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Abstract

We show how the subjective and nhonmonotonic belief logic
SL formalizes an agent’s reasoning about the beliefs of in-
complete agents. SL provides the logical foundation of
SiMmBA, animplemented belief reasoning system which con-
stitutespart of an artificial cognitiveagent called Cassie. The
emphasis of SIMBA is on belief ascription, i.e., on govern-
ing Cassi€e' sreasoning about the beliefs of other agents. The
belief reasoning paradigm employed by SIMBA is simula-
tivereasoning. Our goal is to enable Cassie to communicate
with real agents who (1) do not believe all consequencesof
their primitive or base beliefs, (2) might hold beliefs differ-
ent from what Cassie views them to be, and (3) might even
hold inconsistent beliefs. SL provides a solution to the first
two problems and lays the groundwork to a solution for the
third, however, in this paper we will focus only on how agent
incompl eteness can be handled by integrating a belief logic
with a default reasoning mechanism. One possible applica-
tion of SL and SIMBA liesin the area of user modeling. For
example, Cassie could be in the role of an instructor who,
among other things, has to deal with the incomplete beliefs
of her students.

I ntroduction

SIMBA, an acronym for simulative belief ascription, is an
implemented belief reasoning system which constitutespart
of an artificial cognitive agent who we call Cassie. Itsmain
concern isthe formalization of various aspects of belief as-
cription, i.e., it forms the machinery with which Cassie can
reason about the beliefs of other agents. SIMBA’s logical
foundation is SIMBA Logic, or SL, whichisafully inten-
sional, subjective, nonmonotonic belief logic.

It isour long-term goal to give Cassiethe ability to com-
municate with other agents such as humansin natural lan-
guage, thuswe have to make surethat she can deal with real
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agents. In the design of a belief logic to describe Cassie’'s
reasoning we are faced with at | east three major challenges:
(1) Real agents are incomplete, i.e., they do not believe all
conseguences of their primitive or base beliefs, (2) Cassie’'s
beliefs about these agents might be incorrect requiring her
to revise her beliefs, and (3) they might hold inconsistent
beliefs. SL is alogic that provides solutions to the first
two problemsand lays the groundwork to a solution for the
third, but in this paper we will only describe how SL can
handleincompl ete agents by incorporating adefault reason-
ing mechanism into abelief logic. The other aspects of SL
are described in (Chalupsky 1995). One possible applica
tion of SL and SIMBA liesin the domain of user modeling.
For example, Cassie could be in the role of an instructor,
who, among other things, has to deal with the incomplete
beliefs of her students.

I ncomplete Agents

When Cassie reasons about the beliefs of some real agent
she hasto take into account that real agents areincompl ete.
Even if al of Cassie’'s beliefs about the beliefs of the agent
are correct, a consegquence of these beliefs realizable by
Cassie might be one that the agent has not yet concluded.
A real-life example of such a situation is teaching. Many
times a teacher teaches the basics of some subject and as-
sumes that the “obvious’ conclusions have been drawn by
the students, only to find out later at an exam that the as-
sumption was obviously wrong.

In dlightly more formal terms, if Cassie believesthat Os-
car believesP andthat P = Q, it makes sensefor her to as-
sume that he also believes Q. But then, he might not. This
failure of logical consequence in belief contexts has trou-
bled researchers for a long time. Most standard logics of
knowledge or belief solvethe problem by either avoiding it
(e.g., syntactic logics), or by idealizing agents (e.g., mod-
eling them aslogically omniscient). Various attempts have
been madeto overcome some of these shortcomingsof stan-
dard treatments, for example, (Levesgue 1984; Konolige



1986; Fagin & Halpern 1988; L akemeyer 1990). However,
the successisaways achieved at considerablecost. There-
sulting logics either restrict certain forms of inference, or
trade one idealization for another, or make somewhat unin-
tuitive assumptions about the nature of agents' reasoning,
thus we think none of them are very well suited asaformal
foundation of Cassi€'s reasoning.

Belief Representation

) b

We view Cassie’'s “mind” as a container filled with a vari-
ety of objects, some of which constitute her beliefs. These
beliefs are represented by sentences of Lsy,, the language
of SL. Lsy, very much looks like the language of standard
first-order predicate calculus, but it has avery different se-
mantics. Its sentencesare not true or false statements about
Cassie's beliefs, but they are Cassie's beliefswhich iswhy
we call SL asubjectivelogic. Lgy, isprimarily alanguage
of proposition-val ued function terms such as, for example,
Loves(John, Mary), whose denotation isintended to be the
proposition John loves Mary. A sentenceis formed by pre-
fixing a proposition term with an exclamation mark as in
'Loves(John, Mary). The semanticsof asentenceisthat the
agent whose mind contains it (usually taken to be Cassie)
believes the proposition denoted by the proposition term.

