
 SpyCon: Emulating User Activities to Detect Evasive Spyware

M.Chandrasekaran, S.Vidyaraman and S.Upadhyaya

Computer Science and Engineering

University at Buffalo

Buffalo, NY 14260

{mc79, vs28, shambhu}@cse.buffalo.edu

Abstract
The success of any spyware is determined by its

ability to evade detection. Although traditional detec-

tion methodologies employing signature and anomaly

based systems have had reasonable success, new class

of spyware programs emerge which blend in with user

activities to avoid detection. One of the latest anti-

spyware technologies consists of a local agent that

generates honeytokens of known parameters (e.g., net-

work access requests) and tricks spyware into assum-

ing it to be legitimate activity. In this paper, as a first

step, we address the deficiencies of static honeytoken

generation and present an attack that circumvents such

detection techniques. We synthesize the attack by

means of data mining algorithms like associative rule

mining. Next, we present a randomized honeytoken

generation mechanism to address this new class of spy-

ware. Experimental results show that (i) static honey-

tokens are detected with near 100% accuracy, thereby

defeating the state-of-the-art anti-spyware technique,

(ii) randomized honeytoken generation mechanism is

an effective anti-spyware solution.

Keywords

Associative Rule Mining, Honeytokens, Spyware, User

Activity

1. Introduction

Potentially Unwanted Programs (PUPs) is the col-

lective term given to programs whose presence poses a

serious security and privacy threat to users [17]. This

includes malware, spyware, adware and other myriad

programs. The commercial incentives of these pro-

grams are lucrative enough for this ‘industry’ to thrive,

and according to some projections [17], are expected to

rise at exponential rates in the future.

The success of any spyware on a system is deter-

mined by its ability to evade detection. Towards this

goal, early spyware had the advantage of user igno-

rance and lack of security mechanisms or tools to de-

tect and remove them. Since then, various anti-spyware

mechanisms like toolbars, various detection and re-

moval tools, etc., have been developed. These defense

solutions employ either signature based or anomaly de-

tection (flow based [5, 6]) philosophies. Even though

signature based systems have the advantage of detect-

ing known spyware programs with a high degree of ac-

curacy, they are incapable of detecting novel threats.

Anomaly detection schemes, on the other hand, are ca-

pable of detecting new threats with reasonable accu-

racy. They operate on the premise that any behavior

observed in a system that deviates from the ‘normal’

behavior is indicative of the presence of unauthorized

actions.

But, as the defenses mature, so do the attacks.

Spyware authors have responded to these defense

mechanisms by altering their code to create new fami-

lies and variants that are either incremental updates or

binary obfuscation of earlier code. Such ‘new’ spyware

has an inherent advantage against signature based

analysis since a known profile of spyware is not imme-

diately available for comparison. Hence the major

threat for new spyware is primarily from anomaly de-

tection systems, which compare the normal behavior of

systems (based on parameters like web sites visited,

network connections initiated, etc.) to the behavior of

the system infected with spyware. To counteract these

anomaly detection schemes, current spyware programs

attempt to blend in with legitimate behavior. For exam-

ple, a spyware may contact its remote home servers

only when it detects user activity, thereby blending in

with the ‘normal’ profile.

To address these kinds of threats, Borders et al. [6]

propose a system where a local agent would generate a

sequence of honeytokens. Honeytokens [23] are de-

fined as “honeypots that are not computer systems”

whose value “lies not in their use, but abuse.” In the

context of this paper, a set of network requests gener-

ated by the local agent (to emulate legitimate user ac-

tivity) represent honeytokens. The idea behind this

agent is that spyware, if present, would operate when

the local agent generated the honeytoken, thereby giv-

ing itself away. For example, a spyware may operate

only when it detects user activity and remain passive

otherwise. In [6], the local agent called Siren generates

honeytokens that mimic user activity during the idle pe-

riods; spyware operates assuming the user is active and

hence can be caught by a network based IDS. This is

the current state-of-the-art in terms of spyware detec-

tion.

Given the history of spyware creation and opera-

tion, it is quite likely that the next update of spyware

will attempt to bypass this mechanism too. The work in

this paper presents a methodology whereby simple

mechanisms like honeytoken generation as in [6] can

be detected by a new class of spyware called SpyZen.

