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Abstract

TheclassNPkV consists of those partial, multivalued functionsthat can be
computed by anondeterministic, polynomial time-bounded transducer that has
at most k distinct values on any input. We definethe output-multiplicity hierar-
chy to consist of the collection of classesNPkV, for al positiveintegersk > 1.
In this paper we investigate the strictness of the output-multiplicity hierarchy
and establish three main results pertaining to this:

1. Ifforany k> 1, theclassNPkV collapsesintotheclassNP(k— 1)V, then
the polynomial hierarchy collapsesto ¥5.

2. If the converse of the aboveresult istrue, then any proof of this converse
cannot relativize. We exhibit an oracle relative to which the polynomial
hierarchy collapsesto PNP, but the output-multiplicity hierarchy isstrict.

3. Relative to a random oracle, the output-multiplicity hierarchy is strict.
Thisresult isin contrast to the still open problem of the strictness of the
polynomial hierarchy relative to arandom oracle.

In introducing the technique for the third result we prove a related result of
interest: relative to arandom oracle UP £ NP.



1 Introduction

One of the central questions about any complexity-theoretic measure is that of fine
hierarchies, that is, how small a change in computing resources need one make to
bring about a change in computing power. Here we investigate a hierarchy based
on the number of distinct output values of members of the classNPMV, the class of
partial multivalued functions that are computed by polynomial time-bounded non-
deterministic transducers.

Nondeterministic transducers compute partial multivalued functions, partial be-
cause nondetermini stic computationsdo not necessarily accept every input, and mul-
tival ued because nondeterministic computations may output different values on dif-
ferent accepting paths. The study of polynomial-time computable classes of partial
multivalued functions has become an increasingly active area of research [BLS34,
GS88, Sel92, Sel94, FHOS97, HNOS96, Nai94, Ogi96, FGH™ 96, FFNR96, JT95,
Sel96]. The motivationsfor this study involve questions about NP search problems,
the difficulty of inverting polynomial-time computable functions, and more gener-
ally, the power of nondeterminism. For detailed discussion of these motivationswe
refer the reader to the expository papers of Jenner and Toran [JT95] and Selman
[Sel96].

A key notion in thisareais that of arefinement of afunction. We introduce this
idea through an important example. Let PF denote the set of al partial functions
that are computed by deterministic polynomial time-bounded transducers. A fun-
damental question is whether for each f € NPMV, thereisag € PF, so that g(x)
is always some value of f(x). Indeed, this problem is equivalent to the question of
whether P = NP [Sel92]. The relation between f and g is an instance of what we
mean by one function, g, refining another, f. Formally, given partial multivalued
functions f and g, we say that g is arefinement of f if dom(g) = dom(f) and, for
al x e dom(g) and all y, if yisavalue of g(x), thenyisasoavaueof f(x). Let F
and G be classes of partial multivalued functions. We define f € G to meanthat G
contains a refinement of f, and wewrite ¥ C¢ G if, foreach f € F, f €c G. This
notation is consistent with theintuition that F C. G should entail that the complex-
ity of # isno greater than the complexity of G. Thus, “NPMV C; PF" means that
every partial multivalued function in NPMV can be computed by some determin-
istic polynomial-time transducer. Using this notation, the assertion we made above



states that NPMV C. PFif and only if P= NP.

Hemaspaandraet al. [HNOS96] addressed the question (raised by Selman[Sel94])
of whether every functionin NPMV has arefinement in NPSV, where NPSV isthe
set of all partia single-valued functions f € NPMV. They proved that thisisso only
if the polynomial hierarchy collapsesto 25’ . Their proof actually shows more: that
some 2-valued partial functionin NPMV has no single-valued refinement unlessthe
polynomial hierarchy collapsesto ZE’ . Thisresult suggeststhat the number of output
values of an NP-transducer is a computing resource.

We definethe output-multiplicity hierarchy to bethecollection of all classesNPkV,
k > 1, where these classes are defined as follows. For each k > 1, a partial multi-
valued function f € NPKV if and only if some refinement of f can be computed by
a nondeterministic, polynomial time-bounded transducer that has at most k distinct
values on any input. Thus, in particular, NP1V = NPSV. Once again, Hemaspaan-
draet al. [HNOS96] proved that if NP2V C. NPSV, then the polynomial hierarchy
collapsesto its second level.

Inthispaper weinvestigatethe strictness of the output-multiplicity hierarchy and
establish three main results pertaining to this:

1. Weshow, in Section 2, an extension of theresult of Hemaspaandraet al.: If for
somek > 1, NPKV Cc NP(k— 1)V, then the polynomial hierarchy collapses
to X5.

2. In Section 3, we show that if the converse of the above result istrue, then any
proof of thisconverse cannot relativize. We exhibit an oraclerelativeto which
the polynomial hierarchy collapses to PNP but the output-multiplicity hierar-
chy isstrict.

3. We show, in Section 5, that the output-multiplicity hierarchy is strict relative
to arandom oracle. Thisresult isin contrast to the still open problem of the
strictness of the polynomial hierarchy relative to a random oracle.

In introducing the techniquefor the third result we provein Section 4 arelated result
of interest: that relative to arandom oracle UP # NP.



1.1 Notation

Below £ = {0,1}. For each natural number k and set X, B (X) denotes the collec-
tion of all k-element subsets of X. For each natural number k and A C X*, A=K =
ANXX. For any twolanguagesAand B, A®B = 0AU1B = {Ox | xc A}U{1x|x€B}.
Let (-,-) denote a standard polynomial-time computable pairing function with
associated polynomial-time computable projections t; and .
Recall that PH = {;~oZF = Uj»oI1. For any partial multivalued function f, we
write f(X) — yif yisan output value of f oninput x, and define

set-f(x) = {y|f(x)—y}

For partial multivalued functions f and g, observethat g isarefinement of f if and
only if dom(g) = dom(f) and for all x € dom(g), set-g(x) C set-f(x). For any class
F of partial multivalued functions, welet % denotethe set of al total functions(i.e.,
the domain of f isX*) that belongto 7.

Fenner et al. [FHOS97] studied polynomial-timereductionsto NPSV (and NPMV)
and introduced the classes PFNPSV and PFNPSV (b(n)) which we define just below.
First, let us make the convention that when aquery y to afunction oracle g € NPSV
is made, then either (a) the value of g(w) is returned, if g(w) is defined, or else (b)
aunique flag _L isreturned, indicating that g is undefined on w. Now, we say that f
isin PEFNPSV if f is computed by a deterministic, polynomial time-bounded oracle
Turing machinetransducer that accesses an oracle g belonging to NPSV; we say that
fisin PFNPSV (b(n)) if f € PFNPSY and, for some transducer and g that witnessthis,
the number of queries made by the transducer on any input x is no more than b(|x|).



2 If the Output-Multiplicity Hierarchy Collapses, So
Doesthe Polynomial Hierarchy

Once it was known that NP2V C. NPSV implies PH = ZE’ [HNOS96], one natu-
ral question to raise was whether every partial multivalued function in NPMV has
arefinement in some reduction class to NPSV. Would such an hypothesis still col-
lapse the polynomial hierarchy? The only significant work on thisquestionis dueto
Ogiharawho proved the following result:

Theorem 1 (Ogihara[0gi96]) Let c < 1 be a constant. If every multivalued func-
tionin NPMV has a refinement in PFNPV (clog n), then PH = X5,

The proof of thefollowing theorem will not involve reductionsto NPSV but will
rely on ideas and techniques of Ogihara’s proof.

