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Section 1 
PHASE II OUTLINE 

The technical objective of the Phase II effort is to develop an Extra-Vehicular Activity Helper 
Retriever (EV AHR) robot that uses active foveal vision and an autonomous behavioral control 
architecture. This Foveal EV AHR (FEV AHR) shall use Hierarchical Foveal Machine Vision 
(HFMV) to detect objects, track and pursue deictically and non-deictically referenced objects, 
and avoid obstacles in a dynamic, housed environment. FEY AHR shall utilize a Grounded 
Layered Architecture with Integrated Reasoning (GLAIR) to provide gaze control for the vision 
system, including control of all subsidiary functions (e.g., mobile robot platform kinematics). 
The Phase II work plan consists of the following tasks: 

1. Hardware Design & Integration, 

2. HFMV Software Development, 

3. GLAIR Software Development, and 

4. FEY AHR Integration & Evaluation. 
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Section 2 
WORK PERFORMED DURING PERFORMANCE PERIOD: 

MAY 1, 1995 -AUGUST 1, 1995 

2.1 Hardware Design and Integration 

This task consisted of defining the FEV AHR scenario, analyzing vision system resolution 
requirements for FEV AHR to successfully operate within the defined environment, and 
developing the FEV AHR Hardware Specification document. The Hardware Specification 
Document for the FEV AHR system was accepted by NASA Contracting Officers Technical 
Representative Ken Baker. Internal Part Numbers, Finalized Drawings, Purchase Requests, and 
Purchase Orders were generated and all FEV AHR components were ordered. Off-the-shelf 
components, such as C40 motherboards (TDM412) and C40 processor boards, were received, 
while specialized components, such as the Nomad200, are expected within six weeks. The 
Zebra Vision Head from TRC has the longest period before the anticipated delivery date in 
October, 1995. 

The delay in completing the Hardware Specification and the delay incurred in the purchasing 
process has had an adverse impact upon the schedule (Refer to Section 2.5.1 ). Amherst Systems 
has taken the following steps to minimize the impact of the hardware procurement delay: 

• Amherst Systems has procured an advance copy of the Robot Simulation 
software, which is being used to develop GLAIR, from Nomadic Technologies. 
The control software developed with the simulator can be directly ported to the 
Robot Hardware. 

• Amherst Systems has obtained from Transtech Parallel Systems "loaner" 
hardware in order to facilitate the development of HFMV software. This 
hardware, used in conjunction with Amherst Systems' IR&D machine vision 
hardware, allows the development of essential HFMV algorithms. 

• Amherst Systems will reallocate engineering staff (i.e., the engineer originally 
allocated to develop the Zebra control software), so that the financial impact to 
the contract will be minimized. 

In addition, Amherst Systems is attempting to obtain an advance copy of the Zebra Head 
documentation from TRC. This will facilitate the design and implementation of gaze control 
algorithms. 

2.2 HFMV. Development 

HFMV development consisted of the implementation and evaluation of FEV AHR image 
processing algorithms and system support functions. The image processing algorithms include 
parallel implementations of segmentation, edge detection, line fitting, and corner detection. 
These algorithms were developed using Amherst Systems' IR&D machine vision system (i.e., 
Pulnix TM1001 progressive scan camera with a 6.5mm lens, a Transtech TDM435 frame grabber 
with C40 for image rexelization, and a 40MHz TDM41 l single C40 board, 3L Parallel C). The 
IR&D hardware was augmented with two TDM411 boards provided by Transtech. These 

2 



Foveal Machine Vision For Robots Using Agent Based Gaze Control 

algorithms will be extended to accommodate FEV AHR RGB image data in the next performance 
period. System support functions consist of a communication manager for the C40 network (i.e., 
polygon communication manager) and a communication manager for the control computers; data 
definition and data flow diagrams for the control computer system are provided in Appendix B. 
The control computer communication kernel, which will facilitate inter- and intra- computer 
communication, is currently being implemented. 