The basic concept behind our scheme is quite intuitive.

SpyZen spyware operates in three stages. The first stage

is an ‘install and observe’ stage, where spyware merely

listens to the sequence of events, of which certain por-

tions are honeytokens. In the second stage of analysis

and inference, spyware detects the honeytoken se-

quence. Using data analysis algorithms like Associative

Rule Mining algorithm [4], spyware can infer the

honeytoken generation. The third stage is the actual

operation stage, where spyware operates only when the

honeytoken sequence is not detected. We then present a

defense mechanism against this new class of spyware,

called SpyCon, which utilizes a randomized honeyto-

ken generation scheme.

Thus, this paper takes as its point of departure the

work by Borders et al. [6], where the authors present a

honeytoken based defense mechanism against spyware

that operates only when there is user operation (thereby

masking its network access under the guise of user op-

eration).

1.1 Summary of Contributions

The contributions of the paper can be summarized

as follows:

• We first propose a new class of ‘intelligent’ spy-

ware called SpyZen that not only bypasses anom-

aly detection systems like [5], but also actively de-

feats honeytoken based schemes [6].

• Secondly, we present a defense technique called

SpyCon that builds on prior works [6] to detect the

class of SpyZen-like threats. By devising SpyZen,

our work brings out the weakness of Siren and

SpyCon demonstrates how the honeytoken based

schemes can be strengthened against novel attacks.

The threat model of the SpyZen class of spyware is

described and their capabilities are clearly delineated.

The rest of the paper is organized as follows. Sec-

tion 2 discusses the related work and places our work

in perspective. Section 3 defines the problem addressed

in this paper. Section 4 presents the design of SpyZen,

the new class of spyware that can defeat anti-spyware

techniques that rely on static honeytoken generation.

The new and improved randomized honeytoken gen-

eration algorithm is presented in Section 5. The ex-

perimental details are presented in Section 6. Section 7

discusses some practical implementation issues. Con-

cluding remarks and future work are presented in Sec-

tion 8.

2. Related Work

Anti-spyware efforts has attracted a lot of attention

in recent years, partly due to the popularity of the web

and observed increase in spyware programs. Sariou et

al. [22] provide a comprehensive summary of spyware

activity in a university environment. Moshchuck et al.

[19] extend this one step further and conduct a crawler

based study to analyze the prevalence of spyware pro-

grams on the web. In the study, they reveal that 13.4%

of 21,200 executables downloaded from 18 million

web pages were infected with spyware programs. As a

first line of defense, traditional approaches focused on

extending anti-virus and anti-malware solutions to

shield against spyware-related threats. However, spy-

ware programs growing in sophistication and ingenuity

render these solutions weak. The current anti-spyware

efforts can be broadly classified into the following

categories based on their underlying detection tech-

nique: (i) programming language based detection; (ii)

behavior based detection; and (iii) signature based de-

tection.

Programming language based approaches using

static analysis and run-time code checking have been

proposed to detect malicious executables. Christo-

dorescu et al. [8] employ static analysis to detect mali-

cious patterns in executables that belong to a particular

malware class. However, as such schemes rely on find-

ing malicious patterns in executables, they can be by-

passed using simple program obfuscation techniques

such as [2]. To detect polymorphic and metamorphic

variants, [9] proposes to include the semantics of the

executables’ instruction set as additional information to

guide static analysis. Here, the set of instructions de-

picting malicious behavior is provided as templates,

and the detection engine operates to check if the corre-

sponding program actually exhibits the specified mali-

cious behavior. While being effective in detecting sim-

ple malware variants, these techniques incur increased

performance cost, and are not feasible in all circum-

stances [20, 15].

Behavior based techniques capture the working of

applications in their operating environment. This in-

formation is used to monitor for deviation from the

specified normal behavior. Microsoft’s Gatekeeper

[26] is a behavior based technique which uses auto-

start extensibility points (ASEP) to check if the pro-

grams loaded on system boot were installed automati-

cally without user invocation. Similarly, Kirda et al.

