Pattern Matching and Its Use
Project P1 of
Common Lisp: An Interactive Approach

Stuart C. Shapiro
Department of Computer Science
State University of New York at Buffalo

August 3, 1999

The goal of this project is to implement a pattern matcher and to use it in
three simple ways:

1. a simple rule-based reasoning system;
2. a simple parser;

3. A simple version of Eliza.

1 Patterns

Consider the list
(ALBCMABC (ABC) MABO

We see that this has an interesting pattern: there are 3 symbols followed by a
fourth symbol; then the 3 symbols are repeated; then they are repeated again
inside a list; then the fourth symbol is repeated; then the 3 symbols are repeated
again. Here is another list matching the same pattern:

(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

and here is one that doesn’t

(JOHN EATS CHOCOLATE THEN JANE EATS CHOCOLATE
(JOHN LOVES CHOCOLATE) BUT MARY DOESNT)

In Project P1, you will implement a way to specify such patterns symboli-
cally, and decide which lists match the patterns and which don’t.

The simplest notion of a list matching a pattern is when the pattern is
exactly the same as the list. The list

(ABCMABC (ABC)MABO)
certainly matches the pattern

(ABCMABC (ABC)MABO)
but

(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

doesn’t match this pattern, and neither does

(JOHN EATS CHOCOLATE THEN JANE EATS CHOCOLATE
(JOHN LOVES CHOCOLATE) BUT MARY DOESNT)

To make a pattern more flexible, we can replace some of its members by vari-
ables. This notion of “variable” is not quite the same as the notion of a variable
in programming languages, but similar in that a variable can have different val-
ues at different times. The simplest kind of a variable is one that just doesn’t
care what it is matched with. We will call this a don’t care variable, and use
the symbol 7 for it. The list

(A B A

matches each of the following patterns:

(A B A)
(? B A)
(A 7 R)
(AB7)
(A77)
(? B 7)
(7 7 A)
(7 72 7)
and the pattern
(? B 7)

matches any list of three members, the second of which is B, including
(A B A)
and

(A B Q)

The don’t care variable is too undiscriminating to specify the complicated
pattern we first mentioned above. The best we could do with it would be

(77727727272 (7?27)7777)

but this would match any 12 member list, the eighth of which is a 3 member
list. We want the four symbols of that first list to be any symbols, but the same
four symbols whenever they recur. For this we need another kind of variable,
called simply a variable. We need to have multiple variables, because the four
symbols needn’t be the same, but we have to recognize when one recurs, so that
in must match the same constant every time. We will consider any symbol that
starts with the character “?” to be a variable. So, 7w, 7x, 7y, and 7z, are four
different variables, and 7?bill is another.
Using these variables, we can specify the pattern we are interested in:

(?X 7Y 7Z W ?X 7Y ?7Z (7X 7Y 7Z) W 7X 7Y 7Z)

Notice that this is a symbolic version of the pattern we first stated in words,
and that it matches the first two lists, but not the third.
The pattern

(7X 7Y 7X)

matches any 3 element list whose first and third elements are the same, including

(A B A)
and

(M N M
but not

(A B O
and the pattern

(?X B 7X)

matches any 3 element list whose second element is a B and whose first and
third elements are the same, including

(A B A)
and

(B B B)
but not

(M N M)

We can get even more flexible in our patterns by having sequence variables.
A sequence variable can match any sequence of objects, including the empty
sequence, but if it’s repeated, it must match the same thing(s) each time, just
like a normal variable. We will have our sequence variables look like our normal
variables, but use “$” instead of “?”. Using sequence variables, the first pattern
above can be expressed as

(X 7Y $X ($X) 7Y $X)
This also matches
(ABCMABC (ABC)MABO
and

(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

but not

(JOHN EATS CHOCOLATE THEN JANE EATS CHOCOLATE
(JOHN LOVES CHOCOLATE) BUT MARY DOESNT)

It also matches

(ABA (A) BA)
and even

(NULL () NULL)

with $X matching the empty sequence and 7Y matching the symbol NULL.
Notice that there are three ways for a list to fail to match a pattern:

1. Corresponding members of the list and the pattern might be different
constants. For example, the list

(A B C)
doesn’t match the pattern
(?X B D)

2. A variable or sequence variable might recur in the pattern, but match up
with different objects in the list. For example, the list

(A BC)
doesn’t match the pattern

(?X B 7X)

and the list
(ABCAD
doesn’t match the pattern
($X C $X)

. The list might be too short or too long for the pattern. For example, the
list

(A B)
doesn’t match the pattern
(?X B 7Y)
and neither does the list

(A B CD)

2 Substitutions

The pattern
(?7X ?Y 7Z ?W 7X ?Y ?Z (?X 7Y 7Z) 7W ?X 7Y ?Z)
matches both the constant list
(ABCMABC (ABC)MABO)
and the constant list

(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

but it matches them in different ways. A substitution is a way for us to talk
about how a pattern matches a constant.

