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Abstract

We have been engaged in a series of projects in which
Cassie, the SNePS cognitive agent, has been incorpo-
rated into a hardware- or software-simulated cognitive
robot. In this paper, we present an informal summary
of our approach to anchoring the abstract symbolic
terms that denote Cassie’s mental entities in the lower-
level structures used by embodied-Cassie to operate in
the real (or simulated) world. We discuss anchoring
in the domains of: perceivable entities and properties,
actions, time, and language.

Introduction
We have been engaged in a series of projects in which
Cassie, the SNePS cognitive agent (Shapiro & Rapa-
port 1987; Shapiro 1989; Shapiro & Rapaport 1991;
1992; Shapiro 1998; Shapiro & The SNePS Implemen-
tation Group 1999; Shapiro, Ismail, & Santore 2000;
Ismail & Shapiro 1999; 2000a; 2000b), has been incorpo-
rated into a hardware- or software-simulated cognitive
robot. The capabilities of the embodied Cassie have in-
cluded: input and output in fragments of English; rea-
soning; performance of primitive and composite acts;
motion; and vision. In this paper, we discuss the ways
in which we have anchored the symbols in Cassie’s rea-
soning level.

We use GLAIR (Grounded Layered Architecture
with Integrated Reasoning) (Hexmoor, Lammens, &
Shapiro 1993; Hexmoor & Shapiro 1997) as the archi-
tecture of our cognitive robot. GLAIR consists of three
levels: the Knowledge Level (KL), the Perceptuo-Motor
Level (PML), and the Sensori-Actuator Level (SAL):
1. The Knowledge Level (KL): The level at which

conscious reasoning takes place. The KL is imple-
mented by the SNePS system (Shapiro & Rapaport
1987; 1992; Shapiro & The SNePS Implementation
Group 1999), where SNeRE (the SNePS Rational En-
gine) (Kumar & Shapiro 1994a; 1994b; Kumar 1994;
1996) is used for initiating and controlling the execu-
tion of acts.
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2. The Perceptuo-Motor Level (PML): The level
at which routines for carrying out primitive acts are
located. This is also the location for other subcon-
scious activities that allow for Cassie’s consciousness
of its body and surroundings. The PML has been
implemented in Common Lisp and other languages,
depending on the implementation of the hardware or
software-simulated robot.

3. The Sensori-Actuator Level (SAL): The level
controlling the operation of sensors and actuators
(being either hardware or simulated). The SAL has
been implemented in C and other languages, de-
pending on the implementation of the hardware or
software-simulated robot.

In this paper, we shall not discuss the SAL, nor the
division of responsibilities between the PML and the
SAL, but will refer to the PML as our implementa-
tion of both the subsymbolic level and of the symbolic,
but bodily and non-conscious level, the level contain-
ing what the call for this symposium refers to as the
“physical-level representations of objects.”

We refer to the KL as the “conscious” level, since
that is the locus of symbols accessable to reasoning and
to natural language interaction. It is the level contain-
ing what the call for this symposium refers to as the
“abstract-level representations of objects.”

Atomic symbols in the KL are terms of the SNePS
logic (Shapiro 2000). Symbol structures in the KL
are functional terms in the same logic (Shapiro 1993;
2000). All terms denote mental entities (Shapiro & Ra-
paport 1987). For example, Cassie’s conceptualization
of George W. Bush may differ in multiple respects from
the real Bush, and also from Al Gore’s conceptualiza-
tion of Bush. The KL term for Bush denotes Cassie’s
conceptualization of Bush—the mental entity that is
Bush for Cassie. In conversation, Cassie will mean by
“Bush” her conceptualization of Bush, and will nor-
mally take someone else’s use of expressions that refer
to Bush to refer to her own conceptualization of Bush.
Nevertheless, it is possible for Cassie to be sensitive
enough to have a different term to denote her concep-
tualization of Gore’s conceptualization of Bush, and to
use that term to be the referent of expressions she hears



Gore use.
Since KL terms denote mental entities, there is a

1-1 correspondence between KL terms and those men-
tal entities Cassie has so far conceived of. For example,
if Cassie believed that the Morning Star is the Evening
Star, she would have one KL term to denote the Morn-
ing Star, another KL term to denote the Evening Star,
and a third KL term to denote the proposition that the
two have the same extension. When Cassie conceives of
a mental entity she does not recognize (re-cognize) as
one for which she already has a KL term, she creates a
new KL term to denote it (Maida & Shapiro 1982).