[11] propose a behavior based detection technique to

detect spyware programs that hook themselves with the

browser interface. Responses of browser add-ons (also

called browser helper objects (BHO)) to simulated

browser events are analyzed to check if the exhibited

behavior is malicious or not. Despite the effectiveness

of the abovementioned behavior based techniques,

these techniques are not generic and confine to one par-

ticular operating environment, i.e., Microsoft Windows

with Internet Explorer. An orthogonal approach uses

flow-based detection to analyze outbound web requests

for detecting spyware programs which furtively leak

out user information to remote servers. Webtap [5] is

one such tool which monitors outbound HTTP traffic

to detect spyware programs by separating the user ac-

tivity from the spyware activity. However, as recent

spyware programs blend with the user activity to evade

detection, distinguishing spyware activity from the user

activity is not always possible. To detect such evasive

spyware, a honeytoken based approach [6] has been

proposed. These techniques operate by sending a

known sequence of network requests that mimic user

activities. As spyware cannot distinguish honeytokens

and legitimate user activity, they attempt to operate

with the honeytokens by making additional network re-

quests (which are then identified by the gateway

NIDS). Unfortunately, if static honeytokens are used, it

becomes trivial to design new class of intelligent spy-

ware that can evade detection. To this extent, in this

paper, we design SpyZen as a proof-of-concept spyware

that circumvents the static honeytoken based approach.

In addition, as an extension we propose SpyCon, a ran-

domized honeytoken generation technique to eliminate

SpyZen threats.

Finally, commercial tools [1, 3, 18] exist which

examine hard drives periodically to detect the presence

of spyware programs. However, as these techniques are

signature-based and scan for malicious patterns in files

or registry locations, they fail to protect against novel

spyware for which no signatures are available yet. As

we adopt flow-based detection, our technique can be

easily extended to protect from both seen and unseen

spyware variants.

3. Problem Definition

Consider the normal activity of the user on a local

host. This could be network access requests, etc. An

external Network based Intrusion Detection System

(NIDS) and a local agent operate in conjunction to

monitor and classify the normal operation of the local

user.

Figure 1. Problem Formulation Scenario

As shown in Figure 1, the Local Agent (hereafter re-

ferred to as the LA), generates a honeytoken (a se-

quence of network access requests) that is known to the

NIDS. This generation is initiated only if there is no

user activity. The first problem, from the viewpoint of a

spyware, is to differentiate between real user activity

sequence and the honeytoken sequence. The second

(and the main) problem, from the viewpoint of the LA,

is to generate a sufficiently random honeytoken se-

quence so as to prevent spyware from detecting the

honeytoken. This was suggested as an open problem in

[6], where the authors aptly named it a passive reverse

Turing test. Although the methodology suggested here

does not solve the open problem per se, we do show

the inadequacy of deterministic honeytoken generation

and suggest randomized algorithms for better genera-

tion.

3.1 Problem Formulation

Towards constructing a formal representation of

the problem, we define the following terms.

Definition 1. A Network honeytoken N
h
 is defined as a

sequence of n network access requests N
h
 = {N

h
req-1,

N
h
req-2,…N

h
req-n} where the following properties hold

true:

• ∀ 1≤ i ≤ j ≤ n, time(N
h
req-i) < time(N

h
req-j)

• ∀ 1≤ i ≤ j ≤ n, the sequence between N
h
req-i

and N
h
req-j is known/predetermined

Definition 2. A user network activity N
u
 is defined as a

sequence of n network access requests N
u
 = {N

u
req-1,

N
u
req-2,…N

u
req-n} where

• ∀ 1≤ i ≤ j ≤ n, time(N
u
req-i) < time(N

u
req-j)

• ∀ 1≤ i ≤ j ≤ n, there exists no relation between

N
u
req-i and N

u
req-j

Definition 3. A recorded network access pattern N
r
 is a

mixed sequence of network accesses N
r
 = {N

r
rec-1, N

r
rec-

2,…, N
r
rec-n} where:

Local Agent

Real User

Activity

Honeytoken

(when user

is idle)

NIDS Network Stream

Local Agent

stream?

Raise Alert if

LA stream is

corrupted

• ∀ 1≤ i ≤ j ≤ n, time(N
r
rec-i) < time(N

r
req-j)

• N
r
rec-i ∈ {N

h
, N

u
}

Thus, the recorded sequence is a mixture of the

honeytoken sequence and legitimate user activity. The

problem, therefore, is to separate a given recorded net-

work access pattern (in real time, as a stream) into its

constituent components, viz. the honeytoken sequence

and the legitimate user activity. Our Problem can be

defined in terms of the following algorithm.

