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Preface

The theory of computing provides computer science with concepts, models, and
formalismsfor reasoning about the resourcesneeded to carry out computationsand
about the efficiency of the computationsthat use these resources. It providestools
to measure the difficulty of combinatorial problems both absolutely and in com-
parison with other problems. Coursesin this subject help studentsto gain analytic
skills and enable them to recognizethe limits of computation. For these reasons, a
courseintheory of computingisusually required in the graduate computer science
curriculum.

The harder question to address is which topics such a course should cover. We
believethat students should learn the fundamental model sof computation, thelim-
itations of computation, and the distinctions between feasible and intractable. In
particular, the phenomena of NP-completeness and NP-hardness have pervaded
much of science and transformed computer science. Oneoptionisto survey alarge
number of theoretical subjects, typically focusing on automata and formal lan-
guages. However, these subjects are less important to theoretical computer sci-
ence, and to computer science as a whole, now than in the past. Many students
have taken such a course as part of their undergraduate education. We chose not
to take that route because computability and complexity theory are the subjects
that we feel deeply about and that we believe are important for studentsto learn.
Furthermore, a graduate course should be scholarly. It is better to treat important
topics thoroughly than to survey the field.

This textbook is intended for use in an introductory graduate course in theo-
retical computer science. It contains material that should be core knowledge in
the theory of computation for all graduate studentsin computer science. It is self-
contained and is best suited for a one semester course. Most of the text can be cov-

Thisis page vi
Printer: Opaquethis



Preface vii

ered in one semester by moving expeditiously through the core material of Chap-
ters 1 through 5 and then covering parts of Chapter 6. We will give more details
about this below.

As a graduate course, students should have some prerequisite preparation. The
ideal preparation would be the kind of course that we mentioned above: an under-
graduate course that introduced topi cs such as automatatheory, formal languages,
computability theory, or complexity theory. We stress, however, that thereis noth-
ing in such a course that a student needs to know before studying this text. Our
personal experience suggests that we cannot presumethat all of our students have
taken such an undergraduate course. For those students who have not, we advise
that they need at least some prior exposure that will have devel oped mathematical
skills. Prior courses in mathematical logic, algebra (at the level of groups, rings,
or fields), or number theory, for example, would al serve this purpose.

Despite the diverse backgrounds of our students, we have found that graduate
students are capable of |earning sophisticated material when it isexplained clearly
and precisely. That has been our goal in writing this book.

This book also is suitable for advanced undergraduate students who have sat-
isfied the prerequisites. It is an appropriate first course in complexity theory for
students who will continueto study and work in this subject area.

Thetext beginswith a preliminary chapter that gives a brief description of sev-
eral topi csin mathematics. Weincluded thisin order to keep the book self-contained
and to insure that all students will have a common notation. Some of these sec-
tions simply enable students to understand some of the important examples that
arise later. For example, we include a section on humber theory and algebra that
includes all that is necessary for students to understand that primality belongsto
NP.

Thetext starts properly with classical computability theory. We build complex-
ity theory on top of that. Doing so has the pedagogical advantage that students
learn a qualitative subject before advancing to a quantitative one. Also, the con-
cepts build from one to the other. For example, although we give a compl ete proof
that the satisfiability problemis NP-complete, it is easy for studentsto understand
that the bounded halting problem is NP-compl ete, because they already know that
classical halting problem is c.e. complete.

We usethe terms partial computable and computably enumerable (c.e.) instead
of thetraditional terminology, recursive and recursively enumerable (r.e.), respec-
tively. We do so ssimply to eliminate confusion. Students of computer scienceknow
of “recursion” asaprogramming paradigm. We do not prove herethat Turing com-
putablefunctionsare equivalent to partial recursive functions, so by not using that
notation, we avoid the matter altogether. Although the notation we are using has
been commonplace in the computability theory and mathematical logic commu-
nity for several years, instructors might want to advisetheir studentsthat the older
terminol ogy seemscommonplacewithin thetheoretical computer science commu-
nity. Computabl e functions are defined on the set of words over a finite alphabet,
which weidentify with the set of natural numbersin a straightforward manner. We
usetheterm effective, in the nontechnical, intuitive sense, to denote computational
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processes on other data types. For example, we will say that a set of Turing ma-
chinesis* effectively enumerable” if its set of indices is computably enumerable.

Chapter 3 concludeswith a short list of topics that students should know from
the chapters on computability theory before proceeding to study complexity the-
ory. We adviseinstructorswho wish to minimize coverage of computability theory
torefer to thislist. Typically, we do not cover the second section on the Recursion
Theorem (Section 2.10) in aone-semester course. Although we do not recommend
it, it ispossible to begin the study of complexity theory after learning thefirst five
sections of Chapter 3 and at least part of Section 2.9 on oracle Turing machines,
Turing reductions, and the arithmetical hierarchy.

In Chapter 4 wetreat general propertiesof complexity classes and relationships
between complexity classes. Theseincludeimportant ol der resultssuch asthe space
and time hierarchy theorems, as well as the more recent result of Immerman and
Szelepcsényi that space-bounded classes are closed under complements. Instruc-
tors might be anxious to get to NP-complete problems, Chapter 5, and NP-hard
problems, Chapter 6, but students need to learn the basic results of complexity the-
ory and it is instructive for them to understand the relationships between P, NP,
and other deterministic and nondeterministic, low-level complexity classes. Stu-
dents should learn that nondeterminism is not well understood in general, that P
=? NP isnot an isolated question, and that other classes have complete problems
aswell (which we take up in Chapter 6). Nevertheless, Chapter 4 is along chap-
ter. Many of theresultsin this chapter are proved by complicated Turing machine
simulations and counting arguments, which give students great insight, but can be
time-consuming to cover. For this reason, instructors might be advised to survey
some of this material, if the alternative would mean not having sufficient time for
the later chapters.

Homework exercises are an important part of this book. They are embedded in
the text where they naturally arise and students should not proceed without work-
ing on them. Many are simple exercises while others are challenging. Often we
leaveimportant but easy-to-provepropositionsas exercises. We provide additional
problemsat the end of chapters, which extend and apply the material coveredthere.

Once again, our intent has been to write a text that is suitable for all gradu-
ate students, that provides the right background for those who will continue to
study complexity theory, and that can be taught in one semester. There are sev-
eral important topicsin complexity theory that cannot betreated properly in aone-
semester course. Currently we are writing a second part to this text, which would
be suitablefor an optional second semester course, covering nonuniform complex-
ity (Boolean circuits), parallelism, probabilistic classes, and interactive protocols.

S. Homer Boston
A. Selman Buffalo
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