

Separation of NP-completeness Notions

A. Pavan∗ Alan L Selman†

March 29, 2001

Abstract
We use hypotheses of structural complexity theory to separate various NP-com-

pleteness notions. In particular, we introduce an hypothesis from which we describe
a set in NP that is ≤P

T-complete but not ≤P
tt-complete. We provide fairly thorough

analyses of the hypotheses that we introduce.

1 Introduction
Ladner, Lynch, and Selman [LLS75] were the first to compare the strength of polynomial-
time reducibilities. They showed, for the common polynomial-time reducibilities, Turing
(≤P

T), truth-table (≤P
tt), bounded truth-table (≤P

btt), and many-one (≤P
m), that

≤P
m ≺≤P

btt ≺≤P
tt ≺≤P

T,

where≤P
r≺≤P

s means that≤P
r is properly stronger than≤P

s ; that is, A≤P
r B implies A≤P

s B,
but the converse does not hold. In each case, the verifying sets belong to E = DTIME(2n).
Ladner, Lynch, and Selman raised the obvious question of whether reducibilities differ on
NP. If there exist sets A and B in NP (other than the empty set or Σ∗) such that A≤P

TB but
A 6≤P

mB, then, of course, P 6= NP follows immediately. With this in mind, they conjectured
that P 6= NP implies that ≤P

T and ≤P
m differ on NP.

In the intervening years, many results have explained the behavior of polynomial-
time reducibilities within other complexity classes and have led to a complete understand-
ing of the completeness notions that these reducibilities induce. For example, Ko and
Moore [KM81] demonstrated the existence of ≤P

T-complete sets for EXP that are not ≤P
m-

complete. Watanabe [Wat87] extended this result significantly, showing that ≤P
1−tt-, ≤P

btt-,
≤P

tt-, and≤P
T-completeness for EXP are mutually different, while Homer, Kurtz, and Royer

[KR93] proved that ≤P
m- and ≤P

1−tt-completeness are identical.
∗Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Email:

aduri@cse.buffalo.edu
†Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Email:

selman@cse.buffalo.edu

1

However, there have been few results comparing reducibilities within NP, and we have
known very little concerning various notions of NP-completeness. It is surprising that
no NP-complete problem has been discovered that requires anything other than many-one
reducibility for proving its completeness. The first result to distinguish reducibilities within
NP is an observation of Wilson in one of Selman’s papers on p-selective sets [Sel82].
It is a corollary of results there that if NE∩ co-NE 6= E, then there exist sets A and B
belonging to NP such that A≤P

pttB, B≤P
ttA, and B 6≤P

pttA, where ≤P
ptt denotes positive truth-

table reducibility. Regarding completeness, Longpré and Young [LY90] proved that there
are ≤P

m-complete sets for NP for which ≤P
T-reductions to these sets are faster, but they did

not prove that the completeness notions differ. The first to give technical evidence that ≤P
T-

and ≤P
m-completeness for NP differ are Lutz and Mayordomo [LM96], who proved that

if the p-measure of NP is not zero, then there exists a ≤P
3-tt-complete set that is not ≤P

m-
complete. Ambos-Spies and Bentzien [ASB00] extended this result significantly. They
used an hypothesis of resource-bounded category theory that is weaker than that of Lutz
and Mayordomo to separate nearly all NP-completeness notions for the bounded truth-table
reducibilities.

It has remained an open question as to whether we can separate NP-completeness no-
tions without using hypotheses that involve essentially stochastic concepts. Furthermore,
the only comparisons of reducibilities within NP known to date have been those just listed.

Here we report some exciting new progress on these questions. Our main new result in-
troduces a strong, but reasonable, hypothesis to prove existence of a≤P

T-complete set in NP
that is not ≤P

tt-complete. Our result is the first to provide evidence that ≤P
tt-completeness

is weaker than ≤P
T-completeness. Let Hypothesis H be the following assertion: There is

a UP-machine M that accepts 0∗ such that (i) no polynomial time-bounded Turing ma-
chine correctly computes infinitely many accepting computations of M, and (ii) for some
ε> 0, no 2nε time-bounded Turing machine correctly computes all accepting computations
of M. Hypothesis H is similar to, but seemingly stronger than, hypotheses considered by
researchers previously, notably Fenner, Fortnow, Naik, and Rogers [FFNR96], Hemaspaan-
dra, Rothe and Wechsung [HRW97], and Fortnow, Pavan, and Selman [FPS99].

This result is especially interesting because the measure theory and category theory
techniques seem to be successful primarily for the nonadaptive reducibilities. We will prove
an elegant characterization of the genericity hypothesis of Ambos-Spies and Bentzien and
compare it with Hypothesis H. Here, somewhat informally, let us say this: The genericity
hypothesis asserts existence of a set L in NP such that no 22n time-bounded Turing machine
can correctly predict membership of infinitely many x in L from the initial characteristic
sequence L|x = {y ∈ L | y< x}. That is, L is almost-everywhere unpredictable within time
22n. Clearly such a set L is 22n-bi-immune. In contrast, we show that Hypothesis H holds if
there is a set L in UP∩co-UP such that L is P-bi-immune and L∩0∗ is not in DTIME(2nε

),
for some ε > 0. Thus, we replace “almost-everywhere unpredictable” with P-bi-immunity
and we lower the time bound from 22n to 2nε , but we require L to belong to UP∩ co-UP
rather than NP.