A substitution is a list of pairs, where each pair is a list of two members, a
variable and a constant. We can use substitutions to show how the variables
in a pattern matched up with constants in the constant list that the pattern
matched. For example, the substitution

((?X A) (?Y B) (7Z C) (7w M))

shows how the pattern

(?7X ?Y 7Z ?W 7X ?Y ?Z (?X 7Y 7Z) 7W ?X 7Y 7Z)
matches the constant

(ABCMABC (ABC)MABO)

and the substitution

((?X JOHN) (7Y EATS) (7Z CHOCOLATE) (7W THEN))
shows how it matches

(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

If a variable appears in a substitution, we say that the variable is bound
to the constant it is paired with. For example 7X is bound to A in the first
substitution above and to JOHN in the second.

Since the only important things about a substitution are what variables
are in it and what constants they are bound to, the order of the pairs is not
important. (A substitution is a set of pairs.) Thus, for example,

((?X A) (?Y B) (7?2 C) (?W M))
and
((?Z C) (?w M) (?Y B) (?X A))

are the same substitution.
Sequence variables may also appear in substitutions, but they, of course, are
always bound to lists. For example, the substitution

(($X (JOHN EATS CHOCOLATE)) (7Y THEN))
shows how the pattern
(X 7Y $X (8X) 7Y $X)
matches the constant

(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

Don’t care variables, on the other hand, never appear in substitutions be-
cause we never care what they match, and, anyway, a don’t care variable may
match several different constants in the same list.

2.1 The match Function

Since we are seldom interested in whether a pattern matches a constant without
also being interested in how it matches, the function match, which you will first
write for Exercise 17.31, takes a pattern and a constant list as arguments and
returns a substitution as value. For example,

> (match ’(7x 7y 7z 7w 7x 7y 7z (7x Ty 7z) 7w 7x Ty 7z)
’@bcmabc(abc)mabc))
((?w M) (?Z C) (7Y B) (?X A) (T T))

> (match ’(7x 7y 7z 7w 7x 7y 7z (7x 7y 7z) 7w 7x 7y 7z)
’(john eats chocolate then john eats chocolate

(john eats chocolate) then john eats chocolate))
((?W THEN) (?7Z CHOCOLATE) (?Y EATS) (?X JOHN) (T T))

> (match ’($x 7y $x ($x) 7y $x)
’(john eats chocolate then john eats chocolate
(john eats chocolate) then john eats chocolate))
((?Y THEN) ($X (JOHN EATS CHOCOLATE)) (T T))

The pair (T T) appears in these substitutions for a specific technical reason.
Consider the two problems

> (match ’(a b) ’(a b))
and
> (match ’(a b) ’(x y))

The first matches, but since there are no variables in the pattern, the substitu-
tion showing the match will be the empty set of pairs; the second doesn’t match
at all, so match should return False. Unfortunately, the empty set and False
are normally represented by COMMON LISP by the same thing—NIL. In order
to distinguish the “perfect” match from match failure, we must choose some-
thing other than NIL either to represent the empty substitution, or to represent
match failure. I have chosen to use ((T T)) to represent the empty substitution
and leave NIL representing failure because that has fewer implications for how
we will write our functions than the alternative, though popular, use of NIL to
represent the empty substitution and FAIL to represent match failure.

2.2 Applying Substitutions

Subtitutions may be used by applying them to patterns. To apply a substitution
to a pattern is to replace each variable in the pattern with the constant it is
bound to in the substitution. We will use the function

(substitute pattern substitution)

which you will first write for Exercise 17.32, to represent this operation. For
example,

> (substitute ’($x 7y $x ($x) 7y $x)
>((?y then) ($x (john eats chocolate)) (t t)))
(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)

It should be clear that if pattern matches constant, then the identity
(substitute pattern (match pattern constant)) = constant

will always be satisfied.
However, a substitution could also be applied to a pattern other than the
one originally used to create it. For example,

