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Abstract 
The success of any spyware is determined by its 

ability to evade detection. Although traditional detec-

tion methodologies employing signature and anomaly 

based systems have had reasonable success, new class 

of spyware programs emerge which blend in with user 

activities to avoid detection. One of the latest anti-

spyware technologies consists of a local agent that 

generates honeytokens of known parameters (e.g., net-

work access requests) and tricks spyware into assum-

ing it to be legitimate activity. In this paper, as a first 

step, we address the deficiencies of static honeytoken 

generation and present an attack that circumvents such 

detection techniques. We synthesize the attack by 

means of data mining algorithms like associative rule 

mining. Next, we present a randomized honeytoken 

generation mechanism to address this new class of spy-

ware. Experimental results show that (i) static honey-

tokens are detected with near 100% accuracy, thereby 

defeating the state-of-the-art anti-spyware technique, 

(ii) randomized honeytoken generation mechanism is 

an effective anti-spyware solution.  
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1. Introduction 
 

Potentially Unwanted Programs (PUPs) is the col-

lective term given to programs whose presence poses a 

serious security and privacy threat to users [17]. This 

includes malware, spyware, adware and other myriad 

programs. The commercial incentives of these pro-

grams are lucrative enough for this ‘industry’ to thrive, 

and according to some projections [17], are expected to 

rise at exponential rates in the future.  

The success of any spyware on a system is deter-

mined by its ability to evade detection. Towards this 

goal, early spyware had the advantage of user igno-

rance and lack of security mechanisms or tools to de-

tect and remove them. Since then, various anti-spyware 

mechanisms like toolbars, various detection and re-

moval tools, etc., have been developed. These defense 

solutions employ either signature based or anomaly de-

tection (flow based [5, 6]) philosophies. Even though 

signature based systems have the advantage of detect-

ing known spyware programs with a high degree of ac-

curacy, they are incapable of detecting novel threats. 

Anomaly detection schemes, on the other hand, are ca-

pable of detecting new threats with reasonable accu-

racy. They operate on the premise that any behavior 

observed in a system that deviates from the ‘normal’ 

behavior is indicative of the presence of unauthorized 

actions.  

But, as the defenses mature, so do the attacks. 

Spyware authors have responded to these defense 

mechanisms by altering their code to create new fami-

lies and variants that are either incremental updates or 

binary obfuscation of earlier code. Such ‘new’ spyware 

has an inherent advantage against signature based 

analysis since a known profile of spyware is not imme-

diately available for comparison. Hence the major 

threat for new spyware is primarily from anomaly de-

tection systems, which compare the normal behavior of 

systems (based on parameters like web sites visited, 

network connections initiated, etc.) to the behavior of 

the system infected with spyware. To counteract these 

anomaly detection schemes, current spyware programs 

attempt to blend in with legitimate behavior. For exam-

ple, a spyware may contact its remote home servers 

only when it detects user activity, thereby blending in 

with the ‘normal’ profile.  

To address these kinds of threats, Borders et al. [6] 

propose a system where a local agent would generate a 

sequence of honeytokens. Honeytokens [23] are de-

fined as “honeypots that are not computer systems” 

whose value “lies not in their use, but abuse.” In the 

context of this paper, a set of network requests gener-

ated by the local agent (to emulate legitimate user ac-

tivity) represent honeytokens. The idea behind this 

agent is that spyware, if present, would operate when 

the local agent generated the honeytoken, thereby giv-

ing itself away. For example, a spyware may operate 

only when it detects user activity and remain passive 

otherwise. In [6], the local agent called Siren generates 

honeytokens that mimic user activity during the idle pe-



riods; spyware operates assuming the user is active and 

hence can be caught by a network based IDS. This is 

the current state-of-the-art in terms of spyware detec-

tion.  

Given the history of spyware creation and opera-

tion, it is quite likely that the next update of spyware 

will attempt to bypass this mechanism too. The work in 

this paper presents a methodology whereby simple 

mechanisms like honeytoken generation as in [6] can 

be detected by a new class of spyware called SpyZen. 

The basic concept behind our scheme is quite intuitive. 

