
/C f;t£ C.cnL;...._
,.· ,.

·,_

A AMHERST SYSTEMS INC.

FOVEAL MACHINE VISION FOR ROBOTS USING
AGENT BASED GAZE CONTROL

QUARTERLY STATUS REPORT

Contract No. NAS 9-19335

August 10, 1995

Document Control No.: 618-9160001

Report No. 2

Prepared for:

NASA Lyndon 8. Johnson Space Center
Houston, TX 77058

Prepared by:

Amherst Systems inc.
Buffalo, NY 14221-7082

(716) 631-0610

Government Purpose License Rights
(SBIR Program)

Contract No.: NAS 9-19335
Contractor: Amherst Systems Inc.

SBIR RIGHTS NOTICE (JUNE 1987), NASA DEVIATION

These SBIR data are furnished with SBIR rights under Contract No. NAS 9-19335 and subcontract
E3439. For a period of not less than 4 years after acceptance of all items to be delivered under this
contract, the Government agrees to use these data for Government purposes only, and they shall not
be disclosed outside the Government (including disclosure for procurement purposes) during such
period without permission of the Contractor, except that, subject to the foregoing use and disclosure
prohibitions, such data may be disclosed for use by support Contractors. After the aforesaid period
the Government has a royalty-free license to use, and to authorize others to use on its behalf, these
data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for
unauthorized use of these data by third parties. This notice shall be affixed to any reproductions of
these data, in whole or in part.

3439

A AMHERST SYSTEMS INC.

FOVEAL MACHINE VISION FOR ROBOTS USING
AGENT BASED GAZE CONTROL

QUARTERLY STATUS REPORT

August 10, 1995

CDRL Item:

Prepared for:

Contract No.: NAS 9-19335

AMHERST SYSTEMS INC. • 30 Wilson Road• Buffalo, New York 14221-7026

A AMHERST SYSTEMS INC.

The Contractor, Amherst Systems Inc., hereby certifies that, to the best of its knowledge
and belief, the technical data delivered herewith under Contract No. NAS 9-19335 is complete,
accurate, and complies with all requirements of the contract.

7Dr. Cesar Bandera, Program Manager

Section 1
PHASE II OUTLINE

The technical objective of the Phase II effort is to develop an Extra-Vehicular Activity Helper
Retriever (EV AHR) robot that uses active foveal vision and an autonomous behavioral control
architecture. This Foveal EV AHR (FEV AHR) shall use Hierarchical Foveal Machine Vision
(HFMV) to detect objects, track and pursue deictically and non-deictically referenced objects,
and avoid obstacles in a dynamic, housed environment. FEY AHR shall utilize a Grounded
Layered Architecture with Integrated Reasoning (GLAIR) to provide gaze control for the vision
system, including control of all subsidiary functions (e.g., mobile robot platform kinematics).
The Phase II work plan consists of the following tasks:

1. Hardware Design & Integration,

2. HFMV Software Development,

3. GLAIR Software Development, and

4. FEY AHR Integration & Evaluation.

1

Section 2
WORK PERFORMED DURING PERFORMANCE PERIOD:

MAY 1, 1995 -AUGUST 1, 1995

2.1 Hardware Design and Integration

This task consisted of defining the FEV AHR scenario, analyzing vision system resolution
requirements for FEV AHR to successfully operate within the defined environment, and
developing the FEV AHR Hardware Specification document. The Hardware Specification
Document for the FEV AHR system was accepted by NASA Contracting Officers Technical
Representative Ken Baker. Internal Part Numbers, Finalized Drawings, Purchase Requests, and
Purchase Orders were generated and all FEV AHR components were ordered. Off-the-shelf
components, such as C40 motherboards (TDM412) and C40 processor boards, were received,
while specialized components, such as the Nomad200, are expected within six weeks. The
Zebra Vision Head from TRC has the longest period before the anticipated delivery date in
October, 1995.

The delay in completing the Hardware Specification and the delay incurred in the purchasing
process has had an adverse impact upon the schedule (Refer to Section 2.5.1). Amherst Systems
has taken the following steps to minimize the impact of the hardware procurement delay:

• Amherst Systems has procured an advance copy of the Robot Simulation
software, which is being used to develop GLAIR, from Nomadic Technologies.
The control software developed with the simulator can be directly ported to the
Robot Hardware.

• Amherst Systems has obtained from Transtech Parallel Systems "loaner"
hardware in order to facilitate the development of HFMV software. This
hardware, used in conjunction with Amherst Systems' IR&D machine vision
hardware, allows the development of essential HFMV algorithms.

