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Abstract

We show how the subjective and nonmonotonic belief logic
SL formalizes an agent’s reasoning about the beliefs of in-
complete agents. SL provides the logical foundation of
SIMBA, an implemented belief reasoning system which con-
stitutes part of an artificial cognitive agent called Cassie. The
emphasis of SIMBA is on belief ascription, i.e., on govern-
ing Cassie’s reasoning about the beliefs of other agents. The
belief reasoning paradigm employed by SIMBA is simula-
tive reasoning. Our goal is to enable Cassie to communicate
with real agents who (1) do not believe all consequences of
their primitive or base beliefs, (2) might hold beliefs differ-
ent from what Cassie views them to be, and (3) might even
hold inconsistent beliefs. SL provides a solution to the first
two problems and lays the groundwork to a solution for the
third, however, in this paper we will focus only on how agent
incompleteness can be handled by integrating a belief logic
with a default reasoning mechanism. One possible applica-
tion of SL and SIMBA lies in the area of user modeling. For
example, Cassie could be in the role of an instructor who,
among other things, has to deal with the incomplete beliefs
of her students.

Introduction
SIMBA, an acronym for simulative belief ascription, is an
implemented belief reasoning system which constitutes part
of an artificial cognitive agent who we call Cassie. Its main
concern is the formalization of various aspects of belief as-
cription, i.e., it forms the machinery with which Cassie can
reason about the beliefs of other agents. SIMBA’s logical
foundation is SIMBA Logic, or SL, which is a fully inten-
sional, subjective, nonmonotonic belief logic.

It is our long-term goal to give Cassie the ability to com-
municate with other agents such as humans in natural lan-
guage, thus we have to make sure that she can deal with real�
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agents. In the design of a belief logic to describe Cassie’s
reasoning we are faced with at least three major challenges:
(1) Real agents are incomplete, i.e., they do not believe all
consequences of their primitive or base beliefs, (2) Cassie’s
beliefs about these agents might be incorrect requiring her
to revise her beliefs, and (3) they might hold inconsistent
beliefs. SL is a logic that provides solutions to the first
two problems and lays the groundwork to a solution for the
third, but in this paper we will only describe how SL can
handle incomplete agents by incorporating a default reason-
ing mechanism into a belief logic. The other aspects of SL
are described in (Chalupsky 1995). One possible applica-
tion of SL and SIMBA lies in the domain of user modeling.
For example, Cassie could be in the role of an instructor,
who, among other things, has to deal with the incomplete
beliefs of her students.

Incomplete Agents

When Cassie reasons about the beliefs of some real agent
she has to take into account that real agents are incomplete.
Even if all of Cassie’s beliefs about the beliefs of the agent
are correct, a consequence of these beliefs realizable by
Cassie might be one that the agent has not yet concluded.
A real-life example of such a situation is teaching. Many
times a teacher teaches the basics of some subject and as-
sumes that the “obvious” conclusions have been drawn by
the students, only to find out later at an exam that the as-
sumption was obviously wrong.

In slightly more formal terms, if Cassie believes that Os-
car believes

�
and that

�����
, it makes sense for her to as-

sume that he also believes
�

. But then, he might not. This
failure of logical consequence in belief contexts has trou-
bled researchers for a long time. Most standard logics of
knowledge or belief solve the problem by either avoiding it
(e.g., syntactic logics), or by idealizing agents (e.g., mod-
eling them as logically omniscient). Various attempts have
been made to overcome some of these shortcomings of stan-
dard treatments, for example, (Levesque 1984; Konolige



1986; Fagin & Halpern 1988; Lakemeyer 1990). However,
the success is always achieved at considerable cost. The re-
sulting logics either restrict certain forms of inference, or
trade one idealization for another, or make somewhat unin-
tuitive assumptions about the nature of agents’ reasoning,
thus we think none of them are very well suited as a formal
foundation of Cassie’s reasoning.

Belief Representation

We view Cassie’s “mind” as a container filled with a vari-
ety of objects, some of which constitute her beliefs. These
beliefs are represented by sentences of �	��
 , the language
of SL. ����
 very much looks like the language of standard
first-order predicate calculus, but it has a very different se-
mantics. Its sentences are not true or false statements about
Cassie’s beliefs, but they are Cassie’s beliefs which is why
we call SL a subjective logic. �	�

 is primarily a language
of proposition-valued function terms such as, for example,�����������������
�����! #"%$�&

, whose denotation is intended to be the
proposition John loves Mary. A sentence is formed by pre-
fixing a proposition term with an exclamation mark as in' ���������(�)�����
�����! #"%$�&

. The semantics of a sentence is that the
agent whose mind contains it (usually taken to be Cassie)
believes the proposition denoted by the proposition term.