SpyZen spyware operates in three stages. The first stage 

is an ‘install and observe’ stage, where spyware merely 

listens to the sequence of events, of which certain por-

tions are honeytokens. In the second stage of analysis 

and inference, spyware detects the honeytoken se-

quence. Using data analysis algorithms like Associative 

Rule Mining algorithm [4], spyware can infer the 

honeytoken generation. The third stage is the actual 

operation stage, where spyware operates only when the 

honeytoken sequence is not detected. We then present a 

defense mechanism against this new class of spyware, 

called SpyCon, which utilizes a randomized honeyto-

ken generation scheme.  

Thus, this paper takes as its point of departure the 

work by Borders et al. [6], where the authors present a 

honeytoken based defense mechanism against spyware 

that operates only when there is user operation (thereby 

masking its network access under the guise of user op-

eration).  

 

1.1 Summary of Contributions 
 

The contributions of the paper can be summarized 

as follows: 

• We first propose a new class of ‘intelligent’ spy-

ware called SpyZen that not only bypasses anom-

aly detection systems like [5], but also actively de-

feats honeytoken based schemes [6].  

• Secondly, we present a defense technique called 

SpyCon that builds on prior works [6] to detect the 

class of SpyZen-like threats. By devising SpyZen, 

our work brings out the weakness of Siren and 

SpyCon demonstrates how the honeytoken based 

schemes can be strengthened against novel attacks. 

The threat model of the SpyZen class of spyware is 

described and their capabilities are clearly delineated.  

The rest of the paper is organized as follows. Sec-

tion 2 discusses the related work and places our work 

in perspective. Section 3 defines the problem addressed 

in this paper. Section 4 presents the design of SpyZen, 

the new class of spyware that can defeat anti-spyware 

techniques that rely on static honeytoken generation. 

The new and improved randomized honeytoken gen-

eration algorithm is presented in Section 5. The ex-

perimental details are presented in Section 6. Section 7 

discusses some practical implementation issues. Con-

cluding remarks and future work are presented in Sec-

tion 8.  

2. Related Work 
 

Anti-spyware efforts has attracted a lot of attention 

in recent years, partly due to the popularity of the web 

and observed increase in spyware programs. Sariou et 

al. [22] provide a comprehensive summary of spyware 

activity in a university environment. Moshchuck et al. 

[19] extend this one step further and conduct a crawler 

based study to analyze the prevalence of spyware pro-

grams on the web. In the study, they reveal that 13.4% 

of 21,200 executables downloaded from 18 million 

web pages were infected with spyware programs. As a 

first line of defense, traditional approaches focused on 

extending anti-virus and anti-malware solutions to 

shield against spyware-related threats. However, spy-

ware programs growing in sophistication and ingenuity 

render these solutions weak. The current anti-spyware 

efforts can be broadly classified into the following 

categories based on their underlying detection tech-

nique: (i) programming language based detection; (ii) 

behavior based detection; and (iii) signature based de-

tection. 

Programming language based approaches using 

static analysis and run-time code checking have been 

proposed to detect malicious executables. Christo-

dorescu et al. [8] employ static analysis to detect mali-

cious patterns in executables that belong to a particular 

malware class. However, as such schemes rely on find-

ing malicious patterns in executables, they can be by-

passed using simple program obfuscation techniques 

such as [2]. To detect polymorphic and metamorphic 

variants, [9] proposes to include the semantics of the 

executables’ instruction set as additional information to 

guide static analysis. Here, the set of instructions de-

picting malicious behavior is provided as templates, 

and the detection engine operates to check if the corre-

sponding program actually exhibits the specified mali-

cious behavior. While being effective in detecting sim-

ple malware variants, these techniques incur increased 

performance cost, and are not feasible in all circum-

stances [20, 15]. 

Behavior based techniques capture the working of 

applications in their operating environment. This in-

formation is used to monitor for deviation from the 

specified normal behavior. Microsoft’s Gatekeeper 

[26] is a behavior based technique which uses auto-



start extensibility points (ASEP) to check if the pro-

grams loaded on system boot were installed automati-

cally without user invocation. Similarly, Kirda et al. 

