Knowledge Representation and
Reasoning

Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering
and Center for Cognitive Science
University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

copyright (©1995, 20042010 by Stuart C. Shapiro

Page 1

A S

© © 3 &

10.
11.

Contents
Part 1

Introduction o e 4
Propositional Logic i 19
Predicate Logic Over Finite Models.............. 173
Full First-Order Predicate Logic oo, 228
Summary of Part I....... 367
Part 11
Prolog . ..o 380
A Potpourri of Subdomains.......... 416
SN P S . 434
Belief Revision/Truth Maintenanceo i, 516
The Situation Calculus i i 574
SUIMINATY &« ¢ o ettt et ettt et e e e e e e e e e e e e e e e e 593

12. Production Systems
13. Description Logic..

14. Abduction.........

Part 111

Page 3

2 Propositional Logic

Logics that do not analyze information below the level of the

proposition.
2.1 What is a Proposition?......... 20
2.2 CarPool World: A Motivational “Micro-World”.............. 23
2.3 The “Standard” Propositional Logic......................... 24
2.4 Important Properties of Logical Systems 133
2.5 Clause Form Propositional Logic........................... 136

Page 19

2.1 What is a Proposition?

An expression in some language

that is true or false

whose negation makes sense

that can be believed or not

whose negation can be believed or not

that can be put in the frame
“I believe that it 1s not the case that

Page 20

2

Examples

Of propositions
e Betty is the driver of the car.
e Barack Obama is sitting down or standing up.
e If Opus is a penguin, then Opus doesn’t fly.
Of non-propositions
e Barack Obama
e how to ride a bicycle

e If the fire alarm rings, leave the building.

Page 21

Sentences vs. Propositions

A sentence is an expression of a (written) language that begins
with a capital letter and ends with a period, question mark, or

exclamation point.

Some sentences do not contain a proposition:
“Hil”, “Why?”, “Pass the salt!”

Some sentences do not express a proposition, but contain one:

“Is Betty driving the car?”

Some sentences contain more than one proposition:

If Opus is a penguin, then Opus doesn’t fly.

Page 22

2.2 CarPool World: A Motivational
“Micro-World”

e Tom and Betty carpool to work.

e On any day, either Tom drives Betty or Betty drives Tom.

e In the former case, Tom is the driver and Betty is the passenger.

e In the latter case, Betty is the driver and Tom is the passenger.
Betty drives Tom. Tom drives Betty.

Propositions: Betty is the driver. Tom is the driver.

Betty is the passenger. Tom is the passenger.

Page 23

2.3 The “Standard” Propositional Logic

1. Syntax...

2. Semantics

ooo

3. Proof Theory e,

Page 24

2.3.1 Syntax of the “Standard” Propositional Logic

Atomic Propositions
e Any letter of the alphabet, e.g.: P
e Any letter of the alphabet with a numerical subscript, e.g.: ()3
e Any alphanumeric string, e.g.: Tom s the driver

1s an atomic proposition.

Page 25

Well-Formed Propositions (WFPs)

1. Every atomic proposition is a wip.
2. If P is a wip, then so is (=P).
3. If P and () are wips, then so are

(a) (PAQ) (b) (PVQ)

(c) (P=0Q) (d) (P<Q)
4. Nothing else is a wip.

Parentheses may be omitted. Precedence: —; A, V; =; <.
Will allow (Pt A---AP,) and (PLV---V P,).
Square brackets may be used instead of parentheses.

Page 26

Examples of WFPs

(AN B) < (mAV-B)

Tom 1is the driver = Betty is the passenger

Betty drives Tom < —Tom 1is the driver

Page 27

i

t v =2
T

Alternative Symbols

Page 28

A Computer-Readable Syntax for Wips

Based on CLIF, the Common Logic Interchange Format?

Atomic Propositions: Use one of:
Embedded underscores: Betty drives_Tom
Embedded hyphens: Betty-drives-Tom
CamelCase: BettyDrivesTom
sulkingCamelCase: bettyDrivesTom
Escape brackets: |Betty drives Tom|

Quotation marks: "Betty drives Tom"

Page 29

2ISO/IEC, Information technology — Common Logic (CL): a framework for
a family of logic-based languages, ISO/TEC 24707:2007(E), 2007.

CLIF for Non-Atomic Wips

Print Form CLIF Form

- P (not P)
PAQ (and P Q)
PVQ (or P Q)
P=20Q (if P Q)
P<Q (iff P Q)

(PPA---ANP,) (and P1 ...Pn)
(PLV---VP,) (or P1 ...Pn)

Page 30

Semantics of Atomic Propositions 1

Intensional Semantics

Dependent on a Domain.

Independent of any specific

interpretation/model /possible world /situation.

Statement in a previously understood language (e.g. English)
that allows truth value to be determined in any specific

situation.

Often omitted, but shouldn’t be.

Page 31

Intensional CarPool World Semantics

Betty drives Tom| = Betty drives Tom to work.

' Tom drives Betty] = Tom drives Betty to work.
Betty is the driver| = Betty is the driver of the car.
['Tom is the driver] = Tom is the driver of the car.

|Betty is the passenger| = Betty is the passenger in the car.

[Tom is the passenger] = Tom is the passenger in the car.

Page 32

Alternative Intensional CarPool World

Semantics

Betty drives Tom| = Tom drives Betty to work.
Tom drives Betty] = Betty drives Tom to work.
Betty is the driver] = Tom is the passenger in the car.
[Tom is the driver| = Betty is the passenger in the car.

|Betty is the passenger| = Tom is the driver of the car.

['Tom is the passenger| = Betty is the driver of the car.

Page 33

Alternative CarPool World

Syntax /Intensional Semantics

|A] = Betty drives Tom to work.

' B] = Tom drives Betty to work.

= Betty is the driver of the car.
= Tom is the driver of the car.

= Betty is the passenger in the car.

N O Q

= Tom is the passenger in the car.

Page 34

Intensional Semantics Moral

e Don’t omit.
e Don’t presume.

e No “pretend it’s English semantics”.

Page 35

Intensional Semantics of WFPs

—P] = It is not the case that [P].
PAQ|=|P]and Q]

PV @] = Either [P] or [Q] or both.
P = Q] = If [P] then [Q)].

P < @] = [P] if and only if [Q)].

Page 36

Example CarPool World Intensional
WFP Semantics

| Betty drives Tom < —Tom is the driver|
= Betty drives Tom to work

if and only if Tom is not the driver of the car.

Page 37

Terminology

e — P is called the negation of P.

e P AQ is called the conjunction of P and Q).
P and @) are referred to as conjuncts.

e PV (Q is called the disjunction of P and Q).
P and @ are referred to as disjuncts.

e P = () is called a conditional or implication.
P is referred to as the antecedent;

() as the consequent.

e P & () is called a biconditional or equivalence.

