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Preface

The theory of computing provides computer science with concepts, models, and
formalisms for reasoning about the resources needed to carry out computations and
about the efficiency of the computations that use these resources. It provides tools
to measure the difficulty of combinatorial problems both absolutely and in com-
parison with other problems. Courses in this subject help students to gain analytic
skills and enable them to recognize the limits of computation. For these reasons, a
course in theory of computing is usually required in the graduate computer science
curriculum.

The harder question to address is which topics such a course should cover. We
believe that students should learn the fundamental models of computation, the lim-
itations of computation, and the distinctions between feasible and intractable. In
particular, the phenomena of NP-completeness and NP-hardness have pervaded
much of science and transformed computer science. One option is to survey a large
number of theoretical subjects, typically focusing on automata and formal lan-
guages. However, these subjects are less important to theoretical computer sci-
ence, and to computer science as a whole, now than in the past. Many students
have taken such a course as part of their undergraduate education. We chose not
to take that route because computability and complexity theory are the subjects
that we feel deeply about and that we believe are important for students to learn.
Furthermore, a graduate course should be scholarly. It is better to treat important
topics thoroughly than to survey the field.

This textbook is intended for use in an introductory graduate course in theo-
retical computer science. It contains material that should be core knowledge in
the theory of computation for all graduate students in computer science. It is self-
contained and is best suited for a one semester course. Most of the text can be cov-
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ered in one semester by moving expeditiously through the core material of Chap-
ters 1 through 5 and then covering parts of Chapter 6. We will give more details
about this below.

As a graduate course, students should have some prerequisite preparation. The
ideal preparation would be the kind of course that we mentioned above: an under-
graduate course that introduced topics such as automata theory, formal languages,
computability theory, or complexity theory. We stress, however, that there is noth-
ing in such a course that a student needs to know before studying this text. Our
personal experience suggests that we cannot presume that all of our students have
taken such an undergraduate course. For those students who have not, we advise
that they need at least some prior exposure that will have developed mathematical
skills. Prior courses in mathematical logic, algebra (at the level of groups, rings,
or fields), or number theory, for example, would all serve this purpose.

Despite the diverse backgrounds of our students, we have found that graduate
students are capable of learning sophisticated material when it is explained clearly
and precisely. That has been our goal in writing this book.

This book also is suitable for advanced undergraduate students who have sat-
isfied the prerequisites. It is an appropriate first course in complexity theory for
students who will continue to study and work in this subject area.

The text begins with a preliminary chapter that gives a brief description of sev-
eral topics in mathematics. We included this in order to keep the book self-contained
and to insure that all students will have a common notation. Some of these sec-
tions simply enable students to understand some of the important examples that
arise later. For example, we include a section on number theory and algebra that
includes all that is necessary for students to understand that primality belongs to
NP.

The text starts properly with classical computability theory. We build complex-
ity theory on top of that. Doing so has the pedagogical advantage that students
learn a qualitative subject before advancing to a quantitative one. Also, the con-
cepts build from one to the other. For example, although we give a complete proof
that the satisfiability problem is NP-complete, it is easy for students to understand
that the bounded halting problem is NP-complete, because they already know that
classical halting problem is c.e. complete.

We use the terms partial computable and computably enumerable (c.e.) instead
of the traditional terminology, recursive and recursively enumerable (r.e.), respec-
tively. We do so simply to eliminate confusion. Students of computer science know
of “recursion” as a programming paradigm. We do not prove here that Turing com-
putable functions are equivalent to partial recursive functions, so by not using that
notation, we avoid the matter altogether. Although the notation we are using has
been commonplace in the computability theory and mathematical logic commu-
nity for several years, instructors might want to advise their students that the older
terminology seems commonplace within the theoretical computer science commu-
nity. Computable functions are defined on the set of words over a finite alphabet,
which we identify with the set of natural numbers in a straightforward manner. We
use the term effective, in the nontechnical, intuitive sense, to denote computational
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processes on other data types. For example, we will say that a set of Turing ma-
chines is “effectively enumerable” if its set of indices is computably enumerable.

Chapter 3 concludes with a short list of topics that students should know from
the chapters on computability theory before proceeding to study complexity the-
ory. We advise instructors who wish to minimize coverage of computability theory
to refer to this list. Typically, we do not cover the second section on the Recursion
Theorem (Section 2.10) in a one-semester course. Although we do not recommend
it, it is possible to begin the study of complexity theory after learning the first five
sections of Chapter 3 and at least part of Section 2.9 on oracle Turing machines,
Turing reductions, and the arithmetical hierarchy.

In Chapter 4 we treat general properties of complexity classes and relationships
between complexity classes. These include important older results such as the space
and time hierarchy theorems, as well as the more recent result of Immerman and
Szelepcsényi that space-bounded classes are closed under complements. Instruc-
tors might be anxious to get to NP-complete problems, Chapter 5, and NP-hard
problems, Chapter 6, but students need to learn the basic results of complexity the-
ory and it is instructive for them to understand the relationships between P, NP,
and other deterministic and nondeterministic, low-level complexity classes. Stu-
dents should learn that nondeterminism is not well understood in general, that P
=? NP is not an isolated question, and that other classes have complete problems
as well (which we take up in Chapter 6). Nevertheless, Chapter 4 is a long chap-
ter. Many of the results in this chapter are proved by complicated Turing machine
simulations and counting arguments, which give students great insight, but can be
time-consuming to cover. For this reason, instructors might be advised to survey
some of this material, if the alternative would mean not having sufficient time for
the later chapters.

Homework exercises are an important part of this book. They are embedded in
the text where they naturally arise and students should not proceed without work-
ing on them. Many are simple exercises while others are challenging. Often we
leave important but easy-to-prove propositions as exercises. We provide additional
problems at the end of chapters, which extend and apply the material covered there.

Once again, our intent has been to write a text that is suitable for all gradu-
ate students, that provides the right background for those who will continue to
study complexity theory, and that can be taught in one semester. There are sev-
eral important topics in complexity theory that cannot be treated properly in a one-
semester course. Currently we are writing a second part to this text, which would
be suitable for an optional second semester course, covering nonuniform complex-
ity (Boolean circuits), parallelism, probabilistic classes, and interactive protocols.

S. Homer Boston
A. Selman Buffalo
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