• Amherst Systems will reallocate engineering staff (i.e., the engineer originally
allocated to develop the Zebra control software), so that the financial impact to
the contract will be minimized.

In addition, Amherst Systems is attempting to obtain an advance copy of the Zebra Head
documentation from TRC. This will facilitate the design and implementation of gaze control
algorithms.

2.2 HFMV. Development

HFMV development consisted of the implementation and evaluation of FEV AHR image
processing algorithms and system support functions. The image processing algorithms include
parallel implementations of segmentation, edge detection, line fitting, and corner detection.
These algorithms were developed using Amherst Systems' IR&D machine vision system (i.e.,
Pulnix TM1001 progressive scan camera with a 6.5mm lens, a Transtech TDM435 frame grabber
with C40 for image rexelization, and a 40MHz TDM41 l single C40 board, 3L Parallel C). The
IR&D hardware was augmented with two TDM411 boards provided by Transtech. These

2

Foveal Machine Vision For Robots Using Agent Based Gaze Control

algorithms will be extended to accommodate FEV AHR RGB image data in the next performance
period. System support functions consist of a communication manager for the C40 network (i.e.,
polygon communication manager) and a communication manager for the control computers; data
definition and data flow diagrams for the control computer system are provided in Appendix B.
The control computer communication kernel, which will facilitate inter- and intra- computer
communication, is currently being implemented.

Camera

CD Image
Capture

40MHzC40
4 Mbytes EDRAM
3 Mbytes VRAM

50 MHz TMS320C40

8 Mbytes EDRAM

CJ SVGA
Controller

TDM43 TDM411
Monitor

IBM-PC Host

Figure 2.2-1: The Physical Architecture Of The System For Canny's Edge Detection

The polygon communication manager and configuration tools have been tested extensively for
simple message communication for various network configurations. To test performance a
parallel implementation of Canny's edge detector was evaluated. A four level foveal polygon
was used; the size of each layer is 128 x 128 rexels. Two TMS320C40 processors were used in
the simulation: one to accommodate the master and the grabber tasks and the other one to
accommodate the logical computation nodes. There were two available links between the two
processors. The physical architecture of the system is shown in Figure 2.2-1. The logical
architecture of the system for the simulation is shown in Figure 2.2-2. The performance of the
image processing engine with I, 4, 8, and 16 logical processors under the support of the
development environment was simulated. No hidden communication layer is needed for the
single processor implementation. The hidden communication layer is necessary to route the
information to the desired destination for multiple processor implementation. The exact route of
each piece of the messages going through depends on the dynamic load of the communication
channels.

ra r SVGA ··i
~ Displa Master ---~

····---------------·-·:

Gra

(a) single processor (b) four processors (c) eight processors (d) sixteen processors

Figure 2.2-2: The Logical Architecture Of The System For Canny's Edge Detection

The execution time for Canny' s edge detection under different conditions is listed in Table 2.2-1.
Note that the time to distribute the subimages into the computing nodes and the overlap between
the subimages to maintain edge continuity are taken into account.

3439 3

Foveal Machine Vision For Robots Using Agent Based Gaze Control

Table 2.2-1: The execution time of Canny's edge detector under different conditions
logical processors 1 4 8 16
execution time in ms (o = 0.5) 850 990 1036 1120
processor utilization rate 100% 86% 82% 76%

execution time in ms (o = 1.0) 1018 1120 1180 1250
processor utilization rate 100% 91% 86% 81%

Suppose the utilization rate is 100% for a single processor implementation. The processor
utilization rates for different implementations under the support of our development environment
are also listed in Table 2.2-1. Obviously, the ratio of communication to computation of a
specific task is also one of the important issues in the overall system performance. Considering
that communication between - tasks inside memory is generally slower than communication
through physical links even when zero wait state SRAM is used, implementing each logical node
on a physical processor in the above simulations will lead to at least a linear speed up (better than
linear speed up in real applications) compared to the simulation. In fact, a single channel
communication between two tasks on a 40 MHz TMS320C40 with EDRAM (15ns access cycle)
is approximately 30% slower than communication between two tasks over a physical
communication link. And the figure is approximately 10% for a 50 MHz C40 with the same
memory configuration. This means that, for a typical a value of 0.5, 16 TMS320C40/44s
connected in a 2D mesh can achieve a frame rate of 15MHz for edge detection using Canny's
edge detection scheme for the four layer foveal polygon (each layer is a 128 pixel square image).