Page 38

2.3.2 Semantics of Atomic Propositions 2

Extensional Semantics

e Relative to an interpretation/model/possible world /situation.

e Either True or False.

Page 39

Extensional CarPool World Semantics

Denotation in Situation

Proposition 1 2 3 4 5]

Betty drives Tom True True True False False
Tom drives Betty True True False True False
Betty is the driver True True True False False
Tom 1is the driver True False False True False

Betty is the passenger | True False False True False

Tom 1s the passenger | True False True False False

Note: n propositions = 2" possible situations.

6 propositions in CarPool World
= 20 = 64 different situations.

Page 40

Extensional Semantics of WFPs

[=P] is True if [P] is False. Otherwise, it is False.
[P A Q] is True if [P] is True and [Q] is True. Otherwise, it is

False.

[PV @] is False if [P] is False and [Q] is False. Otherwise, it is

True.

[P = @] is False if [P] is True and [@] is False. Otherwise, it is

True.

[P < Q] is True if [P] and [Q] are both True, or both False.

Otherwise, it is False.

Note that this is the outline of a recursive function that evaluates a wip,

given the truth values of its atomic propositions.

Page 41

Extensional Semantics Truth Tables

P True False
—P | False 'True

P True True False False
Q True False True False
PAQ | True False False False
Pv(@ | True True True False
P = | True False True True
P& () | True False False True

Notice that each column of these tables represents a different

situation.

Page 42

Material Implication

P = () is True when P is False.
So,

If the world is flat, then the moon is made of green cheese
is considered True if if ... then is interpreted as material

implication.

Page 43

(P= Q)< (-PVQ)

P True True False False
Q True False True False
- P False False True True

P = | True False True True
PV (@ | True False True True

(P = @) is sometimes taken as a abbreviation of (-P V Q)

Note: “Uninterpreted Language”, Formal Logic,
applicable to every logic in the class.

Page 44

Example CarPool World Truth Table

Betty drives Tom True True [False False
Tom 1s the driver True False True False
—Tom 1is the driver False True False True
Betty drives Tom < —Tom 1is the driver | False True True False

Page 45

Computing Denotations

Use the procedure sketched on page 41.

Use Spreadsheet:
See http://www.cse.buffalo.edu/~shapiro/Courses/CSE563/
truthTable.xls/

Use Boole program from Barwise & Etchemendy package

Page 46

Computing the Denotation of a Wip
in a Model

Construct a truth table containing all atomic wips and the wip
whose denotation is to be computed, and restrict the truth table to
the desired model.

E.g., play with http:
//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpw.xls/

Use the program /projects/shapiro/CSE563/denotation

Page 47

Example Runs of denotation Program

cl-user(1): (denotation ’(if p (if q p))
’((p . True) (q . False)))

True

cl-user(2): (denotation
’(if BettyDrivesTom
(not TomIsThePassenger))
>((BettyDrivesTom . True)
(TomIsThePassenger . True)))

False

Page 48

Model Finding

A model satisfies a wip if the wip is True in that model.
If a wip P is False in a model, M, then M satisfies —P.
A model satisfies a set of wips if they are all True in the model.

A model, M, satisfies the wips Py, ..., P, if and only if M, satisfies
PiAN...NP,.

Task: Given a set of wips, A, find satisfying models.
I.e., models that assign all wips in A the value True.

Page 49

Model Finding with a Spreadsheet

Play with http:
//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpw.x1ls/

Page 50

An Informal Model Finding Algorithm

(Exponential)

Given: Wips labeled True, False, or unlabeled.
If any wip is labeled both True and False, terminate with

failure.
If all atomic wips are labeled, return labeling as a model.

If =P is

— labeled True, try labeling P False.

— labeled False, try labeling P True.

If PAQ is

— labeled True, try labeling P and () True.

— labeled False, try labeling P False, and try labeling () False.

Page 51

Model Finding Algorithm, cont’d

o If PV Q) is
— labeled False, try labeling P and () False.
— labeled True, try labeling P True, and try labeling () True.

o If P= () is
— labeled False, try labeling P True and () False.
— labeled True, try labeling P False,
and try labeling () True.
o If P& () is

— labeled True, try labeling P and) both True,
and try labeling P and () both False.

— labeled False, try labeling P True and () False,
and try labeling P False and () True.

Page 52

Tableau Procedure for Model Finding?

T :BP = -BD
T:7TD = BP
F:=-BD

Page 53

@Based on the semantic tableaux of Evert W. Beth, The Foundations of Math-
ematics, (Amsterdam: North Holland), 1959.

Tableau Procedure Example: Step 1

T: BP = —-BD
T:TD = BP
F:—=BD +

T:BD

Page 54

Tableau Procedure Example: Step 2

T:BP = -BD +
T:7TD = BP
F:=-BD

T : BD

/\

F:BP T :-BD

Page 55

Tableau Procedure Example: Step 3

T: BP = —-BD

T:TD = BP +

F:—=BD
T : BD
T :-BD
F:BP
/\)
F:TD T : BP
Va X

Model: [BD] = True; [BP] = False; [TD] = False

Page 56

Lisp Program for Tableau Procedure

Function: (models trueWfps &optional falseWfps trueAtoms falseAtoms)

<timberlake:":1:62> mlisp

cl-user(1): :1d /projects/shapiro/CSE563/modelfinder
; Loading /projects/shapiro/CSE563/modelfinder.cl

cl-user(2): (models ’((if BP (not BD)) (if TD BP)) ’((not BD)))
(((BD . True) (BP . False) (TD . False)))

cl-user(3): (models ’(BDT (if BDT (and BD TP)) (not (or TP BD))))
nil

cl-user(4): (models ’((if BDT (and BD TP)) (if TDB (and TD BP))))
(((TD . True) (BP . True) (BD . True) (TP . True))

((BD . True) (TP . True) (TDB . False))

((TD . True) (BP . True) (BDT . False))

((BDT . False) (TDB . False)))

Page 57

Decreasoner,” An Efficient Model Finder

On nickelback.cse.buffalo.edu

or timberlake.cse.buffalo.edu,

do
cd /projects/shapiro/CSE563/decreasoner

and try

python ubdecreasonerP.py examples/ShapiroCSE563/cpwProp.e

and

python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropFindModels.e

Page 58

@Decreasoner is by Erik T. Mueller, and uses relsat, by Roberto J. Bayardo
Jr. and Robert C. Schrag, and walksat, by Bart Selman and Henry Kautz.