Cassi€s Dbeliefs about the beliefs of other
agents are expressed by sentences of the kind
IB(Sally, Loves(John, Mary)). The proposition term
of such a sentence is simply a nested application of
proposition-valued functions but not a higher-order rela-
tion. The nesting can go to arbitrary depth to account for
propositions such as John believesthat Sally believesthat |
believe that. . .. A full motivation and formal specification
of the syntax and semantics of SL is given in (Chalupsky
& Shapiro 1994). It should be pointed out that even though
Cassie's beliefs might be viewed as a database of belief
sentences, our model is not the database approach to belief
representation. To form beliefs about the beliefs of other
agents Cassie has the full logical arsenal at her disposal,
including negation and disunction. Via introspection she
can even have beliefs about her own beliefs, for example,
I=B(l, Equiv(P, NP)).

Reasoning as L ogical I nference

While the syntax and semantics of SL provide the formal
basis of Cassie’'s belief representation, we model her rea-
soning as logical inference according to a deductive sys-
tem Dgy,. Animplementation of aproof procedurefor Dy,
serves as her actual reasoning engine. Dgsy, isanatural de-
duction system which consistsof apart very similar to natu-
ral deduction systemsfor predicate calculus, and a part that
dealswith belief reasoning. We will introduce Dsy, by way
of example aswe go along.

The focus of SL and SIMBA is on the formalization of
Cassie's reasoning about the beliefs of other agents. The
reasoning paradigm we use for that is simulative reason-
ing (Creary 1979; Chalupsky 1993; Barnden et al. 1994), a
mechanism in which Cassie hypothetically assumes the be-
liefs of some other agent as her own and then tries to infer
conclusionsfrom these hypothetical beliefswith help of her
own reasoning skills.

Notational Conventions:  Sans serif indicatesobject lan-
guage terms, for example, Smart(Oscar), and #talics indi-
cate meta-variables ranging over such terms, for example,
pV q. Bisthe belief function and | is Cassie's ego con-
stant. All object and function constants start with an upper-
case |etter; variables are written in lower case. Simulation
contexts (explained below) are drawn with double vertical
lines, hypothetical contexts only have singlelines, contexts
that could be either have one singleand one doubleline. To
abbreviate sentences that appear in reasoning contexts we
use their step numbers as aliases. For example, if the line
with step number 5 contains the sentence !Smart(Oscar),
then we can use 5 as an abbreviation wherever we want to
refer to that sentence.

An Example

Figure 1 shows an example in which Cassie is imagined
to be a teacher of basic complexity theory. Oscar is one
of her students of whom she assumes that from the mate-
rial presented in class he has arrived at the following obvi-
ous (to her) conclusion: If the complexity classes P and NP
are equivalent then the NP-complete SAT problem is com-
putable in polynomial time.

Here is a quick introduction to Dsy, derivations: The
main structuring device are inference or reasoning contexts
which are drawn as boxes. They come in two kinds: (1)
Simulation contextsto simulate a particular agent’sreason-
ing, and (2) hypothetical contextsto carry out hypothetical
reasoning. Every context has a name, a pointer to a parent
context (or T for thetop-level context) and the agent whose
reasoning is carried out listed in the top field. Every appli-
cation of an inference rule adds another sentence to one of
the open contexts (thereis no order requirement). To follow
aderivation one follows the step numbers on the | eft of the
context boxesin sequence. Thisschemeisvery closeto the
actual implementation.

The top-level simulation context in the example repre-
sents Cassie’s primary frame of mind. Every sentence in
that context represents (or is) one of her beliefs. Steps 1
to 5 display her beliefs about Oscar’s grasp of complexity
theory: 1 (the sentence in step 1) represents her belief that
he believesthat if two classes are equivalent every element
of one class is aso element of the other. 1 is followed by



