Acting in Service of Inference

(and wvice versa)*

Deepak Kumar

Department of Math. & Computer Science

Bryn Mawr College
Bryn Mawr, PA 19010
(610) 526-7485
dkumar@cc.brynmawr.edu

Abstract

We describe an integrated belief-desire-intention
(BDI) architecture that is capable of acting in service
of inference and wice versa. The results are achieved
by identifying the relationship between inference and
acting, and making certain architectural and ontolog-
ical commitments. A single module called a rational
engine operates on a uniform representation of beliefs,
acts, plans, and reasoning rules. The architecture is
implemented in the SNePS semantic network process-
ing system.

1 INTRODUCTION

In traditional planning/acting systems the inference
engine is employed in service of planning and act-
ing. In other words, it is the planning and acting
processes that invoke the modeled thought (reason-
ing) processes. In the architecture presented in this
paper, it is also possible for inference to use plan-
ning and acting. I.e., it is possible for thought to
lead to action. We describe an integrated approach
to reasoning and acting that is based on the following
considerations:

e The modeled agent reasons, plans, as well as acts
based on its beliefs, desires, and intentions.

e The modeled agent’s beliefs, desires, actions,
plans, etc., are represented in a single knowledge

*From the Proceedings of the Seventh Florida Artificial In-
telligence Research Symposium (FLAIRS-94), Douglas Dankel
IT (editor), May 1994.

0

Stuart C. Shapiro
Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260
(716) 645-3181
shapiro@cs.buffalo.edu

representation formalism.

e The modeled agent’s reasoning and acting be-
havior is implemented using an amalgamated
model of inference and acting.

The above considerations are satisfied by an im-
plemented BDI (for Belief-Desire-Intention) architec-
ture. In doing so, the architecture makes some se-
mantic, ontological, as well as operational commit-
ments. The architecture makes a semantic clarifi-
cation between inference and acting—that they are
the same. Inference is a kind of acting: mental act-
ing. This leads to an operational commitment an
architecture’s reasoning and acting behavior should
be carried out by a single module (as opposed to tra-
ditional approaches that employ two or more sepa-
rate modules: an inference engine; a planner; and an
acting ezecutive). We call such a module a rational
engine as it is solely responsible for the agent’s rea-
soning, planning, and acting behavior. Not only does
the modeled agent use inference in service of acting,
it also employs acting in service of inference. In this
paper, we describe the architecture that results when
one makes the above set of commitments.

2 MOTIVATION

Consider a modeled agent that has the set of beliefs
acquired via an understanding of the following sen-
tences about a blocksworld domain:

Blocks are supports. Red colored blocks
are wooden. Picking up is a primitive ac-
tion. Putting is a primitive action. Before
picking up a block the block must be clear.
After picking up a block the block is not

clear and it is held. If a block is on a sup-
port then after picking up the block the sup-
port is clear and the block is not on the sup-
port. Before putting a block on a support
the block must be held and the support must
be clear. After putting a block on a support
the block is not held, the block is clear, and
the block is on the support. After putting
a block on another block the latter block is
not clear.

There is a table. The table is a support.
A, B, and C are blocks. A is clear and it
is on the table. B is clear and it is on the
table. C is clear and it is on the table.

Now, consider posing the following queries (or re-
quests) to the agent holding the above set of beliefs:

. Is A a support?

. Is A wooden?

. What blocks are wooden?
. Pick up A.

. Put B on C.

. Pick up a wooden block.

. Put A on a wooden block.

N O Ot s W N

Query 1 can be answered using standard backward
chaining inference (italicized text is system response):

Is A a support?

I wonder if A is a support.

I wonder if A is a block.

I know A is a block.

Since A is a block and blocks are supports
I infer A is a support.

Queries 2 and 3 are similar to query 1 except in both
cases, the inference will fail to produce an answer
since the agent does not have any beliefs about blocks
being wooden or red:

Is A wooden?

I wonder if A is wooden.

I wonder if A is a block.

1 wonder if A is Red.

I know A is a block.

I don’t know if A is wooden.

Of course, the agent could, as in the paragraphs
above, acquire beliefs about the colors of blocks.
However, our motivation here is to model behavior
that would lead the agent to perform a belief ac-
quisition act (like looking at an object) that would
lead to its knowing the color of the block. This is a
situation where an agent forms an explicit intention
to act purely driven by its reasoning processes. In

other words, the agent is said to be acting in service
of inference. This is vastly different from intentions
that an agent forms by an explicit request (as in 4
6 above). The latter being the norm for traditional
planning/acting systems (i.e., inference, if used, is al-
ways in service of acting)[1]. For instance, for re-
quest 4, the agent will typically exhibit the following
behavior:

Pickup A.
I intend to do the act Pickup A.
I wonder if the act Pickup A has any preconditions.
I wonder if A is a block.
I know A is a block.
Since A is a block
and before picking up a block it must be clear
I infer before picking up A it must be clear.
The act Pickup A has the following precondition:
A is clear.
I wonder if A is clear.
I know A is clear.
It is satisfied.
Now doing: Pickup A
..etc.