[11] propose a behavior based detection technique to 

detect spyware programs that hook themselves with the 

browser interface. Responses of browser add-ons (also 

called browser helper objects (BHO)) to simulated 

browser events are analyzed to check if the exhibited 

behavior is malicious or not. Despite the effectiveness 

of the abovementioned behavior based techniques, 

these techniques are not generic and confine to one par-

ticular operating environment, i.e., Microsoft Windows 

with Internet Explorer. An orthogonal approach uses 

flow-based detection to analyze outbound web requests 

for detecting spyware programs which furtively leak 

out user information to remote servers. Webtap [5] is 

one such tool which monitors outbound HTTP traffic 

to detect spyware programs by separating the user ac-

tivity from the spyware activity. However, as recent 

spyware programs blend with the user activity to evade 

detection, distinguishing spyware activity from the user 

activity is not always possible.  To detect such evasive 

spyware, a honeytoken based approach [6] has been 

proposed. These techniques operate by sending a 

known sequence of network requests that mimic user 

activities. As spyware cannot distinguish honeytokens 

and legitimate user activity, they attempt to operate 

with the honeytokens by making additional network re-

quests (which are then identified by the gateway 

NIDS). Unfortunately, if static honeytokens are used, it 

becomes trivial to design new class of intelligent spy-

ware that can evade detection. To this extent, in this 

paper, we design SpyZen as a proof-of-concept spyware 

that circumvents the static honeytoken based approach. 

In addition, as an extension we propose SpyCon, a ran-

domized honeytoken generation technique to eliminate 

SpyZen threats. 

Finally, commercial tools [1, 3, 18] exist which 

examine hard drives periodically to detect the presence 

of spyware programs. However, as these techniques are 

signature-based and scan for malicious patterns in files 

or registry locations, they fail to protect against novel 

spyware for which no signatures are available yet. As 

we adopt flow-based detection, our technique can be 

easily extended to protect from both seen and unseen 

spyware variants.  

 

3. Problem Definition 
 

Consider the normal activity of the user on a local 

host. This could be network access requests, etc. An 

external Network based Intrusion Detection System 

(NIDS) and a local agent operate in conjunction to 

monitor and classify the normal operation of the local 

user.  

 
Figure 1. Problem Formulation Scenario 

As shown in Figure 1, the Local Agent (hereafter re-

ferred to as the LA), generates a honeytoken (a se-

quence of network access requests) that is known to the 

NIDS. This generation is initiated only if there is no 

user activity. The first problem, from the viewpoint of a 

spyware, is to differentiate between real user activity 

sequence and the honeytoken sequence. The second 

(and the main) problem, from the viewpoint of the LA, 

is to generate a sufficiently random honeytoken se-

quence so as to prevent spyware from detecting the 

honeytoken. This was suggested as an open problem in 

[6], where the authors aptly named it a passive reverse 

Turing test. Although the methodology suggested here 

does not solve the open problem per se, we do show 

the inadequacy of deterministic honeytoken generation 

and suggest randomized algorithms for better genera-

tion. 

 

3.1 Problem Formulation 
 

Towards constructing a formal representation of 

the problem, we define the following terms.  

Definition 1. A Network honeytoken N
h
 is defined as a 

sequence of n network access requests N
h
 = {N

h
req-1, 

N
h
req-2,…N

h
req-n} where the following properties hold 

true: 

• ∀ 1≤ i ≤ j ≤ n, time(N
h
req-i) < time(N

h
req-j) 

• ∀ 1≤ i ≤ j ≤ n, the sequence between N
h
req-i 

and N
h
req-j is known/predetermined 

Definition 2. A user network activity N
u
 is defined as a 

sequence of n network access requests N
u
 = {N

u
req-1, 

N
u
req-2,…N

u
req-n} where  

• ∀ 1≤ i ≤ j ≤ n, time(N
u
req-i) < time(N

u
req-j) 

• ∀ 1≤ i ≤ j ≤ n, there exists no relation between 

N
u
req-i and N

u
req-j  

Definition 3. A recorded network access pattern N
r
 is a 

mixed sequence of network accesses N
r
 = {N

r
rec-1, N

r
rec-

2,…, N
r
rec-n} where: 

Local Agent 

Real User 

Activity 

Honeytoken 

(when user 

is idle) 

NIDS Network Stream 

Local Agent 

stream? 