Camera 

CD Image 
Capture 

40MHzC40 
4 Mbytes EDRAM 
3 Mbytes VRAM 

50 MHz TMS320C40 

8 Mbytes EDRAM 

CJ SVGA 
Controller 

TDM43 TDM411 
Monitor 

IBM-PC Host 

Figure 2.2-1: The Physical Architecture Of The System For Canny's Edge Detection 

The polygon communication manager and configuration tools have been tested extensively for 
simple message communication for various network configurations. To test performance a 
parallel implementation of Canny's edge detector was evaluated. A four level foveal polygon 
was used; the size of each layer is 128 x 128 rexels. Two TMS320C40 processors were used in 
the simulation: one to accommodate the master and the grabber tasks and the other one to 
accommodate the logical computation nodes. There were two available links between the two 
processors. The physical architecture of the system is shown in Figure 2.2-1. The logical 
architecture of the system for the simulation is shown in Figure 2.2-2. The performance of the 
image processing engine with I, 4, 8, and 16 logical processors under the support of the 
development environment was simulated. No hidden communication layer is needed for the 
single processor implementation. The hidden communication layer is necessary to route the 
information to the desired destination for multiple processor implementation. The exact route of 
each piece of the messages going through depends on the dynamic load of the communication 
channels. 

ra r SVGA ··i 
~ Displa Master ---~ 

····---------------·-·: 

Gra 

(a) single processor (b) four processors (c) eight processors (d) sixteen processors 

Figure 2.2-2: The Logical Architecture Of The System For Canny's Edge Detection 

The execution time for Canny' s edge detection under different conditions is listed in Table 2.2-1. 
Note that the time to distribute the subimages into the computing nodes and the overlap between 
the subimages to maintain edge continuity are taken into account. 
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Table 2.2-1: The execution time of Canny's edge detector under different conditions 
logical processors 1 4 8 16 
execution time in ms ( o = 0.5) 850 990 1036 1120 
processor utilization rate 100% 86% 82% 76% 

execution time in ms ( o = 1.0) 1018 1120 1180 1250 
processor utilization rate 100% 91% 86% 81% 

Suppose the utilization rate is 100% for a single processor implementation. The processor 
utilization rates for different implementations under the support of our development environment 
are also listed in Table 2.2-1. Obviously, the ratio of communication to computation of a 
specific task is also one of the important issues in the overall system performance. Considering 
that communication between - tasks inside memory is generally slower than communication 
through physical links even when zero wait state SRAM is used, implementing each logical node 
on a physical processor in the above simulations will lead to at least a linear speed up (better than 
linear speed up in real applications) compared to the simulation. In fact, a single channel 
communication between two tasks on a 40 MHz TMS320C40 with EDRAM (15ns access cycle) 
is approximately 30% slower than communication between two tasks over a physical 
communication link. And the figure is approximately 10% for a 50 MHz C40 with the same 
memory configuration. This means that, for a typical a value of 0.5, 16 TMS320C40/44s 
connected in a 2D mesh can achieve a frame rate of 15MHz for edge detection using Canny's 
edge detection scheme for the four layer foveal polygon (each layer is a 128 pixel square image). 

2.3 GLAIR Development 

A copy of the U.B. Status Report, which details the development of GLAIR, is provided in 
Appendix A 

2.4 FEV AHR Integration & Evaluation 

No work has been performed under this task. 

2.5 Management 

Work on the FEV AHR program has been progressing as expected, with the exception of 
unanticipated delays with the specification/procurement of hardware. HFMV algorithm 
development is on schedule. GLAIR development is on schedule, and should not be 
significantly impacted by hardware delays; the Nomad 200 is expected in September 1995. The 
delay in the delivery of the Zebra head (October 1995) will have the most significant impact 
upon the proposed schedule (Refer to Section 2.5.1). As previously mentioned, Amherst 
Systems has taken several steps to minimize the impact of this delay. 
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2.5.1 
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2.5.3 Financial Status 

Amherst Systems' costs without fee totaled $62,377 during the performance period of May 1, 
1995 to August 1, 1995. Of that, $20,400 was disbursed to subcontractor SUNY at Buffalo. 
Delays in hardware procurement during the reported period are reflected in the lower than 
estimated costs; the original projection for the quarter was $83,791. 
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APPENDIX A: GLAIR STATUS REPORT 

Progress Report of Work Performed from February to May, 
1995 
for 

Amherst Systems Inc. 
Subcontract No. 150-7176A 

Design of GLAIR for the Foveal Robot 

Stuart C. Shapiro and Henry Hexamoor 
Department of Computer Science 
and Center for Cognitive Science 

State University of New York at Buffalo 
226 Bell Hall 

Buffalo, New York 14260 

August 1, 1995 

1. Overview 

We received the Nomad200 simulation software for the FEVAHR robot. We have begun the 
following activities: (a) we are implementing the FEV AHR room using the simulation, 
including simulation of the vision system, and (b) we have developed the perceptuo-motor level 
component of FEVAHR to work with the Nomad200 simulation. The implemented PMA uses 
sonar data. The PMA does not yet use vision data and it is not yet coupled with the Knowledge 
Level (KL) component of FEV AHR. 