Problem 1: Devise an algorithm Algo-Find-

Honeytoken(A-FH) such that:

A-FH(N
r
) = {N

h
, N

u
}

where the input is a recorded network access pat-

tern N
r
 and the output is the mixed sequence decom-

posed into N
h
 and N

u
.

However, this requires that we identify not only

the honeytoken sequence, but also the user activity.

Furthermore, this precludes other network streams like

automatic software updates (windows updates), toolbar

activities (Google toolbar), etc. From the viewpoint of

spyware, what is required from the recorded network

stream is the extraction of only the honeytoken se-

quence, so that spyware may refrain from operating in

those durations. This leads us to the practical problem

formulation defined in Definition 2.

Problem 2: Devise an algorithm Algo-Find-

HoneyTokenTime(A-FHT) such that:

A-FHT(N
r
) = {N

h
}

Hence, spyware can stop operating from t1 through

tn where t1 = time(N
h

req-1) and tn = time(N
h

req-n). Note

that A-FHT(N
r
) will defeat the spyware detection.

4. Design of SPYZEN

Our goal is to show the inadequacy of static honey-

token based anti-spyware techniques by creating a new

generation of spyware, SpyZen, by slightly modifying

the existing spyware’s operation. As given in the previ-

ous section, the effectiveness of honeytoken based anti-

spyware mechanisms depend on their ability to mask

the honeytoken sequence so that it is hard for the spy-

ware programs to deduce them. However, since static

honeytoken based approaches employ the same se-

quence of network requests repeatedly, the probability

of correlating a sequence of network requests to Nh be-

comes very large. Hence, a frequent observation of the

same set of network requests is a strong indication of

occurrence of honeytoken sequence.

According to the definition of evasive spyware, the

spyware programs leak out users’ information only in

the presence of user activity. Here, we limit the scope

of the threat vector by assuming that the presence of

user activity can be perceived only by observing the

network requests made, and not by other schemes such

as keystrokes and mouse movements monitoring. Fur-

thermore, given the characteristics of static honeyto-

ken, we design SpyZen to infer honeytoken sequence

N
h
 from observed network requests N

r
 using associa-

tive rule mining, which is well-suited for mining fre-

quent itemsets and relationships that exist between

them in large samples of data.

As a simple and powerful tool, associative rule

mining has been employed in many areas of security

such as intrusion detection [10, 13, 14, 16] and spam

email detection [25]. Associative rule mining is used

for finding relationships between the occurrences of

itemsets within transactions, i.e., given a set of items

and a set of transactions, rules are generated which link

the otherwise disjoint itemsets. Associative rule mining

was first proposed by Agrawal et al. [4] for market

basket data or transactional data analysis to determine

which items are most frequently purchased together.

In the remainder of this section, we briefly describe

the basic concept of associative rule mining, then pre-

sent SpyZen, and show how associative rule mining can

be applied to A-FHT.

4.1 Associative Rule Mining: An Overview

Given a set of disjoint items (I) and a set of trans-

actions (T), where each transaction consists of a subset

of the set of items, associative rule mining is used to

determine relationships that exist between the occur-

rences of items within transactions. Translating into

mathematical terms, given a set of items I, an associa-

tion rule of the form X →Y is a relationship between

the two itemsets X and Y, such that X⊂I, Y⊂I,

X∩Y=∅ (X and Y are disjoint) and X∪Y⊆I. More-

over, an association rule is described in terms of sup-

port and confidence. The support of an itemset X is the

fraction of transactions that contain the itemset as given

below.

Supp(X) =
Number of Transactions that contain X

Total Number of Transactions

An itemset is called large, if its support exceeds a

given threshold supmin. The confidence of a rule X →Y

is the fraction of transactions containing X that also

contain Y:

Conf (X→Y) =
()

()

Supp X Y

Supp X

∪

 The association rule X →Y holds, if X∪Y is large and

the confidence of the rule exceeds a given threshold

confmin. The actual process of associative rule mining is

carried out in two steps: (a) all large itemsets appearing

in the transaction database are determined, and (b) for

each large itemset, say Z, appropriate complementary

subsets X and Y of Z are found such that the rule X

→Y exceeds confmin.