Raise Alert if 

LA stream is 

corrupted 



• ∀ 1≤ i ≤ j ≤ n, time(N
r
rec-i) < time(N

r
req-j) 

• N
r
rec-i ∈ {N

h
, N

u
}  

Thus, the recorded sequence is a mixture of the 

honeytoken sequence and legitimate user activity. The 

problem, therefore, is to separate a given recorded net-

work access pattern (in real time, as a stream) into its 

constituent components, viz. the honeytoken sequence 

and the legitimate user activity. Our Problem can be 

defined in terms of the following algorithm.  

Problem 1: Devise an algorithm Algo-Find-

Honeytoken(A-FH) such that: 

A-FH(N
r
) = {N

h
, N

u
} 

where the input is a recorded network access pat-

tern N
r
 and the output is the mixed sequence decom-

posed into N
h
 and N

u
.  

However, this requires that we identify not only 

the honeytoken sequence, but also the user activity. 

Furthermore, this precludes other network streams like 

automatic software updates (windows updates), toolbar 

activities (Google toolbar), etc. From the viewpoint of 

spyware, what is required from the recorded network 

stream is the extraction of only the honeytoken se-

quence, so that spyware may refrain from operating in 

those durations. This leads us to the practical problem 

formulation defined in Definition 2.  

Problem 2: Devise an algorithm Algo-Find-

HoneyTokenTime(A-FHT) such that: 

A-FHT(N
r
) = {N

h
} 

Hence, spyware can stop operating from t1 through 

tn where t1 = time(N
h

req-1) and tn = time(N
h

req-n). Note 

that A-FHT(N
r
) will defeat the spyware detection. 

 

4. Design of SPYZEN 
 

Our goal is to show the inadequacy of static honey-

token based anti-spyware techniques by creating a new 

generation of spyware, SpyZen, by slightly modifying 

the existing spyware’s operation. As given in the previ-

ous section, the effectiveness of honeytoken based anti-

spyware mechanisms depend on their ability to mask 

the honeytoken sequence so that it is hard for the spy-

ware programs to deduce them. However, since static 

honeytoken based approaches employ the same se-

quence of network requests repeatedly, the probability 

of correlating a sequence of network requests to Nh be-

comes very large. Hence, a frequent observation of the 

same set of network requests is a strong indication of 

occurrence of honeytoken sequence. 

According to the definition of evasive spyware, the 

spyware programs leak out users’ information only in 

the presence of user activity. Here, we limit the scope 

of the threat vector by assuming that the presence of 

user activity can be perceived only by observing the 

network requests made, and not by other schemes such 

as keystrokes and mouse movements monitoring. Fur-

thermore, given the characteristics of static honeyto-

ken, we design SpyZen to infer honeytoken sequence 

N
h
 from observed network requests N

r
 using associa-

tive rule mining, which is well-suited for mining fre-

quent itemsets and relationships that exist between 

them in large samples of data. 

As a simple and powerful tool, associative rule 

mining has been employed in many areas of security 

such as intrusion detection [10, 13, 14, 16] and spam 

email detection [25]. Associative rule mining is used 

for finding relationships between the occurrences of 

itemsets within transactions, i.e., given a set of items 

and a set of transactions, rules are generated which link 

the otherwise disjoint itemsets. Associative rule mining 

was first proposed by Agrawal et al. [4] for market 

basket data or transactional data analysis to determine 

which items are most frequently purchased together.  

In the remainder of this section, we briefly describe 

the basic concept of associative rule mining, then pre-

sent SpyZen, and show how associative rule mining can 

be applied to A-FHT. 

 

4.1 Associative Rule Mining: An Overview 
 

Given a set of disjoint items (I) and a set of trans-

actions (T), where each transaction consists of a subset 

of the set of items, associative rule mining is used to 

determine relationships that exist between the occur-

rences of items within transactions. Translating into 

mathematical terms, given a set of items I, an associa-

tion rule of the form X →Y is a relationship between 

the two itemsets X and Y, such that X⊂I, Y⊂I, 

X∩Y=∅ (X and Y are disjoint) and X∪Y⊆I. More-

over, an association rule is described in terms of sup-

port and confidence. The support of an itemset X is the 

fraction of transactions that contain the itemset as given 

below. 