Cassie’s beliefs about the beliefs of other
agents are expressed by sentences of the kind'+* �),� 
-.- $��/���
�0���������1�������! #"+$�&2&

. The proposition term
of such a sentence is simply a nested application of
proposition-valued functions but not a higher-order rela-
tion. The nesting can go to arbitrary depth to account for
propositions such as John believes that Sally believes that I
believe that 3�3/3 . A full motivation and formal specification
of the syntax and semantics of SL is given in (Chalupsky
& Shapiro 1994). It should be pointed out that even though
Cassie’s beliefs might be viewed as a database of belief
sentences, our model is not the database approach to belief
representation. To form beliefs about the beliefs of other
agents Cassie has the full logical arsenal at her disposal,
including negation and disjunction. Via introspection she
can even have beliefs about her own beliefs, for example,'.45* ��6+�/7�8:90; �<�=�>��?@�A&B&

.

Reasoning as Logical Inference

While the syntax and semantics of SL provide the formal
basis of Cassie’s belief representation, we model her rea-
soning as logical inference according to a deductive sys-
tem CD��
 . An implementation of a proof procedure for CD��

serves as her actual reasoning engine. C!�

 is a natural de-
duction system which consists of a part very similar to natu-
ral deduction systems for predicate calculus, and a part that
deals with belief reasoning. We will introduce CD��
 by way
of example as we go along.

The focus of SL and SIMBA is on the formalization of
Cassie’s reasoning about the beliefs of other agents. The
reasoning paradigm we use for that is simulative reason-
ing (Creary 1979; Chalupsky 1993; Barnden et al. 1994), a
mechanism in which Cassie hypothetically assumes the be-
liefs of some other agent as her own and then tries to infer
conclusions from these hypothetical beliefs with help of her
own reasoning skills.

Notational Conventions:
,� 
���E����"F; G

indicates object lan-
guage terms, for example,

,IHJ #"+K���L5��M( #"N&
, and OFP=Q�RSONT(U indi-

cate meta-variables ranging over such terms, for example,VXWZY . *
is the belief function and

6
is Cassie’s ego con-

stant. All object and function constants start with an upper-
case letter; variables are written in lower case. Simulation
contexts (explained below) are drawn with double vertical
lines, hypothetical contexts only have single lines, contexts
that could be either have one single and one double line. To
abbreviate sentences that appear in reasoning contexts we
use their step numbers as aliases. For example, if the line
with step number 5 contains the sentence

' ,IHX �"+K���L[�=M( #"N&
,

then we can use \ as an abbreviation wherever we want to
refer to that sentence.

An Example
Figure 1 shows an example in which Cassie is imagined
to be a teacher of basic complexity theory. Oscar is one
of her students of whom she assumes that from the mate-
rial presented in class he has arrived at the following obvi-
ous (to her) conclusion: If the complexity classes P and NP
are equivalent then the NP-complete SAT problem is com-
putable in polynomial time.

Here is a quick introduction to C!�

 derivations: The
main structuring device are inference or reasoning contexts
which are drawn as boxes. They come in two kinds: (1)
Simulation contexts to simulate a particular agent’s reason-
ing, and (2) hypothetical contexts to carry out hypothetical
reasoning. Every context has a name, a pointer to a parent
context (or ] for the top-level context) and the agent whose
reasoning is carried out listed in the top field. Every appli-
cation of an inference rule adds another sentence to one of
the open contexts (there is no order requirement). To follow
a derivation one follows the step numbers on the left of the
context boxes in sequence. This scheme is very close to the
actual implementation.

The top-level simulation context in the example repre-
sents Cassie’s primary frame of mind. Every sentence in
that context represents (or is) one of her beliefs. Steps 1
to 5 display her beliefs about Oscar’s grasp of complexity
theory: ^ (the sentence in step 1) represents her belief that
he believes that if two classes are equivalent every element
of one class is also element of the other. ^ is followed by
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Figure 1: Oscar’s reasoning is incomplete

a
��$�q

origin tag and by its origin set or hypothesis support
(this support structure is derived from (Martins & Shapiro
1988)). Since ^ is a hypothesis, its origin set just contains
the sentence itself. The H on the right of the box indicates
that this sentence was introduced with the rule of hypothe-
sis which is the only means to add new, otherwise unjusti-
fied beliefs to a reasoning context. Cassie also believes that
Oscar believes that P and NP are classes, that for every in-
stance of P there is an algorithm that solves it in polynomial
time, and that SAT is in NP.