The topic of this paper is our approach to anchoring
the KL terms that denote Cassie’s mental entities in
the PML structures used by embodied-Cassie to oper-
ate in the real world. Briefly, our theoretical stance is
that KL terms are accessible to natural language inter-
action and to reasoning—Cassie can discuss and reason
about the entities they denote. PML structures, on
the other hand, are accessable to sensors and effectors,
but not to natural language interaction or reasoning.
Anchoring is achieved by associating (we use the term
“aligning”) a KL term with a PML structure, thereby
allowing Cassie to recognize entities and perform ac-
tions, but not to discuss or reason about the low-level
recognition or performance. In the following sections,
we discuss anchoring in the domains of: perceivable en-
tities and properties, actions, time, and language. This
paper has deliberately been kept as an informal sum-
mary of our approach. For more details, and more for-
mal presentations, see the papers cited herein.

Perceivable Entities

There are KL terms for every mental entity Cassie has
conceived of, including individual entities, categories of
entities, colors, shapes, and other properties of entities.

We assume there are PML structures for features of
the perceivable world that Cassie’s perceptual appa-
ratus can detect and distinguish. For example, each
distinguishable color might be represented by a single
number, by a symbol, or by a triple of RGB values, and
each distinguishable shape might be represented by a
single number or symbol. We further assume that each
particular perceived object will be represented at this
level by a collection of such structures. Without loss of
generality (we believe), we will assume that these collec-
tions of PML structures can be considered to be feature
vectors. (We have used feature vectors in versions of
embodied-Cassie we have implemented.) A feature vec-
tor is a sequence of values, (v1, . . . , vn), where each vi is
a possible value of some dimension Di. A feature vector
can also be interpreted as a point in an n−dimensional
feature space, where the ith dimension is Di. What di-
mensions are used depends on the perceptual apparatus
of the robot.

Our approach to grounding KL terms for perceiv-
able entities, categories, and properties is to align a KL
term with a PML feature vector, possibly with unfilled

(null) components. For example, one version of em-
bodied Cassie used a two-dimensional feature vector in
which the dimensions were color and shape. The KL
term denoting Cassie’s idea of blue was aligned with
a feature vector whose color component was the PML
structure the vision system used when it detected blue
in the visual field, but whose shape component was null.
The KL term denoting cubes was aligned with a feature
vector whose shape component was the PML structure
the vision system used when it detected a cube in the
visual field, but whose color component was null. We
have implemented alignment in various ways, including
association lists, hash tables, and property lists.

Let us call a feature vector with some null compo-
nents an “incomplete feature vector”, and one with no
null components a “complete feature vector”.

KL terms denoting perceivable properties and KL
terms denoting recognizable categories of entities are
typically aligned with incomplete feature vectors. Ex-
amples include the terms for blue and for cubes men-
tioned above, and may also include terms for tall, fat,
bearded, man, and woman. These terms may be com-
bined into verbal descriptions, such as “a tall, fat,
bearded man,” that may be used to perceptually recog-
nize the entity so described. In this paper, we will not
use the term “description” to mean a verbal description
that cannot be used for perceptual recognition, such as
“a college-educated businessman who lives in Amherst,
NY.”

Cassie might have a KL term for an entity about
which she knows no descriptive terms. For example,
all she might believe about Fred is that he is a college-
educated businessman who lives in Amherst, NY. Thus,
she would be incapable of describing Fred (the way we
are using “describe”). Nevertheless, it might be the
case that Cassie’s term denoting Fred is aligned with
a complete feature vector. In this case, Cassie would
be able to recognize Fred, though not describe him.
We call such a complete feature vector aligned with an
entity, the entity’s “PML-description.” To emphasize
its completeness, we can use the term “complete PML-
description.”

A complete PML-description may be assembled for
an entity by unifying the incomplete PML-descriptions
of its known (conceived of) properties and categories.
For example, if Cassie knows nothing about Harry, and
we tell her that Harry is a tall, fat, bearded man,
she would be able to assemble a PML-description of
Harry and recognize him on the street. (Assuming
that Cassie’s terms for tall, fat, bearded, and man are
aligned with incomplete feature vectors.) In some cases,
this might result in a set of several complete PML-
descriptions. For example, the PML-descriptions of
some, but not a particular, red chair might include fea-
ture vectors with different shape components. Once a
PML-description is assembled for an entity, it can be
cached by aligning the entity directly with it. After-
wards, Cassie could recognize the entity without think-
ing about what it looks like.