Decreasoner Example Input File

/projects/shapiro/CSE563/decreasoner/examples/ShapiroCSE563/
cpwPropFindModels.e:

;35 Example of Finding Models for Some Wfp

- In a SubDomain of Propositional Car Pool World
;53 Stuart C. Shapiro

;55 January 23, 2009

proposition BettyIsDriver ; Betty is the driver of the car.
proposition TomIsDriver ; Tom is the driver of the car.

proposition BettylIsPassenger ; Betty is the passenger in the car.

;5 A set of well-formed propositions to find models of within CPW
(BettyIsPassenger -> !BettyIsDriver).

(TomIsDriver -> BettyIsPassenger).

I''BettyIsDriver.

Page 59

Decreasoner Example Run

<timberlake:decreasoner:1:60> python ubdecreasonerP.py

examples/ShapiroCSE563/cpwPropFindModels.e

model 1:

BettylsDriver.
IBettylIsPassenger.

I'TomIsDriver.

Page 60

Semantic Properties of WFPs

A wip is satisfiable if it is True in at least one situation.

A wip is contingent if it is True in at least one situation and

False in at least one situation.

A wip is valid (= P) if it is True in every situation.
A valid wip is also called a tautology.

A wip is unsatisfiable or contradictory

if it is False in every situation.

Page 61

Examples

P True True False False
Q True False True False
- P False False True True
Q=P True True False True
P=(Q = P) | True True True True
PAN—=P False False False False

-P, Q = P, and P = (Q = P) are satisfiable,

- P and () = P are contingent,

P = (Q = P) is valid,

P N —P is contradictory.

Page 62

Logical Entailment

{Aq,..., A, } logically entails B in logic £
Ay,..., A, = B
if B is True in every situation in which every A; is True.
If £ is assumed,
Ay,..., A, =B

If n =0, we have validity

l:B7

i.e., B is True in every situation.

Page 63

Examples

P True True False False
Q True False True False
- P False False True True
Q=P True True False True
P=(Q = P) | True True True True
PAN—-P False False False False

=P =(Q=P)
PEQQ=P
QQ=PEP

Page 64

A Metatheorem

Ay,... A, =B
iff
AiA--ANA, =B

Page 65

Semantic Deduction Theorem
(Metatheorem)

Ay,..., A, = Pifandonly if E Ay AN---NA, = P.

So deciding validity and logical entailment are equivalent.

Page 66

Domain Knowledge (Rules)

Used to reduce the set of situations to those that “make sense”.

Page 67

Domain Rules for CarPool World

Betty 1s the driver < —Betty is the passenger

Tom 1s the driver < —Tom 1s the passenger
Betty drives Tom = Betty is the driver A Tom 1is the passenger
Tom drives Betty = Tom is the driver N\ Betty is the passenger

Tom drives Betty V Betty drives Tom

Page 68

Sensible CarPool World Situations

The only 2 of the 64 in which all domain rules are True:

Denotation in Situation

Proposition 3 4

Betty drives Tom True False
Tom drives Betty False True
Betty 1s the driver True False
Tom 1s the driver False True
Betty 1s the passenger False True
Tom 1s the passenger True False
Betty drives Tom < —Tom 1is the driver | True True

Page 69

General Effect of Domain Rules

The number of models that satisfy a set of wips is reduced (or stays
the same) as the size of the set increases.

For a set of wips, I', and a wip P, if the number of models that
satisfy I' U { P} is strictly less than the number of models that
satisfy I', then P is independent of I'.

Page 70

Computer Tests of CPW Domain Rules

Spreadsheet: http:
//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpwRules.x1s

Decreasoner (on nickelback or timberlake):

cd /projects/shapiro/CSE563/decreasoner
python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropRules.e

Page 71

CarPool World Domain Rules in

Decreasoner

proposition BettyDrivesTom ; Betty drives Tom to work.
proposition TomDrivesBetty ; Tom drives Betty to work.
proposition BettylIsDriver ; Betty is the driver of the car.
proposition TomIsDriver ; Tom is the driver of the car.
proposition BettylsPassenger ; Betty is the passenger in the car.

proposition TomIsPassenger ; Tom is the passenger in the car.

;33 CPW Domain Rules

BettyIsDriver <-> !BettyIsPassenger.

TomIsDriver <-> !TomIsPassenger.

BettyDrivesTom -> BettylsDriver & TomIsPassenger.
TomDrivesBetty —-> TomIsDriver & BettylsPassenger.
TomDrivesBetty | BettyDrivesTom.

Page 72

Decreasoner on CPW with Domain Rules

python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropRules.e
model 1:

BettyDrivesTom.

BettyIsDriver.

TomIsPassenger.

!BettyIsPassenger.

!TomDrivesBetty.
I TomIsDriver.

model 2:

BettyIsPassenger.
TomDrivesBetty.
TomIsDriver.
!BettyDrivesTom.
!BettylIsDriver.
TomIsPassenger.

Page 73

The KRR Enterprise

(Propositional Logic Version)

Given a domain you are interested in reasoning about:

1. List the set of propositions (expressed in English) that captures

the basic information of interest in the domain.

2. Formalize the domain by creating one atomic wip for each
proposition listed in step (1). List the atomic wfps, and, for each,

show the English proposition as its intensional semantics.

Page 74

The KRR Enterprise, Part 2

3. Using the atomic wips, determine a set of domain rules so that
all, but only, the situations of the domain that make sense satisty
them. Strive for a set of domain rules that is small and

independent.

4. Optionally, formulate an additional set of situation-specific wips
that further restrict the domain to the set of situations you are
interested in. We will call this restricted domain the “subdomain”.

5. Letting I' be the set of domain rules plus situation-specific wips,
and A be any proposition you are interested in, A is True in the
subdomain if I' = A, is false in the subdomain if I' = —-A, and
otherwise is True in some more specific situations of the

subdomain, and False in others.

Page 75

Computational Methods for Determining
Entailment and Validity

Version 1

(defun entails (KB Q)
"Returns t if the knowledge base KB entails the query Q;
else returns nil."
(loop for model in (models KB)
unless (denotation Q model)
do (return-from entails nil))
t)

Two problems:
1. models does not really return all the satisfying models;
2. entails does extra work.

Page 76

Tableau Methods
Model-Finding Refutation

To Show Aq,..., A, E P:
e Try to find a model that satisfies Aq,..., A, but falsifies P.
e If you succeed, Aq,..., A, = P.
e If you fail, Ay,..., A, = P.

All refutation model-finding methods are commonly called “tableau

methods”.

Semantic Tableaux and Wang’s Algorithm are two tableau methods
that are decision procedures for logical entailment in
Propositional Logic.