Supp(X) = 
Number of Transactions that contain X

Total Number of Transactions
 

An itemset is called large, if its support exceeds a 

given threshold supmin. The confidence of a rule X →Y 

is the fraction of transactions containing X that also 

contain Y: 

Conf (X→Y) = 
( )

( )

Supp X Y

Supp X

∪
 

 The association rule X →Y holds, if X∪Y is large and 

the confidence of the rule exceeds a given threshold 

confmin. The actual process of associative rule mining is 

carried out in two steps: (a) all large itemsets appearing 

in the transaction database are determined, and (b) for 



each large itemset, say Z, appropriate complementary 

subsets X and Y of Z are found such that the rule X 

→Y exceeds confmin. 

 

4.2 Applying Associative Rule Mining to A-

FHT 
 

Here, we first introduce the notion of user sessions 

in the context of associative rule mining. Each user ses-

sion S is viewed as a collection of network requests 

made during the time interval between system start and 

system shutdown.  

 

Algorithm 1: Algo-Find-Honeytoken (A-FHT) 

Ck : Candidate itemset of size k 

Lk : frequent itemset of size k 

function A-FHT(I, S, supmin, confmin, kmax) 

1.  k := 1 

2.  L1 = {frequent itemset of size 1} 

3.  foreach (k = 1; Lk  ≠  Φ;  ++k) do 

4.    Ck+1 =  Candidate sets generated from Lk 

5.     foreach transaction s in S do 

6.       increment the counts of all candidates in  

          Ck+1 that are contained in s  

7.    Lk+1 is the candidates in Ck+1 whose support at 

least        

       exceeds supmin 

8.  foreach (k = 1; Lk  ≠  Φ;  ++k) do  

9.    forevery non-empty set f of Lk 

10.     output rule f →   (Lk  - f) if confidence ex-

ceeds   

          conmin 

Figure 2: A-FHT using Apriori Algorithm to infer  

honeytokens 

 

Each user session is considered as a transaction 

and the union of all observed network requests consti-

tutes the itemset I. With specified support and confi-

dence thresholds, SpyZen extracts all frequent itemsets 

and generates associative rules to hypothesize about the 

honeytoken sequence.  It is important to note that it 

might be possible for SpyZen to wrongly consider fre-

quently occurring user requests N
U
 for honeytokens. 

However, in such cases, without loss of generality, we 

can assume that SpyZen can choose to either remain 

passive or leak out the requests by piggybacking with 

the information gathered during other innocuous inter-

vals. Apriori algorithm [4], which is a classic algorithm 

available in the literature to learn and extract associa-

tion rules, is adopted, here, in algorithm A-FHT to 

show how static honeytokens can be extracted from the 

generated network requests as shown in Figure 2.  

5. Design of SPYCON 
 

In order to detect SpyZen, it is essential to change the 

honeytoken sequence after each trial so that it is not 

possible for the spyware programs to deduce them. To 

this extent, we propose a simple honeytoken generation 

technique using random web spidering [27] to dynami-

cally generate a different set of network requests each 

time. 

 

5.1 Randomized Honeytoken Generation 
 

The efficacy of the randomized SpyCon technique 

relies on the fact that a different set of network requests 

is generated each time to act as dynamic honeytokens; 

as the network requests vary it is impossible for SpyZen 

to learn the honeytoken sequence. SpyCon uses a tech-

nique similar to randomized web spidering is described 

in Figure 3. 

 

Algorithm 2: Randomized-HT 

Let X be the seed web page and G the PRN 

function randomized-HT(X, G, Sthresh) 

1.   foreach web page n ∈ X do 

2.           k :=  G(0,1)  /* randomly choose 0 or 1 */ 

3.           if (k = = 1) then visit the web page n; else 

not. 