4.2 Applying Associative Rule Mining to A-

FHT

Here, we first introduce the notion of user sessions

in the context of associative rule mining. Each user ses-

sion S is viewed as a collection of network requests

made during the time interval between system start and

system shutdown.

Algorithm 1: Algo-Find-Honeytoken (A-FHT)

Ck : Candidate itemset of size k

Lk : frequent itemset of size k

function A-FHT(I, S, supmin, confmin, kmax)

1. k := 1

2. L1 = {frequent itemset of size 1}

3. foreach (k = 1; Lk ≠ Φ; ++k) do

4. Ck+1 = Candidate sets generated from Lk

5. foreach transaction s in S do

6. increment the counts of all candidates in

 Ck+1 that are contained in s

7. Lk+1 is the candidates in Ck+1 whose support at

least

 exceeds supmin

8. foreach (k = 1; Lk ≠ Φ; ++k) do

9. forevery non-empty set f of Lk

10. output rule f → (Lk - f) if confidence ex-

ceeds

 conmin

Figure 2: A-FHT using Apriori Algorithm to infer

honeytokens

Each user session is considered as a transaction

and the union of all observed network requests consti-

tutes the itemset I. With specified support and confi-

dence thresholds, SpyZen extracts all frequent itemsets

and generates associative rules to hypothesize about the

honeytoken sequence. It is important to note that it

might be possible for SpyZen to wrongly consider fre-

quently occurring user requests N
U
 for honeytokens.

However, in such cases, without loss of generality, we

can assume that SpyZen can choose to either remain

passive or leak out the requests by piggybacking with

the information gathered during other innocuous inter-

vals. Apriori algorithm [4], which is a classic algorithm

available in the literature to learn and extract associa-

tion rules, is adopted, here, in algorithm A-FHT to

show how static honeytokens can be extracted from the

generated network requests as shown in Figure 2.

5. Design of SPYCON

In order to detect SpyZen, it is essential to change the

honeytoken sequence after each trial so that it is not

possible for the spyware programs to deduce them. To

this extent, we propose a simple honeytoken generation

technique using random web spidering [27] to dynami-

cally generate a different set of network requests each

time.

5.1 Randomized Honeytoken Generation

The efficacy of the randomized SpyCon technique

relies on the fact that a different set of network requests

is generated each time to act as dynamic honeytokens;

as the network requests vary it is impossible for SpyZen

to learn the honeytoken sequence. SpyCon uses a tech-

nique similar to randomized web spidering is described

in Figure 3.

Algorithm 2: Randomized-HT

Let X be the seed web page and G the PRN

function randomized-HT(X, G, Sthresh)

1. foreach web page n ∈ X do

2. k := G(0,1) /* randomly choose 0 or 1 */

3. if (k = = 1) then visit the web page n; else

not.

4. foreach web page n ∈ X do

5. If number_of_hyperlinks(n) > Sthresh then

6. X := n

7. break;

8. return

Figure 3. Spidering based Randomized Honeytoken

Generation

Some web page, rich in hyperlinks is chosen as a

starting point (seed), and then the hyperlinks in a subset

present in the seed web page are randomly visited to

generate a completely different set of network requests.

The random seed and the pseudo-random sequence to

visit the hyperlinks are known only to the local agent

and the NIDS. A window of previously visited web

pages is maintained in the event that the spidering leads

to dead end with no further hyperlinks.

6. Experimentation

Towards applying the A-FHT algorithm, we con-

ducted the experimentation in two different stages. In

the first stage, we collated a series of user initiated

network access patterns. This was obtained from the

history logs of the users’ browser. Specifically, four us-

ers contributed their history sessions. Browsing history

was collected over a period of 10 days.