Cassie (T), |
1 B(Oscar, Veq, ca, e (Cl(cq) A Cl(e2)A
AEquiv(cr, c2) Aln(e, c2)) = In(e, c1)), hyp, {1} H
2 IB(Oscar, CI(P)), hyp, {2} H
3 IB(Oscar, CI(NP)), hyp, {3} H
4 IB(Oscar, ¥p In(p, P) = PTime(p)), hyp, {4} H
5 IB(Oscar, In(SAT, NP)), hyp, {5} H
open Oscar
18 IB(Oscar, Equiv(P,NP) = PTime(SAT)), der, {1,2,3,4,5} BI 17
19 !Smart(Oscar), hyp, {19} H
99 !=-B(Oscar, Equiv(P,NP) = PTime(SAT)), hyp, {99} H
Oscar (Cassie), Oscar,
6/{1},7/{2},8/{3},9/{4},10/{5}
6 Weq, 2, e (Cl(e1) A Cl(c2) A Equiv(er, c2)A
Aln(e, c2)) = In(e, c1), hyp, {6} SH 1
7 ICI(P), hyp, {7} SH 2
8 ICI(NP), hyp, {8} SH 3
9 WpIn(p, P) = PTime(p), hyp, {9} SH 4
10 In(SAT, NP), hyp, {10} SH 5
open OscarHyp
17 Equiv(P,NP) = PTime(SAT), der, {6,7,8,9,10} =1 16
OscarHyp (Oscar), Oscar
11 'Equiv(P,NP), hyp, {11} H

12 | (CI(P) A CI(NP) A Equiv(P, NP)A
AIn(SAT,NP)) = In(SAT,P), der, {6} VE 6
13 | I(CI(P) A CI(NP) A Equiv(P, NP)A

Aln(SAT,NP)),
14 | ln(SAT,P),

15 | !n(SAT,P) = PTime(SAT),

16 | IPTime(SAT),

der, {7,8,10,11} Al 7,8,10,11
der, {6,7,8,10,11} =E 12,13
der, {9} VE 9

der, {6,7,8,9,10,11} =E 14,15

Figure 1: Oscar’sreasoning isincomplete

a hyp origin tag and by its origin set or hypothesis support
(this support structure is derived from (Martins & Shapiro
1988)). Since 1 isahypothesis, its origin set just contains
the sentence itself. The H on the right of the box indicates
that this sentence was introduced with the rule of hypothe-
siswhich is the only meansto add new, otherwise unjusti-
fied beliefsto areasoning context. Cassie also believesthat
Oscar believesthat P and NP are classes, that for every in-
stance of P thereisan algorithm that solvesitin polynomial
time, and that SAT isin NP,

What followsis asimulation of Oscar’s reasoning in the
Oscar context. It is not really necessary to follow this ex-
ampleinall itsdetail, it isjust supposed to present the gen-
eral flavor of our system and show theincompl eteness prob-

lem. Inthe Oscar context Cassie assumesthe object propo-
sitions of her beliefs about Oscar as her own beliefsto sim-
ulate his reasoning. An exact definition of the simulation
rules will be given later. Since the sentence in question is
an entailment, she has to perform hypothetical reasoningin
the context OscarHyp to deriveit. When sentencesare de-
rived they get ader origin tag, and their hypothesis support
isin most cases computed by simply taking the union of the
premise supports. Finally, Cassie derives 17 and ascribesit
to Oscar as 18 in her top-level context. The hypothesissup-
port of 18 was computed with help of the map stored at the
top of the Oscar context. In this example we view this last
belief introduction step as a sound inference rule that is not
different from rules such as Modus Ponens, etc.



A few weeks later Cassie gives an exam. While she
grades Oscar’s exam she finds out — much to her dismay —
that he obviously doesnot believe sentence 18, otherwisehe
would have solved one of the exam problemscorrectly (this
isespecially disappointingin light of 19). Cassie’s new be-
lief isintroduced in step 99, but that directly contradictsthe
simulation result of step 18. What is she supposed to be-
lieve now?

If we do not take special action now, Cassie will be able
to derive and believe any arbitrary sentence by using con-
tradiction elimination. It is certainly completely undesir-
able to have Cassie’'s own top-level reasoning collapse just
because one of the agents she knows about is incomplete.
There are two scenarios that can explain the resulting con-
tradiction:

1. Some of Cassi€'sinitial belief hypotheses about Oscar’s
beliefs are incorrect. This case needs to be handled by
belief revision which is supported by SL but outside the
scope of this paper.

2. Oscar’s reasoning isincomplete. It is easily imaginable
that each of Cassie’s belief hypotheses about Oscar’s be-
liefs is directly “observable” by reading Oscar’'s exam
paper, only Oscar’s belief in the obvious conclusion is
not manifested anywhere, even worse, it is directly ob-
servable that he does not believe the conclusion in ques-
tion. This case cannot be solved by belief revision, be-
causethereisnothing to revise. All theinitial beliefsare
correct and should not be retracted. The problem is that
Oscar’s reasoning is incomplete, and what needs to be
doneisto block theincorrect simulation result in light of
the striking evidence to the contrary.