2.3 GLAIR Development

A copy of the U.B. Status Report, which details the development of GLAIR, is provided in
Appendix A

2.4 FEV AHR Integration & Evaluation

No work has been performed under this task.

2.5 Management

Work on the FEV AHR program has been progressing as expected, with the exception of
unanticipated delays with the specification/procurement of hardware. HFMV algorithm
development is on schedule. GLAIR development is on schedule, and should not be
significantly impacted by hardware delays; the Nomad 200 is expected in September 1995. The
delay in the delivery of the Zebra head (October 1995) will have the most significant impact
upon the proposed schedule (Refer to Section 2.5.1). As previously mentioned, Amherst
Systems has taken several steps to minimize the impact of this delay.

3439 4

Foveal Machine Vision For Robots Using Agent Based Gaze Control

2.5.1

3439.

Milestone Chart

Activity Name
I 1995 i 1995 i
:JTFfM!A!M: JI J ! A! s 101 N: o I JTfTMrATMi _iT.JTi..Ts;oTNTo1J

Hardware System Design i l I I I i I ! i I i i ! i i i 1
\

1 I ! j i
-H-a~d-w_a_re_S_pec_i_ll_ea_tl_on----+1-H-~1 I i I M-: -i··-·\----;-rt ! ,-j -

Subsystem Integration 1 +-t-=1
==+1

1
-+-+-l---+--+-i,l~!r---f-11 -1-1- +--~-r++ ·1 ++-1- l I I i i I ! ' I

Vision -- 't I ~I I : ! I I ' i I I I I ,--------- I 1 __ LLL -t-r- J __ J_J __ t_~J-
t=~R~ooo~t~P\a~:ttorm~~~~~~~~====='twwLJL~A--.:.-$~~-"~a~~=l=-t-~'~-:JL=(_L_J_l .Ll. __ LL Fovea1Sensorard Polygon I • I f I f I j l [i ! I I i ~----t-r--c--- i I I I I 1 i I t I i 1 , 1 I !
Software Development [-~i ~I -j j J__l I !j_

I Al Ith Ad t ti I I ' I l I I. ' i--.-\ I T- Exlst ng gar m ap a on ; L I , , , I 1 . , L

1--s_e_gme_n_ta_uo_n __,t--t--+--t- ... -+-+I --t---t--t---tl--;---;1--;,--t--ul -l-LLL_ I ; l I :-
Edge Detection .. 1 [L_J_j I I _L •

1----------+-+-+-+-t-i-t-+-t-+-t-i'-t-, --t-,-: ,--t-11-1 --t-;-
1--Seg,-,--menta __ u_·o n.,,-(pa!l!--lle-l) -t-+-il--i--i--i--i-A-,-,=1==1,---i---r-t---i---t--l--L , +-+-

Object Delection /i I \ \ I !
I i I

High Level Vision Processing 1 ! t I r-
Object Recognitio'1 (Ollline) 6 I I
Ot,Ject Recognition (On Robot) 6 i !

~G~a~ze:_<:Co~n~t~ro'.'_I !__A".'.lgo~".'.rl~th~m~•- __ l~~i--j_j_~~FF*=*=~[j -+·t--+-1 -+-+ i' -+-+[--t--+\
1
,!• ---;

Simple Gaze Coolrol 6 i L+--1 -+--+-I -+---+--~-·•
~-T-ra-c1c-~---,,~~~-r-----++++-T-+-+~1~-t-t~rrrr+I~~\-, l' !
I--T-ra_ck_T_wo_Col_ors --+--+--+-+--+-+-+--t--l--t l~-t-f--f--t-+-+-·t--t--t--t--t--t--t---t- L-

Scan Conical FOR L;. ----i
Object Search I 6. 1 j I !
Target Traci<ing ! b, I [\ [

I I I
GLAIR Dev. (Stand-alone) i [I

Integrate PML and SAL J • ! 1 I
1------,-,---c:c---:-=--:--HH-t--t--++--t-ll-t-+-t--t--+--t-rH-r-t--t---t-Ht-i--

Oemonst rate Non-Y'1Sual Tasks ~ \ i
lnlegrate non-visua l components ol I I I I, \, I I
KL, PML, and SAL L;.
Deliver Robot Body I I L ' I i I

I I i I I
i GLAIR Dev. (Integrated)

Explore learning

Skill Ref inement

Task Development
Combine Head and Body

Approach Target (no obstacles) \
Approach Target (avoid obstacles) 6 I I
Follow Target (no obstacles)

Follow Target (8'<lid obstacles)