Theorem 2 Letk > 1. If NPkV Cc NP(k— 1)V, then PH = X,

Therest of thissection isdevoted to the proof of thistheorem. To begin, wewant
a partial multivalued function f that obviously belongs to the class NPKV but that
intuitively has no refinement g in NP(k— 1)V. This leads us to the property of se-
lectivity. We say that aset A isk-selective (for k > 0) if thereisapartial multivalued
function f from B (X*) to F_1(X*) such that, for each k-element set Y,

1. every member of set-f(Y) isasubset of Y, and

2. if at least k— 1 of the stringsin Y belong to A, then set- f (Y) is nonempty and
every member of itisasubset of A(i.e, Z € set-f(Y) = Z C A).

Wecall f asaboveak-selector of A. By an abuseof notation, wewill treat 2-sel ectors
asif they were partial, multivalued functions from £* x X* to X*.
We introduce the following running example to help illustrate our notions.

Example 3 A is 2-selective if there is a partial multivalued function f defined on
ordered pairs such that

SEt_f(X7y) C {Xay}
and suchthat if xe Aory € A, then

0 # set-f(xy) C A
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For thosefamiliar with prior work on sel ectivity, we notethat aset Aisp-selective
[Sel79] if and only if A has a 2-selector that belongs to PR and that A is NPMV-
selective [HNOS96] if and only if A has a 2-selector that belongsto NPMV.

Claim: For eachk > 0, every A € NP has ak-selector that belongsto NPkV.

Proof: Fix k. Define anondeterministic transducer M that, oninput Y € B (X*),
does the following. First, M nondeterministically guesses ak — 1 element subset Z
of Y. Next, M nondeterministically tries to discover whether Z C A and, if thistest
is successful, then M outputsthe set Z. SinceY has k distinct subsets of sizek — 1,
we see that M computes a element of NPkV. Hence, the claim follows.

Henceforth in the proof, wetake asahypothesisthat NPkV C. NP(k—1)V. The
reader can easily seethat if f isak-selector for A and g isarefinement of f, then g
isak-selector for A. Hence from the hypothesis and the above claim it follows that
every A in NP has ak-selector that belongs to NP(k— 1)V. We will show that this
impliesthat I15 = 5.

Example 3, continued Let usfix Atobe SAT and let f be a 2-selector for SAT that
belongsto NPMV. A single-valued refinement of f isa single-valued partial func-
tion g such that if either x € SAT or y € SAT, then g(x,y) is defined and a member
of SAT.

Intuitively, one does not expect a single-valued function, such asthe g above, to
be able to determine which of two formulasis satisfiable. Thisintuition isborne out
by the result of Selman [Sel79] that SAT is p-selectiveif and only if SAT € P and
by the result of Hemaspaandra et al. [HNOS96] that SAT isNPSV-selective only if
NP C (NPNcoNP)/poaly.

Continuing with the proof, let L € HE’ . Then, there exist a polynomial p and a
set A € NP such that, for all x,

xel < vyexPMxy)eA]. (1)

We may assume of our pairing function that thereis a polynomial q such that for all
strings x of length nand all stringsy of length p(n), [{(x,y)| = q(n). Hence, theright-
hand side of (1) is equivalent to: Yy € P(X) [(x,y) € A=9(X)]. As argued above, it
follows from our hypothesisthat A has a k-selector g that belongsto NP(k—1)V.

Givenastring x € 29" and a (k— 1)-element set Z € A=9(", we say that x |oses
to Z if every output value of g(ZU { x}) contains x.
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Claim: If xlosesto Z, then x € A.
Proof: SinceZ C A=9, set-g(ZU {x}) # 0. Furthermore, for every output
valueY, Y C A. Thus, for each suchY, x €Y C A. Hence, the claim follows.

Example 3, continued For ze SAT™", a string x losesto zif g(x,z) = x. So, by
definition of a selector, we must have x € SAT.

The following lemmais due to Ogihara [Ogi96].

Lemma4 For eachn> 1, thereisaset S§,={2y,...,Zm}, m< q(n), such that for
everyi,1<i<m,z C A=9 ||zl = k-1, and for all x e 29, x ¢ A=9 if and
only if for somei with1 <i <m, xlosesto Z.

Example3, concluded Lemmad4 assertstheexistenceof asetof stringsSy={z,...,Zn},
m< q(n), suchthat S, C SAT=%", and for each x € SAT=9", thereisaz suchthat

9(x,z) =x.

We will not give the proof of Lemmad4. The argument issimilar to proofs of Ko
[K083] and of later researchers[L S93, HNOS96] that dealt essentially with the sce-
nario of Example 3. The combinatorics of Ogihara’s argument is necessarily more
involved. Thekey ideaof the proof isto notethat some set Z isawinner to morethan
the average number of strings x (meaning that x losesto Z). So to construct S, start
with S, = 0, place such a Z into S,, delete from consideration all strings that lose
to Z, and continue this process until all remaining strings have been deleted from
consideration.

Define astring u to be correct for length q(n) if u encodes a pair (SWT) such
that S={2y,...,Zn} andWIT = {Wj, ..., Wi }, m< q(n), that satisfy thefollowing
three conditions.

() Fordli, 1<i<m, ||Z] =k— 1.

(i) Forali, 1<i<m, Z C A= and W is a set of witnesses proving that
Z C A=d(n)

(iii) For al x e A=9M thereexistsi, 1 < i < m, such that x loses to Z;.



If uiscorrect for length q(n), we write Loses(x, u) to mean x loses to some Z;.
Claim: For all x,

(uiscorrect for length g(|x|))
and VyLoses((x,Y),u)

Proof: The implication from left to right follows from Lemma 4. The implica-
tion from right to left is straightforward. Hence the claim follows.

Note that by the definitions of “correct for length g(|x|)” and “Loses(-,-),” it
follows that we can replace the “Ju” and “Vy” in the right-hand side of (2) with
“Ju e £Po(X)" and “vy € £PLIX)" for some appropriate polynomials po and p;.

To complete the argument that L € 25’ , we merely have to prove that the predi-
cates

xelL <= du

(2)

1. “uiscorrect for length g(|x|),” and
2. Loses((x,y),u)

arein coNP.

To prove that “u is correct for length q(|x|)” belongs to coNP, we give the fol-
lowing NP-algorithm for the complement “u is not correct for length q(|x|)”: If u
does not encode apair (S WIT) that satisfiesthe defining conditions (i) and (ii), then
accept. Otherwise, we have S= {Z1,...,Zn} and for each i, Z; C A=4", Thus,
and this is the important observation, for each x € £4" and each Z, g(Z U{x}) is
defined. Nondeterministically select an x € A=%(", For each i, compute an output
valueY of g(Zu{x}) and verify that x Y. If each of thesetestsis successful, then
accept.

The proof that the second predicate belongs to coNP is similar.

This compl etes the proof of Theorem 2.



3 Coallapsing the Polynomial Hierarchy while L eav-
ing the Output-Multiplicity Hierarchy Strict

In the previous section we showed that if the output-multiplicity hierarchy collapses
at any level, then the polynomial hierarchy collapsesto 25 . Inthissectionwedemon-
strate an oracle relative to which the converse of thisresult isfalse. Specifically, we
exhibit an oraclerel ative to which the polynomial hierarchy collapsesto AE’ whilethe
output-multiplicity hierarchy isproper. Theoracleweuseisageneric oraclederived
from conditions with certain restrictions placed on them. Generic oracles based on
restricted conditions have been investigated and applied by anumber of researchers,
notably by Fenner et al. [FFKL93], Fortnow [FR94], and Rogers [Rog97].

Itiseasy tofind an oraclerel ativeto which both hierarchiescollapse. Becausethe
proof of the previous section relativizes, any oracle making the polynomial hierar-
chy proper [Has86, Yao85] will aso make the output-multiplicity hierarchy proper.
Thus, oraclesexist for all possible scenarios concerning the relationships between a
collapse of the polynomial hierarchy and a collapse of the output-multiplicity hier-
archy.