Simulation Results are Default Conclusions

Our solution to the problem above isto treat smulation re-
sults as default conclusions. A default conclusion can be
shadowed if it contradictsany belief based solely on proper
belief hypotheses.

To handle the default character of simulation results at
the logic level weintroduce the concept of asimulation as-
sumption. A simulation assumption isa special kind of hy-
pothesisthat isjustified by a derivation from a set of proper
hypotheses. In a sense an assumption is a hermaphrodite,
because it is hypothesis and derived sentence simultane-
oudly. This characterization of an assumption was intro-
duced by Cravo and Martins(1993) in their formalization of
default reasoning, and the following treatment owes agreat
deal to their work.

In the example above we assumed the proposition of ev-
ery derivable sentence to also be believable. Thus, believ-
ability wasamonotonic property. Using the concept of sim-
ulation assumptions, we can define anonmonotonic variant

of believability based on the primitive notion of derivabil-
ity. Thisnew versionwill allow usto shadow simulationre-
sults aswell as handle mutually contradicting simulations.

Formalization

Below arethoseinferencerulesof Dgy, that areparticularly
sensitiveto the distinction between hypotheses and assump-
tions. In every ruleit is assumed that [ is the step number
of theimmediately prior inference step, that the sentence at
linel 4+ 1 isthe conclusion, and that all other sentences are
premises. A new assumption support element is added to
theright of the hypothesis support of every sentence. 1t con-
tainsthe set of simulation assumptionson which the deriva-
tion of a particular sentence is based. In every inference
step hypothesi s and assumption supports are combined sep-
arately. 7, w, and a are meta-variables (indices are used
where necessary), where T ranges over origin tags, w over
hypothesis supports, and « over assumption supports.

Negation Introduction (—I): Fromacontradictionthatis

(. )a

mo | WA-p T wU ]

[+1 I=h, der, w\ {!h}, {} -1 m

solely based on hypotheses we can deduce the negation of
any element of wU{!h}, i.e., the negation of any hypothesis
onwhichthederivation of the contradictionwasbased. Fol-
lowing Cravo and Martinswe will call such acontradiction
areal contradiction as opposed to an apparent contradic-
tion which is partly based on assumptions. No equivalent
rule exists for apparent contradictions.

Simulation Hypothesis (SH, SH’):  The rule of simula-
tion hypothesiscomesintwovariants. SH: If thebelief sen-

(. )a

m | B(b,p;), 7, wi, {}

m' | B(b,p;), 7, wj,aj #0

D (C), b,

o dpifwid), - pg e
I+1 || 'piy hyp, {'pi}, {3 SH m
U+1 | 'pj, sim, {}, {'p;} SH' m!

tence in the parent context is not based on any assumptions



thenitsobject proposition will beintroduced asaproper hy-
pothesis in the simulation context. SH': If the parent sen-
tence did depend on assumptions, then the object proposi-
tion will be introduced as an a priori simulation assump-
tion which is indicated by the new sim origin tag and the
assumption origin set. In both casesthe proper mapping be-
tween origin sets of the parent sentence and the simulation
hypothesisis stored at the top of the simulation context.

Belief Introduction (BI): Thisis the only rule of Dgy,

C()a

[+1] B(b,q), sim, U wi, {IB(b,q)} U U o; || BIm

p;EwlUa p;EwlUa
D (C), b,
!pl/aq()ll, RS !pn/wnan
m || lq, 7, w C shyps(D,m), «

that actually derives simulation assumptions. Whenever
some sentence !q is derived in a simulation context for
some agent b, and the hypothesis support of the new sen-
tence is contained in the set of simulation hypotheses
shyps(D, m)* introduced up to that point, then we can in-
troduce the belief sentence IB(b, ¢) asasimulation assump-
tion in the parent context. The new belief sentence gets a
sim origin tag to identify it as an assumption, and its ori-
gin sets are computed by mapping the origin set of !¢ back
into the parent context via the map stored at the top of the
simulation context (we are sloppy here, sincethe possibility
of multiplederivationsrequiresaslightly more complicated
mapping scheme). Finally, !B(b, ¢) getsaddedtoitsown as-
sumption support which makesit into thedual gender entity
that is half hypothesis and half derived result.

