but he can postpone any individual
stroke of luck as long as he likes. Specifically, in each round r the player
first selects an amount b, up to her current capital C,_;. The Leprechaun
looks at the player’s bet and then decides whether the player wins or loses.*
If he says “Lose!” then C, = C,_y — b,. If he says “Lucky day!” then
Cr=Cry = by + k- by

The question is: Given the sequence [k,]32,, can one devise a “betting
strategy” B that will assure infinite gain over the initial capital Cy > 0, no
matter what the Leprechaun does? In our applications:

e “Round r” will correspond to a batched series of bets on {0, 1}" (so we
will have r = n).

e The promise is that for each language L in the Leprechaun’s class, there
is a feasible TM that takes a small amount of advice, and which, for
infinitely many n, predicts L=" reasonably well.

e The multiplier k£, = k, that comes into play when the TM wins will be
estimated from below via bound on the tail of binomial distributions.

By the standard notion of strategy in the theory of infinite games, the
bet money b, may depend on entire history of the game in previous rounds,
as well as on complete information about the sequence [k,|32,. But with
reference to Definition 2, we shall be interested in strategies in which b,, or
the ratio 0 = b,/C,_1, depends only on r and k,. For this reason, we give
two proofs of the standard Borel-Cantelli lemma, worded from the point of
view of martingales.

Lemma 1 (Borel-Cantelli lemma for martingales) (a) If > 2, 1/k,
diverges, then for every betting strateqy, the Leprechaun has a way to

hold C,. < Cy, for all r.

(b) If > 72, 1/k, converges, then the player has both an additively honest
and a multiplicatively honest winning strategy.

Proof. (a) The Leprechaun waits for the first positive bet b, = ¢, and
then says “Lose!” He continues saying “Lose!” until the player makes a

2In Irish folklore, a leprechaun is a mischievous elf who has a treasure that he promises
to give you, but who tries all manner of delaying tactics to frustrate you.



bet b, such that k.b, < . Then he says “Win!”, but this still leaves the
player with less than the initial capital Cy. The player must make such a
bet b, because if she maintains b, > ¢/k,, she goes bankrupt since Z:fil 1/k,
diverges. The Leprechaun repeats the same strategy, and holds the player to
her initial capital.

(b) Let K > ">2, 1/k,. For the additively honest strategy, at each stage
r bet Cy/Kk,. Then it is straightforward to show that after each round r,

1 1 Co
C, = Co (1_?;?) +Ne22,

where N, is the number of times the Leprechaun has said “Win!” up to stage
r. The first term is always positive, so the player never goes bankrupt, and
the second term goes monotonically to oo.

For the multiplicatively honest strategy, the player waits until a fixed
stage ro such that > 1/k. < 1/3. Such r( exists since the sum converges.
At all stages r > rg, take O'(r) := 1/k,; that is, the amount b(r) bet is
C,_1/k,, whatever the current capital C,_; happens to be. Now let r be the
first round in which the Leprechaun says “Win!” Then we have

r—1
1
Cro=Co [J(1 - =)

=70

A simple induction (basically “inclusion-exclusion”) shows that H;}O(l —
) >1- D 2. Then we have

1=rg k;
) 10
Cr = Cr—l - Cr—l/kr + Cr—l > gcr—l- > ?CO

Thus when the Leprechaun first says “Win!”, the player would have multi-
plied her capital by at least a factor of 10/9. Now she continues the same
strategy (with no need to “wait” anymore), and after N wins she has at least

Co(10/9)V. O

Note that in either case, computing C,. (or a lower bound for C,) involves
computing the sum >, 1/k,. In Lutz’s proof via density systems this cor-
responds to a requirement that certain sums have “polynomial modulus of
convergence.” However, the quantities b(r) and b'(r) in our respective honest
strategies are free of such sums; all they need is that k, itself can be written
down in polynomial (or whatever) time. Both strategies work even if they
are based on values k| that are less than the actual payoffs, so long as > k.
converges. Going back to the quantities b(w) and 0'(w) in Definition 2, the
martingale value d(w) can be recovered by computing b(v) or b'(v) for all
v C w, at an extra factor of at most N in running time (even without hon-
esty). This frees us to concentrate on the complexity of the payoff sequence
[k,] itself, or on some lower bound for it, without worrying about any other
quantities.



4 An improved stochasticity theorem

In this section, we show that for any fixed constant ¢, almost every problem
in E is extremely hard for Turing Machines that run in time 2¢*. Our results
improve the “Weak Stochasticity Theorem” of Lutz and Mayordomo [17,
19]. The following incorporates several forms of their notion of a “weakly
stochastic” language that have appeared in these papers and in [16, 21].

Definition 3 (see [17, 19]) (a) A language A is weakly stochastic for
time ¢(n) and advice q(n) if for all t(n)-time bounded Turing machines
M that take g(n) advice, and all advice sequences {a, : n € N, a,, €

{0, 1}q(n)}7
) 1
Jim xegfl}n[(M/ozn)(x) = A2)] = 5.
(b) The language A is weakly stochastic for time t(n) and advice g(n) over
domains of size S(n) that are set down in time wu(n) with advice r(n)
if for all languages D € DTIME[u(n)]/ADV|[r(n)] such that | D="| >

S(n) for alln, and all M, {a,,} as in (a),

lim Pr [(M/o,)(x)=Ax)] = <.

n—oo xeD=" 2

Here uniform distribution on the domains {0,1}" or D=" is assumed.