What follows is a simulation of Oscar’s reasoning in the~ a=��`�� context. It is not really necessary to follow this ex-
ample in all its detail, it is just supposed to present the gen-
eral flavor of our system and show the incompleteness prob-

lem. In the ~ a��(`�� context Cassie assumes the object propo-
sitions of her beliefs about Oscar as her own beliefs to sim-
ulate his reasoning. An exact definition of the simulation
rules will be given later. Since the sentence in question is
an entailment, she has to perform hypothetical reasoning in
the context ~ a=��`�� t[�<� to derive it. When sentences are de-
rived they get a � �0" origin tag, and their hypothesis support
is in most cases computed by simply taking the union of the
premise supports. Finally, Cassie derives ^ � and ascribes it
to Oscar as ^ � in her top-level context. The hypothesis sup-
port of ^ � was computed with help of the map stored at the
top of the ~ a=�(`#� context. In this example we view this last
belief introduction step as a sound inference rule that is not
different from rules such as Modus Ponens, etc.



A few weeks later Cassie gives an exam. While she
grades Oscar’s exam she finds out – much to her dismay –
that he obviously does not believe sentence ^ � , otherwise he
would have solved one of the exam problems correctly (this
is especially disappointing in light of ^/� ). Cassie’s new be-
lief is introduced in step 99, but that directly contradicts the
simulation result of step 18. What is she supposed to be-
lieve now?

If we do not take special action now, Cassie will be able
to derive and believe any arbitrary sentence by using con-
tradiction elimination. It is certainly completely undesir-
able to have Cassie’s own top-level reasoning collapse just
because one of the agents she knows about is incomplete.
There are two scenarios that can explain the resulting con-
tradiction:

1. Some of Cassie’s initial belief hypotheses about Oscar’s
beliefs are incorrect. This case needs to be handled by
belief revision which is supported by SL but outside the
scope of this paper.

2. Oscar’s reasoning is incomplete. It is easily imaginable
that each of Cassie’s belief hypotheses about Oscar’s be-
liefs is directly “observable” by reading Oscar’s exam
paper, only Oscar’s belief in the obvious conclusion is
not manifested anywhere, even worse, it is directly ob-
servable that he does not believe the conclusion in ques-
tion. This case cannot be solved by belief revision, be-
cause there is nothing to revise. All the initial beliefs are
correct and should not be retracted. The problem is that
Oscar’s reasoning is incomplete, and what needs to be
done is to block the incorrect simulation result in light of
the striking evidence to the contrary.

Simulation Results are Default Conclusions
Our solution to the problem above is to treat simulation re-
sults as default conclusions. A default conclusion can be
shadowed if it contradicts any belief based solely on proper
belief hypotheses.

To handle the default character of simulation results at
the logic level we introduce the concept of a simulation as-
sumption. A simulation assumption is a special kind of hy-
pothesis that is justified by a derivation from a set of proper
hypotheses. In a sense an assumption is a hermaphrodite,
because it is hypothesis and derived sentence simultane-
ously. This characterization of an assumption was intro-
duced by Cravo and Martins (1993) in their formalization of
default reasoning, and the following treatment owes a great
deal to their work.

In the example above we assumed the proposition of ev-
ery derivable sentence to also be believable. Thus, believ-
ability was a monotonic property. Using the concept of sim-
ulation assumptions, we can define a nonmonotonic variant

of believability based on the primitive notion of derivabil-
ity. This new version will allow us to shadow simulation re-
sults as well as handle mutually contradicting simulations.

Formalization
Below are those inference rules of C �

 that are particularly
sensitive to the distinction between hypotheses and assump-
tions. In every rule it is assumed that R is the step number
of the immediately prior inference step, that the sentence at
line R<��� is the conclusion, and that all other sentences are
premises. A new assumption support element is added to
the right of the hypothesis support of every sentence. It con-
tains the set of simulation assumptions on which the deriva-
tion of a particular sentence is based. In every inference
step hypothesis and assumption supports are combined sep-
arately. � , � , and � are meta-variables (indices are used
where necessary), where � ranges over origin tags, � over
hypothesis supports, and � over assumption supports.