3.1 Genericoracles

A condition is a partial function from £* to {0,1}. A condition ¢ extends another
condition 7 if for al x € domain(t), o(x) = t(X). Two conditionsc and T are com-
patibleif for all x € domain(c) Nndomain(t), o(x) = t(X). They conflict otherwise.

In thispaper, we only consider conditions having finite domains. We assumethat
if acondition isdefined on a string of some length n, then it is defined on all strings
of length no greater than n.

A condition ¢ is gappy if, whenever 6(X) = 1, the length of x is acceptable. An
acceptable length is an integer in the range of the tower function, which hasthe re-
cursive definition tower (0) = 2 and tower (n+ 1) = 2°°¢(") | That is, tower(n) is
an exponential tower of 2's with height n+ 1. A related function is log*, which
has the recursive definition log*(0) = log*(1) = log*(2) = 0 and log*(n) = 1+
log*([log(n)]) (n > 2). For valuesin the range of tower, log* computes tower 2.

Let n = (ng,n1). An output-multiplicity condition (a.k.a. om-condition) ¢ isa
gappy conditionwith afinitedomain suchthat, at every acceptablelengthtower ({ng,ny)),
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there are at most n; strings x for which o(x) = 1.
For any condition t, we define the total functiont : £* x {0,1} — {0, 1} asfol-
lows:

i) = 1 if xedom(t) andt(x) =1,
] 0 otherwise.

A set of conditionsis definableif the set {T | t € S} isall} class,

A set Sof om-conditionsis dense if, for every om-condition t, there is an om-
condition ¢ in Ssuch that ¢ extends t. A language (oracle) A is om-generic if, for
every definable dense set Sof om-conditions, A extendssomeac in S

Asin earlier papers [FFK96, FFKL93, FR94], it is easy to show that every om-
condition 1 is extended by some om-generic language A. In particular, om-generic
languages exist.

Foreveryn> landk > 1, the set Sy, of al om-conditionsthat are defined at
length tower ({n, k}) is dense and definable. Thus, for every n> 1and k > 1, every
om-generic oracle is defined at length tower ({n,k)). In particular, if G is an om-
generic oracle, then, for every k > 1, there are infinitely many acceptable lengths at
which G contains no more than k strings. Moreover, G isa sparse set and has census
function O(log*(n)).

3.2 OracleConstruction

Theorem 5 There is an oracle C relative to which the polynomial hierarchy col-
lapses to PNP but the output-multiplicity hierarchy is proper; that is, for all k > 1,
thereisafunction f €; NP(k+ 1)VC that has no refinement in NPkV©,

Proof. Let H be an oracle for which P = PSPACE". Relativeto H, the polyno-
mial hierarchy collapsesto P and, for this reason, the output-multiplicity hierarchy
collapsesto PF. (Recall that NPMV C. PFif and only if P= NP.)

Let G be an om-generic oracle. Let C= H @ G. Recall that AY = PNP. Long and
Selman [LS86] proved that £5 = AD if and only if £5° = A>S for all sparse sets S
Since their proof relativizes, recalling that G is sparse, it follows that ZE’C = A;’C.
Thus, relative to C, the polynomial hierarchy collapses to PN,

Now our goal isto show that the output-multiplicity hierarchy is proper relative
toC. For eachoracle X, k> 1, and x € £*, we define the partial multivalued function
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fX by
fX(x) —y, if |y| =|x|, for somen > 1,|x| = tower((n,k)), andy € 1X.

Fix ak > 1. To seethat f¢ belongsto the class NPkVC, let M be anondeterministic
oracle transducer that, on input X, nondeterministically guesses a string y, verifies
that |y| = |x| and that |x| = tower({n,k)) for some n, and then outputsy if y € G.
Since G contains no more than k strings at any acceptable length tower ({n,k)), it
follows that fC(x) has no more than k output values. Next, we will show, for each
k> 1, that fC ¢c NP(k—1)VC.

Let {M;}i>1 be a standard indexing of noneterministic polynomial-time oracle
Turing transducers, where the running time of each M; on an input x is bounded by
(|x| +2)!, and where the run times are independent of their oracle. For each oracle
X, we define the assertion R* as follows:

Either thereisastring y such that the computation of MiH®x (y) outputs
more than k— 1 values or thereis an n € N such that the output of the
computation of M™®X(0") does not equal set-f'®*(0").

We argue that each R; istrue relative to every om-generic oracle, from which it fol-
lows immediately that fC ¢ NP(k— 1)VC.

Now we will view R; as arequirement: We say that an om-condition ¢ satisfies
requirement R; if, for every oracle X extending o, thereisastring y such that either
the computation of MiH@x (y) outputsmorethan k— 1 valuesor its output isnot equal
to set-f®%(y). We will show that the set of om-conditions satisfying each R; is
definable and dense. Thus, each R, will be true relative to every om-generic oracle.

The set of om-conditions satisfying R; is certainly definable (including the fact
that P= PSPACE relativeto H). To show that it isdense, we demonstrate how, given
any om-condition ¢, we can extend it to an om-condition t that satisfies R;.

If thereisan om-conditiont extending ¢ and astring y such that MiH@T(y) outputs
more than k — 1 values, then MiH@X(y) outputs more than k — 1 values for every X
that extends t. In this case 7 satisfies the first digunct of requirement R;, so we are
done. If there is no such om-condition t, then for every om-generic oracle G that
extends ¢ and every input string y, M™®S(y) outputs k — 1 or fewer values. We say
in this case that ¢ forces M; to be an NP(k— 1)V machine. Thisis the case that we
need to consider.

12



Let n=tower ({ng, k)) bean acceptablelength on which ¢ isnot defined such that
2" > (k+1)(n+2)%. Let T denote an om-condition that extendsc. Settingt(x) =0
for al x of length nis called leaving the length empty. If thereisaway to do thisand
have M™®7(0") accept, then we are done because set- f17(0") = 0 £ set-MH7(0").

If we cannot do this, leaving the acceptable length empty forces MiH®E to regject
0". Thiscan happen only if along every accepting path of M; (oninput 0", keeping H
fixed, and varying over om-conditions t that extend ), at least one string of length
nin the oracleis positively queried. Positively querying a string x meansthat x isa
query onthe path that isfound to belong to the oracle. Similarly, negatively querying
astringmeansthat it isqueried and does not belong to the oracle. By settingt(x) = 1
for exactly one string x of length n, we need not consider computation paths that
positively query two or more strings.

If there are computation pathsthat positively query exactly one string x and that
accept and output astring y # X, then we can set t(x) = 1 and t(z) = Ofor al strings
z of length n other than x. It follows that set-f,'®*(0") = {x} buty € set-M®¥(0Q").

Weareleft with the casethat if acomputation path positively queries exactly one
string X, then it outputs Xx. Now we will show that there exists a string z of length
n that is not positively queried by any accepting path. Setting t(z) = 1 and set-
ting t(y) = O for all other strings y of length n yields set-f'®7(0") = {z} # 0 =
set-MH®T(0"), which will complete the proof.

To prove that z exists, we will describe a process that, at the beginning of each
step j+1(j > 0), isgivenaset S; of stringsand aset A of accepting paths of M; (0")
that positively query exactly one string. When step j + 1 isfinished, it will yield a
set Sj11 C Sjandaset Aj, 1 C Aj. Theprocessiteratesthrough (n+2)' steps. At its
conclusion, weshow that S, »yi isnot empty but that A, )i is. We can then choose
zfrom o).