> (substitute ’(so ?y $x)
?((?y then) ($x (john eats chocolate)) (t t)))
(SO THEN JOHN EATS CHOCOLATE)

3 Rules

A rule is a list of two patterns. We will call the first pattern the left-hand side
of the rule, and the second pattern the right-hand side of the rule. The function
(apply-rule constant rule), which you will write for Exercise 18.27, does
the following:

if the left-hand side of rule matches constant,
apply the substitution returned by that match
to the right-hand side of the rule
and return the result
else return the constant

For example,

> (apply-rule ’(JOHN EATS CHOCOLATE THEN JOHN EATS CHOCOLATE
(JOHN EATS CHOCOLATE) THEN JOHN EATS CHOCOLATE)
P(($X 7Y $X ($X) 7Y $X) (So 7Y $X)))
(SO THEN JOHN EATS CHOCOLATE)

4 A Simple Rule-Based Reasoning System

In Exercise 18.27, you will test apply-rule on a tiny, one example, rule-based
reasoning system. This example is based on the syllogism

Socrates is a man.
All men are mortal.
Socrates is mortal.

In Predicate Logic, this syllogism is expressed

Man(Socrates)
Vez[Man(z) = Mortal(z)]
Mortal(Socrates)

Using apply-rule, we can do

> (apply-rule ’(Man Socrates)
’((Man 7x) (Mortal 7x)))
(MORTAL SOCRATES)

5 A Simple Parser

Parsing involves applying a set of grammar rules to a purported sentence to see
if it obeys the rules. For example, consider the following grammar.

S =NVP
VP ::= VN
VP ::=V

N ::= John
N = Mary
V = loves

This grammar could be used in the forward direction to generate a sentence as
follows

S
N VP
NVN
John V N
John loves N
John loves Mary

or we could use the grammar in the backward direction to parse the sentence. If
we constructed a COMMON LISP version of the parse tree as we went, it would
look like this:

John loves Mary
(N John) loves Mary
(N John) (V loves) Mary
(N John) (V loves) (N Mary)
(N John) (VP (V loves) (N Mary))
(S (N John) (VP (V loves) (N Mary)))

Our rule applier can do this if we repeatedly apply an appropriate rule to the
results of a previous rule application. The function apply-rules, which you will
first write for Exercise 24.9 does this repeated rule application. For Exercise
26.14, you will have apply-rules do the kind of parsing shown above using the
rule set

((($x John $y) ($x (n John) $y))
(($x loves $y) ($x (v loves) $y))
(($x Mary $y) ($x (n Mary) $y))
(($x (v $y) (n $2)) ($x (vp (v $y) (n $2))))
(($x (v $y)) ($x (vp (v $Y))N)

(((n $x) (vp $y)) (s (n $x) (vp $y))))

which is just a rewriting and reordering of the grammar rules shown above.

10

6 A Simple Version of Eliza

ELIZA is a program written in the early 1960s by Joseph Weizenbaum?® to
simulate a Rogerian psychotherapist by engaging its user, the simulated patient,
in conversation. ELIZA works simply by matching the user’s input sentences
to patterns and responding with transformations of those sentences. We can
do this with our rule applier. For Example, for Exercise 18.27, you will see
apply-rule do this:

> (apply-rule ’(I am depressed)
?((I am ?x) (Why are you 7x 7)))
(WHY ARE YOU DEPRESSED 7)

For Exercise 29.32, you will write a more complete, but still simplified version
of ELIZA.

7 Summary of P1 Exercises

Here is a list of all the pl exercises, with some additional comments.
12.1-4 Do as specified on p. 81.

13.13—-14 Do as specified on p. 87.

14.7-8 Do as specified on p. 92.

16.15 Do as specified on p. 108.

17.29-30 Do as specified on p. 120. Note that, since you are allowed to use
lisp:boundp in your definition of match: :boundp, both match: :boundp
and match: :bound-to can have extremely short definitions.

17.31 Do as specified on pp. 120-121, but also note that if pat and list are of
different lengths, match should return NIL. The third argument of matchi,
called pairs in the book, is to be a substitution.

17.32 Do as specified on p. 121.
18.25—27 Do as specified on pp. 138-139.
24.9-10 Do as specified on p. 180.
26.8—14 Do as specified on pp. 193-195.
29.32 Do as specified on pp. 227-228.

1J. Weizenbaum, “ELIZA—A computer program for the study of natural language com-
munication between man and machine,” Communications of the ACM 9, 1 (January 1966),
36-45.

11