Negation Introduction (
4 � ): From a contradiction that is

�
( 3�3�3 ), Q�/���� ' V m 4 V , � , ���nr ' � s , r�s�/���R���� ' 4	�
, � ��" , ���|r ' � s , r�s 4 � �

solely based on hypotheses we can deduce the negation of
any element of ���Jr ' � s , i.e., the negation of any hypothesis
on which the derivation of the contradiction was based. Fol-
lowing Cravo and Martins we will call such a contradiction
a real contradiction as opposed to an apparent contradic-
tion which is partly based on assumptions. No equivalent
rule exists for apparent contradictions.

Simulation Hypothesis ( ��t , �1t5  ): The rule of simula-
tion hypothesis comes in two variants. ��t : If the belief sen-

�
( 3/3�3 ), Q�/���� 'z* �)¡�� V�¢ & , � ¢ , � ¢ , r�s�/����   'z* �)¡�� V�£ & , � £ , � £ , � £¥¤¦�§�/���

C (
�

),
¡
,3�3�3 ' V ¢ � � ¢ r
s � 3/3�3 ' V £ � � £ � £�����R)�¨� ' V ¢ , �/$
q

, r ' V ¢ s , r
s ��t ������R   ��� ' V
£ , �=;dH
, r�s , r ' V�£ s ��t5  �  

tence in the parent context is not based on any assumptions



then its object proposition will be introduced as a proper hy-
pothesis in the simulation context. ��t5  : If the parent sen-
tence did depend on assumptions, then the object proposi-
tion will be introduced as an a priori simulation assump-
tion which is indicated by the new

�=;dH
origin tag and the

assumption origin set. In both cases the proper mapping be-
tween origin sets of the parent sentence and the simulation
hypothesis is stored at the top of the simulation context.

Belief Introduction ( ��� ): This is the only rule of C ��

�

( 3/3�3 ), Q���/�
R)�¨� 'z* ��¡�� Y & , ��;dH , ©ª «
¬®­�¯1°<±� ¢ , r 'z* �)¡�� Y & s@�²©ª «
¬®­�¯1°<±� ¢ �	� �

C (
�

),
¡
,' VA³ � �}´=��´ � 3�3�3 � ' V1µ � � µ � µ���/�� ' Y , � , �·¶�U �I¸ V U � C � � & , ����/�

that actually derives simulation assumptions. Whenever
some sentence

' Y is derived in a simulation context for
some agent

¡
, and the hypothesis support of the new sen-

tence is contained in the set of simulation hypothesesU �¹¸ V U � C � � & ´ introduced up to that point, then we can in-
troduce the belief sentence

'z* ��¡�� Y & as a simulation assump-
tion in the parent context. The new belief sentence gets a��;dH

origin tag to identify it as an assumption, and its ori-
gin sets are computed by mapping the origin set of

' Y back
into the parent context via the map stored at the top of the
simulation context (we are sloppy here, since the possibility
of multiple derivations requires a slightly more complicated
mapping scheme). Finally,

'+* ��¡#� Y & gets added to its own as-
sumption support which makes it into the dual gender entity
that is half hypothesis and half derived result.

As motivated above, the top-level reasoning context of
a CD��
 derivation models Cassie’s primary state of mind.
Over time sentences will get added to that context either as
derived results or as hypotheses, and some hypotheses will
also get removed as a result of belief revision. Thus the set
of believable sentences changes over time. To get a han-
dle on these changes we will look at individual snapshots
of reasoning contexts called belief states:

Def 1 A belief state º is a quadruple » »¼Q �=½n�2¾D� º «�¿ ¿ , where
(1) ” Q ” is a reasoning agent, (2)

½
is a set of sentences

taken to be hypotheses, (3)
¾

is a set of sentences taken to
be a priori simulation assumptions, and (4) º « is either ]
or a parent or simulator belief state.À(Á�Â�Ã�Ä<Á�ÅNÆDÇ2ÈDÉ

collects all sentences introduced into contextÆ
via the rule of Ê
Ë up to step

È
.