Sep O0: Let § bethe set of al length n strings and let Ag be the set of accepting
paths of M;(0") that positively query exactly one string.

Sep j+1: Select from Aj aset P; of compatible accepting paths that maximizes
the number of different values output on these paths. Because M; is forced by ¢
to be an NP(k— 1)V machine, these paths positively query and collectively output
aset of strings X = {xq,...,%¢ } withk’ < k— 1. Divide P; into k'-many subsets
Pi x.s- - - Pjx, Where each Pj . contains the paths that positively query x.

Let Bj = Aj — P;. Every accepting pathin Bj must conflict with some pathin P;.
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Divide B into the sets Bj neg, the set of paths that conflict because they negatively
query one of the x;, and B pos, the set of paths that conflict because they positively
query some string that is negatively queried by apathin P;.

Let p be apath in Bj os that positively queries somey. There must be some x;
suchthat p conflictswithevery pathinP; .. If thiswerenot true, the set P; would not
have been selected so asto contain paths outputting the maximum number of strings.
All of the pathsin P; ,, conflict with p because each of them negatively queriesyy.
Because the length of each accepting path is no greater than (n+ 2)' and because
there are k' (< k— 1) many of the Pj s, there can be at most (k— 1)((n+2)' — 1)
suchy. LetY; denote the set of thesey.

Let Si;1 be S;— (X;jUY;). By the argument above, the cardinality of X;JY; is
at most (k—1)(n+2)'. Also, the set Sj, 1 issuch that, if we set t(z) = 1 for some
ze Sj;1andt(Z) = Ofor al other length nstrings Z, the only computation pathsthat
could be accepting paths arethosein Bj neg. Thisisso because S; 1 doesnot contain
any stringin Xj, so the computation pathsin P; cannot be accepting. Also, ;1 does
not contain any string in'Yj, so the computation paths in B;, nos Cannot be accepting.
Furthermore, every path in Bj neg Negatively queriessomestringin §; — Sj1. Thus,
Aj;+1 and Bj1 areasrequired.

End of step j + 1.

Letm= (n+2)'. After step m— 1, we have the sets S, and Bmneg- The process
guarantees that Sy, is nonempty. To see this, recall that the cardinality of & is 2",
where n was chosen so that 2" > m(k— 1)(n+2)2. At each step j, Sj,1 isformed
from S; by removing a most (k— 1)(n+2)' strings. So the cardinality of Sy is at
least 2" — m(k— 1)(n+2)?, which is greater than 0.

Theprocessalso guaranteesthat By, neg iSempty. To seethis, recall that at theend
of each step j, Bj neg ONly contains computation paths that negatively query some
string X € X|. Inthe previous step j — 1, these pathswere in Bj_1 neg, @d SO Nega-
tively queried some string X € Xj_1 such that x; # x. Carrying this back to By ney,
it must be true that every path in Bj n,eg negatively queries j different strings. For
apath p to be in Bmneg, it would have to query negatively m different strings. But
because a computation path can negatively query at most m— 1 strings, p cannot
exist.

Thismeansthat thereis some string z not queried by any computation path. Set-
ting t(z) = 1and t(Z) = Ofor all other Z of length n guaranteesthat set-f1¢*(0") =
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{z} # 0 = set-MP¥7 (). O

The class NPkV; is the set of al total k-valued functions that belong to NPKV.
We can use the om-generic oracles to obtain the following result.

Corollary 6 Thereis an oracle relative to which the output-multiplicity hierarchy
is proper, but, for all k> 1, NPkV; C. PF.

Proof Sketch. Anom-generic oracleis sparse and possessesthe subset property de-
fined by Fortnow and Rogers [FR94]. As Fortnow and Rogers ([FR94]) showed,
proposition @ holds. Fenner, et a. ((FFNR96]) showed, in a proof that relativizes,
that Q@ impliesthat, for all k > 1, NPkV; C PF. |
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4 Random Oraclesand UP#NP

In the next section we show that the output-multiplicity hierarchy is strict relative
to a random oracle. This section introduces some of the tools and techniques for
the output-multiplicity hierarchy theorem by showing a simpler, related result: that
UP # NP relative to arandom oracle. The technique for both the UP # NP and the
output-multiplicy hierarchy isderived from Bennett and Gill’ sproof that NP # coNP
relative to arandom oracle [BG81]. For a more detailed introduction to random or-
acle arguments and results, we refer the reader to Bennett and Gill’s original paper
[BG81] or either of Kurtz, Mahaney, and Royer’s papers[KMR95, KMR92]. In par-
ticular, wewill refer the reader to these papers on the ticklish matter of justifying the
standard interpretation of random oracle separations. This standard interpretationis
this: If two relativized classes separate relative to arandom oracle and if neither of
these classes is probabilistic, then this is evidence that the existence of strong one-
way functions or pseudo-random generators may imply that the unrelativized ver-
sions of these classes separate.

41 Preliminaries

Weidentify theelementsof N and £* inthestandardway: ne€ N = the (n+1)% string
in the lexicographical ordering on £*. Recall that N is the collection of al total
functionsfrom N to { 0,1}, or, equivalently, the collection of al infinite sequences
of 0’sand 1's. Thereisalso aone-one correspondence between N and the collection
of all languages over ¥ given by: R€ =N = {w: R(w) = 1}. We shall pun freely
among these views of TN,

To do probability over =N, we adopt yet another view of =N asthe collection of all
possibleinfinite sequences of independent tosses of afair coin. Let (ZN, £, 1) bethe
standard probability space on =N, where £ is the collection of events or measurable
sets and  is the probability measure or ssmply measure on this space that assigns
each 4 € ‘£, area number u(A4) € [0,1] (see, [Dud89, Oxt80, Rud66]). All of the
4 C ¥N considered below are first-order definable (i.e., Borel) and standard results
show that all such 4 arein ‘.

A tail setisa? C XN that is closed under finite variants, i.e., if X andY € £N
are such that X AY isfinite, then X € P < Y € P. Kolmogorov's zero-one law
[Oxt80, Theorem 21.3] statesthat ameasurabletail set must have measureOor 1. If
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P isapredicate over 2N with u({R: P(R) }) = 1, then we say P holdsrelative to a
random oracle. Structural properties such as { R: PR £ NPR} are first-order defin-
abletail sets, and so have measure O or 1 by Kolmogorov’szero-onelaw. Informally,
this means that there is awell-defined “measure 1” theory.

Our next goal isto stateLemma7, aresult by Stuart Kurtz [Kur83] that improves
on atechnical lemma of Bennett & Gill [BG81, Lemma l]. Lemma7 isakey tool
in obtaining sufficient conditions for certain sets to be measure 1. Lemma 8 below
gives a sample such application. We provide some preliminary definitions and con-
ventions before stating thislemma. Suppose o and  arepartial functionsand n € N.
Define:

B o(x), if o(x)4;
aap = kx'{ﬁ(x), otherwise.

B o(x), ifx<n;
xnp = xx'{ﬁ(x), otherwise.

InLemma?, read A(i, R, B) as“machinei with oracle R acceptslanguage B,” where
the indexing of machines is over some restricted class of machines and “ accepts’
might mean something like “ UP-accepts’ or “ BPP-accepts.” For example, we could
have A(i, R, B) = [thei™ nondeterministic, relativized, polynomial time Turing ma-
chine with oracle R UP-accepts the set B]. Let D range over oracle dependent lan-
guages, where an oracle dependent language is simply arelativized language in the
sense that it has a characteristic function of type =N x ©* — {0,1}. We say that D
isuniformly recursiveif thereisan oracle Turing machine M such that, for al R, MR
decides DR.

Lemma 7 Supposethat 1 through 5 hold.