In the second stage, the honeytoken sequence was

inserted in each days browsing history. We inserted the

two types of honeytokens, viz. a determinis-

tic/repetitive honeytoken and the randomized honeyto-

ken (as defined in Figure 3). The deterministic honey-

token was determined by inserting links to which none

of the four users had visited. Each honeytoken se-

quence was inserted at a random timeframe for each

day of the users’ history. Thus the sequence N
r
 (re-

corded access pattern) for 10 days was formed. The al-

gorithm A-FHT was fed with these recorded network

access patterns. The deterministic sequence was easily

detected by the A-FHT algorithm, with a support of

100% and a confidence of 100%. The support and the

confidence are a perfect 100% due to this reason: since

we assume there are some periods of time every day

when user activity is idle (e.g., lunch time), the deter-

ministic sequence appears in every transaction (or user

network activity). The confidence is also high, but for a

very different reason. Consider the fact that an average

user browses a search site (Google) everyday. In fact,

this was the case for all the four users’ profile. How-

ever, we recorded each network transaction in its en-

tirety, i.e., the complete HTTP request. Hence for a

search term “search”, the network link would assume

the form http://www.google.com/search?q=search.

The exact form of this link varied for the different users

dependent on the browser (Internet Explorer and

Mozilla in our case) and the mannerism of launching

the search. For example, IE version 6.0 users had a dif-

ferent string when they launched the search from the

Google Toolbar. IE version 7 users used the inbuilt

search bar and had the simple form described before.

Thus, the exact link varied for each search, and even

though certain searches were repeated, the support and

confidence level did not approach even 30%. We con-

sidered only the top 5% of the rule (with 95% confi-

dence) for determining honeytokens. On the other

hand, for the random honeytoken generation, the sup-

port and confidence were nowhere near 30% confi-

dence and support levels, which is similar to other

normal user activity, and hence indistinguishable.

Although other data mining techniques can be

used, associative rule mining has been utilized in this

paper to illustrate the utility of data mining algorithms

to detect any deterministic honeytokens. The purpose

of using the data mining techniques is to bring out the

inherent weakness of static honeytoken based schemes.

It might also be possible that spyware programs using

these techniques incur heavy operating overhead,

thereby giving themselves away. However, the com-

plexity of underlying Apriori algorithm primarily de-

pends upon the size of the input data supplied, which in

this case is proportional to the generated stream of

network requests. More complex algorithms exist

which can be used to infer sequential patterns in the

data stream with less computational overhead.

7. Implementation Issues

Throughout this paper, the notion of user activity

has been represented as a sequence of network re-

quests. Practically, this is rarely ever the case; spyware

usually consists of sophisticated monitoring tools, of

which monitoring network accesses is only a small part.

For example, the spyware [24] works by logging key-

strokes; other spyware programs may use a combina-

tion of keystrokes, network access, etc. In light of such

characteristics, it is apparent that the notion of network

requests (only) as user activity is flawed and not practi-

cal, since spyware such as [24] can decide if a user is

present on the system by checking the keystrokes.

Thus, malware can sense “No user Activity”, thereby

rendering ineffective agents like [6] that rely solely on

network activity as the detection parameter. However,

this raises the interesting question, “What is User Ac-

tivity?” from a parametric point of view.

Towards a practical implementation, we explore

the nature of realistic user activity and the various ave-

nues for emulating them. The notion of user activity

must be all encompassing if new threats like SpyZen

are to be detected. User activity must be considered in

its entirety, i.e., not only processes that are executed by

users (and background process activity as a result), but

also other parameters such as keystroke activity, mouse

movements, interactive sessions, etc. Towards emulat-

ing realistic user activity, we need to define and create

parametric representations of user activity based on

GUI [12] that are statistically similar [7] to real data

sets of user activity. The local agent must be capable of

emulating user activity in terms of these parameters.

The basic requirements of the local agent still remain

the same as in [6], viz. the local agent should not ir-

revocably change the system state or interfere with the

users workflow.

In order to fulfill these requirements, the input

generation technique for the local agent must have the

following properties.

• State Change: To avoid detection by spyware that

uses a state change as an indicator of real user ac-

tivity, the local agent must change the state of the

local system in a manner similar to that of legiti-

mate user activity.

• Emulation of user activity: The local agent actions

will emulate normal user activity in a statistically

similar manner. This includes, but is not limited to,

keyboard activity, mouse movement, networks ac-

cess, etc.

• Restoration of state change: Before the real user is

active again, the state change initiated by the local

agent is reversed.