To find (come to be looking at) an entity, Cassie finds
a PML-description of the entity that is as complete as
possible, and directs her perceptual apparatus to do
what is necessary to cause an object satisfying that
feature vector to be in her visual field. (See the sec-
tion on actions, below, for a description of how actions
are grounded.)

If Cassie is looking at some object, she can recognize
it if its feature vector is the PML-description of some
entity she has already conceived of. If there is no such
entity, Cassie can create a new KL term to denote this
new entity, and believe of it that it has those properties
and is a member of those categories whose partial PML-
descriptions are parts of the PML-description of the
new entity.

If there are multiple entities whose PML-descriptions
match the feature vector, disambiguation is needed, or
Cassie might simply not know which one of the entities
she is looking at.

We are currently investigating the issue of when
Cassie might decide that the object she is looking at
is new, even though it looks exactly like another she
has already conceived of.

We have not worked on the problem of recognizing
an entity by context. For example a store clerk might
be recognized as any person standing behind a cash
register.1 We speculate that this problem requires a
combination of KL knowledge and KL-PML alignment.
Knowing that a person standing behind a cash register
is a clerk is KL knowledge. Recognizing a person, a
cash register, and the “behind” relation requires KL-
PML alignment.

Example

This subsection contains an example interaction
with a simulated version of Cassie as a “Foveal
Extra-Vehicular Activity Helper-Retriever (FEVAHR)”
(Shapiro 1998). Cassie, the FEVAHR, was imple-
mented on a commercial Nomad robot, including sonar,
bumpers, and wheels, enhanced with a foveal vision
system consisting of a pair of cameras with associated
hardware and software. The simulated version allows
interactions to be shown in a paper.

In this simulation, both the PML and the simulated
world are implemented in Common Lisp. The PML
feature vector has two dimensions, called “color” and
“shape”. There are seven objects in the simulated
world. The Common Lisp symbols that represent these
objects and their PML-descriptions are shown in the
following table:

1This example was suggested by one of the anonymous
reviewers.

Object Color Shape
WORLD:BILL BLUE SQUARE
WORLD:STU YELLOW SQUARE
WORLD:CASSIE CYAN CIRCLE
WORLD:GREENIE GREEN CIRCLE
WORLD:REDROB-1 RED CIRCLE
WORLD:REDROB-2 RED CIRCLE
WORLD:REDROB-3 RED CIRCLE

The KL terms that are aligned with feature vectors
are shown in the following table:

KL Term Color Shape
B1 CYAN CIRCLE
B5 YELLOW SQUARE
B6 BLUE SQUARE
green GREEN NIL
red RED NIL
person NIL SQUARE
robot NIL CIRCLE

Notice that B1, B5, and B6 are aligned with complete
feature vectors, while green, red, person, and robot
are aligned with incomplete feature vectors. B1, B5, and
B6 denote individuals. green and red denote proper-
ties. person and robot denote categories.

Cassie’s relevant beliefs about the entities denoted by
these terms may be glossed as:

B1’s name is Cassie.
B5’s name is Stu.
B6’s name is Bill.
Cassie is a FEVAHR.
FEVAHRs are robots.
Bill and Stu are people.
Robbie is a green robot.
B8, B9, and B10 are red robots.
People and robots are things.

The only descriptive terms Cassie has for Bill and Stu
are that they are people, and the only descriptive term
she has for herself is that she is a robot. Neverthe-
less, Bill, Stu, and Cassie are aligned with complete
feature vectors, so she has PML-descriptions for them,
and, therefore, can recognize them. On the other hand,
Robbie, B8, B9, and B10 are not aligned with any fea-
ture vectors, but PML-descriptions can be assembled
for them from their properties and categories.

Following is an interaction with Cassie about these
entities. Sentences preceded by “:” are human inputs.
Sentences starting with “The FEVAHR is” are reports
of simulated actions and perceptions, and are not out-
put by the hardware version. Sentences beginning with
“I” are generated by Cassie. At the beginning of the
interaction, Cassie is looking at listening to, and talking
to Stu.



: Find a robot.
The FEVAHR is looking for something

that’s a CIRCLE.
The FEVAHR found WORLD:REDROB-1.
I found a red robot.
The FEVAHR is looking at WORLD:REDROB-1.
I am looking at a red robot.