Lutz and Mayordomo focus on the case where for some fixed ¢,v > 0,
t(n) = u(n) = 2, q(n) = r(n) = cn, and S(n) = 27, calling the class of
languages in E so defined WS[2", cn, 27"]. (In fact, [18] has r(n) = 0.) They
prove that for any fixed ¢ and 7, u(WS[2°", cn,2""] | E) = 1.

Our improvement has to do with the speed of convergence toward 1/2,
which their results and proofs do not address. This opens up a connection
to the important notion of hardness used in research on pseudorandom gen-
erators (PSRGs) and one-way functions [13, 11, 12, 24, 25]. Here we define
an appropriate notion of a language being hard (as compared with a PSRG
or one-way function being hard) for time/advice bounded machines to gain

bias (n).

Definition 4 (a) A language A is hard for time-t(n) machines with advice
q(n) to achieve bias e(n) if for every t(n) time bounded deterministic
TM M that takes length-q(n) advice, advice sequence {a,}, and all
sufficiently large n,

Pr[(M/ay)(z) = A(@)] — 3| < (n).

ze{0,1}m

(b) The language is hard for time-t(n) machines with advice q(n) to achieve
bias £(n) over domains of size S(n) that are set down in time u(n) with
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advice r(n) if for all languages D € DTIME[u(n)]/ADV[r(n)] such that
|D="] > S(n) for all n, and all M, {o,} as in (a), and sufficiently
large n,

Pr [(M/a,)(z) = A(x)] — % < e(n).

zeD=n

For simplicity we state and prove our improvement of the theorem of Lutz
and Mayordomo first for case (a) with all of {0,1}" as prediction domain,
describing the adjustments for the general case (b) at the end.

Theorem 2 Let ¢ be any constant, and let a < 1/2. Let H denote the class
of languages A that are hard for time 2™ machines with cn advice to achieve
bias 1/2°". Then u(H|E) = 1. Moreover, this is achieved both by additively

honest and multiplicatively honest martingales.

The significance of a < 1/2 is that 22" = /N is the standard deviation
of N uniform Bernoulli trials from the mean (N = 2"). Thus a “random”
language A would expect to yield this bias to the simple machine M that
always accepts (or that always rejects), for many n. Having a < 1/2 makes
bias 1/2%" asymptotically a much larger deviation, enough for the tail Fiy, :=
Zf;k (]Z[)/ZN of the binomial distribution with k& = 277! + 2"7%" to vanish
rapidly. However, this is still a much smaller deviation than the constant bias
used in the proof by Lutz and Mayordomo (starting from the supposition that
limit of 1/2 does not exist). Our proof actually makes it clear that the bias
can be pushed even closer to 22" In the general version for domains of size
27" the corresponding bound is a < /2.

Proof. Let H' be the complement of H in E. We show that u(H'|E) = 0.
That is, we construct a martingale d computable in time N = 20" that
succeeds on H'.

For all languages A € ‘H', the “Leprechaun’s promise” is that there exists
a TM M that runs in time 2" such that for infinitely many n, stage n is
“lucky” in the sense that

(Ba e {0,1}*) Pr [(M/a)(z) = A(x)] >

L
2€{0,1}n Qan’

N | —

Note that for infinitely many of these n, M is among the first n Turing
machines My, ..., M,. For all n, we calculate a lower bound on the multiplier
k, that applies in case stage n is “lucky.” From this we can calculate the
amounts b,, that should be “bet” at stages n, using either of the two strategies
in Lemma 1. All other calculation needed to compute the martingale d over
this stage will involve only the strings in {0, 1}", so d will be additively honest
or multiplicatively honest, accordingly.

To determine the multiplier, let b, be given. The Player divides b, into
n2 equal pieces, one for each TM M € {M;,..., M,} and a € {0,1}". So



let B := b, /n2°" and fix some M and a. Let u be the 2"-length characteristic
segment of M/a on {0,1}". Define

E, = {w € {0,1}*" : v and w agree in at least 2"(3 + ;%) places}.

Then stage n is “lucky” if A=" is among the segments w in F,,.

Now for any subset FE, of the leaves of the full binary tree of depth 27,
there is a martingale d,, on the tree (with initial capital B at the root), such
that for all leaves w,

1 .
Bm lf'lUEEn

dn{w) = { 0 otherwise.