Page 77

Semantic Tableaux®
A Model-Finding Refutation Procedure

The semantic tableau refutation procedure is the same as the
tableau model-finding procedure we saw earlier, except it uses
model finding refutation to show A,,..., A, = P.

The goal is that all branches be closed.

Page 78

2Evert W. Beth, The Foundations of Mathematics, (Amsterdam: North Hol-
land), 1959.

A Semantic Tableau to Prove
I'D,TD=BP,BP = -BD =-BD

T :TD
T:TD = BP
T: BP = —-BD

F:-BD

Page 79

A Semantic Tableau to Prove
I'D,TD=BP,BP = -BD =-BD

T :TD
T:TD = BP
T: BP = —-BD

F:=-BD +

T : BD

Page 80

A Semantic Tableau to Prove
I'D,TD=BP,BP = -BD =-BD

T :TD
T:TD = BP +

T:BP = —-BD

F:-BD
T:BD
F:TD T:BP

X

Page 81

A Semantic Tableau To Prove
I'D,TD=BP,BP = -BD =-BD

T :TD

T:TD = BP

T : BP = -BD <

F:—-BD
T : BD
F:TD
T : BP
X /\
F: BP T : —-BD
X X

Page 82

A Semantic Tableau to Prove
T'D= BP,BP = —-BD ¥ —-BD

T:7TD = BP
T:BP = -BD
F:-BD

Page 83

A Semantic Tableau to Prove
T'D= BP,BP = —-BD ¥ —-BD

T:TD = BP
T: BP = —-BD

F:—=BD +

T:BD

Page 84

A Semantic Tableau to Prove
T'D= BP,BP = —-BD ¥ —-BD

T:TD = BP +
T : BP = —-BD

F:-BD

Page 85

A Semantic Tableau to Prove
I'D= BP,BP = —-BD ¥ —-BD

T:TD = BP

T : BP = -BD <

F:—-BD
T : BD
T : BP
F:TD
F: BP T : =BD
Va X

Can stop as soon as one satisfying model has been found.

Page 86

Wang’s Algorithm?

A Model-Finding Refutation Procedure

wang (Twfps, Fwfps) {
/ *
* Twfps and Fwfps are sets of wfps.
* Returns True if there is no model
* that satisfies Twfps and falsifies Fwfps;

* Otherwise, returns False.

*/

Note: is a version of models, but returns the opposite value.

Page 87

aHao Wang, Toward Mechanical Mathematics. IBM Journal of Research and
Development 4, (1960), 2-22. Reprinted in K. M. Sayre and F. J. Crosson (Eds.)

The Modeling of Mind: Computers and Intelligence. Simon and Schuster, New
York, 1963.

Wang Algorithm

if Twfps and Fwfps intersect, return True;

if every A € TuwfpsU Fwfps is atomic, return False;

if (P = (not A)) € Twfps,

return wang(Twfps \ {P}, Fwfps U {A});
if (P = (not A)) € Fufps,

return wang(Twfps U{A}, Fufps \ {P});

Page 88

if

if

if

if

Wang Algorithm

(P = (and A B)) € Twfps,

return wang ((Twfps \ {P}) U{A, B}, Fuwfps);

(P = (and A B)) € Fufps,

return wang(Twfps, (Fwfps\{P})U{A})
and wang (Twfps, (Fwfps\{P})U{B});

(P = (or A B)) € Twfps,

return wang ((Twfps \ {P}) U{A}, Fuwfps);
and wang ((Twfps \ {P}) U{B}, Fuwfps);

(P=(or A B)) € Fuwfps,

return wang(Twfps, (Fwfps\{P})U{A, B})

Page 89

if

if

if

if

Wang Algorithm

(P =(if A B)) € Tuwfps,
return wang(Twfps \ {P}, Fuwfps U{A})
and wang ((Twfps \ {P})U{B}, Fuwfps);
(P=(if A B))€ Fufps,
return wang(Twfps U{A}, (Fwfps \ {P}) U{B});

(P=(iff A B))< Tufps,
return wang((Twfps \ {P}) U {A, B}, Fufps)
and wang(Twfps \ {P}, FwfpsU{A,B});
(P=(iff A B))e Fujps,
return wang(Twfps U{A}, (Fufps \ {P}) U{B})
and wang(Twfps U{B}, (Fwfps\{P})U{A});

Page 90

Implemented Wang Function

(wang °(Aq,...,A,) 2 (P))
Returns t if Ay,..., A, = P;

nil otherwise.

Page 91

Alternative View of Wang Function

(wang KB (Query))
Returns t if the Query follows from the KB

nil otherwise.
Front end:

(entails KB Query)
Returns t if the Query follows from the KB

nil otherwise.

Page 92

Using Wang’s Algorithm

on a Tautology

(entails () ’(if A (if B A)))
0[2]: (wang nil ((Af A (if B A))))
1[2]: (wang (A) ((if B A)))
2[2]: (wang (B A) (A))
2[2]: returned t
1[2]: returned t
0[2]: returned t
t

Page 93

Using Wang’s Algorithm

on a Non-Tautology

(entails () ’(if A (and A B)))

0[2]: (wang nil ((if A (and A B))))
1[2]: (wang (A) ((and A B)))
2[2]: (wang (A (A))
2[2]: returned t
2[2]: (wang (A) (B))

2[2]: returned nil
1[2]: returned nil
0[2]: returned nil

nil

Page 94

Using Wang’s Algorithm
to see if
I'DTD=BP,BP = -BD =-BD

(entails ’(TD (if TD BP) (if BP (not BD))) ’(not BD))

0[2]: (wang (TD (if TD BP) (if BP (mot BD))) ((nmot BD)))
1[2]: (wang (TD (if BP (not BD))) (TD (not BD)))
1[2]: returned t
1[2]: (wang (BP TD (if BP (not BD))) ((not BD)))

2[2]: (wang (BP TD) (BP (not BD)))
2[2]: returned t
2[2]: (wang ((not BD) BP TD) ((not BD)))
2[2]: returned t
1[2]: returned t
0[2]: returned t
t

Page 95

Properties of Wang’s Algorithm

1. Wang’s Algorithm is sound:
If (wang A >(B)) = t then A= B

2. Wang’s Algorithm is complete:
If A= B then (wang A *(B)) = t

3. Wang’s Algorithm is a decision procedure:
For any valid inputs A, B,
(wang A ’(B)) terminates
and returns t iff A = B

Page 96

Example: Tom’s Evening Domain®

If there is a good movie on TV and Tom doesn’t have an early
appointment the next morning, then he stays home and watches a
late movie. If Tom needs to work and doesn’t have an early
appointment the next morning, then he works late. If Tom works
and needs his reference materials, then he works at his office. If
Tom works late at his office, then he returns to his office. If Tom
watches a late movie or works late, then he stays up late.