: Find a person.
The FEVAHR is looking for something

that’s a SQUARE.
The FEVAHR found WORLD:STU.
I found you, Stu.
The FEVAHR is looking at WORLD:STU.
I am looking at you.

: Find a green thing.
The FEVAHR is looking for something

that’s GREEN.
The FEVAHR found WORLD:GREENIE.
I found Robbie.
The FEVAHR is looking at WORLD:GREENIE.
I am looking at Robbie.

: Find Bill.
The FEVAHR is looking for something

that’s BLUE and a SQUARE.
The FEVAHR found WORLD:BILL.
I found Bill.
The FEVAHR is looking at WORLD:BILL.
I am looking at Bill.

Attentional Structures
Cassie’s attentional apparatus is modeled by a set of
PML registers (variables), each of which can hold one
or more KL terms or PML structures. Some of these
registers derive from the theory of the Deictic Center
(Duchan, Bruder, & Hewitt 1995), and include: I, the
register that holds the KL term denoting Cassie herself,
and NOW, the register that holds the KL term denoting
the current time. Others, termed “modality registers”,
model Cassie’s knowledge of what she is doing. For ex-
ample, if one of Cassie’s modalities were speech, and she
were currently talking to Stu, her SPEECH register would
contain the KL term denoting the state of Cassie’s talk-
ing to Stu. In many cases, a single modality of an agent
can be occupied by only one activity at a time. In that
case the modality register for that modality would be
constrained to contain only one term at a time.

One of the modality registers we have used is one
to keep track of what Cassie is looking at. When she
recognizes an object in her visual field, the KL term
denoting the state of looking at the recognized entity is
placed in the register, and is removed when the object is
no longer in the visual field. If one assumes that Cassie
can be looking at several objects at once, this register
would be allowed to contain several terms.

If asked to look at or find something that is already in
her visual field, Cassie recognizes that fact, and doesn’t

need to do anything. The following interaction contin-
ues from the previous one:

: Look at Robbie.
The FEVAHR is looking for something

that’s GREEN and a CIRCLE.
The FEVAHR found WORLD:GREENIE.
I found Robbie.
The FEVAHR is looking at WORLD:GREENIE.
I am looking at Robbie.

: Find a robot.
I am looking at Robbie.

Comparing Cassie’s response to the second request
with her response to the previous requests, one can
see that she realized that she was already looking at
a robot, and so didn’t need to do anything to find one.

Actions
Some KL terms denote primitive actions that Cassie can
perform. We term an action, along with the entity or
entities it is performed on, to be an “act”. For example,
the act of going to Bill consists of the action of going
and the object Bill. Acts are denoted by KL functional
terms.

Each KL action term that denotes a primitive action
that Cassie can perform is aligned with a procedure in
the PML. The procedure takes as arguments the KL
terms for the arguments of the act Cassie is to perform.
For example, if Cassie is to perform the act of going to
Bill, the PML going-procedure would be called on the
KL Bill-term. It would then find the PML-description
of Bill, and cause the robot hardware to go to an ob-
ject in the world that satisfies that description (or cause
the robot simulation to simulate that behavior). The
PML going-procedure would also insert the KL term
denoting the state of Cassie’s going to Bill into the rel-
evant modality register(s), which, when NOW moves (see
below), would cause an appropriate proposition to be
inserted into Cassie’s belief space.

Acts whose actions are primitive are considered to be
primitive acts. Composite acts are composed of prim-
itive “control actions”, and their arguments, which,
themselves are primitive or composite acts. Control
actions include sequence, selection, iteration, and non-
deterministic choice (Kumar & Shapiro 1994a; 1994b;
Kumar 1994; 1996; Shapiro & The SNePS Implemen-
tation Group 1999; Ismail & Shapiro 1999). There are
also propositions for act preconditions, goals, effects,
and for plans (what some call recipes) for carrying out
non-primitive acts.

In the interactions shown above, sentences starting
with “The FEVAHR is” were printed by the simulated
action function which was called by the PML proce-
dure aligned with the KL term for finding something.
When Cassie was asked to look at Robbie, she did so
by finding Robbie, because there is a KL belief that the
plan for carrying out the non-primitive act of looking
at something is to find that thing.