We prove several other separations as well, and some with significantly weaker hy-

2

potheses. For example, we prove that NP contains ≤P
T-complete sets that are not ≤P

m-
complete, if NP∩ co-NP contains a set that is 2nε-bi-immune, for some ε> 0.

2 Preliminaries
We use standard notation for polynomial-time reductions [LLS75], and we assume that
readers are familiar with Turing, ≤P

T, and many-one, ≤P
m, reducibilities. A set A is truth-

table reducible to a set B (in symbols A ≤P
tt B) if there exist polynomial-time computable

functions g and h such that on input x, g(x) is a set of queries Q = {q1,q2, · · · ,qk}, and x∈A
if and only if h(x,B(q1),B(q2), · · · ,B(qk)) = 1. The function g is the truth-table generator
and h is the truth-table evaluator. For a constant k > 0, A is k-truth-table reducible to B
(A ≤P

k-tt B) if for all x, ‖Q‖ = k, and A is bounded-truth-table reducible to B (A≤P
bttB) if

there is a constant k > 0 such that A ≤P
k-tt B. Given a polynomial-time reducibility ≤P

r ,
recall that a set S is ≤P

r -complete for NP if S ∈ NP and every set in NP is ≤P
r -reducible to

S.
Recall that a set L is p-selective if there exists a polynomial-time computable function

f : Σ∗×Σ∗→ Σ∗ such that for all x and y, f (x,y) ∈ {x,y} and f (x,y) belongs to L, if either
x ∈ L or y ∈ L [Sel79]. The function f is called a selector for L.

Given a finite alphabet, let Σω denote the set of all strings of infinite length of order
type ω. For r ∈ Σ∗∪Σω, the standard left cut of r [Sel79, Sel82] is the set

L(r) = {x | x < r},

where < is the ordinary dictionary ordering of strings with 0 less than 1. It is obvious that
every standard left cut is p-selective with selector f (x,y) = min(x,y).

Given a p-selective set L such that the function f defined by f (x,y) = min(x,y) is a
selector for L, we call f a min-selector for L. We will use the following simplified version
of a lemma of Toda [Tod91].

Lemma 1 Let L be a p-selective set with a min-selector f . For any finite set Q there exists
a string z ∈ Q∪{⊥} such that Q∩L = {y ∈ Q | y ≤ z} and Q∩L = {y ∈ Q | y > z}. The
string z is called a “pivot” string.

Now we review various notions related to almost-everywhere hardness. A language
L is immune to a complexity class C , or C -immune, if L is infinite and no infinite subset
of L belongs to C . A language L is bi-immune to a complexity class C , or C -bi-immune,
if L is infinite, no infinite subset of L belongs to C , and no infinite subset of L belongs
to C . A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n)) almost
everywhere; that is, every Turing machine M that accepts L runs in time greater than T (|x|),
for all but finitely many words x. Balcázar and Schöning [BS85] proved that for every
time-constructible function T , L is DTIME(T (n))-complex if and only if L is bi-immune
to DTIME(T (n)).

3

Given a time bound T (n), a language L is T (n)-printable if there exists a T (n) time-
bounded Turing machine that, on input 0n, prints all elements of L∩Σ=n [HY84]. A set S
is T (n)-printable-immune if S is infinite and no infinite subset of S is T (n)-printable.

In order to compare our hypotheses with the genericity hypothesis we describe time-
bounded genericity [ASFH87]. For this purpose, we follow the exposition of Ambos-Spies,
Neis, and Terwijn [ASNT96]. Given a set A and string x, A|x = {y | y < x and y ∈ A}.
Let Σ∗ = {zn}n, where zn is the n-th string in lexicographic order. We identify the initial
segment A|zn with its characteristic sequence; i.e., A|zn = A(z0) · · ·A(zn−1). A condition is a
set C⊆ Σ∗. A meets C if for some x, the characteristic sequence A|x∈C. C is dense along A
if for infinitely many strings x there exists i ∈ {0,1} such that the concatenation (A|x)i ∈C.
Then, the set A is DTIME(t(n))-generic if A meets every condition C∈DTIME(t(n)) that is
dense along A. To simplify the notation, we say that A is t(n)-generic if it is DTIME(t(n))-
generic.

Finally, we briefly describe the Kolmogorov complexity of a finite string. Later we will
use this in an oracle construction. The interested reader should refer to Li and Vitányi [LV97]
for an in-depth study. Fix a universal Turing machine U . Given a string x and a finite set
S⊆ Σ∗, the Kolmogorov complexity of x with respect to S is defined by

K(x|S) = min{|p| |U(p,S) = x}.