The idea, which is basic to the equivalence of Lutz’s density systems and
martingales, is to define for each node v in the tree:

Pryenlfa € Bv C £]
PrE,]

d,(v):=B

To calculate this, first calculate the number k of agreements between M/«
and v on the strings indexed by v. Then d,(v) equals B times the quantity

2" —|v]

2 || divided T = on
Z ; ivided by Z N

i:2n—1+2n—an_k Z':2n—1+2n—an

Without even trying to be clever, one can compute these sums exactly in time
polynomial in N: There are fewer than N terms. Each term is a binomial
coefficient whose value is at most 2V, so can be written down with N bits, and
which can be calculated in time O(N?) by crude methods. The martingale
d itself is defined as the sum of the d,, over all M and «. Since there are
only n2°" terms to sum, it only remains to justify that b, and hence B can
be written down in time polynomial in N.

Note that no ability to compute the languages called “A” is assumed.
Given a particular A € H’, if none of the M/« succeed in predicting A at
length n, i.e. succeed in putting A=" into their corresponding F,,, then all
of the capital b, devoted to stage n is lost, and this is like the Leprechaun
saying “Lose!” But if even one of them succeeds, the reward is

L _ B _( 1 ) 2N
toPE] A\n2n ) A\ (7))

2

By the above remarks, this can be calculated by brute force in time polyno-
mial in N. The required time bound for the whole martingale follows from
this and Lemma 1. It remains only to show that > >~ 1/k, converges.

Let D stand for the sum in the denominator, and let k = 27! 4 27—,
N—k

N
Then D equals Z < ) Rather than use Chernoff bounds (cf. [19, 3]),
i

1=0
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we use methods from Graham, Knuth, and Patashnik [10] and MacWilliams
and Sloane [20]. Let £ = N — k and let § = ¢/N. Then D < (})L=2 (sece

£)1-26

“Exercise 9.42” on page 572 of [10]). Here ;= equals (N“+2)/4. Then via

Stirling’s approximation as used in [20], we obtain

< Y
) = \/2rN§(1 —96)
where Hy(0) denotes the binary entropy function 1g(1/0)+ (1 —40)1g(1/(1—

9)). Tt follows by elementary calculations that for some constant ¢, > 0
depending only on a,

Lign
2 (2B ovaemey
D 9 4 2aleN

1 —2a
> caNT‘“QN1 -

Since 2V 7 /p2en > QNI =2en o ON® — 92 £ some § > 0, it is abundantly
clear that ) 1/k, converges. O

Now it is easy to locate the adjustments for the more-general case, without
needing to re-do any calculations.

Theorem 3 Let ¢,y be any constants. Suppose a < /2. Let H denote the
class of languages A that are hard for time 2™ machines with cn advice to
achieve bias 1/2°", over domains of size 27 determined by machines that
run in time 2" with cn advice. Then p(H|E) = 1, likewise achievable by
additively and multiplicatively honest martingales.

Proof. Now the capital b,, for each stage is divided into n? - 22 pieces,
one for each pair of TMs M;, M; € {M, ..., M,} and pair of advice strings
a,  they take. In calculating d,,(v), one lets k be the number of agreements
between M;/a and v on strings accepted by M; /3. If at a leaf w it is found
that M,/3 didn’t accept at least 27" strings as promised, the capital d,,(w)
for those two machines may be considered to be zero for the analysis, though
for the computation of the overall martingale it doesn’t matter what it is.
The estimate of the multiplier in case even one pair of machines and advices
“gets lucky” works in much the same way, with N = 27" in the inequalities.

O

Almost identical proofs work for the case of hard languages in EXP:

Theorem 4 Let q be any polynomial, and let v be any constant. Suppose
a < v/2. Let H denote the class of languages A that are hard for time
210 machines with q(n) advice to achieve bias 1/2°, over domains of size
27" determined by machines that run in time 29™ with q(n) advice. Then
w(H|EXP) = 1, likewise achievable by additively and multiplicatively honest
martingales.
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5 Concluding Remarks

One virtue of our results, in comparison with the proof in [15] of what has
been called the “Borel-Cantelli-Lutz Lemma,” and with the applications in
(17, 19], is that they explicitly show the martingales that are being con-
structed. This makes it possible to analyze the resulting martingales for
other properties, for instance honesty. Moreover, the simple but tight condi-
tions of convergence we have presented might prove fruitful in strengthening
known results (see, for instance, [2]) and/or obtaining new results. It will
be a worthwhile task to re-work other theorems of Lutz et al. to show the
construction of martingales. One example is the theorem that a countable
“A-union” of A-null classes is A-null. It stands to reason that the unions of
the classes in Theorem 2 over all a < 1/2, or those in Theorems 3 and 4 over
all a < /2, should also be null.

This approach is especially important with the recent interest in measure
on classes smaller than E, and the restrictions on martingales used to define
them in [21, 1, 2]. Note that our proof of Theorem 2 does nothing clever at
all in computing the martingale, and there appears to be useful “slack” for
sharper results.

The concepts of additive and multiplicative honesty are also interesting
in themselves. Which constructions in the measure theory preserve these
restrictions? Examples of constructions that build martingales that seem to
be inherently dishonest are the “incompressibility theorem” of Juedes and
Lutz [14], and other theorems that build martingales that “look back” in
the input for specific properties. The notion of multiplicative honesty is
important in the connection between martingales and the “natural proofs”
of Razborov and Rudich [24, 25], which we have demonstrated in [26].
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