We continued implementation of the KL component of FEVAHR with a SNePS network. We 
used the graphics tool Garnet to simulate the FEV AHR room. The KL component is made to 
work with the simulated room. In the remainder of this report we present the details of the KL 
component. 

2. Knowledge Level Progress 

We have partially implemented FEV AHR's Knowledge Level. This has involved partial 
implementation of: 
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- a grammar for understanding natural language input and for natural language 
generation, 

- plans and primitive actions; 
- alignment of KL representations of primitive actions and other entities with PML 
representations, and 

- a simulated robot and environment. 

2.1 The Garnet Simulation 
Since this effort predated the arrival of the Nomad simulation software, we used the Garnet I 
graphical user interface package to create the simulated robot and environment. 

According to the specifications, FEY AHR will be in a 17' x 17' room, containing 

at least 1 named individual, e.g., "John," 
at least 1 individual unique by description, 
at least 1 indistinguishable class, 

all of which will have a minimum dimension of 1 '. 

Figure 1 shows the objects in the simulated room. In the upper left is FEY AHR, represented by 
a cyan circle. In the lower-right is a blue square with a "name tag" representing John. In the 
upper right is a green circle representing "the green robot." In the lower left are three red circles 
representing "red robots." 

The room itself is simulated by a graphics window whose size is a scaled 17' x 17'. In the same 
scale, John is 1 l /2' on a side, and each of the 5 robots is 1' in diameter. 

John and the green and red robots can be moved by a user dragging them with the mouse, 
simulating their movement themselves, or their being moved by an agent external to FEY AHR. 
FEY AHR, however, moves only under program control. 

All objects are implemented as Garnet CLOS objects. Their locations within the simulated room 
are maintained by Garnet as values of certain slots. 

I Brad A. Myers & Andrew Mickish. "Overview of the Garnet System," Carnegie Mellon University, Oct., 1993. 
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• 
•• 

Figure 1: The Gamet simulated environment. 

2.2 Alignment of Entities 
At the KL, an entity is represented by a SNePS node representing the entity as FEV AHR thinks 
of it. At the PML and SAL, however, FEVAHR can only have a sensory impression of the entity. 
Therefore, SNePS nodes are aligned with descriptions, where a description is implemented as a 
list of the color of the entity and its shape. This description of John is ( # k<OPAL: BLUE- FILL> 
FEVAHR-WORLD: SQUARE). The green robot and the red robots don't have descriptions 
themselves. Instead the SNePS node representing the category of robots is aligned with the 
description (NIL FEVAHR-WORLD: CIRCLE), the node representing the color green is aligned 
with the description ( #k<OPAL: GREEN-FILL> NIL), and the node representing the color 
red is aligned with the description ( #k<OPAL: RED-FILL> NIL). 

The alignments, themselves, are implemented by a global assoc. list, *alignments* which is of 
the form (- · · ( node . description) · · ·). 
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2.3 Natural Language Commands 
According to the FEY AHR specifications, the minimal command language is 
<command> : := Stop I <action> <np> 
<actiorc- i:« Go to I Follow 
<np> ::= <npr> 
I (that I a) [<adj>] <n> 

In fact, the currently implemented grammar includes 
<command> : := Stop I <action> <np> 
<action> : := Find I Go to I Follow 
<np> ::= <npr> 
I (that I this I the I a) <cat> 
<cat> ::= [<adj>] <n> 

The relevant lexicon is 
<adj>::= green I red 
<np> ::= robot 
<npr> : := John 

giving I+ 3 x (1+ 4 x 3 x 1) = 40 different commands: 

