Project 1
A SNePS-Based Rescue Agent
CSE 663, Advanced Knowledge Representation
Due Thursday, February 18, 2010

Stuart C. Shapiro
January 14, 2010

1 Domain Description

The Rescue Agent World, a domain for agent competiticeglittp://web.inf.tu-dresden.de/ mit/

LRAPP/) created by Michael Kandefer, is closely related to the Trinity College Robot Fire-fighting competition
(http://lwww.trincoll.edu/events/robot/) and the Wumpus World domain (Russell and Norvig, 1995;
Russell and Norvig, 2003; Russell and Norvig, 2010; Shapiro and Kandefer, 2005). You are to use and supplement
the base SNePSLOG file for the Rescue Agent defined in thépfibgects/robot/Karel/RescueAgent/
RescueAgent.snepslog

The Rescue Agent operates in an office building that is burning to the ground with employees trapped inside
of it. The building itself is a rectangular world of cells arranged in a grid. Cells are adjacent to each other in the
four directions (north, south, east and west) and the whole rectangular grid is surrounded by a wall, with rooms
created through a semi-random placement of walls inside the rectangular grid. Each cell is identified by its Cartesian
coordinates, with cell(0,0) in the north-west corner, cell(1,0) to its east, and cell(0,1) to its south. The width and
length of the building are independently randomly set between 5 and 10 cells. The Rescue Agent starts out in cell(0,0)
(“exit”) facing east.

Some cells in the building contain fire (represented as a red circle with a smaller orange circle inside it), but there
is never a fire in cell(0,0) or any cell containing an employee. Each other cell has a 30% probability of containing
fire. One to three employees (represented by pink/white squres with brown/black/yellow circles inside) are positioned
randomly, but with no person in cell(0,0), in a cell containing another person, or in a cell containing fire.

The task of the Rescue Agent is to find the employees, pick them up, and take them to the exit (to cell(0,0)),
and exit when all the employees have been saved. This all must be done before the building collapses, after 1000
moves.

Though the agent itself is fire resistant (it will not perish from walking through fire), employees are not (they
will die if carried through fire). To prevent the accidental death of people in transport, the agent is equipped with a
fire-fighting foam spray that can put out fires in front of it. It starts with ten foam charges and can replenish them at the
exit should they run out. The agent also has heat sensors that can detect fires when in an adjacent cell and a auditory
sensor to detect the screams of the victims (up to 3 cells away). Finally, the agent has a visual sensor that can only see
one cell in front of it due to the smoke. This sensor can distinguish between fire, people (employees/victims), walls,
corridor (nothing), and the exit.

T

he Rescue Agent is capable of performing the following primitive acts to aid in its goals. Those noted as a

“(move)” count against the total of 1000 moves before the building collapses.

senseFor(s): If s is heat, the agent detects if it can feel any heat from the fire.
Performsbelieve(Feel(heat)) or believe("Feel(heat)) if a fire is/is not in an adjacent cell.

If s is scream , the agent detects the loudest victim’s scream, and the intensity of that scream. Performs
believe(ScreamLevel(n)) , wheren is a number between 0 and 4. With 0 indicating no scream detected
and 4 indicating the person is in the same cell as the agent. Eon < 4, a scream level of, indicates that a
person ist — n cells away. Ifs is foamLevel , the agent senses how many foam charges it has left. Performs
believe(FoamLevel(n)) wheren is a number between 0 and 10.

getTimeLeft() . The agent calculates how much time before the building collapses. Performs
believe(TimeLeft(n)) , wheren is a number between 0 and 1000.

pickUp() (move): The agent lifts a victim who is in the same cell as it is. Only one person can be carried at a
time.

putDown() (move): If the agent is carrying a person, it puts the person down in the same cell as itis. If it is
the exit cell the person is rescued.

nothing() : The agent does nothing.

extinguishFire() (move): The agent shoots a foam spray into the cell it is facing. If there is a fire in this
cell, it is put out so long as a wall isn’t blocking the spray.

replenishFoam() (move): If the agent is in the exit cell, its foam cartridges are replenished.

goFoward() (move): The agent moves into the cell it is facing if a wall is not blocking its path. It auto-
matically believes what it sees in front of it, performihglieve(Aheadls(e)) , wheree is eitherfire
person , exit ,wall , orcorridor

turn(d) (move): The agent turns 90 degrees in the directiofeitherleft orright). It automatically
believes what it sees in front of it, performibglieve(AheadIs(e)) , wheree is eitherfire , person ,
exit ,wall , orcorridor

exit() : The agent leaves the building if it is in the exit cell. All victims left inside are considered lost to the
fire.

say(s): The agent says (prints) the sentesg¢eavhich is a string enclosed in quotes.