As motivated above, the top-level reasoning context of
a Dgy, derivation models Cassie€'s primary state of mind.
Over time sentenceswill get added to that context either as
derived results or as hypotheses, and some hypotheseswill
also get removed as aresult of belief revision. Thusthe set
of believable sentences changes over time. To get a han-
dle on these changes we will look at individual snapshots
of reasoning contexts called belief states:

Def 1 Abelief states isaquadruple {{a, H, A, o,,)), where
(1) "a” isareasoning agent, (2) H is a set of sentences
taken to be hypotheses, (3) A is a set of sentences taken to
be a priori simulation assumptions, and (4) o, iseither T
or a parent or simulator belief state.

Yshyps(D, m) collects al sentences introduced into context
D viatheruleof SH up to step m.

The support of a sentence can be viewed as a summary of
things necessary to deriveit. Inthefollowing wewill make
heavy use of sentence supports, hence, we define the fol-
lowing notation:

Def 2 A supported sentence (Ip, a/?, 7, w, ) iSa quintu-
ple, where (1) !p is an arbitrary Lsy,-sentence, (2) a/? is
either some agent ” @” or the unspecified agent ” 7", (3)
isan origin tag which can be either hyp, der, or sim, (4) w
is the set of hypotheses, and (5) « is the set of simulation

assumptions on which the derivation of !p is based.

Adding the agent element to the support is necessary, since
inference rules such as introspection (not presented here)
encode the agent of a reasoning context in the derived sen-
tence. If no such rule was used in the derivation of a sen-
tence its support contains the unspecified agent ”7”.

Now weareready to defineaderivation relation between
belief states and supported sentences:

Def 3 ((a, H, A, 0,)) H(lq,a/?, 7,w, a) iff there exists a
derivation of the form
C(m),l

D(..),a

[ lq,
such that hyps(D, 1) C H and shyps'(D,1) C A.2

This definition of derivability is applicable to belief states
describing top-level contexts as well as nested simulation
contexts. Oftenitisalso convenient to work with deductive
closures:

Def 4 Leto = ((a, H, A, 0,,)). Itsdeductive closureisthe
seto* = {{lg,a/?, Tyw, ) | o0 = {lg,a/?, T, w,a)}.

The following theorem states an important fact about sup-
port computation: The hypotheses and assumptions col-
lected in the support of a derived sentence are sufficient
(though not necessary) to deriveit.

Thel If (a, H, A, o)) —(lq,a/7, 7, w, o) then
(@, w, ANa,o,) H(lg,a/?, 7w, a).

The main enterprise below is to define sets of reasonable
assumptions motivated by a particular belief state. Follow-
ing standard default logic terminology we will call such a
set an extension (Reiter 1980).

Def 5 Let o = ((a, H, A, 0,)). Any set E such that
E C {{!p,a/? simw,a) € ¢* | a # 0} iscalled an
extension set for o.

T, W,

Thus, any set of (not necessarily reasonable) simulation as-
sumptions derivable from a belief state can be an extension

2hyps(D, 1) collects all sentences introduced into context D
viaH or SH uptostep !, and shyps’ collectsall apriori simulation
assumptionsintroduced via SH'.



set. Note, that the a priori assumptions A are always triv-
ialy derivable from o.

Def 6 Let o = ((ar, H, A, 0p)) and E an extension set
for o. A supported sentence (!p, a;/7, 7,w, ) rendersits
proposition p believablein o extended by E iff:

1. a, anda, /7 arecompatible, i.e., they are either identical
ora, =7,and

2. wC H,and

3. aC HUsent(E)3

Regardless of what the correct extensions of a belief state
will turn out to be, we are now ready to define the follow-
ing degrees of believability of a sentencerelative to abelief
state and a set of arbitrary extension sets:

Def 7 Let ¢ = ((a,,H, A, 0,) and A(c) a set of
arbitrary extension sets for o. A supported sentence
(!p,as/?, T,w, a) renders its proposition p

e certain, written with a bold exclamation mark !p, iff its
support rendersit believable in belief state
o = (ao, H,0, op)s

e plausible, written +p, iff either itiscertain, or A(c) # 0
andfor every E' € A(o) itssupport rendersit believable
in o extended by F,

e possible, written #p, iff either itisplausible, or A(c) #
0 and for at least one E € A(o) its support renders it
believable in o extended by E,

e or unbelievable, written @p, if its support does not ren-
der it possible.