If S = /0, then K(x|S) is called the Kolmogorov complexity of x, denoted K(x). We will use
time-bounded Kolmogorov complexity Kt(x) also. For this definition, we require that U(p)
runs in at most t(|x|) steps.

3 Separation Results
Let Hypothesis H be the following assertion:
Hypothesis H: There is a UP-machine M that accepts 0∗ such that

1. no polynomial time-bounded Turing machine correctly computes infinitely many ac-
cepting computations of M, and

2. for some ε > 0, no 2nε time-bounded Turing machine correctly computes all accept-
ing computations of M.

Theorem 1 If Hypothesis H is true, then there exists a ≤P
T-complete language for NP that

is not ≤P
tt-complete for NP.

Proof. Let M be a UP-machine that satisfies the conditions of Hypothesis H. For each
n≥ 0, let an be the unique accepting computation of M on 0n, and let ln = |an|. Define the
language

L1 = {〈x,an〉 | |x|= n, and x ∈ SAT}.

4

Define the infinite string a = a1a2 . . ., and define

L2 = L(a) = {x | x < a}

to be the standard left-cut of a.
We define L = L1⊕L2 to be the disjoint union of L1 and L2. We will prove that L is

≤P
T-complete for NP but not ≤P

tt-complete.

Lemma 2 L is ≤P
T-complete for NP.

Proof. It is clear that L belongs to NP. The following reduction witnesses that SAT≤P
TL:

Given an input string x, where |x|= n, use a binary search algorithm that queries L2 to find
an. Then, note that x ∈ SAT if and only if 〈x,an〉 belongs to L1.

Lemma 3 L is not ≤P
tt-complete for NP.

Proof. Assume that L is ≤P
tt-complete for NP. Define the set

S = {〈0n, i〉 | the i-th bit of an = 1}.

Clearly, S belongs to NP. Thus, by our assumption, there is a ≤P
tt-reduction 〈g,h〉 from S to

L. Given this reduction, we will derive a contradiction to Hypothesis H.
Consider the following procedure A :

1. input 0n;

2. compute the sets Q j = g(〈0n, j〉), for 1≤ j ≤ ln. Let Q =
⋃{Q j | 1≤ j ≤ ln};

3. Let Q1 be the set of all queries in Q to L1 and let Q2 be the set of all queries in Q to
L2 (Q = Q1∪Q2);

4. If Q1 contains a query 〈x,at〉, where t ≥ nε, then output “Unsuccessful” and Print at ,
else output “Successful”.

Observe that this procedure runs in polynomial time. We treat two cases, namely, either
A(0n) is unsuccessful, for infinitely many n, or it is successful, for all but finitely many n.

Claim 1 If the procedure A(0n) is unsuccessful for infinitely many n, then there is a poly-
nomial time-bounded Turing machine that correctly computes infinitely many accepting
computations of M, thereby contradicting Clause 1 of Hypothesis H.

Proof. If A(0n) is unsuccessful, then it outputs a string at such that t ≥ nε. Hence, if
A(0n) is unsuccessful for infinitely many n, then for infinitely many t there exists an n,
where n ≤ t1/ε, and A(0n) outputs at . The following procedure uses this observation to
compute infinitely many accepting computations of M in polynomial time.

5

input 0t ;
for j = 1 to j = t1/ε do

if A(0 j) outputs at
then output at and halt.

The procedure runs in polynomial time because the procedure A(0 j) runs in polynomial
time.

Claim 2 If A(0n) is successful for all but finitely many n, then there is a 2nε time-bounded
Turing machine that correctly computes all accepting computations of M, thereby contra-
dicting Clause 2 of Hypothesis H.

Proof. We will demonstrate a procedure B such that for each n, if A(0n) is successful,
then B on input 0n outputs the accepting computation of M on 0n in 2nε time.

If A(0n) is successful, then no member of the set Q1 is of the form 〈x,at〉 where t ≥ nε.
We begin our task with the following procedure C that for each query q = 〈y,z〉 in Q1
decides whether q ∈ L1.

1. input q = 〈y,z〉;

2. If z 6= at for some t, then 〈y,z〉 does not belong to L1; (This can be determined in
polynomial time.)

3. if z = at , where t ≤ nε, then 〈y,z〉 belongs to L1 only if |y|= t and y belongs to SAT.
(Since t ≤ nε this step can be done in time 2nε).