4.   foreach web page n ∈ X do 

5.             If number_of_hyperlinks(n) > Sthresh then  

6.             X := n  

7.            break; 

8.   return  

Figure 3. Spidering based Randomized Honeytoken  

Generation 

Some web page, rich in hyperlinks is chosen as a 

starting point (seed), and then the hyperlinks in a subset 

present in the seed web page are randomly visited to 

generate a completely different set of network requests. 

The random seed and the pseudo-random sequence to 

visit the hyperlinks are known only to the local agent 

and the NIDS. A window of previously visited web 

pages is maintained in the event that the spidering leads 

to dead end with no further hyperlinks. 

 

6. Experimentation 
 

Towards applying the A-FHT algorithm, we con-

ducted the experimentation in two different stages. In 

the first stage, we collated a series of user initiated 

network access patterns. This was obtained from the 

history logs of the users’ browser. Specifically, four us-



ers contributed their history sessions. Browsing history 

was collected over a period of 10 days.  

In the second stage, the honeytoken sequence was 

inserted in each days browsing history. We inserted the 

two types of honeytokens, viz. a determinis-

tic/repetitive honeytoken and the randomized honeyto-

ken (as defined in Figure 3). The deterministic honey-

token was determined by inserting links to which none 

of the four users had visited. Each honeytoken se-

quence was inserted at a random timeframe for each 

day of the users’ history. Thus the sequence N
r
 (re-

corded access pattern) for 10 days was formed. The al-

gorithm A-FHT was fed with these recorded network 

access patterns. The deterministic sequence was easily 

detected by the A-FHT algorithm, with a support of 

100% and a confidence of 100%. The support and the 

confidence are a perfect 100% due to this reason: since 

we assume there are some periods of time every day 

when user activity is idle (e.g., lunch time), the deter-

ministic sequence appears in every transaction (or user 

network activity). The confidence is also high, but for a 

very different reason. Consider the fact that an average 

user browses a search site (Google) everyday. In fact, 

this was the case for all the four users’ profile. How-

ever, we recorded each network transaction in its en-

tirety, i.e., the complete HTTP request. Hence for a 

search term “search”, the network link would assume 

the form http://www.google.com/search?q=search. 

The exact form of this link varied for the different users 

dependent on the browser (Internet Explorer and 

Mozilla in our case) and the mannerism of launching 

the search. For example, IE version 6.0 users had a dif-

ferent string when they launched the search from the 

Google Toolbar. IE version 7 users used the inbuilt 

search bar and had the simple form described before. 

Thus, the exact link varied for each search, and even 

though certain searches were repeated, the support and 

confidence level did not approach even 30%. We con-

sidered only the top 5% of the rule (with 95% confi-

dence) for determining honeytokens. On the other 

hand, for the random honeytoken generation, the sup-

port and confidence were nowhere near 30% confi-

dence and support levels, which is similar to other 

normal user activity, and hence indistinguishable.  

Although other data mining techniques can be 

used, associative rule mining has been utilized in this 

paper to illustrate the utility of data mining algorithms 

to detect any deterministic honeytokens. The purpose 

of using the data mining techniques is to bring out the 

inherent weakness of static honeytoken based schemes. 

It might also be possible that spyware programs using 

these techniques incur heavy operating overhead, 

thereby giving themselves away. However, the com-

plexity of underlying Apriori algorithm primarily de-

pends upon the size of the input data supplied, which in 

this case is proportional to the generated stream of 

network requests. More complex algorithms exist 

which can be used to infer sequential patterns in the 

data stream with less computational overhead. 

 

7. Implementation Issues 
 

Throughout this paper, the notion of user activity 

has been represented as a sequence of network re-

quests. Practically, this is rarely ever the case; spyware 

usually consists of sophisticated monitoring tools, of 

which monitoring network accesses is only a small part. 

For example, the spyware [24] works by logging key-

strokes; other spyware programs may use a combina-

tion of keystrokes, network access, etc. In light of such 

characteristics, it is apparent that the notion of network 

requests (only) as user activity is flawed and not practi-

cal, since spyware such as [24] can decide if a user is 

present on the system by checking the keystrokes. 