The support of a sentence can be viewed as a summary of
things necessary to derive it. In the following we will make
heavy use of sentence supports, hence, we define the fol-
lowing notation:

Def 2 A supported sentence » ' V � Q �
Ì � � � � � � ¿ is a quintu-
ple, where (1)

' V is an arbitrary ����
 -sentence, (2) Q ��Ì is
either some agent ” Q ” or the unspecified agent ”

Ì
”, (3) �

is an origin tag which can be either
�/$
q

, � ��" , or
�=;dH

, (4) �
is the set of hypotheses, and (5) � is the set of simulation
assumptions on which the derivation of

' V is based.

Adding the agent element to the support is necessary, since
inference rules such as introspection (not presented here)
encode the agent of a reasoning context in the derived sen-
tence. If no such rule was used in the derivation of a sen-
tence its support contains the unspecified agent ”

Ì
”.

Now we are ready to define a derivation relation between
belief states and supported sentences:

Def 3 » »NQ �=½n�2¾D� º «�¿ ¿ » ' Y � Q ��Ì � � � � � � ¿ iff there exists a
derivation of the form�

( ] ),
6

�/��� 3�3/3 C ( 3�3�3 ), Q�����R ' Y , � , � , � 3�3�3
such that

�¹¸ V U � C � R & ¶ ½ and U �I¸ V U   � C � R & ¶ ¾ . Í
This definition of derivability is applicable to belief states
describing top-level contexts as well as nested simulation
contexts. Often it is also convenient to work with deductive
closures:

Def 4 Let º ¦ » »NQ ��½Î�B¾!� º « ¿ ¿ . Its deductive closure is the
set º<Ï ¦ r�» ' Y � Q ��Ì � � � � � � ¿5Ð º » ' Y � Q ��Ì � � � � � � ¿ s .
The following theorem states an important fact about sup-
port computation: The hypotheses and assumptions col-
lected in the support of a derived sentence are sufficient
(though not necessary) to derive it.

The 1 If » »NQ ��½Î�B¾!� º «�¿ ¿ » ' Y � Q ��Ì � � � � � � ¿ then» »NQ � � �2¾·Ñ � � º «�¿ ¿ » ' Y � Q ��Ì � � � � � � ¿ .
The main enterprise below is to define sets of reasonable
assumptions motivated by a particular belief state. Follow-
ing standard default logic terminology we will call such a
set an extension (Reiter 1980).

Def 5 Let º ¦ » »¼Q ��½Î�B¾!� º «0¿ ¿ . Any set Ò such thatÒÓ¶pr<» ' V � Q ��Ì �B�=;dHX� � � � ¿oÔ º<Ï Ð � ¤¦Õ§ s is called an
extension set for º .

Thus, any set of (not necessarily reasonable) simulation as-
sumptions derivable from a belief state can be an extensionÖ Â<Ã�Ä<Á�ÅNÆDÇ=×+É

collects all sentences introduced into context
Æ

via Ë or Ê
Ë up to step
×
, and

Á(Â<Ã�Ä<Á(Ø
collects all a priori simulation

assumptions introduced via Ê�Ë Ø .



set. Note, that the a priori assumptions
¾

are always triv-
ially derivable from º .

Def 6 Let º ¦ » »NQ<Ù ��½Î�B¾!� º « ¿ ¿ and Ò an extension set
for º . A supported sentence » ' V � Q<Ú �
Ì � � � � � � ¿ renders its
proposition V believable in º extended by Ò iff:

1. Q Ù and Q Ú ��Ì are compatible, i.e., they are either identical
or Q Ú ¦ Ì , and

2. �Û¶ ½ , and
3. �o¶ ½ � sent

� Ò & . Ü
Regardless of what the correct extensions of a belief state
will turn out to be, we are now ready to define the follow-
ing degrees of believability of a sentence relative to a belief
state and a set of arbitrary extension sets:

Def 7 Let º ¦ » »¼Q�Ù �=½n�2¾D� º « ¿ ¿ and Ý � º & a set of
arbitrary extension sets for º . A supported sentence» ' V � Q Ú ��Ì � � � � � � ¿ renders its proposition VÞ certain, written with a bold exclamation mark

' ' V , iff its
support renders it believable in belief stateº ¦ » »NQ<Ù ��½Î� § � º « ¿ ¿ ,Þ plausible, written

'' 'ß V , iff either it is certain, or Ý � º & ¤¦�§
and for every Ò Ô Ý � º & its support renders it believable
in º extended by Ò ,Þ possible, written

'' 'à V , iff either it is plausible, or Ý � º & ¤¦§ and for at least one Ò Ô Ý � º & its support renders it
believable in º extended by Ò ,Þ or unbelievable, written

'' 'àá V , if its support does not ren-
der it possible.