1. Stop. 15. Go to John. 29. Follow a robot. 

2. Find John. 16. Go to a robot. 30. Fallow the robot. 

3. Find a robot. 17. Go to the robot. 31. Fallow that robot. 

4. Find the robot. 18. Go to that robot. 32. Follow this robot. 

5. Find that robot. 19. Go to this robot. 33. Follow a green robot. 

6. Find this robot. 20. Go to a green robot. 34. Follow the green robot. 

7. Find a green robot. 21. Go to the green robot. 35. Follow that green robot. 

8. Find the green robot. 22. Go to that green robot. 36. Follow this green robot. 

9. Find that green robot. 23. Go to this green robot. 37. Follow a red robot. 

10. Find this green robot. 24. Go to a red robot. 38. Follow the red robot. 

11. Find a red robot. 25. Go to the red robot. 39. Fallow that red robot. 

12. Find the red robot. 26. Go to that red robot. 40. Fallow this red robot. 

13. Find that red robot. 27. Go to this red robot. 

14. Find this red robot. 28. Follow John. 

The 18 commands using "this" or "that" must be combined with a deictic gesture pointing to an 
object. In this simulation, we use clicking with the middle mouse button on an object in the 
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simulated environment. The six commands marked with a "*" are semantic anomalies, referring 
to "the np" when there is more than one. In fact, if a user uses one of these commands, 
FEV AHR responds "wh i ch one do you mean?," and the user may then enter one of the 
deictic nps and point to the intended object. 

Focusing on an object is simulated by storing the Garnet representation of the object in the global 
variable *STM*, simulating iconic short term memory. The effects of the Find commands are to 
place an appropriate object in *STM*. The Go to commands combine a Find with moving the 
simulated FEVAHR near the simulated object in the simulated environment. After a Follow 
command, the simulated FEV AHR goes to the appropriate object, and then stays near it if the 
user uses the mouse to move the simulated object. The Stop command cancels the Follow 
command, if necessary, and replaces whatever is in *STM* with NIL. 

2.4 Primitive Actions 
The primitive actions arefind,finddeictic, gotofocussed, staywithfocussed, and stop. SNeRE, the 
SNePS rational engine, maintains the association between SNePS nodes representing primitive 
actions and actual Lisp functions that effect them. These Lisp functions represent the actions at 
the PM Level. The effects of the primitive actions are as follow: 

(find object-node) Finds the description associated with the SNePS object-node, then finds the 
Garnet object satisfying that description, and stores that object into *STM*. 

(finddeictic category-node) Retrieves the Garnet object that the user points to or has just pointed 
to with the middle mouse button, and stores it into *STM*. The actual category-node is ignored 
at this time, so if, for example, the user says "that red robot" and points to John or to the green 
robot, the object pointed to will be accepted with no complaint. This may be corrected at a later 
time. 

(gotofocussed) Uses Garnet routines to move the simulated FEV AHR to a point near the Gamet 
object that is stored in *STM*. 

(staywithfocussed) Uses Gamet routines to move the simulated FEV AHR to a point near the 
Garnet object that is stored in *STM*, and then uses the Garnet constraint mechanism to assure 
that the simulated FEV AHR stays near that other object even if the user moves it with the mouse. 

(stop) Cancels the constraint on the location of the simulated FEVAHR, if necessary, and 
replaces the value of *STM* with NIL. 

Both gotofocussed and staywithf ocussed use the function (near figure ground), which returns a 
point that is "near" the ground object, based on the sizes of both objects, and is between the 
ground object and the center of the room. For example, Figure 2 shows FEV AHR near John 
when they are in the lower right quarter of the room. shows FEV AHR near John when they are in 
the lower right quarter of the room. 
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• • 

• 
Figure 2: FEY AHR near John when they are in the lower right quarter of the room. 

2.5 Complex Acts 
The natural language commands Find and Stop are implemented by the primitive actions find 
and stop, respectively. 

The natural language command Go to np is implemented by the complex act (go obj), where obj 
is the node representing the entity denoted by np. The complex act (go obj) is performed by first 
doing (find obJ1, and then doing (gotofocussed). 

The natural language command Follow np is implemented by the complex act (follow obj), 
where obj is the node representing the entity denoted by np. The complex act (follow obj) is 
performed by first doing (go obj), and then doing (staywithfocussed). 

If an np is this or that followed by some cat, the parser calls (finddeictic category-node), where 
category-node is the node that represents the category denoted by cat. The parser then returns 
(recognize *STM*) as the node that represents the denotion of the entire np. 
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The function (recognize object) simulates vision by returning the SNePS node that represents the 
entity simulated by the Garnet object object. If that is the object simulating John or the green 
robot, the same node is returned that would have been if the np had been John or the green robot 
in the first place. However, if the Gamet object is one of those simulating a red robot, a new node 
is created and returned, and a belief is entered into the KL that the entity represented by this node 
is a red robot. This is the same action that would have been performed by the parser if the 
original np had been a red robot. 
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APPENDIX B: FEV AHR TOP LEVEL DESIGN (Preliminary) 

Appendix B-1: Control Computer Data Definition 

Constant Definitions: 