Thus, malware can sense “No user Activity”, thereby 

rendering ineffective agents like [6] that rely solely on 

network activity as the detection parameter. However, 

this raises the interesting question, “What is User Ac-

tivity?” from a parametric point of view.  

Towards a practical implementation, we explore 

the nature of realistic user activity and the various ave-

nues for emulating them. The notion of user activity 

must be all encompassing if new threats like SpyZen 

are to be detected. User activity must be considered in 

its entirety, i.e., not only processes that are executed by 

users (and background process activity as a result), but 

also other parameters such as keystroke activity, mouse 

movements, interactive sessions, etc. Towards emulat-

ing realistic user activity, we need to define and create 

parametric representations of user activity based on 

GUI [12] that are statistically similar [7] to real data 

sets of user activity. The local agent must be capable of 

emulating user activity in terms of these parameters. 

The basic requirements of the local agent still remain 

the same as in [6], viz. the local agent should not ir-

revocably change the system state or interfere with the 

users workflow.  

In order to fulfill these requirements, the input 

generation technique for the local agent must have the 

following properties.  

• State Change: To avoid detection by spyware that 

uses a state change as an indicator of real user ac-

tivity, the local agent must change the state of the 

local system in a manner similar to that of legiti-

mate user activity. 



• Emulation of user activity: The local agent actions 

will emulate normal user activity in a statistically 

similar manner. This includes, but is not limited to, 

keyboard activity, mouse movement, networks ac-

cess, etc.  

• Restoration of state change: Before the real user is 

active again, the state change initiated by the local 

agent is reversed. 

Note also that an idle user can be determined in a 

variety of ways. The local agent (and the spyware) may 

monitor the mouse and keyboard activity and declare 

the user to be idle when such activity ceases for a 

specified time period. Still other techniques involve 

simplistic schemes like detecting if the workstation is 

locked; to sophisticated ones like workflow process 

monitoring (like email, browsing, etc.). These issues 

bring about an interesting point: if the local agent (and 

spyware) can determine if the user is idle by simply de-

termining if the system is locked, then the threat vector 

shifts completely, and so do the anti-spyware tech-

niques. In such situations, it behooves the operating 

system to provide a secure means of hooking into spe-

cific system events, thereby ensuring that only trusted 

and user approved processes only obtain critical 

hooks/notifications.  

Additionally, irrespective of the technique used, 

there is bound to be a time gap between the user leav-

ing the terminal and the local agent/spyware detecting 

that the user is idle. This time gap can also be used by 

spyware to determine that the user is idle (and is 

probably the initiation point of honeytoken generation). 

Therefore, although anti-spyware techniques like [6] 

and SpyCon presented in this paper may be technically 

sound, their implementation must receive appropriate 

focus in order for these techniques to successfully ac-

complish their goals.  

 

8. Conclusion and Future Work 
 

In this paper, we presented a new class of spyware 

called SpyZen that is capable of defeating current state-

of-the-art anti-spyware techniques. SpyZen operates in 

a surreptitious manner by blending in with legitimate 

user activity. It also defeats anti-spyware schemes that 

generate deterministic honeytokens to trick spyware 

into assuming legitimate user activity. SpyZen uses 

standard data mining algorithms like Associative Rule 

Mining to detect deterministic honeytoken generation 

schemes.  

To counter spyware like SpyZen, we devised a 

randomized honeytoken generation scheme called Spy-

Con that addresses the inherent disadvantages of static 

honeytoken generation. Practical implementation of 

SpyCon must ensure that user activity is parameterized 

by a number of parameters, viz. keystrokes, mouse ac-

tivity, network access, etc., as opposed to only network 

accesses. The randomized honeytoken generation 

scheme uses a root keyword, initially pre-shared be-

tween the local agent and the NIDS and generates net-

work accesses (or other user activity profiles). The 

generation scheme also leverages on previous works 

that automatically generate user activity data sets that 

are statistically close to real user activity, thereby ren-

dering most distinguishing techniques ineffective on a 

practical scale.  

Our future work consists of integrating the honey-

token generating local agent with the remote NIDS 

within the framework of the Snort IDS [21].  This 

would also enable us to analyze the effectiveness of our 

solution by evaluating it against live spyware programs. 
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