Assume: Tom needs to work, doesn’t have an early appointment,

and needs his reference materials.
Prove: Tom returns to his office and stays up late.

Page 97

@Based on an example in Stuart C. Shapiro, Processing, Bottom-up and Top-
down, in Stuart C. Shapiro, Ed. FEncyclopedia of Artificial Intelligence, John
Wiley & Sons, Inc., New York, 1987, 779-785.

2.3.3 Proof Theory of the Standard Propositional Logic

e Specifies when a given wip can be derived correctly from a set
of (other) wips.
Ay,..., A, b P

e Determines what wips are theorems of the logic.

- P

e Depends on the notion of proof.

Page 98

Hilbert-Style Syntactic Inference

e Set of Axioms.

e Small set of Rules of Inference.

Page 99

Hilbert-Style Proof

e A proof of a theorem P is
— An ordered list of wfps ending with P
— Each wip on the list is

+x Hither an axiom
x or follows from previous wips in the list by one of the

rules of inference.

Page 100

Hilbert-Style Derivation

e A derivation of P from Aq,..., A, is
— A list of wips ending with P
— Each wip on the list is

x Hither an axiom
* or some A;

x or follows from previous wips in the list by one of the

rules of inference.

Page 101

Example Hilbert-Style Axioms?

All instances of:

(Al). (A= (B=A))

(A2). (A= B=C)=(A=DB)=(A=10)))
(A3). (B=-A)= ((—-B=A) = DB))

Page 102

2From Elliott Mendelson, Introduction to Mathematical Logic, (Princeton: D.
Van Nostrand) 1964, pp. 31-32.

Hilbert-Style Rule of Inference

Modus Ponens

A A= B

Page 103

Example Hilbert-Style Proof
that F A= A

1) (A= (A=A4)=4))
= (A= (A= A)) = (A= A)) Instance of A2

2) A= (A= A)=A) Instance of Al
B) (A= (A= A)= (A= A) From 1, 2 by MP
(4) A= (A = A) Instance of Al
(5) A= From 3, 4 by MP

Page 104

Example Hilbert-Style Derivation
that

Tom 1is the driver
Tom 1is the driver = Betty is the passenger,

Betty is the passenger = —Betty is the driver,

- —Betty is the driver
1 Tom is the driver Assumption
2 Tom 1is the driver = Betty is the passenger Assumption
Betty 1s the passenger From 1, 2 by MP

S

Betty is the passenger = —Betty is the driver Assumption
- Betty is the driver From 3, 4 by MP
Page 105

/N /N /N N /N
N——r' N N N N

ot

Some Al Connections

Al

Logic

domain knowledge

or domain rules

assumptions

or non-logical axioms

inference engine procedures

rules of inference

knowledge base

Page 106

proof

Natural Deduction

(Style of Syntactic Inference)

e No Axioms.

e Large set of Rules of Inference.
— A few structural rules of inference.

— An introduction rule and an elimination rule for each

connective.

e A method of subproofs.?

Page 107

aFrancis Jeffry Pelletier, A History of Natural Deduction and Elementary
Logic Textbooks, in J. Woods, B. Brown (eds) Logical Consequence: Rival Ap-
proaches, Vol. 1. (Oxford: Hermes Science Pubs) 2000, pp. 105-138.

Fitch-Style Proof®

e A proof of a theorem P is
— An ordered list of wips and subproofs ending with P
— Each wip or subproof on the list must be justified by a rule

of inference.

e P isread “P is a theorem.”

Page 108

2Based on Frederic B. Fitch, Symbolic Logic: An Introduction, (New York:
Ronald Press), 1952.

Fitch-Style Derivation

e A derivation of a wip P from an assumption A is a
hypothetical subproof whose hypothesis is A and which

contains
— An ordered list of wfps and inner subproofs ending with P

— Each wip or inner subproof on the list must be justified by a

rule of inference.
o AF P isread “P can be derived from A.”
e A Meta-theorem: A A...NA, FPiff Ay,... A, FP

Page 109

Format of Proof/Derivation

lineNumber Wifp RuleOfInference, lineNumber(s)

Page 110

Structural Rules of Inference

1| Ag
i A
ir+n—1|A, Hyp
1| A
J A Reit,1
i 1A Rep,i

Page 111

1+n—1

Rules for =

Page 112

A= B

B

jE7?:7.j

Example Fitch-Style Proof

that HF A= A
1. A Hyp
2. A Rep, 1

3. A=A =1,12

Page 113

Fitch-Style Proof of Axiom Al

1 A Huyp

2. B Hyp

3. A Reit, 1
4, B=A = 1,23

5. A= (B=A) =114

Page 114

Example Fitch-Style Derivation

that
Tom 1s the driver
Tom 1is the driver = Beltty is the passenger,

Betty 1s the passenger = —Betty is the driver,

- —Betty 1s the driver

1. | Tom s the driver

2. | Tom 1s the driver = Betty is the passenger

3. | Betty s the passenger = —Betty s the driver Hyp
4. | Betty is the passenger = F,1,2
5. | —Betty is the driver = F,4,3

Page 115

Rules for —

1 Al
1+n—1 A, Hyp
J B
J+1 -B
J+ 2. (A1 A...ANAR) —1,i~(j +1)
i. | ——A

7. | A -F, 1

Page 116

Fitch-Style Proof of Axiom A3

1. -B = -A Hyp
2. -B= A Hyp
3 —B Hyp
4 -B = —A Reit, 1
5 -B= A Reit, 2
6 A = F,3,5
7 —A = F, 3,4
8 —~—B —~I,3-7
9 B -E, 8
10. (-B=A)=1B = 1,2-9
11. (-B=>-A)=(-B=A)=B) =1,1-10

Page 117

11.

Rules for A

Ay

An

AL A NA, ANliq, ..., i,

i. | Ay AN N A,

Page 118

Proof that
F(AANB=C)= (A= (B=(0))

1. ANB = C Hyp

2 A Huyp

3. B Hyp

4. A Reit, 2
5. AN B AL, 4,3
6. ANB = C Reit, 1
7. C = FE,5,6
8. B=C = 1,3-7
9. A= (B=0C) = I,2-8
10. (ANB=C)= (A= (B=C)) =1,1-9

Page 119

Proof that
F(A= (B=0))=(AANB=C(C)

1. A= (B=C) Hyp

2. ANB Hyp

3. A AE, 2

4. B AE, 2

5. A= (B=C) Reit, 1
6. B=C = FE.3,5
7. C = F,4,6
8. ANB=C = 1,2-7
9. (A= (B=C)=(AANB=C) =1,1-8

Page 120

Ji-

Jn-

Rules for V

A;
AV---VA,V---VA, VI
AiV--- VA,
A1:>B
A, = B
B VE,1,71,...