The symbols!, 4, #, and @ are intended to illustrate “ cer-
tain”, “approximate”, “very approximate”, and “out”. They
are annotations used to indicate the degree of believabil-
ity of a particular sentence in a particular derivation. The
plain exclamation mark asin !p only indicates that the sen-
tence was derivable according to the inference rules of the
logic. It classifies the proposition p as a belief candidate,
but whether Cassie actually believes p depends on its be-
lievability according to the current state of her various rea-
soning contexts.

Def 8 A belief state ((a, H, A,0p)) is consistent iff
{a,H, A op)) H-{IpA=p,a/?, 7w, {}) for any p.
A consistent belief state does not support any real contra-
dictions.

Before we go on to formally define extensions, let us
quickly summarize what makes a simulation assumption
reasonable relative to a belief state:

1. It should be motivated by the belief state, i.e., derivable
fromit.

Jsent is a projection function that selects the plain sentences
from a set of supported sentences.

2. It should not contradict any of the belief state’s hypothe-
ses or any of their sound consequences.

3. It should not contradict any of the other reasonable as-
sumptions motivated by the belief state.

Rather than adapting Reiter’'s (1980) fixed point defini-
tionfor extensions, wefollow Cravo and Martinsand define
themintwo steps: (1) Wefind the set of simulation assump-
tions that each individually are reasonable for a particular
belief state without checking for any possible conflicts with
other assumptions. Such a set will be called a prima facie
extension, because primafacieit could be an extension. (2)
We partition a prima facie extension into maximal consis-
tent subsetsto form the proper extensions. The maximality
criterion ensures that we wind up with the smallest number
of extensions possible.

Def9 Let 0 = ({a, H, A, 0,)). Its prima facie exten-
sion P(o)istheset {(Ip,a/? sim,w,a) € ¢* | {(a, H U
a,{},0p)) isconsistent}.

For elements of the prima facie extension all that is nec-
essary isthat they and all the assumptions they depend on
could be added to the belief state as hypotheses without
leading to areal contradiction.

Cor 1 If abelief state o isinconsistent then P(o) = 0.
Since only consistent belief states have interesting exten-

sions, we will from now on aways assume that the belief
states we work with are consistent.

Def 10 Let o = ({a, H, A, 0,,)), and let the simulation hy-
potheses availablefor the direct simulation of some agent b
be given by the following sets:

Hi, = {plo =(Bp)a/? 7w {})}
71:,0 = {lp|o —={B(b,p),a/?, 1w, a),a # 0}
Thenoy = (b, Hy ,, A7 ,, o)) isthesimulation belief state

for agentb ino.

The simulation belief statefor some agent b specifiesthe set
of hypotheses and assumptions that can be introduced into
the simulation context for that agent via the rules SH and
SH'.

Extensions are intended to partition the ssimulation as-
sumptionsin the deductive closure of abelief stateinto sub-
sets of reasonable assumptions. What is reasonable is de-
fined in terms of derivability of certain sentencesin simu-
lation contexts at arbitrary depths. Even if abelief state o
contains only a finite set of hypotheses, there is no upper
bound to the level of nesting of simulation contexts used
to derive the elements of its deductive closure, since, for
example, hypothetical reasoning can introduce arbitrarily
nested belief sentences. For this reason we define unre-
stricted extensions iteratively, thus considering deeper and
deeper nested simulations with every iteration.



Def 11 Let S, T bearbitrary setsand P apredicate. Sisa
maximal subset of T" such that P(.S) iff S C T and P(S)
istrueandfor anye € (T'\ S) P(S U {e}) isfalse.

Def 12 Let 0 = ((a, H, A, 0p)). Itsextensions (o) are
defined incrementally with &;(o) referring to their state at
iteration ¢,7 > 1:

E(T)y={{}}foralli>1.

&1(o) = {F C P(0)} whereeach £ isa maximal subset
of P(o) such that

L (a, HUsent(E) {}, o,)) isconsistent, and

2. | a(s) C sent(E),* i.e., Eisclosed.
seFE

Eiv1(o) = {F C P(o)} whereeach F isamaximal subset
of P(o) such that

1. {a, HUsent(E),{}, op)) isconsistent, and

2. | J als) C sent(E), and
seFE

3. there existsan extension E, € &;(o,) such that
| a(s)nAC {lq|B(b,q) € sent(E,)}, and
seF

4. for each IB(b,p) € sent(E) there exists an extension
Ey € &i(op) suchthat the set
{lg | (IB(b,q),a/?, T, w,a) € o, a € sent(F)
subset of {!g | (lg,b/7?, 7,w, a) € 0F, a € SeNt(E}

}isa
b
E(o) = &(o) for the smallest I > 1 for which & (o) =
gl-}-k(U) for all & > 1.