Thus, C decides membership in L1 for all queries q in Q1. Therefore, if for each query
q in Q2, we can decide whether q belongs to L2, then the evaluator h can determine whether
each input 〈0n, j〉, 1≤ j≤ ln, belongs to S. That is, if for each query q in Q2, we can decide
whether q belongs to L2, then we can compute an. We can accomplish this using a standard
proof technique for p-selective sets [HNOS96, Tod91]. Namely, since L2 is a standard left-
cut, by Lemma 1, there exists a pivot string z in Q2 ∪{⊥} such that Q2 ∩L2 is the set of
all strings in Q2 that are less than or equal to z. We do not know which string is the pivot
string, but there are only ‖Q2‖ choices, which is a polynomial number of choices. Thus,
procedure B on input 0n proceeds as follows to compute an: For each possible choice of
pivot and the output from procedure C , the evaluator h computes a possible value for each
j-th bit of an. There are only a polynomial number of possible choices of an, because there
are only a polynomial number of pivots. B verifies which choice is the correct accepting
computation of M on 0n, and outputs that value. Finally, we have only to note that the entire
process can be carried out in 2nε steps. This completes the proof of our claim, and of the
theorem as well.

6

Let Hypothesis H′ be the following assertion:
Hypothesis H′: There is an NP-machine M that accepts 0∗ such that for some 0 < ε < 1,
no 2nε time-bounded Turing machine correctly computes infinitely-many accepting com-
putations of M.

Theorem 2 If Hypothesis H′ is true, then there exists a Turing complete language for NP
that is not ≤P

m-complete for NP.

Proof. Let M be an NP-machine that satisfies the conditions of Hypothesis H′ . For each
n≥ 0, let an be the lexicographically maximum accepting computation of M on 0n, and let
|an|= ln. Define the language

L1 = {〈x,u〉 | |x|= n, u is an accepting computation
of M on 0m,n = mε/2, and x ∈ SAT}.

Let a = a1a2a3 · · ·, and define

L2 = L(a) = {x | x < a}.

Define L = L1⊕L2.
It is easy to see, as in the previous argument, that L is ≤P

T-complete for NP. In order to
prove that L is not ≤P

m-complete, we define the set

S = {〈0n,y〉 | y is a prefix of an accepting computation of M on 0n},

which belongs to NP, and assume there is a ≤P
m-reduction f from S to L. Consider the

procedure D in Figure 1: First we will analyze the running time and then we treat two
cases, namely, either D(0n) is successful for infinitely many n, or it is unsuccessful for all
but finitely many n.

Claim 3 The above procedure halts in O(ln2nε2
/2) steps.

Proof. Consider an iteration of the repeat loop. The most expensive step is the test of
whether “z ∈ SAT”. This test occurs only when |z|= tε/2 and t < nε. Hence we can decide
whether z belongs to SAT in 2nε2

/2 steps. All other steps take polynomial time. Hence the
time taken by the procedure is O(ln2nε2

/2).

Since 0< ε< 1, the running time of procedure D is bounded by 2nε .

Claim 4 If D(0n) is successful for infinitely many n, then there is a 2nε-time-bounded Tur-
ing machine that correctly computes infinitely many accepting computations of M.

7

input 0n;
y := λ;
Repeat ln times

begin
f (〈0n,y0〉) := x0;
f (〈0n,y1〉) := x1;
if both x0 and x1 are queries to L2

then if x0 ≤ x1
then y := y0
else y := y1

else {At least one of x0 and x1 is a query to L1; let b ∈ {0,1} be the least index
such that xb queries L1, and let xb = 〈z,u〉.}

if u is not an accepting computation of M {thus, xb /∈ L1}
then y = yb̄
else {u is an accepting computation of M on 0t}

if t ≥ nε

then output “Unsuccessful,” print u, and terminate
else {t < nε}

if |z|= tε/2 and z ∈ SAT {thus, xb ∈ L1}
then y := yb
else {xb /∈ L1} y := yb̄

end;
output “Successful” and print y.

Figure 1: Procedure D

8

Proof. We demonstrate that if D is successful on an input 0n, then the string that is
printed is an accepting computation of M on 0n. In order to accomplish this, we prove by
induction that y is a prefix of an accepting computation of M on 0n during every iteration
of the repeat loop (i.e., a loop invariant). Initially when y = λ this is true. Assume that y is
a prefix of an accepting computation of M at the beginning of an iteration. Then, at least
one of f (〈0n,y0〉) = x0, f (〈0n,y1〉) = x1 must belong to L. If both x0 and x1 are queries
to L2, then the smaller of x0 and x1 belongs to L2 because L2 is p-selective. Thus, in this
case, the procedure extends y correctly. If at least one of x0 and x1 is a query to L1, then
the procedure determines whether xb ∈ L1, where xb is the query to L1 with least index. If
xb belongs to L, then 〈0n,yb〉 ∈ S. Hence, yb is a prefix of an accepting computation. If
xb /∈ L, then xb̄ belongs to L, because at least one of xb or xb̄ belongs to L. Thus, in this
case, yb̄ is a prefix of an accepting computation. This completes the induction argument.

The loop repeats ln times. Therefore, the final value of y, which is the string that D
prints, is an accepting computation.

Claim 5 If D(0n) is unsuccessful for all but finitely many n, then there is a 2nε-time-
bounded Turing machine that correctly computes infinitely many accepting computations
of M.