The symbols
' '
,
'' 'ß ,
'' 'à
, and

'' 'àá
are intended to illustrate “cer-

tain”, “approximate”, “very approximate”, and “out”. They
are annotations used to indicate the degree of believabil-
ity of a particular sentence in a particular derivation. The
plain exclamation mark as in

' V only indicates that the sen-
tence was derivable according to the inference rules of the
logic. It classifies the proposition V as a belief candidate,
but whether Cassie actually believes V depends on its be-
lievability according to the current state of her various rea-
soning contexts.

Def 8 A belief state » »NQ ��½Î�B¾!� º «�¿ ¿ is consistent iff» »NQ ��½Î�B¾!� º «�¿ ¿ � » ' V m 4 V � Q ��Ì � � � � � r�s ¿ for any V .

A consistent belief state does not support any real contra-
dictions.

Before we go on to formally define extensions, let us
quickly summarize what makes a simulation assumption
reasonable relative to a belief state:

1. It should be motivated by the belief state, i.e., derivable
from it.â

sent is a projection function that selects the plain sentences
from a set of supported sentences.

2. It should not contradict any of the belief state’s hypothe-
ses or any of their sound consequences.

3. It should not contradict any of the other reasonable as-
sumptions motivated by the belief state.

Rather than adapting Reiter’s (1980) fixed point defini-
tion for extensions, we follow Cravo and Martins and define
them in two steps: (1) We find the set of simulation assump-
tions that each individually are reasonable for a particular
belief state without checking for any possible conflicts with
other assumptions. Such a set will be called a prima facie
extension, because prima facie it could be an extension. (2)
We partition a prima facie extension into maximal consis-
tent subsets to form the proper extensions. The maximality
criterion ensures that we wind up with the smallest number
of extensions possible.

Def 9 Let º ¦ » »NQ �=½n�2¾D� º «�¿ ¿ . Its prima facie exten-
sion ã � º & is the set r�» ' V � Q ��Ì �2��;dHX� � � � ¿äÔ º<Ï Ð » »NQ ��½ �� � r�s � º «�¿ ¿ is consistent s .
For elements of the prima facie extension all that is nec-
essary is that they and all the assumptions they depend on
could be added to the belief state as hypotheses without
leading to a real contradiction.

Cor 1 If a belief state º is inconsistent then ã � º & ¦�§ .
Since only consistent belief states have interesting exten-
sions, we will from now on always assume that the belief
states we work with are consistent.

Def 10 Let º ¦ » »NQ ��½Î�B¾!� º «�¿ ¿ , and let the simulation hy-
potheses available for the direct simulation of some agent

¡
be given by the following sets:½ ÏåBæ Ù ¦ r ' V Ð º » 'z* �)¡�� V &(� Q ��Ì � � � � � r�s ¿ s¾ Ï åBæ Ù ¦ r ' V Ð º » 'z* �)¡�� V &(� Q ��Ì � � � � � � ¿ � � ¤¦�§ s
Then º å ¦ » » ¡���½ ÏåBæ Ù �B¾ Ï åBæ Ù � º ¿ ¿ is the simulation belief state
for agent

¡
in º .

The simulation belief state for some agent
¡

specifies the set
of hypotheses and assumptions that can be introduced into
the simulation context for that agent via the rules ��t and�1t5  .

Extensions are intended to partition the simulation as-
sumptions in the deductive closure of a belief state into sub-
sets of reasonable assumptions. What is reasonable is de-
fined in terms of derivability of certain sentences in simu-
lation contexts at arbitrary depths. Even if a belief state º
contains only a finite set of hypotheses, there is no upper
bound to the level of nesting of simulation contexts used
to derive the elements of its deductive closure, since, for
example, hypothetical reasoning can introduce arbitrarily
nested belief sentences. For this reason we define unre-
stricted extensions iteratively, thus considering deeper and
deeper nested simulations with every iteration.



Def 11 Let ç �Bè be arbitrary sets and ã a predicate. ç is a
maximal subset of

è
such that ã � ç & iff çÛ¶ è and ã � ç &

is true and for any é Ô �¼è �5ç & ã � çê�nr�é�s & is false.