Let uscomment on the third and fourth condition of the in-
duction step, which insure that the extensions of a simula-
tion belief state are properly constrained by the extensions
of its parent belief state and vice versa. Condition three
takes care of caseslikethis: If Cassiebelieves!B(Mary, P)
and !B(Mary, Q), but these two sentences are in different
extensions which meansthat she can never believethem si-
multaneoudly, then no simulation result inthe Mary context
which isbased on both !P and !Q should ever be believable
there.

Constraining into the opposite direction, condition four
handles cases like the following: If P and !Q arein differ-
ent extensions in the Mary context, then !B(Mary, P) and
IB(Mary, Q) should wind up in different extensions in the
parent context of Mary.

Figure 2 contains a somewhat contrived example in or-
der to demonstrate various believability situations at once.
Because of space restrictions and for simplicity, belief sen-
tences contain only proposition constants such as P or Q
as object propositions, and the only inference rule applied

* o selects the assumption origin set of a supported sentence.

in simulation contexts is or-introduction (\VI), since it does
not require any premises nor does it repeat any other sen-
tences. Instead of these simplifications, more complicated
sentences and inference patterns of the sort shown in Fig-
ure 1 could beused. The believabilitiesin the Cassie con-
text are given according to the belief state o defined in the
example. Thebelief statesthat determinethe believabilities
of the other contexts are not displayed individually. Sen-
tence 8 indicates how the problem of the introductory ex-
ample can be solved. It isasimulation result that directly
contradicts 2 which isahypothesis. For that reason 8 is not
even part of the prima facie extension P (o) and, since be-
cause of that it cannot be part of any extension at all, it is
unbelievable. The remaining simulation assumptions9, 15,
and 18 are al part of P(o). However, since 9 and 15 lead
to the contradictionin step 17, they cannot bein one exten-
sion together. For that reason, they and all sentences based
on them are only possibly believable, since thereis at |east
one extension in which they cannot be believed. The con-
tradiction is of course unbelievable, because no extension
contains 9 and 15. Sentence 18 is unproblematic and can
be element of all extensionsin £(¢). P(o) and £(o) are
both infinite sets which isindicated by the dots.

Intuitively, two sentencesthat arein different extensions
cannot be believed by Cassie “in the same breath”. An ex-
tension can be viewed as defining a frame of mind. Two
sentences might be believable individually evenif they are
in different frames of mind, their conjunction, however, is
only believableif they arein one frame together. Note, that
while Cassie simulates Mary’s reasoning sheisin a differ-
ent frame of mind, and thus sentence 6 is plausible in that
context. Only once 6 getsexported to the parent context the
resulting 8 becomes unbelievable. For simplicity, the ex-
ample did not demonstrate any dependencies between sim-
ulation and simulator context. For example, if 6 had been
unbelievable in the Mary context, then even without the
presence of 2 sentence 8 would have become unbelievable
in the Cassie context. Thisisdesirable, sincein our view of
simulative reasoning Cassie attributes her reasoning skills
identically to other agents.

When a sentence such as 8 becomes unbelievableit can
gtill participate in derivations, because the believabilities
are not taken into account by the deductive system Dsry,.
However, the support computation ensures that every sen-
tence based on it will also be unbelievable. Thisis afact
that can be exploited by the implementation which we will
quickly sketch below.

Approximating Extensions

Our approach shares an ugly problem with default logicsin
genera: The definition of extension is based on the notion
of consistency which in alogic with quantification such as



Cassie (T), |

1 [[ TB(M,B(S, P)),

2 || 1-B(M,B(S,PV Zs)),

8 @B(M, B(S, PV Zs)),

9 || #B(M,B(S,P)VZy),

10 || !'B(M,B(S,P)VZy) =
= -B(L,QV Z,),

1 || 1B(LQ),

15 || #B(L,QV Z),
16 || #-B(L,QVZL),

17 @®B(L,QVZ ) A-B(L,QVZ),

18 || AB(L,QV ZL,),

hyp, {1} {} H
hyp, {2} {} H

open Mary
sim, {1}, {8} BI 6
sim, {1}, {9} BI 7
hyp, {10}, {} H
hyp, {11} {} H

open Lucy
sim, {11}, {15} BI 13
der, {1,10},{9} —E 9,10
der, {1,10,11},{9,15} || AI 1516
sim, {11}, {18} BI 14