Clearly, inference is being used in service of acting.
In the case of the failed query, the agent does have to
know about the act of looking at objects. However, in
the traditional planning and reasoning architectures,
there is no way to relate backward chaining queries
to actions that, if performed, may bring about the
beliefs necessary in order to facilitate an answer. Re-
quests 6 and 7 are explicit requests for performing
acts where the agent would benefit by being able to
act in service of inference which is in service of act-
ing!. In the next section, we describe an architecture
that provides a solution to the above problem.

3 A BDI ARCHITECTURE

The belief-desire-intention architecture we have de-
veloped is based on our analysis of the relationship
between beliefs, plans, acts, and the process of rea-
soning and acting. This has led us to make several
commitments.

3.1 Semantic Commitments

Let us look closely at the mechanism of inference.
Reasoning is the process of forming new beliefs from
other beliefs using inference rules. The connec-
tives and quantifiers of the inference rules govern the
derivation of new beliefs. Reasoning can be looked at
as a sequence of actions performed in applying infer-

ence rules to derive beliefs from other beliefs. Thus,
an inference rule can be viewed as a rule specify-
ing an act that of believing some previously non-
believed proposition but the “believe” action is al-
ready included in the semantics of the propositional
connective. Thus, another way of characterizing an
inference engine is as a mental actor or a mental act-
ing executive. During backward chaining, the mental
acting executive forms the intention of believing the
consequents of a rule if its antecedents are satisfied
(i.e., preconditions are fulfilled). Similarly for forward
chaining. McCarthy has also suggested that inference
can be treated as a mental action [8]. Alternatively,
plans can be viewed as rules for acting. Reasoning
rules pass a truth or a belief status from antecedent
to consequent, whereas acting rules pass an intention
status from earlier acts to later acts. In order to ex-
ploit this relationship between inference and acting
we must make an architectural commitment.

3.2 Architectural Commitments

The above discussion suggests that we may be able
to integrate our models of inference and acting by
eliminating the acting component of the architecture.
While it may sound appealing to redefine all the infer-
ence mechanisms as a bunch of explicit plans (under
the new interpretation, this is theoretically possible),
we have refrained from doing so. The trade-off here
is that of the long-standing tradition of inference be-
ing a basic primitive in an Al system as well as the
optimized implementation of inference (where previ-
ous deductions are not repeated, if valid), which is a
necessity. The resulting unified acting and reasoning
engine, which we are calling a rational engine, has
to operate on beliefs as well as acts[3]. This poses a
challenge to the underlying knowledge representation
scheme, which leads us to the ontological commit-
ments described in the next section.

The SNePS Rational Engine, called SNeRE[2, 4],
is an integrated reasoning and acting module that
uses a logic called SWMJ7]. It is the module re-
sponsible for the agent’s reasoning processes. It is
also the module responsible for the agent’s acting
and planning behavior. It employs an assumption-
based truth maintenance (ATMS) system[7]. Thus,
inferences, once drawn, are retained by the agent
as long as their underlying support persists. The
ATMS is also employed for implementing the ex-
tended STRIPS assumption[1] for acting[6]. More-
over, as will be evident in the section below, the ra-
tional engine is capable of modeling reactive as well
as belief acquisition behavior (cases where inference
can lead to acting).

3.3 Ontological Commitments

The key to success lies not only in making the above
semantic and architectural commitments but also an
important ontological commitment: all knowledge re-
quired by the agent for reasoning, planning, and act-
ing should be represented in a single formalism. We
impose an additional requirement that the modeled
agent be capable of interaction using natural lan-
guage.

The modeled agent’s beliefs, plans, acts, and
rules are represented in the SNePS semantic network
formalism[10]. SNePS is an intentional, propositional
semantic network system. Nodes in the semantic net-
work represent conceptual entities—individuals, and
structured individuals. Structured individuals can be
propositions, which are used to represent beliefs, or
acts and plans. Representing beliefs as well as acts
as conceptual entities provides the central uniform
framework for the architecture. Any conceptual en-
tity represented in the system can be the object of
a belief, plan, or act. By the same token, it can be
reasoned about (or acted upon, as the case may be)
and discussed by the agent representing it.

