
Pattern Matching and Its UseProject P1 ofCommon Lisp: An Interactive ApproachStuart C. ShapiroDepartment of Computer ScienceState University of New York at Bu�aloAugust 3, 1999The goal of this project is to implement a pattern matcher and to use it inthree simple ways:1. a simple rule-based reasoning system;2. a simple parser;3. A simple version of Eliza.1 PatternsConsider the list (A B C M A B C (A B C) M A B C)We see that this has an interesting pattern: there are 3 symbols followed by afourth symbol; then the 3 symbols are repeated; then they are repeated againinside a list; then the fourth symbol is repeated; then the 3 symbols are repeatedagain. Here is another list matching the same pattern:(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)and here is one that doesn't(JOHN EATS CHOCOLATE THEN JANE EATS CHOCOLATE(JOHN LOVES CHOCOLATE) BUT MARY DOESNT)In Project P1, you will implement a way to specify such patterns symboli-cally, and decide which lists match the patterns and which don't.1

The simplest notion of a list matching a pattern is when the pattern isexactly the same as the list. The list(A B C M A B C (A B C) M A B C)certainly matches the pattern(A B C M A B C (A B C) M A B C)but (JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)doesn't match this pattern, and neither does(JOHN EATS CHOCOLATE THEN JANE EATS CHOCOLATE(JOHN LOVES CHOCOLATE) BUT MARY DOESNT)To make a pattern more exible, we can replace some of its members by vari-ables. This notion of \variable" is not quite the same as the notion of a variablein programming languages, but similar in that a variable can have di�erent val-ues at di�erent times. The simplest kind of a variable is one that just doesn'tcare what it is matched with. We will call this a don't care variable, and usethe symbol ? for it. The list (A B A)matches each of the following patterns:(A B A)(? B A)(A ? A)(A B ?)(A ? ?)(? B ?)(? ? A)(? ? ?)and the pattern (? B ?)matches any list of three members, the second of which is B, including(A B A)and (A B C)2

The don't care variable is too undiscriminating to specify the complicatedpattern we �rst mentioned above. The best we could do with it would be(? ? ? ? ? ? ? (? ? ?) ? ? ? ?)but this would match any 12 member list, the eighth of which is a 3 memberlist. We want the four symbols of that �rst list to be any symbols, but the samefour symbols whenever they recur. For this we need another kind of variable,called simply a variable. We need to have multiple variables, because the foursymbols needn't be the same, but we have to recognize when one recurs, so thatin must match the same constant every time. We will consider any symbol thatstarts with the character \?" to be a variable. So, ?w, ?x, ?y, and ?z, are fourdi�erent variables, and ?bill is another.Using these variables, we can specify the pattern we are interested in:(?X ?Y ?Z ?W ?X ?Y ?Z (?X ?Y ?Z) ?W ?X ?Y ?Z)Notice that this is a symbolic version of the pattern we �rst stated in words,and that it matches the �rst two lists, but not the third.The pattern (?X ?Y ?X)matches any 3 element list whose �rst and third elements are the same, including(A B A)and (M N M)but not (A B C)and the pattern (?X B ?X)matches any 3 element list whose second element is a B and whose �rst andthird elements are the same, including(A B A)and (B B B)but not (M N M)3

We can get even more exible in our patterns by having sequence variables.A sequence variable can match any sequence of objects, including the emptysequence, but if it's repeated, it must match the same thing(s) each time, justlike a normal variable. We will have our sequence variables look like our normalvariables, but use \$" instead of \?". Using sequence variables, the �rst patternabove can be expressed as ($X ?Y $X ($X) ?Y $X)This also matches (A B C M A B C (A B C) M A B C)and (JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)but not(JOHN EATS CHOCOLATE THEN JANE EATS CHOCOLATE(JOHN LOVES CHOCOLATE) BUT MARY DOESNT)It also matches (A B A (A) B A)and even (NULL () NULL)with $X matching the empty sequence and ?Y matching the symbol NULL.Notice that there are three ways for a list to fail to match a pattern:1. Corresponding members of the list and the pattern might be di�erentconstants. For example, the list (A B C)doesn't match the pattern (?X B D)2. A variable or sequence variable might recur in the pattern, but match upwith di�erent objects in the list. For example, the list(A B C)doesn't match the pattern (?X B ?X)4

and the list (A B C A D)doesn't match the pattern ($X C $X)3. The list might be too short or too long for the pattern. For example, thelist (A B)doesn't match the pattern (?X B ?Y)and neither does the list (A B C D)