Perfonnance Refinement
I I .i
I I I

I System Evaluation/Quant

I I
Major MIiestones I I
I--K_lck_o_n _1.1ee_11ng +--+-+--tl--t--t-t-t- l--+--+--+--+--+--+--+--+----+---t---t--l -+-' I - _j__l ·

Hardwan, Design 0oc :.. 1
1--,-T_ech_nl--,,cal,-,,--St_a1_us_Repo __ ns +-++-+--t-~--t--t--r" l-,\-i'=~"-+--+--1~=-t--t-f6=+-t--Fk:."--t--,l-t1::,,=·- --t-Tl _1

Robot Delivery I I b
1---F,-na-, R-epo-rt ~-----t-+-t-+-rH-+-1--t---t-t-H--t--r-- I I -]6-

JIFIM AIMIJ J As OINIDIJ F MiAiMIJIJJAISIO NjOjJ

5

Foveal Machine Vision For Robots Using Agent Based Gaze Control

2.5.3 Financial Status

Amherst Systems' costs without fee totaled $62,377 during the performance period of May 1,
1995 to August 1, 1995. Of that, $20,400 was disbursed to subcontractor SUNY at Buffalo.
Delays in hardware procurement during the reported period are reflected in the lower than
estimated costs; the original projection for the quarter was $83,791.

3439 6

APPENDIX A: GLAIR STATUS REPORT

Progress Report of Work Performed from February to May,
1995
for

Amherst Systems Inc.
Subcontract No. 150-7176A

Design of GLAIR for the Foveal Robot

Stuart C. Shapiro and Henry Hexamoor
Department of Computer Science
and Center for Cognitive Science

State University of New York at Buffalo
226 Bell Hall

Buffalo, New York 14260

August 1, 1995

1. Overview

We received the Nomad200 simulation software for the FEVAHR robot. We have begun the
following activities: (a) we are implementing the FEV AHR room using the simulation,
including simulation of the vision system, and (b) we have developed the perceptuo-motor level
component of FEVAHR to work with the Nomad200 simulation. The implemented PMA uses
sonar data. The PMA does not yet use vision data and it is not yet coupled with the Knowledge
Level (KL) component of FEV AHR.

We continued implementation of the KL component of FEVAHR with a SNePS network. We
used the graphics tool Garnet to simulate the FEV AHR room. The KL component is made to
work with the simulated room. In the remainder of this report we present the details of the KL
component.

2. Knowledge Level Progress

We have partially implemented FEV AHR's Knowledge Level. This has involved partial
implementation of:

7

Appendix A: GLAIR Status Report

- a grammar for understanding natural language input and for natural language
generation,

- plans and primitive actions;
- alignment of KL representations of primitive actions and other entities with PML
representations, and

- a simulated robot and environment.

2.1 The Garnet Simulation
Since this effort predated the arrival of the Nomad simulation software, we used the Garnet I
graphical user interface package to create the simulated robot and environment.

According to the specifications, FEY AHR will be in a 17' x 17' room, containing

at least 1 named individual, e.g., "John,"
at least 1 individual unique by description,
at least 1 indistinguishable class,

all of which will have a minimum dimension of 1 '.

Figure 1 shows the objects in the simulated room. In the upper left is FEY AHR, represented by
a cyan circle. In the lower-right is a blue square with a "name tag" representing John. In the
upper right is a green circle representing "the green robot." In the lower left are three red circles
representing "red robots."

The room itself is simulated by a graphics window whose size is a scaled 17' x 17'. In the same
scale, John is 1 l /2' on a side, and each of the 5 robots is 1' in diameter.

John and the green and red robots can be moved by a user dragging them with the mouse,
simulating their movement themselves, or their being moved by an agent external to FEY AHR.
FEY AHR, however, moves only under program control.

All objects are implemented as Garnet CLOS objects. Their locations within the simulated room
are maintained by Garnet as values of certain slots.

I Brad A. Myers & Andrew Mickish. "Overview of the Garnet System," Carnegie Mellon University, Oct., 1993.

3439 8

Appendix A: GLAIR Status Report

•
••

Figure 1: The Gamet simulated environment.