Def 12 Let º ¦ » »NQ ��½Î�B¾!� º «�¿ ¿ . Its extensions ë � º & are
defined incrementally with ë ¢ � º & referring to their state at
iteration O � Okìí� :
ë ¢ � ] & ¦ r�r�s
s for all Okìí� .
ëI´ � º & ¦ r0Òî¶ïã � º & s where each Ò is a maximal subset
of ã � º & such that

1. » »NQ �=½ � sent
� Ò &�� r
s � º « ¿ ¿ is consistent, and

2. ©Ú ­�ð �
� U & ¶ sent

� Ò & , ñ i.e., Ò is closed.

ë ¢®ò ´ � º & ¦ r0Òó¶ôã � º & s where each Ò is a maximal subset
of ã � º & such that

1. » »NQ �=½ � sent
� Ò &�� r
s � º «�¿ ¿ is consistent, and

2. ©Ú ­�ð �
� U & ¶ sent

� Ò & , and

3. there exists an extension Ò « Ô ë ¢ � º « & such that©Ú ­�ð �
� U &kÑ�¾ ¶�r ' Y Ð 'z* �)¡�� Y & Ô sent

� Ò « & s , and

4. for each
'z* �)¡�� V & Ô sent

� Ò & there exists an extensionÒ å Ô ë ¢ � º å & such that the setr ' Y Ð » '+* �)¡�� Y &(� Q �
Ì � � � � � � ¿õÔ º<Ï � � Ô sent
� Ò & s & is a

subset of r ' Y Ð » ' Y ��¡ �
Ì � � � � � � ¿<Ô º<Ï å � � Ô sent
� Ò å & s & .

ë � º & ¦ ë�ö � º & for the smallest R¥ì÷� for which ë�ö � º & ¦ë�ö òAø � º & for all ùúìû� .
Let us comment on the third and fourth condition of the in-
duction step, which insure that the extensions of a simula-
tion belief state are properly constrained by the extensions
of its parent belief state and vice versa. Condition three
takes care of cases like this: If Cassie believes

'+* �=�D �"+$��/�A&
and

'+* �=�D �"+$��=�|&
, but these two sentences are in different

extensions which means that she can never believe them si-
multaneously, then no simulation result in the Mary context
which is based on both

' �
and

' �
should ever be believable

there.
Constraining into the opposite direction, condition four

handles cases like the following: If
' �

and
' �

are in differ-
ent extensions in the Mary context, then

'%* �=�! #"+$��/�A&
and'+* ���! #"%$�����&

should wind up in different extensions in the
parent context of Mary.

Figure 2 contains a somewhat contrived example in or-
der to demonstrate various believability situations at once.
Because of space restrictions and for simplicity, belief sen-
tences contain only proposition constants such as

�
or
�

as object propositions, and the only inference rule appliedü/ý
selects the assumption origin set of a supported sentence.

in simulation contexts is or-introduction ( W � ), since it does
not require any premises nor does it repeat any other sen-
tences. Instead of these simplifications, more complicated
sentences and inference patterns of the sort shown in Fig-
ure 1 could be used. The believabilities in the Cassie con-
text are given according to the belief state º defined in the
example. The belief states that determine the believabilities
of the other contexts are not displayed individually. Sen-
tence

�
indicates how the problem of the introductory ex-

ample can be solved. It is a simulation result that directly
contradicts v which is a hypothesis. For that reason

�
is not

even part of the prima facie extension ã � º & and, since be-
cause of that it cannot be part of any extension at all, it is
unbelievable. The remaining simulation assumptions � , ^/\ ,
and ^ � are all part of ã � º & . However, since � and ^�\ lead
to the contradiction in step 17, they cannot be in one exten-
sion together. For that reason, they and all sentences based
on them are only possibly believable, since there is at least
one extension in which they cannot be believed. The con-
tradiction is of course unbelievable, because no extension
contains � and ^/\ . Sentence ^ � is unproblematic and can
be element of all extensions in ë � º & . ã � º & and ë � º & are
both infinite sets which is indicated by the dots.

Intuitively, two sentences that are in different extensions
cannot be believed by Cassie “in the same breath”. An ex-
tension can be viewed as defining a frame of mind. Two
sentences might be believable individually even if they are
in different frames of mind, their conjunction, however, is
only believable if they are in one frame together. Note, that
while Cassie simulates Mary’s reasoning she is in a differ-
ent frame of mind, and thus sentence

�
is plausible in that

context. Only once
�

gets exported to the parent context the
resulting

�
becomes unbelievable. For simplicity, the ex-

ample did not demonstrate any dependencies between sim-
ulation and simulator context. For example, if

�
had been

unbelievable in the Mary context, then even without the
presence of v sentence

�
would have become unbelievable

in the Cassie context. This is desirable, since in our view of
simulative reasoning Cassie attributes her reasoning skills
identically to other agents.