1. Bisauniformly recursive oracle dependent language and A is an arithmetic
relationon N x XN x N,

2. A isfinitely patchable with respect to oracles. That is, there is a (not nec-
essarily computable) function f, such that for each i, ¢, D, and R, A(i,o<
R,D%R) = A(f(i,5),R D).

3. Aisfinitely patchablewith respect toinitial segmentsof uniformly R-recursive
languages. That is, for each uniformly recursive oracle dependent language
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C, thereis a (not necessarily computable) function gc such that such that for
eachi,n, D, and R, A(i,R,DR) = A(gc(i,n),R,CRa, DR).

4. Each bit of R affects only finitely many bits of BR. That is, for each o, thereis
an ng such that, for all R, max(B®R A BR) < n.

5. Thereisan a > 0 such that for eachi, u*({R: -A(i,R BR)}) > a.

Then, u({R: (Vi)[-A(i,RBY)]}) = 1.

The proof of this lemma is a simple density argument similar to Bennett and
Gill’s[BG81] proof of their Lemmal.

4.2 UP # NP Relativeto a Random Oracle

We say that M, a polynomial time, nondeterministic Turing machine, UP-accepts a
language A (written: Lyp(M) = A) if A= L(M) and, for each a € A, thereis exactly
one accepting computation of M on input a. For eachRC N and x € N define

ER(x) = R(X1)R(x10)...R(x10X1),

LR = 0*nrange(&R), and

~

R = 0 —L®

Thefunction & isfrom Bennett and Gill’ s proof that NP # coNPrelativeto arandom
oracle. If it were the case that NP = coNP relative to a random oracle, then by an
application of Lemma7 it follows that there would be a polynomial time, nondeter-
ministic M for which, for most R, L(MR) = LR. Bennett and Gill showed that thisis
not the case, and, hence, that NP # coNP relative to a random oracle. Here we ex-
tend the techniques of the Bennett and Gill argument to show that UP # NP relative
to arandom oracle. Our strategy parallels Bennett and Gill’s. we apply Lemma 7
to show that if it were the case that UP = NP relative to arandom oracle, then there
would be an MR that UP-accepts LR for most R; then we show that, for an arbitrarily
chosen M, M failsto UPR accept LR for most R.

Let M range over nondeterministic oracle Turing machines that have polynom-
ial-bounded run times that are independent of their oracle. That is, for each M there
isapolynomial p(-) suchthat for all xand R, M oninput x and oracle R runswithin
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p(|x|) time. Let M range over polynomial-time, nondeterministic oracle Turing ma-
chines, so that the M’s may have run times that depend on their oracles.

Lemma 8 Supposethat thereisana > Osuchthat, for all M, p({ R: MR fails to UP-accept LR}) >
a. Then, {R: LR ¢ UPR} hasmeasure 1.

Proof. Clearly, {R: LR e UPR} = {R: (3M)[LR = Lyp(M)]}. Let p range over
polynomials and let Mp denote a version of M whose run time is clocked by p. An
easy argument shows that

{R: BM)[LR=Lyp(M)]} = {R: 3Bp)EM)[LF=Lyp(Mp)]}.

Hence, {R: LR € UPR} = {R: (IM)[LR = Lyp(MR)]}.

Let {M;};>1 be astandard indexing of nondeterministic oracle Turing machines
that have polynomial-bounded run times that are independent of their oracle. Itis
straightforward to check that, when A(i,R,D) = [D = Lyp(MR)] and B = L, hy-
potheses 1 through 4 of Lemma7 are satisfied. The hypothesis of the present lemma
implieshypothesis5 of Lemma7. Thus, by Lemma7, u({R: (YM)[MR failsto UP-accept LR]}) =
1. Therefore, { R: LR ¢ UPR} aso has measure 1. [] Lemma8

We now need to understand the difficulties encountered by an M that “tries’ to
UP-accept LR for most R. The nature of these difficultiesis that success on asignif-
icant part of XN entails failure on other significant parts of N. To understand this
bal ance between successes and failures, we need to understand the structure that ER
imposes on R and computations over =N x N (Definition 9 and Lemma 10) and to
understand the measure-theoretic relation between regions of N where £R has dif-
ferent behaviors (Lemma 11).

Variantsand Interrogation

Definition 9 SupposeRand SC N, X, Xg,...,Xs, Y € X", and that M is a nondeter-
ministic relativized machine.

(@) Rand Sarexg, ..., X-variants (written R~y . x, 9 if RASC {x10%:i <
¢ & k< |x]|},i.e, Rand Sareidentical except perhapson the stringsthat determine
the value of £ on arguments xg, - - -, X;.

(b) Define

R/Xp,---y X = (R—{xilok:igﬁ& k<n}).
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In other words, R/Xg, ...,X%; isthe Xg, ..., %,-variant of R that makes & map each of
X0, - - -, Xp t0 O,

(c) A particular computation of M on (R,y) examines x if in the course of the
computation the oracle Ris queried about some string of the form x10% for k < |x|;
intuitively, the computation |earns some information about the value of ER(x).

(d) M on (R,y) interrogates x if every computation of M on (R,y) examines x.

(e) M on (R,y) depends on x if there is an S~y R such that MR(y) # MS(y).

The notion of “examines’ isadirect lift from Bennett and Gill. We note the fol -
lowing without proof.

Lemma 10 Supposethat M isa nondeterministic relativized machine that on (R, y)
runsin timet and accepts.

(@ If M on (R,y) depends on x, then M on (R,y) interrogates x.

(b) The number of X'sthat M interrogateson (R y) is<'.

M easure Scaling M aps

Terminology: Suppose T isamap from one probability space (X, o, o) to another
(X1, E1,11). Supposea > 0. T isan a-measure scaling map if T: Xy — X isonto
and, for al 4 € My, wehave T-1(4) € My and a- po(T-1(2)) = w(A). Tisa
measure preserving map if T isa 1-measure scaling map.

We are interested in a family of measure scaling maps involving particular re-
gions of =N defined by the behavior of ER. For each k and n € N, define

Wk = {R:[[{x:ERx) =0"}| =k}

= {R:thereare exactly k witnessesto 0" € LR}, and

Wk = KH(TW(n,k)).

)

For each k < 2", it follows from some basic probability that

W QT e

and by some basic analysis that

: 1
fimons = i “
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By (3) we havethat, for each nand k < 2",

k
Wnk = ank-Wno, Wwhere ani = (3) (z1)" =

|

+O(5).

=l

LetPyc={ (X0, X1, - .-, X_1) € (EMK: thex'sare al pairwise distinct }. Clearly,
|Pokll =2"-(2"—1)-...- (2" —k+1). Weview P, as ameasure space under the
uniform, normalized counting measure, i.e., each (X) € P, has weight ||P, || .
Thus, W(n,0) x Py isameasure space under the product of the induced L ebesgue
measure on 7/(n, 0) and the normalized counting measure on Py . Lét i, be this
product measure. By convention, let (R, X, ...,Xc_1) range over the elements of
W(n,0) x P,k (where n is understood).

For eachnandfor eachk < 2", let Ty, , bethemap from 7/(n, 0) x P, x to W(n,K)
defined by the equation

Tl’l,k(R7 X0, - - .,Xk,]_) = R/X07 ey X1
Lemma 11 For eachnand eachk < 2", T, isan a, -measure scaling map.

Thus, if the two measure spaces 7/(n,0) x P, and 7/ (n, k) where normalized,
then Ty, would be measure preserving.