Proof. The proof is similar to the proof of Claim 1. The following procedure computes
infinitely many accepting computations of M.

input 0n;
for j = 1 to j = n1/ε do

if D(0 j) outputs u and u is an accepting computation of M on 0n

then print u and terminate.

The running time of this algorithm can be bounded as follows: The procedure D(0 j)

runs in time l j2 jε2
/2 steps. So the total running time is ∑n1/ε

1 l j2 jε2
/2 = O(2nε

).

Since the cases treated both by Claims 4 and 5 demonstrate Turing machines that cor-
rectly compute infinitely many accepting computations of M in 2nε time, we have a contra-
diction to Hypothesis H′ . Thus L is not ≤P

m-complete for NP.

The following results give fine separations of polynomial time reducibilities in NP from
significantly weaker hypotheses. Moreover, they follow readily from results in the litera-
ture.

9

Theorem 3 If there is a tally language in UP−P, then there exist two languages L1 and
L2 in NP such that L1≤P

ttL2, L2≤P
TL1, but L1 6≤P

bttL2.1

Proof. Let L be a tally language in UP−P. Let R be the polynomial-time computable
relation associated with the language L. Define

L1 = {〈0n,y〉 | ∃w,R(0n,w) and y≤ w}

and
L2 = {〈0n, i〉 | ∃w,R(0n,w) and i-th bit of w is one}.

It is clear that L1 is≤P
tt-reducible to L2. To see that L2 is≤P

T-reducible to L1, implement
a binary search algorithm that accesses L1 to determine the unique witness w such that
R(0n,w), and then find the i-th bit.

Observe that L2 is a sparse set. Ogihara and Watanabe [OW91] call L1 the left set of L,
and they and Homer and Longpré [HL94] proved for every L in NP that if the left set of L
is ≤P

btt-reducible to a sparse set, then L is in P. Hence L1 6≤btt L2.

We now prove that Turing and truth-table reducibilities also differ in NP under the same
hypothesis.

Theorem 4 If there is a tally language in UP−P, then there exist two languages L1 and
L2 in NP such that L1≤P

TL2 but L1 6≤P
ttL2.

Proof. Hemaspaandra et al. [HNOS96] proved that the hypothesis implies existence
of a tally language L in UP−P such that L is not ≤P

tt-reducible to any p-selective set. In
the same paper they also showed, given a tally language L in NP−P, how to obtain a p-
selective set S such that L is ≤P

T-reducible to S. Combing the two results we obtain the
theorem.

4 Analysis of the Hypotheses
This section contains a number of results that help us to understand the strength of Hy-
potheses H and H′ .

1The class of all languages that are ≤P
T-equivalent to L1 is a noncollapsing degree.

10

4.1 Comparisons With Other Complexity-Theoretic Assertions
We begin with some equivalent formulations of these hypotheses, and then relate them to
other complexity-theoretic assertions. The question of whether P contains a P-printable-
immune set was studied by Allender and Rubinstein [AR88], and the equivalence of items 1
and 3 in the following theorem is similar to results of Hemaspaandra, Rothe, and Wechsung
[HRW97] and Fortnow, Pavan, and Selman [FPS99]. The second item is similar to the the
characterization of Grollmann and Selman [GS88] of one-one, one-way functions with the
addition of the attribute almost-always one-way of Fortnow, Pavan, and Selman.

Theorem 5 The following statements are equivalent:

1. There is a language L in P that contains exactly one string of every length such that
L is P-printable-immune and, for some ε> 0, L is not 2nε-printable.

2. There exists a polynomial-bounded, one-one, function f : 0∗ → Σ∗, such that f is
almost-everywhere not computable in polynomial time, for some ε> 0, f is not com-
putable in time 2nε , and the graph of f belongs to P.

3. Hypothesis H is true for some ε> 0.

Proof. Let L satisfy item one. Define

f (0n) = the unique string of length n that belongs to L.

Clearly, f us polynomial-bounded and one-one. The graph of f belongs to P, because L
belongs to P. Suppose that M is a Turing machine that computes f and that runs in polyno-
mial time on infinitely many inputs. Then, on these inputs, M prints L∩Σn. Similarly, f is
not computable in time 2nε .

Let f satisfy item two. Define a UP-machine M to accept 0∗ as follows: On input 0n,
M guesses a string y of length within the polynomial-bound of f , and accepts if and only if
〈0n,y〉 ∈ graph(f). The rest of the proof is clear.

Let M be a UP-machine that satisfies item three, i.e., that satisfies the conditions of
Hypothesis H. Let an be the unique accepting computation of M on 0n and let |an|= nl . Let
rn be the rank of an among all strings of length nl . Now, we define L as follows: Given a
string x, if |x|= nl for some n, then x belongs to L if and only if x = an. If (n−1)l < |x|< nl ,
then x belongs to L if and only if the rank of x (among all the string of length |x|) is rn−1. It
is clear that L∈ P and has exactly one string per each length. We claim that L is P-printable-
immune and is not 2nρ-printable, where ε = lρ. Any machine that prints infinitely many
strings of L in polynomial time can be used to print infinitely many accepting computations
of M in polynomial time. Thus L is P-printable-immune. Any machine that prints all the
strings of L in 2nρ time can be used print all the accepting computations of M in 2nε time.
Thus L is not 2nρ-printable.