Page 121

 Jn

Proof that

(A= B)= (—~AV B)

1.

2.

3.

10.

11.

12.

13.

14.

A = B Hyp
—-(—=AV B) Hyp
—-A Hyp
—-AV B vI,3
—-(—AV B) Reit, 2
—-—A -I,3-5
A - E,6
A= B Reit, 1
B = E,7,8
-AV B vI,9
-(—A vV B) Rep, 2
——(—=A V B) —71,2-11
—~AV B -E,12
(A= B) = (—~AV B) = 1,1-14

Page 122

10.

11.

12.

13.

14.

15.

Proof that H (AV B) A ~A = B

(AV B) A A Hyp

- A NE, 1

AV B NE, 1
A Hyp
- B Hyp
A Reit, 4
—A Reit, 2
-—-B —I,5-7
B -E,8

A = B = I1,4-9
B Hyp
B Rep, 11

B = B = I,11-12
B VE, 3,10, 13

(AVv B) N A = B

Page 123

= I,1-14

A< B
B

@E,/I;,j

Rules for &

A= B

B= A

A B < 1,4,

Page 124

A< B
A

<(i‘E7/l:7j-

Proof that
F(A=(B=())< (ANB=C)

Proof from p. 120

9. A= B=0)=ANB=C) =1

Proof from p. 119

18. (ANB=(C)= A= (B=0) =1
19. A= (B=0)< (AANB=0C) <1,9,18

Page 125

10.
11.
12.

13.

CarPool World Derivation

Tom 1s the driver <& —Tom s the passenger
Tom 1is the passenger < Betty s the driver

Betty 1s the driver <& —Betty 1s the passenger

© »® N o oA W

Tom is the driver Hyp
—Tom 1s the passenger s FE.4,1
— Betty 1s the passenger Huyp
Betty 1s the driver < —Betty is the passenger Reit, 3
Betty is the driver & E,6,7
Tom 1s the passenger < Betty s the driver Reit, 2
Tom 1is the passenger & FL,8,9
—Tom s the passenger Reit, 5
—— Betty 1s the passenger —1,6-11
Betty 1s the passenger -FE,12

Page 126

Implementing Natural Deduction

Heuristics:

If trying to prove/derive a non-atomic wip,

try the introduction rule for the major connective.

If trying to prove/derive a wip,
and that wip is a component of a wip,

try the relevant elimination rule.

Page 127

Using SNePS 3

cl-user(2): :1d /projects/snwiz/Sneps3/sneps3

"Change package to snuser."

cl-user(3): :pa snuser

snuser(4) : (showproofs)

nil

snuser (5) : (askif ’(if A A))

Let me assume that A

Since A can be derived after assuming A
I infer wftl!: (if A A) by Implication Introduction.
wiftl!: (if A A)

Page 128

Derivation by SNePS 3

snuser(12) : (clearkb)

nil

snuser(13) : (assert ’TomIsTheDriver)

TomIsTheDriver!

snuser (14): (assert ’(if TomIsTheDriver BettyIsThePassenger))
wftl!: (if TomIsTheDriver! BettyIsThePassenger)

snuser (15): (assert ’(if BettyIsThePassenger (not BettyIsTheDriver)))
wft3!: (if BettyIsThePassenger (not BettyIsTheDriver))

snuser (16) : (askif ’(not BettyIsTheDriver))
Since wftl!: (if TomIsTheDriver! BettyIsThePassenger)
and TomIsTheDriver!

I infer BettyIsThePassenger! by Implication Elimination.
Since wft3!: (if BettyIsThePassenger! (not BettyIsTheDriver))
and BettyIsThePassenger!
I infer wft2!: (not BettyIsTheDriver) by Implication Elimination.

wft2!: (not BettyIsTheDriver)

snuser(17): (askif ’BettyIsThePassenger) ; Lemma
BettyIsThePassenger!

Page 129

SNePS 3 Proves Axiom Al

snuser (9) : (clearkb)

nil

snuser (10): (askif ’(if A (if B A)))

Let me assume that A

Let me assume that B

Since A can be derived after assuming B

I infer wftl?: (if B A) by Implication Introduction.

Since wftl?: (if B A) can be derived after assuming A
I infer wft2!: (if A (if B A)) by Implication Introduction.
wft2!: (if A (if B A))

Page 130

Another Derivation by SNePS 3

snuser(24): (clearkb)

nil

snuser(25): (assert ’(iff TomIsTheDriver (not TomIsThePassenger)))
wft2!: (iff TomIsTheDriver (not TomIsThePassenger))

snuser(26): (assert ’(iff TomIsThePassenger BettyIsTheDriver))

wft3!: (iff TomIsThePassenger BettyIsTheDriver)

snuser (27) : (assert ’(iff BettyIsTheDriver (not BettyIsThePassenger)))
wftb!: (iff (not BettyIsThePassenger) BettyIsTheDriver)

snuser(28): (assert ’TomIsTheDriver)

TomIsTheDriver!

snuser(29): (askif ’BettyIsThePassenger)

Since wft2!: (iff TomIsTheDriver! (not TomIsThePassenger))

and TomIsTheDriver!

I infer wftl!: (not TomIsThePassenger) by Equivalence Elimination.

Since wft3!: (iff TomIsThePassenger BettyIsTheDriver)

and wftl!: (not TomIsThePassenger)

I infer wft7!: (not BettyIsTheDriver) by Equivalence Elimination.
Since wftb!: (iff (not BettyIsThePassenger) BettyIsTheDriver)
and wft7!: (not BettyIsTheDriver)

I infer BettyIlsThePassenger! by Equivalence Elimination.

BettyIsThePassenger!

Page 131

More Connections

Deduction Theorem: A F P if and only if - A = P.

So proving theorems and deriving conclusions from

assumptions are equivalent.
But no atomic proposition is a theorem.

So theorem proving makes more use of Introduction Rules than

most Al reasoning systems.

Page 132

2.4 Important Properties of Logical Systems

Soundness: + P implies = P
Consistency: not both = P and - =P

Completeness: = P implies - P

Page 133

More Connections

If at most 1 of = P and = —P

then soundness implies consistency.
Soundness is the essence of “correct reasoning.”

Completeness less important for running systems since a proof

may take too long to wait for.
The Propositional Logics we have been looking at are complete.

Godel’s Incompleteness Theorem: A logic strong enough to

formalize arithmetic is either inconsistent or incomplete.