When a sentence such as
�

becomes unbelievable it can
still participate in derivations, because the believabilities
are not taken into account by the deductive system C ��
 .
However, the support computation ensures that every sen-
tence based on it will also be unbelievable. This is a fact
that can be exploited by the implementation which we will
quickly sketch below.

Approximating Extensions
Our approach shares an ugly problem with default logics in
general: The definition of extension is based on the notion
of consistency which in a logic with quantification such as
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Figure 2: Simulation with believabilities

SL is an undecidable property. Since we want to use SL not
just as a tool for theoretical analysis, but as the foundation
for the implementation of an actual belief reasoning engine,
this is a serious misfeature.

However, since we only want to model the reasoning of
an agent (as opposed to do theorem proving), we can choose
a weaker condition than consistency that is computable and
still useful: Instead of checking whether the sentences of an
extension are consistent with the hypotheses of a belief state
which in general is impossible, we only require them to be
not known to be inconsistent. This is similar to the approach
taken by (Martins & Shapiro 1988).

Whenever in our implementation of SIMBA a sentence
gets added to a reasoning context, and that sentence contra-
dicts an already existing one, we recompute approximations
of the extensions of all currently open reasoning contexts
according to our iterative definition. Since we only have a
finite number of sentences and only have to check for overt
inconsistency, we do not have to compute closures or go to

arbitrary levels of nesting. And since all sentences record
in their support on which hypotheses and assumptions they
are based, they will automatically change their believability
according to the latest extension approximation. With this
approach SL becomes a dynamic logic of sorts. The quality
of the extension approximations can be improved by invest-
ing more work in detecting inconsistencies. One way to do
is is to do some limited forward inference whenever a new
sentence gets derived in order to detect contradictions that
“lurk right around the corner”. E.g., in the example above
sentence ^ � needed to be available to see that � and ^/\ were
mutually inconsistent assumptions.

Conclusion
We presented SL, a nonmonotonic belief logic capable of
formalizing an agent’s reasoning about the beliefs of incom-
plete agents. SL combines a belief logic with a default rea-
soning mechanism to allow the shadowing of belief ascrip-
tion results from simulative reasoning in case of evidence to



the contrary. Using a notion of believability based on exten-
sions, an agent built upon SL can keep multiple extensions
“in mind” simultaneously, in case the simulation of two or
more agents leads to mutually contradicting results. By re-
laxing the consistency condition in the definition of exten-
sions, we get a notion of approximate extensions which is
feasible to compute in the implementation of SIMBA.

SL does not itself provide a method to choose between
multiple extensions, but it generates a set of candidates
from which one could then choose a preferred extension
according to some strategy. The derivation of simulation
assumptions is always based on belief hypotheses, thus,
an example strategy would be to order them according to
some measure of epistemic entrenchment of these underly-
ing hypotheses. However, the full logic SL does have rep-
resentations and inference rules to make the believabilities
of propositions explicit (cf. (Chalupsky 1995)), therefore,
Cassie can base decisions on such believabilities even with-
out a method of choosing between extensions.

It should be pointed out that the way SL uses default rea-
soning is different from what is done in Nested Theorist
(van Arragon 1991), a system which concentrates on mod-
eling users capable of default reasoning, rather than users
whose reasoning is incomplete. Naturally, our choice of a
deductive system as the underlying reasoning model limits
us to model deductive reasoning only. In fact, in our treat-
ment the only nondeductive aspect of Cassie’s reasoning is
simulative reasoning. However, this restriction is merely
a matter of emphasis rather than a real limitation. Simula-
tive reasoning is a paradigm that takes an arbitrary reason-
ing mechanism and attributes it to another agent in order to
simulate its reasoning. Our choice was to use deductive rea-
soning as the basic mechanism, but in principle it could be
anything. For example, it would be possible to combine SL
with the default logic SWMC of Cravo and Martins (1993),
thus providing Cassie with the additional ability to reason
about the default reasoning of other agents akin to what is
done by the Nested Theorist system, but in a more general
framework.
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