When the agent either exits or dies (when the building collapses), it receives a score, which is printed. The total
score is the sum of the following.

Note

+1000x the number of people rescued;

-1000 x the number of victims left behind or perished in the fire;
+20 x the number of fires put out;

- the number of moves the agent has made;

-500 if the agent is destroyed (time runs out).

- While your goal is to construct an agent that succeeds in its task, you should try to maximize its score.

2 Defining and Operating Your Agent

You are to create a file @NePSLOGnputs to include and supplement the rescue agent already defined. The first line
in your file (after identifying comments) must be

load /projects/robot/Karel/RescueAgent/RescueAgent.snepslog

In the rest of your file, you are to provide any additional frames you need, along with additional domain rules, initial
beliefs, etc.
You can operate your agent by following these steps:

1. cd into the directoryprojects/robot/Karel/RescueAgent/
2. Run Common Lisp.
3. Load SNePs by entering the Lisp command
:Id /projects/snwiz/bin/sneps
4. Evaluate the Common Lisp for(enepslog)

5. Load your Rescue Agent by enterimdemo path , wherepath is the complete path to your agent-defining
file.

6. When the Rescue World GUI appears on your screen, click on the Control button labeled “Start”. You may
adjust the “Speed” slider as you wish. You probably won't need to adjust the “Zoom” slider.

7. In the SNePSLOG window, entgerform act , whereact is any act that was supplied with the rescue
agent, or that you have defined.

8. Select “Exit” from the “File” menu of the GUI.

9. Either exit from the Common Lisp program, or rerun your Rescue Agent, or a modified version of your Rescue
Agent, by following these instructions from step 4 or 5.

You are to define your own rescue agenty by providing additional SNePSLOG code. Provide Lisp definitions
of new primitive acts only with the prior permission of Prof. Shapiro.

3 Deliverables

You are to hand in a paper, produced using a document formatting program séépxaot Microsoft Word, and
printed on 8.5 by 11 inch paper, stapled in the upper left-hand corner. The paper must explain your solution to the
Rescue Agent problem, similar to the style in (Shapiro and Kandefer, 2005), although you needn’t explain the problem,
nor need you explain SNePS, SNePSLOG, nor SNeRE. The paper is due at the beginning of class on the date given at
the beginning of this document.

In addition to the paper, you are wubmit your program usingsubmit\ cse663 . Name your file
RescueAgent.snepslog . The program is due by one-half hour before the start of class on the date given at
the beginning of this document.

4 Grading

The project will be given a letter grade. The following table is a guide to the relative importance of various aspects

of the project and paper. Remember, just as (Shapiro and Kandefer, 2005) can be read and appreciated by someone
without access to the Wumpus World agent program, your performance on this project will be assessed by reading
your paper without reference to your program.

Apx Weight

Implementation

Not crashing into walls 4
Finding employees to be rescued 12
Bringing a rescued employee to the exit 12
Exiting when all victims have been rescued 6
Not carrying victims through fire 12
Replenishing foam charges 4
Implementation Subtotal 50
Paper

Paper format 5
General project description 9)
English description of KB 8
Syntax/Semantics of every symbol used 24
Correct use of quotation and citations 4
Acknowledgments and References 4
Paper Subtotal 50
Project Total 100

References

Russell, S. J. and Norvig, P. (199%Artificial Intelligence: A Modern ApproachPrentice Hall, Upper Saddle River,
NJ.

Russell, S. J. and Norvig, P. (2003rtificial Intelligence: A Modern ApproachPrentice Hall, Upper Saddle River,
NJ, second edition.

Russell, S. J. and Norvig, P. (201®rtificial Intelligence: A Modern ApproachPrentice Hall, Upper Saddle River,
NJ, third edition.

Shapiro, S. C. and Kandefer, M. (2005). A SNePS approach to the wumpus world agent or Cassie meets the wumpus.
In Morgenstern, L. and Pagnucco, M., editoidCAI-05 Workshop on Nonmonotonic Reasoning, Action, and
Change (NRAC’05): Working Notegages 96—103. IJCAII, Edinburgh, Scotland. Availablé&tg://mww.
cse.buffalo.edu/"shapiro/Papers/shakan05a.pdf .