Proof. Fixnandk. Fixanarbitrary Ry € W (n,k) andlet {x),...,x_,} = (ER)~1(0).
Then

R~x,..x 1 Ro and
Tnjkl(Ro) = { (RaX07 i an—l) : o" ¢ EJR({XOa ce- 7Xk—l}) and }
{X07---7Xk—l} = {X6,...,X{(71}

Thissetiseasily seento have cardinality k! (2" — 1)k, Hence, T,k isonto and k! (27—
1)K to 1.

For themoment | et us pretend that thereare only mmany elementsinXN. (Infact,
takem=2"2")) Thus, each Re N hasweight m~1. Then, each point Ry € %/(n,k)
of massm~1 ismapped to by k! (2" — 1)X many pointsin %/(n,0) x Pn k. €ach of mass
(2" (2"—1)-...- (2"~ k+1))~L. Hence, each point of m~* massis mapped to by
a, & m~1 much mass. Therefore, Tn k IS an k-measure scaling.

7 We can justify the reasoning in the above paragraph as follows. Factor =N into
¥"2" » ¥N, where each R € IN correspondsto (r,R) and wherer € ="' is the sub-
sequence of n2" bits of R that determine ER on X" and R € XN is the sequence that
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results from omitting the initial subsequencer from R. Since al the bits concerned
with &R on £" and with Ty, are among the r’s and since

wa) = /ZN/Znanﬂ(r,R’)drdR’ = /ZN )

rexn2’

1)4 ( r R)
on2n

dR,

we can reduce measure computations to simple counting asin the above paragraph.
]

TheMain Argument

We now have all the tools at hand to prove:

Theorem 12 Relativeto arandomoracle R, UPR £ NPR,

Proof. Let M range over nondeterministic oracle Turing machinesthat have polynomial -

bounded run times that are independent of their oracle. By Lemma 8, to establish
the theorem it suffices to prove that there is an a > 0 such that for all M, we have
n({R: MR failsto UP-accept LR}) > a. Sofix an M and Iet p(-) be a polynomial
that boundsits run-time on all oracles. For each n and k, define

an) = {R:MRQ") =LR0OM},
A(n,k) = A4(n)NnW(nKk),
D(nk) = W(nk)—A4(n k), and

R ; n
M(nk) = {Rew(n,k) . MRoninput 0 hasatleastk}_

accepting computations

(“4" for agree, “ D" for disagree, and “ M for multiple.)
The heart of the argument is the following curious looking lemma.

Lemma 13 For all n,

K(D(,0)) +(D(n, 1) +u(a(n,2)) > “no_ PO o1
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Before proving the lemma, we show how to useit to establish thetheorem. Since
(wn,o/Z— p(n)/(2"— 1)) — 1/(2-e) asn — o it follows from the lemma that

_— 1
Since D(n,0), D(n,1), and M (n,2) are pairwise digoint and M fails to UP-accept
LR on each of these set, we have that

w({R: MR failsto UP-accept LR}) > %e'
Sincethe choiceof M wasarbitrary, by Lemma8 thisinequality impliesthe theorem.
It remains to show Lemma 13.

The Proof of Lemma 13

Fix n. Weobtain our lower boundonpu (M (n,2)) 4+wu(2D(n,0)) +w(D(n,1)) by find-
ing bounds on the measures of a number of other sets. The ideaisto gather enough
information about the behavior of M on 1/ (n,0) and 7/(n, 1) to be able to deduce
something of the behavior of M on 7/(n, 2). All of these“behaviors” manifest them-
selves as the measure of various sets.

In what follows we often use the following simple version of the principle of
inclusion-exclusion: if S, $1, and U are measurable sets with 5o U $1 C U, then

W(SoNS1) = 1(So) +m(S1) — ().
Step 1: Estimating un1(X). Define
X = {(Rx):0"¢LR MRO") reects, and MR/*(0") accepts }.
We claim
Mn1(X) > Wno—W(D(n,0)) —w(D(n, 1)) +O(H)- (5)

To show thisclaimwefirst observethat X = (4(n,0) x £") N T }(A(n,1)). Since
4(n,0) x 2" and T—(4(n, 1)) are both subsets of /(n,0) x ", we have

Una(X) > wna(A(n,0) x ") +n 1 (T, 1(A(N, 1)) — 2 (W(n,0) x £7).
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We also observe the following:

Mn1(A(N,0) xZY = u(A(n,0)) = Wno—p(D(n,0)).
Mo (T (AN, 1) = a;1-u(A(n, 1)

= a;i-(Wn1—1(D(n,1)))

= Who—ap1-H(D(n,1))

= Wno—1(D(n,1)) +O(F).

M1 (W(n,0) xE%) = w(W(n,0) = wno.

Wn,0 — (D(N,0)) + Wno—R(D(N, 1)) +O(F) — Wno
Wn,0 — 1(D(n,0)) — u(D(n, 1)) + O(F)

=
=
VWY,

as claimed.

Step 2: Estimating un2(9). Define

7 = {Rxy):RYeX& Ry ex}

0" ¢ LR, MR(O") rejects, & both}

= R X, y) :
{( Y) MR/X(0") and MR/Y(0") accept

Since 9 C W(n,0) x Pk, we have

n2(2) = wn2({(RXY) 1 (RX) € X})
+Hn,2({(R>X7y) : (R7y) € ‘X})
—Un2(W(n,0) x Pyk)

= Un,l(x) + un,l(x) —Who
> Wno—2u(D(n,0) —2u(D(n,1)) —O(5)  (by Ean. 5).

Step 3: Estimating up2(9”). Define
Iy = {(R,x,y) €9 :Mon (R/x,0") interrogatesy},
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I, = {(R,x,y) €9 :Mon (R/y,0" interrogatesx}, and

Yy = 9—-Ih—1

(i) O" ¢ LR, MR(0") rejects, & both MR/X(Q")
and MR/Y(0") accept,

(i) M on (R/x,0") does not interrogatey, and

(iii) M on (R/y,0") does not interrogate x

= (R,X,y) :

To obtain alower bound on p(9), we find upper bounds on the p, »(1;)’s. We con-
sider Io first. For eachRe€ %/(n,0) and x € X", if MR/X(0") accepts, then by Lemma
10(b), ||[{y € £" : M on (R/x,0") interrogatesy } || < p(n). Hence, for each R €
W(n’ O)l

MR/X(0") accepts & M on

X,Y) € Phk - ;
H{( Y) € o (R/x,0") interrogatesy

}H < p(n)-2"

Thus, we obtain (). 2" )
p(n)-2 p(n
< < ;
un,Z(IO) — 2n . (2n _ 1) — 2n _ 1
Similarly, pn>( 1) < p(n)/(2"—1). Therefore, by thelower bound onp(9”) and the
upper bounds on wn >( o) and p, 2(11) we have

1n2(0) > Vo 20(D(0,0)) ~ 2u(D(1)) - SD ~O(F).

Last Step: Estimating (9 (n,2)). Itiseasy to check that 97 = T3 0 Ty 2(97).
Hence,

M(Tn,z(yl))
= an2-tn2(T2 (Th2(9))
= an,Z'Hn,Z(D/I)
> a2 (who-2u(0(n,0) - u(0(n. ) - 52T o))
> (3+0(4) (wno - 20(0(n.0) - 20(0(n. 1)) - 52T ~ 0 )
> Jwno—(D(n.0)) - p(D(n. 1) - A o).

25



Also, itfollowsfromthedefinitionsof M (n,2),9”, and Ty that T, »(9”) € M (n, 2).
Therefore, the lemmafollows. ] Lemma 13

The proof of Theorem 12 is thus compl ete.
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5 Random Oraclesand the Output-Multiplicity Hier-
archy

We now show that the output-multiplicity hierarchy isinfinite relative to a random
oracle.

Theorem 14 Relativeto arandomoracle, for all k> 1, NPKV €. NP(k— 1)V.