5

2 SubstitutionsThe pattern(?X ?Y ?Z ?W ?X ?Y ?Z (?X ?Y ?Z) ?W ?X ?Y ?Z)matches both the constant list(A B C M A B C (A B C) M A B C)and the constant list(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)but it matches them in di�erent ways. A substitution is a way for us to talkabout how a pattern matches a constant.A substitution is a list of pairs, where each pair is a list of two members, avariable and a constant. We can use substitutions to show how the variablesin a pattern matched up with constants in the constant list that the patternmatched. For example, the substitution((?X A) (?Y B) (?Z C) (?W M))shows how the pattern(?X ?Y ?Z ?W ?X ?Y ?Z (?X ?Y ?Z) ?W ?X ?Y ?Z)matches the constant(A B C M A B C (A B C) M A B C)and the substitution((?X JOHN) (?Y EATS) (?Z CHOCOLATE) (?W THEN))shows how it matches(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)If a variable appears in a substitution, we say that the variable is boundto the constant it is paired with. For example ?X is bound to A in the �rstsubstitution above and to JOHN in the second.
6

Since the only important things about a substitution are what variablesare in it and what constants they are bound to, the order of the pairs is notimportant. (A substitution is a set of pairs.) Thus, for example,((?X A) (?Y B) (?Z C) (?W M))and ((?Z C) (?W M) (?Y B) (?X A))are the same substitution.Sequence variables may also appear in substitutions, but they, of course, arealways bound to lists. For example, the substitution(($X (JOHN EATS CHOCOLATE)) (?Y THEN))shows how the pattern ($X ?Y $X ($X) ?Y $X)matches the constant(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)Don't care variables, on the other hand, never appear in substitutions be-cause we never care what they match, and, anyway, a don't care variable maymatch several di�erent constants in the same list.2.1 The match FunctionSince we are seldom interested in whether a pattern matches a constant withoutalso being interested in how it matches, the function match, which you will �rstwrite for Exercise 17.31, takes a pattern and a constant list as arguments andreturns a substitution as value. For example,> (match '(?x ?y ?z ?w ?x ?y ?z (?x ?y ?z) ?w ?x ?y ?z)'(a b c m a b c (a b c) m a b c))((?W M) (?Z C) (?Y B) (?X A) (T T))> (match '(?x ?y ?z ?w ?x ?y ?z (?x ?y ?z) ?w ?x ?y ?z)'(john eats chocolate then john eats chocolate(john eats chocolate) then john eats chocolate))((?W THEN) (?Z CHOCOLATE) (?Y EATS) (?X JOHN) (T T))> (match '($x ?y $x ($x) ?y $x)'(john eats chocolate then john eats chocolate(john eats chocolate) then john eats chocolate))((?Y THEN) ($X (JOHN EATS CHOCOLATE)) (T T))7

The pair (T T) appears in these substitutions for a speci�c technical reason.Consider the two problems> (match '(a b) '(a b))and> (match '(a b) '(x y))The �rst matches, but since there are no variables in the pattern, the substitu-tion showing the match will be the empty set of pairs; the second doesn't matchat all, so match should return False. Unfortunately, the empty set and Falseare normally represented by Common Lisp by the same thing|NIL. In orderto distinguish the \perfect" match from match failure, we must choose some-thing other than NIL either to represent the empty substitution, or to representmatch failure. I have chosen to use ((T T)) to represent the empty substitutionand leave NIL representing failure because that has fewer implications for howwe will write our functions than the alternative, though popular, use of NIL torepresent the empty substitution and FAIL to represent match failure.2.2 Applying SubstitutionsSubtitutions may be used by applying them to patterns. To apply a substitutionto a pattern is to replace each variable in the pattern with the constant it isbound to in the substitution. We will use the function(substitute pattern substitution)which you will �rst write for Exercise 17.32, to represent this operation. Forexample,> (substitute '($x ?y $x ($x) ?y $x)'((?y then) ($x (john eats chocolate)) (t t)))(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)It should be clear that if pattern matches constant , then the identity(substitute pattern (match pattern constant)) = constantwill always be satis�ed.However, a substitution could also be applied to a pattern other than theone originally used to create it. For example,> (substitute '(so ?y $x)'((?y then) ($x (john eats chocolate)) (t t)))(SO THEN JOHN EATS CHOCOLATE)
8