We prove the following theorem similarly.

11

Theorem 6 The following statements are equivalent
1. There is a language L in P that contains at least one string of every length such that,

for some ε> 0, L is 2nε-printable-immune.

2. There is polynomial-bounded, multivalued function f : 0∗→ Σ∗ such that every re-
finement of f is almost-everywhere not computable in 2nε-time, and the graph of f
belongs to P.

3. Hypothesis H ′ holds for some ε> 0.

Next we compare our hypotheses with the following complexity-theoretic assertions:
1. For some ε> 0, there is a P-bi-immune language L in UP∩co-UP such that L∩0∗ is

not in DTIME(2nε
).

2. For some ε> 0, there is language L in UP∩co-UP such that L is not in DTIME(2nε
).

3. For some ε> 0, there is a 2nε-bi-immune language in NP∩ co-NP.

Theorem 7 Assertion 1 implies Hypothesis H and Hypothesis H implies Assertion 2.

Proof. Let L be a language in UP∩ co-UP that satisfies Assertion 1. Define M to be the
UP-machine that accepts 0∗ as follows: On input 0n, nondeterministically guess a string
w. If w either witnesses that 0n is in L or witnesses that 0n is in L, then accept 0n. It is
immediate that M satisfies the conditions of Hypothesis H.

To prove the second implication, let M a UP-machine that satisfies the conditions of
Hypothesis H. Let an denote the unique accepting computation of M on 0n and define

L = {〈0n,x〉 | x≤ an}.
It is clear that L ∈UP∩co-UP. If L ∈DTIME(2nε

), then a binary search algorithm can
correctly compute an, for every n, in time 2nε . This would contradict Hypothesis H. Hence,
L /∈ DTIME(2nε

).

The discrete logarithm problem is an interesting possible witness for Assertion 2. The
best known deterministic algorithm requires time greater than 2n

1
3 [Gor93]. Thus, the

discrete logarithm problem is a candidate witness for the noninclusion UP ∩ co-UP 6⊆
DTIME(2nε

), for any 0< ε≤ 1
3 .

Corollary 1 If, for some ε > 0, UP∩ co-UP has a 2nε-bi-immune language, then ≤P
T-

completeness is different from ≤P
tt-completeness for NP.

Theorem 8 Assertion (3) implies Hypothesis H ′ .

Corollary 2 If, for some ε > 0, NP∩ co-NP has a 2nε-bi-immune language, then ≤P
T-

completeness is different from ≤P
m-completeness for NP.

12

4.2 Comparisons with Genericity
The genericity hypothesis of Ambos-Spies and Bentzien [ASB00], which they used suc-
cessfully to separate NP-completeness notions for the bounded-truth-table reducibilities,
states that “NP contains an n2-generic language”. Our next result enables us to compare
this with our hypotheses.

We say that a deterministic oracle Turing machine M is a predictor for a language L
if for every input word x, M decides whether x ∈ L with oracle L|x. L is predictable in
time t(n) if there is a t(n) time-bounded predictor for L. We define a set L to be almost-
everywhere unpredictable in time t(n) if every predictor for L requires more than t(n) time
for all but finitely many x. This concept obviously implies DTIME(t(n))-complex almost
everywhere, but the converse does not hold:

Theorem 9 EXP contains languages that are DTIME(2n)-complex but not almost-everywhere
unpredictable in time 2n.

Now we state our characterization of t(n)-genericity.

Theorem 10 Let t(n) be a polynomial. A decidable language L is t(n)-generic if and only
if it is almost-everywhere unpredictable in time t(2n−1).

Proof. Assume that L is not almost-everywhere unpredictable in time t(2n−1), and let
M be a predictor for L that for infinitely many strings x runs in time t(2n− 1). Define a
condition C so that the characteristic sequence

(L|x)x ∈C⇔M with oracle L|x runs in time t(2|x|−1) on input x.

where x = ¬(M accepts x). Then, C is dense along L because M correctly predicts
whether x ∈ L for infinitely many x. It is easy to see that C ∈ DTIME(t(n)). However, L is
not t(n)-generic because we defined C so that L does not meet C.

Assume that L is not t(n)-generic, and let C ∈DTIME(t(n)) be a condition that is dense
along L such that L does not meet C. Let T be a deterministic Turing machine that halts on
all inputs and accepts L. Define a predictor M for L to behave as follows on input x with
oracle A|x: If (A|x)1 ∈C, then M rejects x, and if (A|x)0 ∈C, then M accepts x. If neither
holds, then M determines membership in L by simulating T on x. Since L does not meet C,
M is a predictor for L. Since C is dense along L and L does not meet C, for infinitely many
x, either (A|x)1 ∈C or (A|x)0 ∈C, and in each of these cases, M runs for at most t(2 ·2|x|)
steps. Since t(n) is polynomial function, by the linear speedup theorem [HS65], there is a
Turing machine that is equivalent to M that runs in time t(2|x|−1).