Note also that an idle user can be determined in a

variety of ways. The local agent (and the spyware) may

monitor the mouse and keyboard activity and declare

the user to be idle when such activity ceases for a

specified time period. Still other techniques involve

simplistic schemes like detecting if the workstation is

locked; to sophisticated ones like workflow process

monitoring (like email, browsing, etc.). These issues

bring about an interesting point: if the local agent (and

spyware) can determine if the user is idle by simply de-

termining if the system is locked, then the threat vector

shifts completely, and so do the anti-spyware tech-

niques. In such situations, it behooves the operating

system to provide a secure means of hooking into spe-

cific system events, thereby ensuring that only trusted

and user approved processes only obtain critical

hooks/notifications.

Additionally, irrespective of the technique used,

there is bound to be a time gap between the user leav-

ing the terminal and the local agent/spyware detecting

that the user is idle. This time gap can also be used by

spyware to determine that the user is idle (and is

probably the initiation point of honeytoken generation).

Therefore, although anti-spyware techniques like [6]

and SpyCon presented in this paper may be technically

sound, their implementation must receive appropriate

focus in order for these techniques to successfully ac-

complish their goals.

8. Conclusion and Future Work

In this paper, we presented a new class of spyware

called SpyZen that is capable of defeating current state-

of-the-art anti-spyware techniques. SpyZen operates in

a surreptitious manner by blending in with legitimate

user activity. It also defeats anti-spyware schemes that

generate deterministic honeytokens to trick spyware

into assuming legitimate user activity. SpyZen uses

standard data mining algorithms like Associative Rule

Mining to detect deterministic honeytoken generation

schemes.

To counter spyware like SpyZen, we devised a

randomized honeytoken generation scheme called Spy-

Con that addresses the inherent disadvantages of static

honeytoken generation. Practical implementation of

SpyCon must ensure that user activity is parameterized

by a number of parameters, viz. keystrokes, mouse ac-

tivity, network access, etc., as opposed to only network

accesses. The randomized honeytoken generation

scheme uses a root keyword, initially pre-shared be-

tween the local agent and the NIDS and generates net-

work accesses (or other user activity profiles). The

generation scheme also leverages on previous works

that automatically generate user activity data sets that

are statistically close to real user activity, thereby ren-

dering most distinguishing techniques ineffective on a

practical scale.

Our future work consists of integrating the honey-

token generating local agent with the remote NIDS

within the framework of the Snort IDS [21]. This

would also enable us to analyze the effectiveness of our

solution by evaluating it against live spyware programs.

Acknowledgement

This research is supported in part by NSF Grant

DUE-0402388.

References

[1] Ad-Aware SE Personal Edition:

www.lavasoftusa.com, 2006.

[2] The Metasploit Project: www.metasploit.com,

2006.

[3] Spybot Search & Destroy: www.spybot.info,

2006.

[4] R. Agrawal and R. Srikant, Fast Algorithms for

Mining Association Rules in Large Databases,

Proceedings of the 20th International Conference

on Very Large Data Bases (VLDB), 1994, pp.

487-499.

[5] K. Borders and A. Prakash, Web Tap: Detecting

Covert Web Traffic, Proceedings of the 11th

ACM conference on Computer and Communica-

tions Security (CCS), ACM Press, Washington

DC, USA, 2004.

[6] K. Borders, X. Zhao and A. Prakash, Siren:

Catching Evasive Malware (Short Paper), Pro-

ceedings of the IEEE Symposium on Security and

Privacy (S&P) - Volume 00, IEEE Computer So-

ciety, 2006.

[7] R. Chinchani, A. Muthukrishnan, M.

Chandrasekaran and S. Upadhyaya, RACOON:

Rapidly Generating User Command Data for

Anomaly Detection from Customizable Template,

Proceedings of the 20th Annual Computer Secu-

rity Applications Conference (ACSAC), Tuscon,

AZ, 2004, pp. 189-202.

[8] M. Christodorescu and S. Jha, Static Analysis of

Executables to Detect Malicious Patterns, Pro-

ceedings of the 12th USENIX Security Sympo-

sium, Berkeley, CA, 2003.