Since the intersection of countably many sets of measure 1 isitself aset of mea-
sure 1, it suffices to prove:

Theorem 15 For all k > 1, relative to a random oracle, NPkV Z. NP(k—1)V.

Therest of the section is devoted to proving Theorem 15. The proof proceeds as
follows. Fix k. In place of the &R function of the last section, we introduce a partial
function fR:0* — T* asfollows. Let s bethe (i +1)% binary string of length [logk],
and for eachi < kandy € X*, let tag;(y) bethe string ys 1. Then, for each R, i, and
n, we define

fRO") —i, ifi < kand, for somey € X", tag;(y)0! ¢ Rfor each j < n.

Clearly, for each oracle R, fR can be computed by a k-valued NPR transducer. We
will show that the collection of al R for which thereisa (k— 1)-valued NPR trans-
ducer that computes a refinement of R isa set of measure 0. We first note the fol-
lowing lemma. Let M range over relativized, nondeterministic TM transducers that
have polynomial bounded run times which are independent of their oracle.

Lemma 16 Suppose that thereisan a > 0 such that, for all M, u({R: MR failsto
be (k — 1)-valued transducer that computes a refinement of fR}) > a. Then, {R:
NPkVR Z. NP(k— 1)VR} has measure 1.

Proof Sketch: First adjust Lemma7 so that the oracle-dependent languagesB, C,
and D are respectively replaced by oracle-dependent, multivalued functions gg, gc,
and gp and change “max(B®R A BR) < ng” initem 4 to “max({x : set-g3R(x) #
set-gR(x) }) < ns.” Minor changes in the proof of Lemma 7 suffice to obtain the
revised version of the lemma. Now note the hypotheses of the revised Lemma7 are
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satisfied when g§ = fR and A(i, R, gR) = nondeterministic transducer i is (k— 1)-
valued and computes a refinement of gR. Thus, asimple argument analogous to the
one given for Lemma 8 suffices to obtain the present lemma.

So, by this lemma, it suffices to understand the difficulties encountered by an
M that “tries” to be a (k— 1)-valued transducer computing a refinement of fR. The
nature of these difficultiesisthat successin accurately computing fR on asignificant
part of =N entail sthat MR isk-valued on another significant part of £N. To understand
this bal ance between successes and failures, we need to understand the structure that
fR imposes on XN and computations over =N x N. Towards this end, we introduce
the following definitions.

For each n and i and oracle R, define

witnesses(n,i,R) = {yeX" : foreachj < n, tag(y)0 ¢ R}
= {yex": ywitnesses fR(0") —i}.

For each a, i, and n, define
W(nai) = {R: |witnesses(n,i,R)||=a}.

Themeasure of W (n,a,i) isequa to the probability that a set R has exactly a-many
witnessesto fR(0") — i. The probability that agiven stringy € X" is such awitness
is27". So, by counting the number of ways in which there can be exactly a-many
witnessesin X", we obtain

wwinai) = (2)-(5)" (1—2—1n)2n_a. ©

Observe that the right-hand side of the above equation has no dependenceoni. For
each a < k, we let wy 5 denote the right-hand side of equation 6. We note that for
each n, Wy =Wy 1 and, for eachi < kand eacha <Kk,

, 1
fimha = e )

Now, from the W (n, a,i)’swe build the following sets:
wy(n) = {R: RO}
= ﬂj<kW(n,O,j)-
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W(n) = {R ‘ fR(0") isk-valued andthereisaunique}
" B witness for each output value
= Nj«kW(n,1,j).
W(n) = { R fR(0") hasjust i asits value and there}
' B isaunique witnessto this

= ﬂj<iW(n,O,j) m W(nalai) m ﬂj>iW(n,O,j),

wherei < k. Sincefor al a;, ay, i, and j withi and j distinct, the events W(n,a, i)
and W (n,ay, j) areindependent, we conclude that

W(Wi(n) = wyo, and (8)
WWi(n) = war-wWig'=Wwho, foreachi<k. (9)

Recall that set-M(X) is the set of output values of M on input x. Given atrans-
ducer M, a multivalued function f, and a string x, if set-M(x) = set-f(x), then we
write M(X) ~¢ f(X).

Aswe noted before, to prove thetheorem is sufficesto show that thereisana > 0
such that, for all M, u({ R: MR failsto bea (k— 1)-valued transducer that computes
arefinement of fR}) > a. So, fix an M and let p(-) be a polynomial function that
bounds M’s run-time on all oracles. We define the following setsfor each n € N.

c(n) = {R: MRO") ~ fROM}.
G(n) = C(n)NWi(n).

G = c(mnmi(n).
M(n)

n = {ReMW.(n) : [set-MR(Q")]| =k}.

Intuitively, C(n) istheset of oracleswhereM correctly computes f; Cr(n) isthesub-
set of ¢(n) inwhich fR(0") isundefined; G (n) isthesubset of C(n) inwhich fR(Q")
has the unique value i and has a unique witness for this; and M (n) is the subset of
W, (n) where MR(0") happens to be k-valued too. The following key lemma gives
alower bound on (M (n)) intermsof p(Cy(n)) and the u(G(n))’s.

Lemma 17 For each n, we have that
WM () > K-u(Cr(n) + (Tick M(Ci(N))) — (k+ 1) -Woo— K- p(n) - 27",
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Before proving the lemma, we show how to use it to establish Theorem 15.
For each nandi < k, define I(n) = W4 (n) — G(n) and £;(n) = M (n) — G(n).
(“ I” for incorrect.) By Lemma 17, we have

WM M) > k-w(G () + (Tick (G (M) — (k+1) -wh g — K- p(n) - 27"
= k- (M) = w(1 (M) + (Tic (M) — (5 ()
— (k+1)-Who— K2 p(n) -2
By some algebrawe obtain
H(M (n)) +u(L(N)) + Kick 1(£4(N))

> k-p(h (M) + (Tick (M) — (k+1) - Wi o — K- p(n) - 27"

= (k—1)-wio—K:-p(n)-2™"  (by Equations8and 9).
Thus, by Equation 7,

liminf (w(H (1) +1( L (M) + Bk w(E(N)) > (k—1)-e7™%

N—oo
Since I+(n), Ip(n),..., Ik_1(n), and H (n) are pairwisedisjoint and since M behaves
“incorrectly” on each of them, we have by the above inequality that w({ R: MR fails
to be (k— 1)-valued transducer that computes arefinement of fR}) > (k—1)-eK.
Since the choice of M was arbitrary, by Lemma 16, we have Theorem 15.

It remainsto show Lemma 17.

The Proof of Lemma 17

Fix n. We establish our lower bound on p(9(n)) by obtaining some information
about how M behaves on certain other sets. For the remainder of this proof, we as-
sume that each free occurrence of i isimplicitly quantified as “for eachi < k”.

For each oracle Rand z € X", define

R/z = R—{z0" : r<n}.
Observe that fR/189(X)(0") — i. Also, for each R, and Xg, X4, - .. X1 € X", define
R/[X0,X1---,%—1] = R—{tagi(x%)0" : i <kandr <n}.

Observe that set- fR/Do--%-1l(0") = {0,... , k—1}.
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Step 1: Estimatingthepn(4(i))’s. Weview L as ameasure space under the uni-
form, normalized counting measureg. Thus, for al x e X", ug(x) =27". W;(n) x
X" is thus a measure space under the product measure i = 1 X 1g. (Where w in
I X Mg is understood as the measure u restricted to the subspace 74(n).) For each
i, define

A(i) = {(Rx) :Re G(n) and R/tagi(x) € Gi(n) }
(i) MR(O") ¢ fR(0")1 and
{ (R’ X) : (“) MR/tagi(X) (On) ~c fR/tagi(x) (On) — i } )
Our goal in this step isto establish

i (A(i)) > w(G(n))+p(Gi(n)) —Wnpo. (10)

To help prove this, we introduce the map T;: W4 (n) x " — W;(n) defined by the
equation T; (R, X) = R/tag;(X).