Page 134

More Connections

Ay,... A, FP & FAAN...NA, = P
soundness {1} completeness soundness ||} completeness
Ay,..., A, EP & =AN...NA, =P

Page 135

2.5 Clause Form Propositional Logic

2.0. 1 SyNtaX oo 137
2.5.2 SemantiCsot 139
2.5.3 Proof Theory: Resolution 143
2.5.4 Resolution Refutation.............. 147
2.5.5 Translating Standard Wips into Clause Form............. 159

Page 136

2.5.1 Clause Form Syntax

Syntax of Atoms and Literals

Atomic Propositions:
e Any letter of the alphabet
e Any letter with a numerical subscript
e Any alphanumeric string.
Literals:
If P is an atomic proposition, P and —P are literals.

P is called a positive literal
—P is called a negative literal.

Page 137

Clause Form Syntax

Syntax of Clauses and Sets of Clauses

Clauses: If Lq,..., L, are literals
then the set {Lq,...,L,} is a clause.

Sets of Clauses: If (1, ..., (), are clauses
then the set {C1,...,C,} is a set of clauses.

Page 138

2.5.2 Clause Form Semantics

Atomic Propositions

Intensional: [P] is some proposition in the domain.

Extensional: [P] is either True or False.

Page 139

Clause Form Semantics: Literals

Positive Literals: The meaning of P as a literal is the same as it
i1s as an atomic proposition.
Negative Literals:

Intensional:
[—P] means that it is not the case that |[P].

Extensional: [-P] is True if [P] is False;
Otherwise, it is False.

Page 140

Clause Form Semantics: Clauses

Intensional:
{Ls,...,L,}] = [L;] and/or ...and/or [L,].

Extensional:
[{Li:,...,Ly}] is True
if at least one of [L;], ..., [Ls] is True;
Otherwise, it is False.

Page 141

Clause Form Semantics: Sets of Clauses

Intensional:

{C,...,Ch}] = [Cs] and ...and [C,].

Extensional:
[{Ci,...,Ch}] is True if [C;] and ...and [C,] are all True;
Otherwise, it is False.

Page 142

2.5.3 Clause Form Proof Theory: Resolution

Notion of Proof: None!
Notion of Derivation: A set of clauses constitutes a derivation.

Assumptions: The derivation is initialized with a set of

assumption clauses Aq,..., A,.

Rule of Inference: A clause may be added to a set of clauses if
justified by resolution.

Derived Clause: If clause () has been added to a set of clauses
initialized with the set of assumption clauses A4,..., A, by one

or more applications of resolution,

then Aq,... A, F Q.

Page 143

Resolution

{P7L17°"7Ln}7{_|P7Ln—|—17"'7Lm}

{Li,...,Lyp,Loi1,..., Ly}

Resolution is sound, but not complete!

Page 144

Example Derivation

{=TomlIsTheDriver, = TomlIsThePassenger} Assumption
{ TomlIsThePassenger, BettylsThePassenger} Assumption

{ TomIsTheDriver} Assumption
{=TomlIsThePassenger} R,1,3
{ BettylsThePassenger} R,2,4

Page 145

Example of Incompleteness

{P} ={P,Q}
but
{P} VAP Q}

because resolution does not apply to {{P}}.

Page 146

2.5.4 Resolution Refutation

e Notice that {{P},{—P}} is contradictory.

e Notice that resolution applies to {P} and {—P}
producing {}, the empty clause.

e If a set of clauses is contradictory, repeated application of
resolution is guaranteed to produce {}.

Page 147

Implications

Set of clauses {A1,...,A,,Q} is contradictory
means (A; A... A A, AQ) is False in all models
means whenever (A; A ... A A,) is True, Q) is False

means whenever (A; A ... A A,) is True —Q is True

means Aq,..., A, EF Q.

Page 148

Negation and Clauses

° —l{Ll, ce ,Ln} = {{_'Ll}, sy {_‘Ln}}

-A ifL=A
._IL:
A ifL=-A

Page 149

Resolution Refutation

To decide if Aq,..., A, = Q:

1.
2.

Let S ={A,...,4,} U-Q (Note: =@ is a set of clauses.)

Repeatedly apply resolution to clauses in S.
(Determine if {A4,..., A, } U-Q F {})

. If generate {}, A1,..., A, E Q.

(If {Ala'”aAn}U_‘Q'_{} then Al,...,An):Q)

If reach point where no new clause can be generated,

but {} has not appeared, A1,..., A, £ Q.
(If{Al,,An}U_IQb[{} then Al,...,An I?EQ)

Page 150

Example 1

To decide if {P} = {P,Q}

S ={{P},{-P},{-Q}}

1. {P} Assumption

2. {=P} From query clause
3. {} R, 1,2

Page 151

Example 2

To decide if

{=TomlsTheDriver,—~TomlsThePassenger},
{TomlIsThePassenger, BettylsThePassenger},
{ TomlIsTheDriver} = { BettylsThePassenger}

1. {—~TomlIsTheDriver,—~TomlsThePassenger} Assumption

2. {TomlIsThePassenger, BettylsThePassenger} Assumption

3. {TomlsTheDriver} Assumption

4. {—-BettylsThePassenger} From query clause
5. {TomlIsThePassenger} R,2.4

6. {—-TomlIsTheDriver} R,1,5

.4 R,3,6

Page 152

Resolution Efficiency Rules

Tautology Elimination: If clause C' contains literals L and —L,
delete C from the set of clauses. (Check throughout.)

Pure-Literal Elimination: If clause C contains a literal A (—A)
and no clause contains a literal =A (A), delete C' from the set
of clauses. (Check throughout.)

Subsumption Elimination: If the set of clauses contains clauses
C7 and C5 such that C7 C (Cy, delete C5 from the set of
clauses. (Check throughout.)

These rules delete unhelpful clauses.

Page 153

Resolution Strategies

Unit Preference: Resolve shorter clauses before longer clauses.

Set of Support: One clause in each pair being resolved must

descend from the query.
Many others

These are heuristics for finding {} faster.

Page 154

Example 1 Using prover

cl-user(2): :1d /projects/shapiro/Alclass/prover
; Fast loading /projects/shapiro/Alclass/prover.fasl

cl-user(3): :pa prover

prover(4): (prove ’(P) ’(or P Q))

1 (P) Assumption
2 ((not P)) From Query
3 ((not Q)) From Query

Deleting 3 ((not Q))

because (is not used positively in any clause.
4 nil R,2,1,{}

QED

Page 155

Example 2 Using prover

prover(19): (prove ’((or (not TomIsTheDriver) (not TomIsThePassenger).