2.2 Alignment of Entities
At the KL, an entity is represented by a SNePS node representing the entity as FEV AHR thinks
of it. At the PML and SAL, however, FEVAHR can only have a sensory impression of the entity.
Therefore, SNePS nodes are aligned with descriptions, where a description is implemented as a
list of the color of the entity and its shape. This description of John is (# k<OPAL: BLUE- FILL>
FEVAHR-WORLD: SQUARE). The green robot and the red robots don't have descriptions
themselves. Instead the SNePS node representing the category of robots is aligned with the
description (NIL FEVAHR-WORLD: CIRCLE), the node representing the color green is aligned
with the description (#k<OPAL: GREEN-FILL> NIL), and the node representing the color
red is aligned with the description (#k<OPAL: RED-FILL> NIL).

The alignments, themselves, are implemented by a global assoc. list, *alignments* which is of
the form (- · · (node . description) · · ·).

3439 9

Appendix A: GLAIR Status Report

2.3 Natural Language Commands
According to the FEY AHR specifications, the minimal command language is
<command> : := Stop I <action> <np>
<actiorc- i:« Go to I Follow
<np> ::= <npr>
I (that I a) [<adj>] <n>

In fact, the currently implemented grammar includes
<command> : := Stop I <action> <np>
<action> : := Find I Go to I Follow
<np> ::= <npr>
I (that I this I the I a) <cat>
<cat> ::= [<adj>] <n>

The relevant lexicon is
<adj>::= green I red
<np> ::= robot
<npr> : := John

giving I+ 3 x (1+ 4 x 3 x 1) = 40 different commands:

1. Stop. 15. Go to John. 29. Follow a robot.

2. Find John. 16. Go to a robot. 30. Fallow the robot.

3. Find a robot. 17. Go to the robot. 31. Fallow that robot.

4. Find the robot. 18. Go to that robot. 32. Follow this robot.

5. Find that robot. 19. Go to this robot. 33. Follow a green robot.

6. Find this robot. 20. Go to a green robot. 34. Follow the green robot.

7. Find a green robot. 21. Go to the green robot. 35. Follow that green robot.

8. Find the green robot. 22. Go to that green robot. 36. Follow this green robot.

9. Find that green robot. 23. Go to this green robot. 37. Follow a red robot.

10. Find this green robot. 24. Go to a red robot. 38. Follow the red robot.

11. Find a red robot. 25. Go to the red robot. 39. Fallow that red robot.

12. Find the red robot. 26. Go to that red robot. 40. Fallow this red robot.

13. Find that red robot. 27. Go to this red robot.

14. Find this red robot. 28. Follow John.

The 18 commands using "this" or "that" must be combined with a deictic gesture pointing to an
object. In this simulation, we use clicking with the middle mouse button on an object in the

3439 10

Appendix A: GLAIR Status Report

simulated environment. The six commands marked with a "*" are semantic anomalies, referring
to "the np" when there is more than one. In fact, if a user uses one of these commands,
FEV AHR responds "wh i ch one do you mean?," and the user may then enter one of the
deictic nps and point to the intended object.

Focusing on an object is simulated by storing the Garnet representation of the object in the global
variable *STM*, simulating iconic short term memory. The effects of the Find commands are to
place an appropriate object in *STM*. The Go to commands combine a Find with moving the
simulated FEVAHR near the simulated object in the simulated environment. After a Follow
command, the simulated FEV AHR goes to the appropriate object, and then stays near it if the
user uses the mouse to move the simulated object. The Stop command cancels the Follow
command, if necessary, and replaces whatever is in *STM* with NIL.

2.4 Primitive Actions
The primitive actions arefind,finddeictic, gotofocussed, staywithfocussed, and stop. SNeRE, the
SNePS rational engine, maintains the association between SNePS nodes representing primitive
actions and actual Lisp functions that effect them. These Lisp functions represent the actions at
the PM Level. The effects of the primitive actions are as follow:

(find object-node) Finds the description associated with the SNePS object-node, then finds the
Garnet object satisfying that description, and stores that object into *STM*.

(finddeictic category-node) Retrieves the Garnet object that the user points to or has just pointed
to with the middle mouse button, and stores it into *STM*. The actual category-node is ignored
at this time, so if, for example, the user says "that red robot" and points to John or to the green
robot, the object pointed to will be accepted with no complaint. This may be corrected at a later
time.

(gotofocussed) Uses Garnet routines to move the simulated FEV AHR to a point near the Gamet
object that is stored in *STM*.

(staywithfocussed) Uses Gamet routines to move the simulated FEV AHR to a point near the
Garnet object that is stored in *STM*, and then uses the Garnet constraint mechanism to assure
that the simulated FEV AHR stays near that other object even if the user moves it with the mouse.

(stop) Cancels the constraint on the location of the simulated FEVAHR, if necessary, and
replaces the value of *STM* with NIL.