Time

As mentioned above, the attentional NOW register al-
ways contains the KL term denoting the current time
(Shapiro 1998; Ismail & Shapiro 2000b; 2001). Actu-
ally, since “now” is vague (it could mean this minute,
this day, this year, this century, etc.), NOW is considered
to include the entire semi-lattice of times that include
the smallest current now-interval Cassie has conceived
of, as well as all other times containing that interval.
NOW moves whenever Cassie becomes aware of a new

state. Some of the circumstances that cause her to be-
come aware of a new state are: she acts; she observes a
state holding; she is informed of a state that holds. NOW
moves by Cassie’s conceiving of a new smallest current
now-interval (a new KL term is introduced with that
denotation), and NOW is changed to contain that time.
The other times in the old NOW are defeasibly extended
into the new one by adding propositions asserting that
the new NOW is a subinterval of them.

Whenever Cassie acts, the modality registers change
(see above), and NOW moves. The times of the state(s)
newly added to the modality registers are included in
the new NOW semi-lattice, and the times of the state(s)
deleted from the modality registers are placed into the
past by adding propositions that assert that they pre-
cede the new NOW.

The following interaction, following the ones shown
above, shows an action of Cassie’s passing from the
present into the past:

: Who have you talked to?
I am talking to you.

: Talk to Bill.
The FEVAHR is starting to talk to Bill.
I am talking to you, Bill.

: Who have you talked to?
I talked to Stu
and I am talking to you.

Temporal Durations
To give Cassie a “feel” for the amount of time that has
passed, she has a COUNT register acting as an internal
pacemaker. The value of COUNT is a non-negative in-
teger, incremented at regular intervals. Whenever NOW
moves, the following happens:

1. the old now-interval to is aligned with the current
value of COUNT, grounding it in a PML-measure of its
duration;

2. the value of COUNT is quantized into a value δ which
is the nearest half-order of magnitude (Hobbs 2000)
to COUNT, providing an equivalence class of PML-
measures that are not noticeably different;

3. a KL term d, aligned with δ, is found or created,
providing a mental entity denoting each class of du-
rations;

4. a belief is introduced into the KL that the duration
of to is d, so that Cassie can have beliefs that two
different states occurred for about the same length of
time;

5. COUNT is reset to 0, to prepare for measuring the new
now-interval.

Language
Cassie interacts with humans in a fragment of English.
Although it is possible to represent all her linguistic
knowledge in the KL, use reasoning to analyze input
utterances (Shapiro & Neal 1982; Neal & Shapiro 1985;
1987a; 1987b), and use the acting system to gener-
ate utterances (Haller 1996; 1999), we do not cur-
rently do this. Instead, the parsing and generation
grammars, as well as the lexicon, are at the PML.
(See, e.g. (Shapiro 1982; Shapiro & Rapaport 1995;
Rapaport, Shapiro, & Wiebe 1997).) There are KL
terms for lexemes, and these are aligned with lexemes
in the PML lexicon. We most frequently use a KL unary
functional term to denote the concept expressed by a
given lexeme, but this does not allow for polysemy, so
we have occasionally used binary propositions that as-
sert that some concept may be expressed by some lex-
eme.

This facility was used for Cassie to understand the
human inputs shown in the example interactions in this
paper, and for her to generate her responses (the sen-
tences beginning with “I”). We can also use the low
level surface function to see the NL expression Cassie
would use to express the denotation of various SNePS
terms2:
* (surface B1)
Cassie

* (surface B5)
Stu

* (surface B6)
you

(Remember, Cassie is currently talking to Bill.)

Summary
We have given an informal summary of our approach
to connecting the abstract-level representations to the
physical-level representations of Cassie, our cognitive
robot. The abstract-level representations are terms of
SNePS logic contained in the Knowledge Level (KL) of
our GLAIR agent architecture, while the physical-level
representations are feature vectors, procedures, and
other symbol structures contained at the Perceptuo-
Motor Level (PML) of the architecture.

KL terms denoting perceivable entities, perceivable
properties, and recognizable categories are aligned with
PML feature vectors. Primitive actions are aligned with

2The prompt for this Lispish interaction level is “*”.



PML procedures. Deictic and modality registers hold
KL terms for individuals and states that Cassie is cur-
rently aware of, including states of her own body. They
are updated by the PML procedures. The NOW register
is used to give Cassie a personal sense of time, includ-
ing keeping track of current and past states. KL terms
denoting times and temporal durations are aligned with
PML numeric measures of durations created by the
PML pacemaker. Lexemes are represented by KL terms
that are aligned with PML lexicon entries used by the
parsing and generation grammars, which, like PML pro-
cedures, mediate between Cassie and the outside world,
in this case, humans with which she communicates.
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