=W NN -

5

(or TomIsThePassenger BettyIsThePassenger)
TomIsTheDriver)
’BettyIsThePassenger)
(TomIsTheDriver) Assumption
((not TomIsTheDriver) (not TomIsThePassenger)) Assumption
(TomIsThePassenger BettyIsThePassenger) Assumption
((not BettyIsThePassenger)) From Query
(TomIsThePassenger) R,4,3,{}

Deleting 3 (TomIsThePassenger BettyIsThePassenger)

because it’s subsumed by 5 (TomIsThePassenger)

6

((not TomIsTheDriver)) R,5,2,{}

Deleting 2 ((not TomIsTheDriver) (not TomIsThePassenger))

because it’s subsumed by 6 ((not TomIsTheDriver))
7 nil R,6,1,{}

QED

Page 156

Example 1 Using SNARK

cl-user(5): :1d /projects/shapiro/CSE563/snark
; Loading /projects/shapiro/CSE563/snark.cl

cl-user(6): :pa snark-user
snark-user(7): (initialize)

snark-user(8): (assert ’P)
nil

snark-user(9): (prove ’(or P Q))
(Refutation
(Row 1
P
assertion)
(Row 2
false
(rewrite “conclusion 1))

)

:proof-found

Page 157

Properties of Resolution Refutation

Resolution Refutation is sound, complete, and a decision procedure
for Clause Form Propositional Logic.

It remains so when Tautology Elimination, Pure-Literal
Elimination, Subsumption Elimination and the Unit-Preference
Strategy are included.

It remains so when Set of Support is used as long as the

assumptions are not contradictory.

Page 158

2.5.5 Equivalence of Standard Propositional Logic and

Clause FormLogic

Every set of clauses,

{{Li1,- s Lin}se s {Lma,-- s Limm,, }}

has the same semantics as the standard wip

(L1g Ve VI) A A(Lma VeV L))
That is, there is a translation from any set of clauses into a
well-formed proposition of standard propositional logic.

Question: Is there a translation from any well-formed proposition

of standard propositional logic into a set of clauses?

Answer: Yes!

Page 159

Translating Standard Wips
into Clause Form
Conjunctive Normal Form (CNF)

A standard wip is in CNF if it is a conjunction of disjunctions of
literals.

(L1aV---VLip)N AN(LmiV---VLnn,))

Translation technique:
1. Turn any arbitrary wip into CNF.

2. Translate the CNF wip into a set of clauses.

Page 160

Translating Standard Wips
into Clause Form
Useful Meta-Theorem:
The Subformula Property

If A is (an occurrence of) a subformula of B,
and = A < C,
then = B < B{C/A}

Page 161

Translating Standard Wips
into Clause Form
Step 1

Eliminate occurrences of < using
=(Ae B)e (A= B)AN(B= A))
From: (LivingThing < (Animal V Vegetable))

To:
((LivingThing = (Animal V Vegetable))
A((Animal V Vegetable) = LivingThing))

Page 162

Translation Step 2

Eliminate occurrences of = using
= (A= B) < (mAV B)

From:
((LivingThing = (Animal V Vegetable))
A((Animal V Vegetable) = LivingThing))

To:
((—=Living Thing V (Animal V Vegetable))
A(—(Animal vV Vegetable) V LivingThing))

Page 163

Translation Step 3

Translate to miniscope form using

-(AANB) < (-AV -B)
-(AV B) < (mAAN-DB)
—(-A) = A

From:
((=LivingThing V (Animal V Vegetable))
A(—(Animal vV Vegetable) V LivingThing))

To:
((=Living Thing V (Animal vV Vegetable))
A((—Animal A —Vegetable) V LivingThing))

Page 164

Translation Step 4

CNF: Translate into Conjunctive Normal Form, using
=(AV(BAC)) < ((AVB)AN(AV(O))
= (BANC)VA) < (BVAAN(CVA)

From:
((=LivingThing V (Animal VV Vegetable))
A((—Animal A —Vegetable) V LivingThing))

To:
((—=Living Thing V (Animal vV Vegetable))
A((mAnimal V LivingThing) N\ (— Vegetable VV Living Thing)))

Page 165

Translation Step 5

Discard extra parentheses using the associativity of A and V.

From:
((—=Living Thing V (Animal vV Vegetable))
A((mAnimal V LivingThing) N (— Vegetable V LivingThing)))

To:

((—=Living Thing V Animal VV Vegetable)
A(—Animal V Living Thing)

A(— Vegetable VV LivingThing))

Page 166

Translation Step 6

Turn each disjunction into a clause,

and the conjunction into a set of clauses.

From:

((—=Living Thing V Animal VV Vegetable)
A(—Animal V Living Thing)

A(— Vegetable V LivingThing))

To:

{{—-LivingThing, Animal, Vegetable},
{=Animal, LivingThing},
{=Vegetable, LivingThing}}

Page 167

Use of Translation

Ala R 7An |:Stcmdard Q
iff
The translation of A1 A--- A A,, A =(Q into a set of clauses

- U

Page 168

prover Example

To prove
(LivingThing < Animal V Vegetable), (LivingThing N = Animal) = Vegetable

prover(20): (prove ’((iff LivingThing (or Animal Vegetable))

o b W NN -

6

(and LivingThing (not Animal)))
>Vegetable)
(LivingThing) Assumption
((not Animal)) Assumption
((not Animal) LivingThing) Assumption
((not Vegetable) LivingThing) Assumption
((not LivingThing) Animal Vegetable) Assumption
((not Vegetable)) From Query

Deleting 3 ((not Animal) LivingThing)

because it’s subsumed by 1 (LivingThing)

Deleting 4 ((not Vegetable) LivingThing)

because it’s subsumed by 1 (LivingThing)

Page 169

prover Example, continued

(LivingThing) Assumption
((not Animal)) Assumption

((not LivingThing) Animal Vegetable) Assumption

(O) TN © 2 N N R

((not Vegetable)) From Query

7 ((not LivingThing) Animal) R,6,5,{}
Deleting 5 ((not LivingThing) Animal Vegetable)
because it’s subsumed by 7 ((not LivingThing) Animal)
8 (Animal) R,7,1,{}
9 ((not LivingThing)) R,7,2,{}
10 nil R,9,1,{}
QED

Page 170

Connections

Modus Ponens Resolution
A,A= B {A},{—-A, B}
B {B}
Modus Tollens Resolution
A=>B,—|B {ﬂA,B},{—!B}
—A {—A}
Disjunctive Syllogism Resolution
A\/B,—IA {A,B},{—!A}
B {B}
Chaining Resolution
A:>B,B:>C {—lA,B},{—lB,C}
A=C {—A,C}

Page 171

More Connections

Clause Rule
{=Aq,...,7A,,C} (AiN---NA,)=C

Set of Support Back-chaining

Page 172