Both gotofocussed and staywithf ocussed use the function (near figure ground), which returns a
point that is "near" the ground object, based on the sizes of both objects, and is between the
ground object and the center of the room. For example, Figure 2 shows FEV AHR near John
when they are in the lower right quarter of the room. shows FEV AHR near John when they are in
the lower right quarter of the room.

3439 11

Appendix A: GLAIR Status Report

• •

•
Figure 2: FEY AHR near John when they are in the lower right quarter of the room.

2.5 Complex Acts
The natural language commands Find and Stop are implemented by the primitive actions find
and stop, respectively.

The natural language command Go to np is implemented by the complex act (go obj), where obj
is the node representing the entity denoted by np. The complex act (go obj) is performed by first
doing (find obJ1, and then doing (gotofocussed).

The natural language command Follow np is implemented by the complex act (follow obj),
where obj is the node representing the entity denoted by np. The complex act (follow obj) is
performed by first doing (go obj), and then doing (staywithfocussed).

If an np is this or that followed by some cat, the parser calls (finddeictic category-node), where
category-node is the node that represents the category denoted by cat. The parser then returns
(recognize *STM*) as the node that represents the denotion of the entire np.

3439 12

Appendix A: GLA/R Status Report

The function (recognize object) simulates vision by returning the SNePS node that represents the
entity simulated by the Garnet object object. If that is the object simulating John or the green
robot, the same node is returned that would have been if the np had been John or the green robot
in the first place. However, if the Gamet object is one of those simulating a red robot, a new node
is created and returned, and a belief is entered into the KL that the entity represented by this node
is a red robot. This is the same action that would have been performed by the parser if the
original np had been a red robot.

3439 13

APPENDIX B: FEV AHR TOP LEVEL DESIGN (Preliminary)

Appendix B-1: Control Computer Data Definition

Constant Definitions:

NUM_SONAR = 16

Enumerated Type Definitions:

typedef enum {
HFMVRecognition,
PML Tracking,
} ProcessAddrType;

typedef enum {
ScanConicalFOR,
ScanFOR,
Saccade
} ScanType;

typedef enum {
BITCommMsg,
VisionUpdateMsg,
VisionUpdateRequestMsg,
VisionSystemShutdownMsg,
VisionSystemResetMsg,
Images tabili ty UpdateMs g,
IrnageStabilityRequestMsg,
SonarUpdateMsg,
SonarRequestMsg,
HeadTruthUpdateMsg,
HeadTruthRequestMsg,
HeadinitMsg,
BodyTruthUpdateMsg,
BodyTruthRequestMsg,
StopBodyMsg,
Body MotorSpeedMsg,
TurretPositionComrnandMsg,
DriveBodyTo TargetMsg,
FindObjectMsg,
ScanFORMsg,
Prime VisionSystemMsg,
HeadPositionCornmandMsg,
Detectionkeportlvlsg,
AdjustBodySpeedGainMsg,
AdjustObstacleA versionGainMsg,
AdjustHeadToTargetGainMsg,
Co/lisionRisk UpdateM sg,
TargetTrackAmbiguityUpdateMsg,
PointerTrackAmbiguityUpdateMsg,
} MessageType;

14

Appendix 8-1: Control Computer Data Definition

Message Definition

FEY AHR Grammer - ASCII text string containing the restricted robot control command set:
"follow," "stop," "that," "this," "red," "green," "blue," "ball," and "box"

Behaviors
To be defined by U.B.

BodyMotionCommands
StopBodyMsg
MotorSpeedMsg
TurretPositionCommand

BodyCommands
BodyTruthRequestMsg
SonarRequestMsg
DriveBodyToTargetMsg
StopBodyMsg

Body Sensations
BodyTruth UpdateMsg
SonarUpdateMsg

HeadPositionCommands
PositionHeadMsg
HeadMovementMsg

HeadCommands
HeadTruthRequestMsg
HeadPositionCommand

HeadSensations
HeadTruth UpdateMsg

VisionCommands
FindObjectMsg
VisionUpdateRequestMsg
ImageS tability RequestMsg

HFMVCommands
Prime VisionSystemMsg
ScanFORMsg
ScanConicalFORMsg
SaccadeMsg

VisionSensations
VisionUpdateMsg
ImageStabilityUpdateMsg

3439 15

Appendix 8-1: Control Computer Data Definition

Message Structure Definitions:

typedef struct {
Int32
ProcessAddrType
ProcessAddrType
Message Type
Int32

} HeaderType;

time;
sourceAddr;
sestinationAddr;
msgType;
msgSize;

typedef struct {
HeaderType header;
Int32 timeOfR.equest;
Int32 shape;
Int32 color;
Int32 size;
Int32 velocity;
Int32 confidence;