[9] M. Christodorescu, S. Jha, S. A. Seshia, D. Song

and R. E. Bryant, Semantics-Aware Malware De-

tection, Proceedings of the IEEE Symposium on

Security and Privacy (S&P), IEEE Computer So-

ciety, 2005.

[10] T. Dwen-Ren, T. Wen-Pin and C. Chi-Fang, A

Hybrid Intelligent Intrusion Detection System to

Recognize Novel Attacks, Proceedings of the 37th

IEEE Annual International Carnahan Confer-

ence on Security Technology, 2003, pp. 428-434.

[11] E. Kirda, C. Kruegel, G. Banks, G. Vigna and R.

Kemmerer, Behavior-based Spyware Detection,

Proceedings of the 15th USENIX Security Sym-

posium, Vancouver, BC, Canada, 2006.

[12] A. Garg, S. Vidyaraman, S. Upadhyaya and K.

Kwiat, USim: A User Behavior Simulation

Framework for Training and Testing IDSes in

GUI based Systems, Proceedings of the 39th An-

nual Simulation Symposium (ANSS), 2006.

[13] Z. Guiling, Applying Mining Fuzzy Association

Rules to Intrusion Detection Based on Sequences

of System Calls, Lecture Notes in Computer Sci-

ence : Networking and Mobile Computing, 2005,

pp. 826-835.

[14] J. Z. Kolter and M. A. Maloof, Learning to De-

tect Malicious Executables in the Wild, Proceed-

ings of the 10th International Conference on

Knowledge Discovery and Data Mining

(SIGKDD), ACM Press, Seattle, WA, USA,

2004, pp. 470-478.

[15] W. Landi, Undecidability of Static Analysis,

ACM Letters on Programming Languages and

Systems (LOPLAS), 1 (1992), pp. 323-337.

[16] C. T. Lu, A. P. Boedihardjo and P. Manalwar,

Exploiting Efficient Data Mining Techniques to

Enhance Intrusion Detection Systems, Proceed-

ings of the IEEE International Conference on In-

formation Reuse and Integration, 2005, pp. 512-

517.

[17] McAfee, Potentially Unwanted Programs: Spy-

ware and Adware, 2005.

[18] Microsoft, Windows Defender:

http://www.microsoft.com/athome/security/spywa

re/software/default.mspx, 2005.

[19] A. Moshchuk, T. Bragin, S. D. Gribble and H. M.

Levy, A Crawler-based Study of Spyware on the

Web, Proceedings of the 13th Annual Network

and Distributed System Security Symposium

(NDSS), San Diego, California, 2006.

[20] G. Ramalingam, The Undecidability of Aliasing,

ACM Transactions on Programming Languages

and Systems (TOPLAS), 16 (1994), pp. 1467-

1471.

[21] M. Roesch, Snort - The de facto Standard for In-

trusion Detection/Prevention, 2006.

[22] S. Saroiu, S. D. Gribble and H. M. Levy, Meas-

urement and Analysis of Spyware in a University

Environment, In Proceedings of the 1st

ACM/USENIX Symposium on Networked Systems

Design and Implementation (NSDI), San Fran-

cisco, CA, 2004.

[23] L. Spitzner, Honeytokens: The other Honeypot:

http://www.securityfocus.com/infocus/1713,

2003.

[24] Symantec Corporation, Spyware.ActiveKeylog:

http://www.symantec.com/smb/security_response/

writeup.jsp?docid=2003-100918-2057-99, 2003.

[25] A. Veloso and W. Meira Jr, Rule Generation and

Rule Selection Techniques for Cost-Sensitive As-

sociative Classification, Proceeding of 20th Bra-

zilian Symposium on Databases (SBBD), 2005,

pp. 295-309.

[26] Y. M. Wang, R. Roussev, C. Verbowski, A.

Johnson, M. W. Wu, Y. Huang and S. Y. Kou,

"Gatekeeper: Monitoring Auto-Start Extensibility

Points (ASEPs) for Spyware Management", Pro-

ceedings of USENIX Large Installation System

Administration Conference (LISA 2004), Atlanta,

Georgia, 2004.

[27] J. Young and T. Dean, Exploiting Locality in

Searching the Web, Proceedings of the 19th An-

nual Conference on Uncertainty in Artificial In-

telligence (UAI-03), San Francisco, CA, 2003.