NUM_SONAR = 16 

Enumerated Type Definitions: 

typedef enum { 
HFMVRecognition, 
PML Tracking, 
} ProcessAddrType; 

typedef enum { 
ScanConicalFOR, 
ScanFOR, 
Saccade 
} ScanType; 

typedef enum { 
BITCommMsg, 
VisionUpdateMsg, 
VisionUpdateRequestMsg, 
VisionSystemShutdownMsg, 
VisionSystemResetMsg, 
Images tabili ty UpdateMs g, 
IrnageStabilityRequestMsg, 
SonarUpdateMsg, 
SonarRequestMsg, 
HeadTruthUpdateMsg, 
HeadTruthRequestMsg, 
HeadinitMsg, 
BodyTruthUpdateMsg, 
BodyTruthRequestMsg, 
StopBodyMsg, 
Body MotorSpeedMsg, 
TurretPositionComrnandMsg, 
DriveBodyTo TargetMsg, 
FindObjectMsg, 
ScanFORMsg, 
Prime VisionSystemMsg, 
HeadPositionCornmandMsg, 
Detectionkeportlvlsg, 
AdjustBodySpeedGainMsg, 
AdjustObstacleA versionGainMsg, 
AdjustHeadToTargetGainMsg, 
Co/lisionRisk UpdateM sg, 
TargetTrackAmbiguityUpdateMsg, 
PointerTrackAmbiguityUpdateMsg, 
} MessageType; 
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Message Definition 

FEY AHR Grammer - ASCII text string containing the restricted robot control command set: 
"follow," "stop," "that," "this," "red," "green," "blue," "ball," and "box" 

Behaviors 
To be defined by U.B. 

BodyMotionCommands 
StopBodyMsg 
MotorSpeedMsg 
TurretPositionCommand 

BodyCommands 
BodyTruthRequestMsg 
SonarRequestMsg 
DriveBodyToTargetMsg 
StopBodyMsg 

Body Sensations 
BodyTruth UpdateMsg 
SonarUpdateMsg 

HeadPositionCommands 
PositionHeadMsg 
HeadMovementMsg 

HeadCommands 
HeadTruthRequestMsg 
HeadPositionCommand 

HeadSensations 
HeadTruth UpdateMsg 

VisionCommands 
FindObjectMsg 
VisionUpdateRequestMsg 
ImageS tability RequestMsg 

HFMVCommands 
Prime VisionSystemMsg 
ScanFORMsg 
ScanConicalFORMsg 
SaccadeMsg 

VisionSensations 
VisionUpdateMsg 
ImageStabilityUpdateMsg 
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Message Structure Definitions: 

typedef struct { 
Int32 
ProcessAddrType 
ProcessAddrType 
Message Type 
Int32 

} HeaderType; 

time; 
sourceAddr; 
sestinationAddr; 
msgType; 
msgSize; 

typedef struct { 
HeaderType header; 
Int32 timeOfR.equest; 
Int32 shape; 
Int32 color; 
Int32 size; 
Int32 velocity; 
Int32 confidence; 

} Vision UpdateMessageType; 

typedef struct { 
HeaderType header; 

} Vision UpdateRequestMessageType; 

typedef struct { 
HeaderType header; 
Int32 imageStability; 

} ImageStability UpdateMessage Type; 

typedef struct { 
HeaderType header; 

} ImageStability RequestMessageType; 

typedef struct { 
HeaderType header; 
Int32 sonarDetections[NUM_SONAR] 

}SonarUpdateMessageType; 

typedef struct { 
HeaderType header; 

} SonarRequestMessageType; 

typedef struct { 
HeaderType header; 
Int32 panAngle; 
Int32 tiltAngle; 
Int32 vergeAngle; 

} HeadTruthUpdateMessageType; 

typedef struct { 
HeaderType header; 

} HeadTruthRequestMessageType; 
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Appendix 8-1: Control Computer Data Definition 

typedef struct { 
HeaderType header; 
PointType body Position; 
Int32 integratedSteeringAngle; 
Int32 integratedTurretAngle; 
Int32 translationa!Velocity; 
Int32 steering Velocity; 
Int32 turretVelocity; 
Int32 mototStatusByte; 

} BodyTruthUpdateMessageType; 

typedef struct { 
HeaderType header; 

}BodyTruthRequestMessageType; 

typedef struct { 
HeaderType header; 

} StopBodyMessage Type; 

typedef struct { 
HeaderType header; 
Int32 speed; 

} BodyMotorSpeedMessageType; 

typedef struct { 
HeaderType header; 
Int32 offsetAngle; 