} Vision UpdateMessageType;

typedef struct {
HeaderType header;

} Vision UpdateRequestMessageType;

typedef struct {
HeaderType header;
Int32 imageStability;

} ImageStability UpdateMessage Type;

typedef struct {
HeaderType header;

} ImageStability RequestMessageType;

typedef struct {
HeaderType header;
Int32 sonarDetections[NUM_SONAR]

}SonarUpdateMessageType;

typedef struct {
HeaderType header;

} SonarRequestMessageType;

typedef struct {
HeaderType header;
Int32 panAngle;
Int32 tiltAngle;
Int32 vergeAngle;

} HeadTruthUpdateMessageType;

typedef struct {
HeaderType header;

} HeadTruthRequestMessageType;

3439 16

Appendix 8-1: Control Computer Data Definition

typedef struct {
HeaderType header;
PointType body Position;
Int32 integratedSteeringAngle;
Int32 integratedTurretAngle;
Int32 translationa!Velocity;
Int32 steering Velocity;
Int32 turretVelocity;
Int32 mototStatusByte;

} BodyTruthUpdateMessageType;

typedef struct {
HeaderType header;

}BodyTruthRequestMessageType;

typedef struct {
HeaderType header;

} StopBodyMessage Type;

typedef struct {
HeaderType header;
Int32 speed;

} BodyMotorSpeedMessageType;

typedef struct {
HeaderType header;
Int32 offsetAngle;

} TurretPositionCommandMessageType;

typedef struct {
HeaderType header;

} DriveBodyToTargetMessageType;

typedef struct {
HeaderType header;
Int32 color;
Int32 shape;
Int32 timeOfRequest

} Prime VisionSystemMessageType;

typedef struct {
HeaderType header;
Int32 pan;
Int32 tilt;
Int32 verge;

} HeadPositionCommandMessageType;

typedef struct {
HeaderType
Prime VisiorrSysremlvlessage'I'ype
HeadPositionCommandMessageType
ScanType

} ScanMessageType;

typedef struct {
HeaderType header;

} FindObjectMessageType;

3439

header;
prime Vision;
headPosition;
scanMethod;

17

Appendix 8-1: Control Computer Data Definition

typedef struct {
Header Type header;
Int32 basePan;
Int32 base Tilt;

} ScanConica!FO Rfvlessage Type;

typedef struct {
HeaderType
Int32
Int32
Int32
Int32

} ScanFORMessageType;

typedef struct {
Header Type
Int32
Int32
Int32

header;
basePan;
baseTilt;
panRange;
tileRange;

header;
timeOfRequest;
shape;
color;

Int32 size;
VelVectorType velocity;
PointType position
Int32 confidence;

} DetectionReportMessageType;

typedef struct {
HeaderType header;
Int32 timeOfRequest;

} TrackDataMessageType;

3439 18

Appendix 8-1: Control Computer Data Definition

PsuedoCode for HFMV Process
while (runningFlag)

msgPtr = GetMsg();
switch(msgPtr->MsgType)
VisionResetMsg:

Init();
SendMsg(HeadResetMsgPtr);

VisionShutDownMsg:
runningFlag = false;
SendMsg(HeadResetMsgPtr);

VisionUpdateRequestMsg:
VisionMsgPtr = TargetTracking(MsgPtr);
SendMsg(VisionMsgPtr);

FindObjectMsg:
currentTimeOtRequest = systemClock;
SendPrimeMsg(msgPtr, currentTimeOfRequest);
if (msgPtr->scanType == scanConicalFOR);
{

SendPrimeMsg(pointerDescPtr, currentTimeOfRequest);
scanDataPtr = Calculate Vector(currentTimeOfRequest);
SendPrimeMsg(msgPtr, currentTimeOfRequest);
SendPositionHeadMsg(scanDataPtr);
SendHeadMotionMsg(scanDataPtr);

}
else if (msgPtr->scanType = scanFOR)
{

SendPrimeMsg(msgPtr, currentTimeOfRequest);
SendPositionHeadMs g(ms gPtr);
SendHeadMotionMsg(msgPtr);

}
else/* simple saccade */
{

SendPrimeMsg(msgPtr, currentTimeOfRequest);
SendPositionHeadMsg(msgPtr);