Corollary 1 NP contains an n2-generic language if and only if NP contains a set that is
almost-everywhere unpredictable in time 22n.

13

By Theorem 8, Hypothesis H′ holds if NP∩ co-NP contains a set that, for some ε > 0,
is 2nε-bi-immune. So, Hypothesis H′ requires bi-immunity, which is weaker than almost-
everywhere unpredictability, and the time-bound is reduced from 22n to 2nε . On the other
hand, we require the language to belong to NP∩ co-NP instead of NP. Similarly, when we
consider Hypothesis H, we require the language to be P-bi-immune and not in DTIME(2nε

),
whereas now we require the language to be in UP∩ co-UP. Moreover, the conclusion
of Theorem 1 is not known to follow from the genericity hypothesis. At the same time,
we note that the genericity hypothesis separates several bounded-truth-table completeness
notions in NP that do not seem obtainable from our hypotheses.

4.3 Relativization
Theorem 11 There exists an oracle relative to which the polynomial hierarchy is infinite
and Hypotheses H and H′ both hold.

Proof. Define Kolmogorov random strings r0,r1, . . . as follows: rn is the first string of
length n such that

K2n
(rn | r0,r1, . . . ,rn−1)> n/2.

Then, define the oracle A = {rn | n≥ 0}.
Define M to be an oracle Turing machine that accept 0∗ with oracle A as follows: On

input 0n, guess a string y of length n. If y∈ A, then accept. M is a UPA-machine that accepts
0∗ because A contains exactly one string of every length.

Now we show that no 2nε oracle Turing machine with oracle A, for any 0 < ε < 1,
correctly computes infinitely many accepting computations of M. Observe that relative to
A, this implies both Hypotheses H and H′ . Suppose otherwise, and let T be such an oracle
Turing machine. The gist of the remainder of the proof is that we will show how to simulate
T without using the oracle, and that will contradict the randomness or rn.

Suppose that T A(0n) = rn. Let l = 3nε. Then we simulate this computation without
using an oracle as follows:

1. Compute r0,r1, . . . ,rl−1. Do this iteratively: Compute ri by running every program
(with input strings r0,r1, . . . ,ri−1) of length ≤ i/2 for 2i steps. Then ri is the first
string of length i that is not output by any of these programs. Note that the total time
for executing this step is

l2l/22l ≤ l23l/2 ≤ 25nε
.

2. Simulate T on input 0n, except replace all oracle queries q by the following rules: If
|q|< l, answer using the previous computations. Otherwise, just answer “no.”

If the simulation is correct, then this procedure outputs rn without using the oracle. The
running time of this procedure on input 0n is 25nε

+ 2nε , which is less than 2n. So, we can
describe rn by a string of length O(logn), to wit, a description of T and 0n. This contradicts
the definition of rn.

14

We need to show that the simulation is correct. The simulation can only be incorrect
if |q| ≥ l and q = rm, for some m > l. Let rm be the first such query. This yields a short
description of rm, given r0,r1, . . . ,rl−1. Namely, the description consists of the description
of T (a constant), the description of 0n (logn bits), and the description of the number j such
that q = rm is the j-th query (at most nε). Thus, the length of the description is O(nε). Since
l = 3nε, it follows that the length of the description of rm is less than m/2. The running
time of T , given r0,r1, . . . ,rl−1, is 2nε , which is less than 2m. (The reason is that the first
step in the simulation of T is not needed.) Therefore, the simulation is correct.

Finally, because A is a sparse set, using results of Balcázar et al. [BBS86], there is an
oracle relative to which the hypotheses holds and the polynomial hierarchy is infinite.

Hypothesis H fails relative to any oracle for which P = NP∩ co-NP [BGS75]. Fortnow
and Rogers [FR94] obtained an oracle relative to which NP 6= co-NP and Hypothesis H′

fails. We know of no oracle relative to which P 6= NP and every ≤P
T-complete set is ≤P

m-
complete.

4.4 Extensions
The extensions in this section are independently observed by Regan and Watanabe [RW01].
In Hypothesis H we can replace the UP-machine by an NP-machine under a stronger in-
tractability assumption. Consider the following hypothesis:

There is a NP-machine M that accepts 0∗ such that

1. no probabilistic polynomial time-bounded Turing machine correctly outputs infinitely
many accepting computations with non-trivial (inverse polynomial) probability, and

2. for some ε > 0, no 2nε time-bounded Turing machine correctly computes all accept-
ing computations with non-trivial probability.