Claim: T is(2"/(2" - 1))*-measure scaling. Proof: T, isonto and 2"—1to 1.
For the moment let us pretend, asin the proof of Lemma 11, that there only m many
elementsin ZN. Then each R € N has mass m~. Then each point Ry € M(n)
of mass m~? is mapped to by (2" — 1) many pointsin W;(n) x X" each of mass
(m-2")~1, Hence, each point of m~! massis mappedto by ((2"—1)/2")-m~ much
mass. Therefore, T, is(2"/(2" - 1))X-measurescaling. (We can justify thisreason-
ing exactly aswe did in the proof of Lemma11.) Thusthe claim follows.

Now, by definition of A4(i), we have

) = (<=0 (T Ham)).

Since the sets (C4(n) x £") and (T71(Ci(n))) are both subsets of 7;(n) x I, it
follows by the principle of inclusion and exclusion that,

m(A®[)) > pa(Cp(n) x Z +pa(THEI() —wa(Wi(n) x =Y. (12)

Since, for eachi, T is measure preserving, we have

PG X E) = p(CH(n),
mTHGM) = ZprG) = p(Gm), ad
p(WHN) XN = w(Wi() = o

Using the above and Equation 11, we obtain Equation 10 as desired.
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Step 2: Estimatingpu(B).  Convention: We write X for Xg, ..., %_1. Theset (™)K
can be viewed as a measure space under the uniform, normalized counting measure
1, suchthat, for each (R) € (ZM, p.(X) = 27K 94 (n) x ("X isameasure space
under p, = u x W,. We define

B = {(RRX) : (Rx)ecA4()}, ad
B = {(RX)|fordli,(Rx)€A®l)} = NikB;
B (i) set-MR(0") = set-fR(O") =0, and
a {(R’K) (i) for all i, MR/®G() (") ~g FR/2E( () s | }

Clearly, foreachi, B C Wy(n) x (E")K and pp(B;) = pa(A(i)). Using the principle
of inclusion and exclusion once more, we obtain

u2(B) > (Tick Ma(A(0)) = W(Wi(N)).

On substituting from Equation 10, we have the following estimate:
Mo(B) > k-u(Cy(N)+ (Tick K(Ci(M)) —k-Wio—Who.  (12)

Step 3: Estimatingu(3'). Asin Definition 9(d), we say that MR ony interrogates
zif, inevery computation of M with oracle Rand input y, the machine queries R about
some string of the form 0! with j < k. So, if MR on 0" interrogates tag (x), then
every computation of MR on 0" knows something about whether fR(0") — i. We
areinterested in B, a subset of B obtained by removing from B those (R, X) where
an interrogation of sometag; (x) occurs. That is, ' = B—U j<kJi, whereeachi <k,

MR/1aGi(X) on O accepts and interrogates some }

= {Ryen
I {(’)E tag;(x;) with | < kand j #1

S0, B = fB—Uj<k]i =

(i) MR(OM) ~¢ fR(OM)1,
(i) For al i, MR/®g()(Q") ~ fR/186(X)(Q") — i, and
© (iii) For al i, MR/tg()(0") does not interrogate any
tag;(x;) with j <kand j #1i

(R%)

To establish alower bound on the measure of B’, we first obtain upper bounds on
the measure of the %’s. For each x € " and R W, (n), if MR/188()(0") accepts,
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then Lemma 10(b) yields ||{y € X" | M~/©4(X) (") interrogatesy }|| < p(n). So, for
each Re W4 (n) and each i, a simple counting argument shows

[{me

Thus, for dl i,

MR/1aGi(X) on 0" accepts & interrogates
sometag;(xj) with j <kand j #I

< (k=1)-p(n)- 20t

(k=1) - p(n) - 206~V
2k-n

wz(7) < < k-p(n)-27".

Since B' = B— Ui %, by thelower bound of Equation 12 and the above upper
bounds on the pu( %)’s, we obtain

Ho(B') k-1w(Cr(n) + (Tick M(Ci(N)) — (K4 1) - Wno — Yick M2(F)

K-w(Cr() + (Zick R(Ci(M)) = (k4 1) - W0 — K- p() - 27",

AVARY

Last Step: Estimating u(M(n)). Let G: Wy(n) x (ZM* — W, (n) be the map
defined by G(R,X) = R/[X]. It iseasy to see that G isonto and (2" — 1)X to 1. By an
argument similar to the one for T; above, we can establish that G is (2"/(2" — 1))-
measure scaling. Hence,

w(G(B))

- (Zf—fl)k-uxe—l(e(ﬂ)»

2n—-1
(B
> k-u(Cr(n) + (Tj<k W(Cj(N)) — (k+ 1) -Wno— K2 p(n) - 27",

Since MR is k-valued on al oraclesin G(8') and G(B') C M. (n), it follows that
G(B') € M (n), and so Lemma 16 follows.
The proof of Theorem 15 thus is compl ete.

2\
( ) () (since B C G(G(%)))

v
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6 Remarksand Open Questions

Define UP to be the class of all languages in NP that are acceptable by an NP-
machinethat hasat most k accepting computationson every input. One can associate
eachlanguageL € UP withthepartial functionin NPKkV ¢ that mapseachx € L tothe
accepting computationsof the UP,-acceptor for L. For k> 1, doesUPy 1 = UPcim-
ply that the polynomial hierarchy collapses? Does UP = NP imply that the polyno-
mial hierarchy collapses? The results about function classes seem not to imply any-
thing about the corresponding language classes. The problem is that some strange
unambiguous Turing machine might accept SAT whose accepting paths have no con-
nection with the problem of computing satisfying assignments.

Similarly, we have not been able to separate the classes UP, by arandom oracle.
The reason why the obvious application of the proof of Theorem 15 failsisthat the
domain of the k-valued function fR is not necessarily in UPR It seems difficult to
construct an oracle-dependent language that, for almost all oracles, has k witnesses
but not k — 1 withnesses. A Turing machine that, on input x, randomly decideson a
subspace of the witness space and then searches for witnesses only in this subspace
will frustrate any language that is defined using the function fR.

Inlight of theresult of Section 3, existenceof an oraclerelativetowhich the poly-
nomial hierarchy collapses to PNP while the output-multiplicity hierarchy is strict,
is it possible that the result of Section 2 can be improved? Does a collapse of the
output-multiplicity hierarchy imply a collapse of the polynomial hierarchy lower
than X5. Withregard tothisquestion, let usnotethat Hemaspaandraet al. [HNOS96]
showed that NPMV C NPSV impliesthe polynomial hierarchy collapsesto ZPPNP,
and our techniques do not seem to obtain even this.

Another related open question is whether a conjecture raised by Even, Selman,
and Yacobi [ESY 84] holds relative to a random oracle. The conjecture states that
every digoint pair of Turing-complete setsin NP is separable by a set that is not
Turing-hard for NP, It is known [ESY 84, GS88, Sel94] that this conjecture implies
(i) NP # co-NP, (ii) NP # UP, and NPMV C¢ NPSV. It has been known that NP #
co-NP holdsrelative to random oracle [BG81] and this paper demonstrates that the
second and third consequences hold relative to arandom oracle.

Finally we raise the following technical question:

Letk> 1. DoesNP(k+1)V Cc NPKV imply for all m> k, that NPmV C.
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NPkV?
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