}
Dec ti o nReportMs g:

if (rnsgPtr->shape == pointer)
{

UpdateTrack(msgPtr)

else
{

if (msgPtr->timeOfRequest = currentTimeOfRequest)
{

UpdateTrack(msgPtr);

else
{

' }
RemoveTrack(msgPtr->timeOfRequest);

}
ComrnBITMsg:

endSwitch
UpdateTrackPosition()

endWhile

3439 19

Appendix 8-1: Control Computer Data Definition

Communication Kernel Psuedo Code
<Cornminucation Process Monitor>
create and initialize sockets
fork 1 process to wait for data on each socket
while(!)
{

call 'wait' system call
when it returns, a child has died ...
if(socket invalid)
{

recreate and initialize the socket
}
restart the child process to monitor that socket

<Socket Monitor>
while(!)
{

wait for incoming data (via blocking 'accept' system call);
when it arrives:
fork off another child which will ...

look up destination socket in lookup table based on message type
send message out through that socket

... while it's parent watches for the next chunk of data

<Process Hierarchy>
communication
process
monitor

I \
I \

socket
monitor
I I
I I

socket
monitor

I \
I \

message message message message
handler handler handler handler

- Communication process monitor oversees socket monitor processes
- Socket monitor processes wait for data to come into socket and spawn message

handlers
- Message handlers examine message and distribute it appropriately

3439 20

APPENDIX B-2
CONTROL COMPUTER DATA FLOW

Visual Data

Voice Data

Context Diagram

\r. ut Si~nc1J

Voice Data

2.0 KL/PML Data Flow

21

Appendix 8-2: Control Computer Data Flow

Nomad 200

Zebra Head

Heads ensation

Vision Comma
nds

HFMV Polygon

3.0 SAL Data Flow

3439 22

Appendix 8-2: Control Computer Data Flow

Nomad
200

Control·
Communication

Kernel
Body Data

3.1 Nomad 200 Control Data Flow

c\ position Co1n h ~e:~ ..:._,.;Q
q~Q'

3.2 Zebra Head Control Data Flow

~ands
C.P $ HFMV Network

!,5-

3.3 HFMV Control Data Flow

3439 23

Appendix 8-2: Control Computer Data Flow

Ck Dat ')J'a.
Vision Update R

eguest

Track Data

, ,
I
I
I

Update'
Time of,
Request:
(TOR) I

I
Find Ob·ect

HFMV Network

Head Commands

3.3.1 HFMV Control Data Flow

3439 24

Appendix 8-2: Control Computer Data Flow

Off-Board SparcStation Nomad 200 Control Computer

Voice Input

Body Data

()
(JPC)

Head Data
Visual Data

TRC Controller HFMV Control Computer

Data Flow Mapped to FEV AHR Hardware

3439 25

REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public ~eporting burden for this collection o! information isestimated to ~verag~ 1 hourper response. including the t_ime tor reviewing mstructicns, searching existing data sources. gathering and
rnaintammq the data needed, and completing and rav,ewmg the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden. 10 Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington. VA
22202-4302. and to the Office of Mananement and Buccet, Pao, rwork Reduction Proiect !0704-0188). Washinaton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 10, 1995 Quarterly Technical Progress Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Foveal Machine Vision for Robots Using Agent Based Gaze Control Contract No.:
NAS 9-19335

6. AUTHOR(S)

Andrew J. Izatt .

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Amherst Systems Inc. 618-9160001 30 Wilson Road ..

Buffalo, NY 14221

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration 1 Lyndon B. Johnson Space Center
Houston, TX 77058

11. SUPPLEMENTAL NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12a. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The technical objective of the Phase II effort is to develop an Extra -Vehicular Activity Helper-
Retriever (EV AHR) robot that uses active foveal vision and an autonomous behavioral control
architecture. This Foveal EV AHR (FEV AHR) shall use Hierarchical Foveal Machine Vision (HFMV)
to detect objects, track and pursue deictically and non-deictically referenced objects, and avoid
obstacles in a dynamic, housed environment. FEVAHR shall utilize a Grounded Layered Architecture
with Integrated Reasoning (GLAIR) to provide gaze control for the vision system, including control of
all subsidiary functions (e.g., mobile robot platform kinematics). The Phase II work plan consists of
the following tasks:

1) Hardware Design & Integration,

2) HFMV Software Development,

3) GLAIR Software Development,

4) FEV AHR Integration & Evaluation.
14. SUBJECT TERMS 15. NUMBER OF PAGES

Robotics, Active Vision, Hierarchical Processing, Foveal Vision, 25 Multiresolution
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