3 RulesA rule is a list of two patterns. We will call the �rst pattern the left-hand sideof the rule, and the second pattern the right-hand side of the rule. The function(apply-rule constant rule), which you will write for Exercise 18.27, doesthe following:if the left-hand side of rule matches constant ,apply the substitution returned by that matchto the right-hand side of the ruleand return the resultelse return the constantFor example,> (apply-rule '(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)'(($X ?Y $X ($X) ?Y $X) (So ?Y $X)))(SO THEN JOHN EATS CHOCOLATE)4 A Simple Rule-Based Reasoning SystemIn Exercise 18.27, you will test apply-rule on a tiny, one example, rule-basedreasoning system. This example is based on the syllogismSocrates is a man.All men are mortal.Socrates is mortal.In Predicate Logic, this syllogism is expressedMan(Socrates)8x[Man(x))Mortal(x)]Mortal(Socrates)Using apply-rule, we can do> (apply-rule '(Man Socrates)'((Man ?x) (Mortal ?x)))(MORTAL SOCRATES)
9

5 A Simple ParserParsing involves applying a set of grammar rules to a purported sentence to seeif it obeys the rules. For example, consider the following grammar.S ::= N VPVP ::= V NVP ::= VN ::= JohnN ::= MaryV ::= lovesThis grammar could be used in the forward direction to generate a sentence asfollows SN VPN V NJohn V NJohn loves NJohn loves Maryor we could use the grammar in the backward direction to parse the sentence. Ifwe constructed a Common Lisp version of the parse tree as we went, it wouldlook like this: John loves Mary(N John) loves Mary(N John) (V loves) Mary(N John) (V loves) (N Mary)(N John) (VP (V loves) (N Mary))(S (N John) (VP (V loves) (N Mary)))Our rule applier can do this if we repeatedly apply an appropriate rule to theresults of a previous rule application. The function apply-rules, which you will�rst write for Exercise 24.9 does this repeated rule application. For Exercise26.14, you will have apply-rules do the kind of parsing shown above using therule set((($x John $y) ($x (n John) $y))(($x loves $y) ($x (v loves) $y))(($x Mary $y) ($x (n Mary) $y))(($x (v $y) (n $z)) ($x (vp (v $y) (n $z))))(($x (v $y)) ($x (vp (v $y))))(((n $x) (vp $y)) (s (n $x) (vp $y))))which is just a rewriting and reordering of the grammar rules shown above.10

6 A Simple Version of ElizaELIZA is a program written in the early 1960s by Joseph Weizenbaum1 tosimulate a Rogerian psychotherapist by engaging its user, the simulated patient,in conversation. ELIZA works simply by matching the user's input sentencesto patterns and responding with transformations of those sentences. We cando this with our rule applier. For Example, for Exercise 18.27, you will seeapply-rule do this:> (apply-rule '(I am depressed)'((I am ?x) (Why are you ?x ?)))(WHY ARE YOU DEPRESSED ?)For Exercise 29.32, you will write a more complete, but still simpli�ed versionof ELIZA.7 Summary of P1 ExercisesHere is a list of all the p1 exercises, with some additional comments.12.1{4 Do as speci�ed on p. 81.13.13{14 Do as speci�ed on p. 87.14.7{8 Do as speci�ed on p. 92.16.15 Do as speci�ed on p. 108.17.29{30 Do as speci�ed on p. 120. Note that, since you are allowed to uselisp:boundp in your de�nition of match::boundp, both match::boundpand match::bound-to can have extremely short de�nitions.17.31 Do as speci�ed on pp. 120{121, but also note that if pat and list are ofdi�erent lengths, match should return NIL. The third argument of match1,called pairs in the book, is to be a substitution.17.32 Do as speci�ed on p. 121.18.25{27 Do as speci�ed on pp. 138{139.24.9{10 Do as speci�ed on p. 180.26.8{14 Do as speci�ed on pp. 193{195.29.32 Do as speci�ed on pp. 227{228.1J. Weizenbaum, \ELIZA|A computer program for the study of natural language com-munication between man and machine," Communications of the ACM 9, 1 (January 1966),36{45. 11