Mary (Cassie), M, Lucy (Cassie), L,
341} 12/{11}{}
3 IB(S, P), hyp, {3}, {} SH 1 12 1Q, hyp, {12}, {} SH 11
open MarySally 13 Qv Z, der, {12},{} vl 12
6 AB(S,PV Zs), sim, {3}, {6} BI 5 14 1QV Z,, der, {12},{} vl 12
7 IB(S,P)Vv Zm, der, {3}, {} vl 3
MarySally (Mary), S,
4/{3}{} = ((1,{1,2,10,11},{}, T))
4 TP, hyp, {4}, {} ( )= {(9,7,sim, {1},{9}), (15, 7,sim, {11}, {15}),
5 1PV Zs, der, {4},{} (18,7,sim, {11}, {18}),...}

E(o) =

{09, 7,sim, {1},{9}), (18,7, sim, {11}, {18}),.. .},

{(15,7,sim, {11}, {15}), (18,7, sim, {11}, {18}), .. .}}

Figure 2: Simulation with believabilities

SL isan undecidable property. Sincewe want to use SL not
just asatool for theoretical analysis, but as the foundation
for theimplementation of an actual belief reasoning engine,
this is a serious misfeature.

However, since we only want to model the reasoning of
an agent (as opposed to do theorem proving), we can choose
aweaker condition than consistency that iscomputable and
till useful: Instead of checking whether the sentences of an
extension are consi stent with the hypothesesof abelief state
which in genera isimpossible, we only require them to be
not known to beinconsistent. Thisissimilar tothe approach
taken by (Martins & Shapiro 1988).

Whenever in our implementation of SIMBA a sentence
gets added to areasoning context, and that sentence contra-
dictsan already existing one, werecompute approximations
of the extensions of all currently open reasoning contexts
according to our iterative definition. Since we only have a
finite number of sentences and only have to check for overt
inconsistency, we do not have to compute closures or go to

arbitrary levels of nesting. And since all sentences record
in their support on which hypotheses and assumptions they
are based, they will automatically changetheir believability
according to the latest extension approximation. With this
approach SL becomesadynamic logic of sorts. The quality
of the extensi on approximations can beimproved by invest-
ing more work in detecting inconsistencies. One way to do
isisto do some limited forward inference whenever a new
sentence gets derived in order to detect contradictions that
“lurk right around the corner”. E.g., in the example above
sentence 16 needed to be availableto see that 9 and 15 were
mutually inconsi stent assumptions.

Conclusion

We presented SL, a nonmonotonic belief logic capable of
formalizing an agent’ sreasoning about the beliefs of incom-
plete agents. SL combinesabelief logic with a default rea-
soning mechanism to allow the shadowing of belief ascrip-
tion resultsfrom simulative reasoning in case of evidenceto



the contrary. Using anotion of believability based on exten-
sions, an agent built upon SL can keep multiple extensions
“in mind” simultaneously, in case the simulation of two or
more agents leads to mutually contradicting results. By re-
laxing the consistency condition in the definition of exten-
sions, we get a notion of approximate extensions which is
feasible to compute in the implementation of SIMBA.

SL does not itself provide a method to choose between
multiple extensions, but it generates a set of candidates
from which one could then choose a preferred extension
according to some strategy. The derivation of simulation
assumptions is always based on belief hypotheses, thus,
an example strategy would be to order them according to
some measure of epistemic entrenchment of these underly-
ing hypotheses. However, the full logic SL does have rep-
resentations and inference rules to make the believabilities
of propositions explicit (cf. (Chalupsky 1995)), therefore,
Cassie can base decisions on such believabilitieseven with-
out a method of choosing between extensions.

It should be pointed out that the way SL uses default rea-
soning is different from what is done in Nested Theorist
(van Arragon 1991), a system which concentrates on mod-
eling users capable of default reasoning, rather than users
whose reasoning is incomplete. Naturally, our choice of a
deductive system as the underlying reasoning model limits
us to model deductive reasoning only. In fact, in our treat-
ment the only nondeductive aspect of Cassie’'sreasoning is
simulative reasoning. However, this restriction is merely
amatter of emphasis rather than areal limitation. Simula
tive reasoning is a paradigm that takes an arbitrary reason-
ing mechanism and attributesit to another agent in order to
simulateitsreasoning. Our choicewasto usedeductiverea-
soning as the basic mechanism, but in principle it could be
anything. For example, it would be possibleto combine SL
with the default logic SWMC of Cravo and Martins (1993),
thus providing Cassie with the additional ability to reason
about the default reasoning of other agents akin to what is
done by the Nested Theorist system, but in a more general
framework.
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