We can prove that Turing completeness is different from truth-table completeness in
NP under the above hypothesis. The proof uses the randomized reduction of Valiant and
Vazirani [VV86] that isolates the accepting computations. We define L as in the proof of
Theorem 2. Let

S = {〈0n,k,r1,r2, · · · ,rk, i〉 | ∃v such that v is an accepting computation of M,
v.r1 = v.r2 = · · ·= v.rk = 0, and the ith bit of v = 1}

where v.ri denotes the inner product over GF[2].
Valiant and Vazirani showed that if we randomly pick r1,r2, · · · ,rk, then with a non-

trivial probability there exists exactly one accepting computation v of M whose inner prod-
uct with each ri is 0. Thus, for a random choice of r1, · · · ,rk, there is exactly one witness v
for 〈0n,k,r1, · · · ,rk, i〉. The rest of the proof is similar to that of Theorem 1.

15

We also note that we can replace the UP-machine in Hypothesis H with a FewP-
machine.

References
[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing,

17(6):1193–1202, 1998.

[ASB00] K. Ambos-Spies and L. Bentzien. Separating NP-completeness under strong
hypotheses. Journal of Computer and System Sciences, 61(3):335–361, 2000.

[ASFH87] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over poly-
nomial time computable sets. Theoretical Computer Science, 51:177–204,
1987.

[ASNT96] K. Ambos-Spies, H. Neis, and A. Terwijn. Genericity and measure for expo-
nential time. Theoretical Computer Science, 168(1):3–19, 1996.

[ASTZ97] K. Ambos-Spies, A. Terwijn, and X. Zheng. Resource bounded randomness
and weakly complete problems. Theoretical Computer Science, 172(1):195–
207, 1997.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP Question.
SIAM Journal on Computing, 4(4):431–441, 1975.

[BBS86] J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and
sparse oracles. Journal of the ACM, 33(3):603–617, 1986.

[BS85] J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathe-
matical Systems Theory, 18(1):1–18, June 1985.

[BHT91] H. Buhrman, S. Homer, and L. Torenvliet. Completeness notions for nonde-
terministic complexity classes. Mathematical Systems Theory, 24:179–200,
1991.

[FFNR96] S. Fenner, L. Fortnow, A. Naik, and J. Rogers. On inverting onto functions. In
Proceedings of the 11th annual IEEE Conference on Computational Complex-
ity, pages 213–223, 1996.

[FPS99] L. Fortnow, A. Pavan, and A. Selman. Distributionally hard languages. Theory
of Computing Systems, 34(3):245–262, 2001.

[FR94] L Fortnow and J. Rogers. Separability and one-way functions. In D.Z. Du
and X.S. Zhang, editors, Proceedings of the Fifth International Symposium on
Algorithms and Computation, Lecture Notes in Computer Science, pages 396–
404. Springer-Verlag, 1994.

16

[Gor93] D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM
Journal on Discrete Mathematics, 6:124–138, 1993.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosys-
tems. SIAM Journal on Computing, 17(2):309–335, 1988.

[HNOS96] E. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman. P-selective sets and
reducing search to decision vs. self-reducibility. J. of Computer and System
Sciences, 53(2):194–209, 1996. Special Issue of papers selected from the
Eighth Annual IEEE Conference on Structure in Complexity Theory.

[HRW97] L. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate
schemes. Acta Informatica, 34(11):859–879, 1997.

[HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285-306, 1965.

[HY84] J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities.
Theoretical Computer Science, 34:17–32, 1984.

[KR93] S. Homer, S. Kurtz, and J. Royer. On 1-truth-table-hard languages. Theoretical
Computer Science, 115(2):383–389, 1993.

[HL94] S. Homer and L. Longpré. On reductions of NP sets to sparse sets. Journal of
Computer and Systems Sciences, 48(2):324–336, 1994.

[KM81] K. Ko and D. Moore. Completeness, approximation and density. SIAM Journal
on Computing, 10(4):787–796, Nov. 1981.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time re-
ducibilities. Theoretical Computer Science, 1:103–123, 1975.

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Ap-
plications. Graduate Texts in Computer Science. Springer, New York, second
edition, 1997.

[LY90] L. Longpré and P. Young. Cook reducibility is faster than Karp reducibility.
Journal of Computer and System Sciences, 41:389–401, 1990.

[LM96] J. Lutz and E. Mayordomo. Cook versus karp-levin: Separating completeness
notions if NP is not small. Theoretical Computer Science, 164:141–163, 1996.

[OW91] M. Ogiwara and O. Watanabe. On polynomial time bounded truth-table re-
ducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–
483, 1991.

[RW01] K. Regan and O. Watanabe. Personal communication.

17

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior of polynomial
time reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[Sel82] A. Selman. Reductions on NP and P-selective sets. Theoretical Computer
Science, 19:287–304, 1982.

[Tod91] S. Toda. On polynomial-time truth-table reducibilities of intractable sets to
P-selective sets. Mathematical Systems Theory, 24(2):69–82, 1991.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theo-
retical Computer Science, 47:85–93, 1986.

[Wat87] O. Watanabe. A comparison of polynomial time completeness notions. Theo-
retical Computer Science, 54:249–265, 1987.

18