} TurretPositionCommandMessageType; 

typedef struct { 
HeaderType header; 

} DriveBodyToTargetMessageType; 

typedef struct { 
HeaderType header; 
Int32 color; 
Int32 shape; 
Int32 timeOfRequest 

} Prime VisionSystemMessageType; 

typedef struct { 
HeaderType header; 
Int32 pan; 
Int32 tilt; 
Int32 verge; 

} HeadPositionCommandMessageType; 

typedef struct { 
HeaderType 
Prime VisiorrSysremlvlessage'I'ype 
HeadPositionCommandMessageType 
ScanType 

} ScanMessageType; 

typedef struct { 
HeaderType header; 

} FindObjectMessageType; 
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Appendix 8-1: Control Computer Data Definition 

typedef struct { 
Header Type header; 
Int32 basePan; 
Int32 base Tilt; 

} ScanConica!FO Rfvlessage Type; 

typedef struct { 
HeaderType 
Int32 
Int32 
Int32 
Int32 

} ScanFORMessageType; 

typedef struct { 
Header Type 
Int32 
Int32 
Int32 

header; 
basePan; 
baseTilt; 
panRange; 
tileRange; 

header; 
timeOfRequest; 
shape; 
color; 

Int32 size; 
VelVectorType velocity; 
PointType position 
Int32 confidence; 

} DetectionReportMessageType; 

typedef struct { 
HeaderType header; 
Int32 timeOfRequest; 

} TrackDataMessageType; 
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PsuedoCode for HFMV Process 
while (runningFlag) 

msgPtr = GetMsg(); 
switch( msgPtr->MsgType) 
VisionResetMsg: 

Init(); 
SendMsg(HeadResetMsgPtr); 

VisionShutDownMsg: 
runningFlag = false; 
SendMsg(HeadResetMsgPtr); 

VisionUpdateRequestMsg: 
VisionMsgPtr = TargetTracking(MsgPtr); 
SendMsg(VisionMsgPtr); 

FindObjectMsg: 
currentTimeOtRequest = systemClock; 
SendPrimeMsg(msgPtr, currentTimeOfRequest); 
if (msgPtr->scanType == scanConicalFOR); 
{ 

SendPrimeMsg(pointerDescPtr, currentTimeOfRequest); 
scanDataPtr = Calculate Vector(currentTimeOfRequest); 
SendPrimeMsg(msgPtr, currentTimeOfRequest); 
SendPositionHeadMsg(scanDataPtr); 
SendHeadMotionMsg(scanDataPtr); 

} 
else if (msgPtr->scanType = scanFOR) 
{ 

SendPrimeMsg(msgPtr, currentTimeOfRequest); 
SendPositionHeadMs g( ms gPtr); 
SendHeadMotionMsg(msgPtr); 

} 
else/* simple saccade */ 
{ 

SendPrimeMsg(msgPtr, currentTimeOfRequest); 
SendPositionHeadMsg(msgPtr); 

} 
Dec ti o nReportMs g: 

if (rnsgPtr->shape == pointer) 
{ 

UpdateTrack(msgPtr) 

else 
{ 

if (msgPtr->timeOfRequest = currentTimeOfRequest) 
{ 

UpdateTrack(msgPtr); 

else 
{ 

' } 
RemoveTrack(msgPtr->timeOfRequest); 

} 
ComrnBITMsg: 

endSwitch 
UpdateTrackPosition() 

endWhile 
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Communication Kernel Psuedo Code 
<Cornminucation Process Monitor> 
create and initialize sockets 
fork 1 process to wait for data on each socket 
while(!) 
{ 

call 'wait' system call 
when it returns, a child has died ... 
if(socket invalid) 
{ 

recreate and initialize the socket 
} 
restart the child process to monitor that socket 

<Socket Monitor> 
while(!) 
{ 

wait for incoming data (via blocking 'accept' system call); 
when it arrives: 
fork off another child which will ... 

look up destination socket in lookup table based on message type 
send message out through that socket 

... while it's parent watches for the next chunk of data 

<Process Hierarchy> 
communication 
process 
monitor 

I \ 
I \ 

socket 
monitor 
I I 
I I 

socket 
monitor 

I \ 
I \ 

message message message message 
handler handler handler handler 

- Communication process monitor oversees socket monitor processes 
- Socket monitor processes wait for data to come into socket and spawn message 

handlers 
- Message handlers examine message and distribute it appropriately 
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