Acts can be primitive or complex (ones that will
have to be decomposed into a plan) and are clas-
sified as physical, mental, or control acts. Physical
acts are domain specific acts (like PICKUP or PUT).
Mental acts are the acts of believing (or disbeliev-
ing) a proposition (i.e., they bring about changes in
the agent’s belief space). Control acts are used to
structure plans (i.e., they control the agent’s inten-
tions). Our repertoire of control acts includes acts
for sequencing (linear plans), conditional acts, itera-
tive acts, nondeterministic choice and ordering acts,
and qualifier acts acts whose objects are only de-
scribed and not yet fully identified (as in requests 6
and 7 in Section 2) (see [2, 4]).

3.3.1 Transformers

In addition to standard beliefs that an agent is able
to represent, we also define a special class of beliefs
called transformers. A transformer is a propositional
representation that subsumes various notions of in-
ference and acting. Being propositions, transformers
can be asserted in the agent’s belief space; they are
also beliefs. In general, a transformer is a pair of
entities ({a), (8)), where both (a) and (3) can spec-
ify beliefs or acts. Thus, when both parts of a trans-
former specify beliefs, it represents a reasoning rule.
When one of its parts specifies beliefs and the other
acts, it can represent either an act’s preconditions, or
its effects, or a reaction to some beliefs, and so on.
What a transformer represents is made explicit by

specifying its parts. When believed, transformers can
be used during the acting/inference process, which is
where they derive their name: they transform acts
or beliefs into other beliefs or acts and vice versa.
Transformations can be applied in forward and/or
backward chaining fashion. Using a transformer in
forward chaining is equivalent to the interpretation
“after the agent believes (or intends to perform) (a),
it believes (or intends to perform) (8).” The back-
ward chaining interpretation of a transformer is, “if
the agent wants to believe (or know if it believes) or
perform (3), it must first believe (or see if it believes)
or perform (a).” There are some transformers that
can be used in forward as well as backward chain-
ing, while others may be used only in one of those
directions. This depends upon the specific proposi-
tion represented by the transformer and whether it
has any meaning when used in the chaining process.
Since both (a) and (8) can be sets of beliefs or an
act, we have four types of transformers belief-belief,
belief-act, act-belief, and act-act.

Belief-Belief Transformers: These are standard
reasoning rules (where (a) is a set of antecedent
belief(s) and (3) is a set of consequent belief(s)).
Such rules can be used in forward, backward, as
well as bidirectional inference to derive new beliefs.
For example, a class of transformers that represent
antecedent-consequent rules is called AntCq trans-
formers. In this paper, rather than drawing semantic
networks, we will use the linear notation

() = (B)

to write them. For example “All blocks are supports”
is represented as

Vx[Isa(x,BLOCK) — Isa(x, SUPPORT)]

In addition to the connective above (which is also
called an or-entailment), our current vocabulary
of connectives includes and-entailment, numerical-
entailment, and-or, thresh, and non-derivable. Other
quantifiers include the existential, and the numerical
quantifiers (see [9]).

Belief-Act Transformers: These are transformers
where («) is a set of belief(s) and (8) is a set of acts.
Used during backward chaining, these can be propo-
sitions specifying preconditions of actions, i.e. (a) is
a precondition of some act (3). For example, the sen-
tence “Before picking up A it must be clear” may be
represented as

PreconditionAct(Clear(A),PICKUP(A))

Used during forward chaining, these transformers
can be propositions specifying the agent’s desires to

react to certain situations, i.e. the agent, upon com-
ing to believe (a) will form an intention to perform
(B). For example, a general desire like “Whenever
something is broken, fix it” can be represented as

Vx[WhenDo(Broken(x), FIX(x))]

Act-Belief Transformers: These are the proposi-
tions specifying effects of actions as well as those spec-
ifying plans for achieving goals. They will be denoted
ActEffect and PlanGoal transformers respectively.
The ActEffect transformer will be used in forward
chaining to accomplish believing the effects of act ().
For example, the sentence, “After picking up A it is
no longer clear” is represented as

ActEffect(PICKUP(A), ~Clear(A))

It can also be used in backward chaining during the
plan generation process (classical planning). The
PlanGoal transformer is used during backward chain-
ing to decompose the achieving of a goal (#) into a
plan {(a). For example, “A plan to achieve that A is
held is to pick it up” is represented as

PlanGoal(PICKUP(A), Held(A))

Another backward chaining interpretation that can
be derived from this transformer is, “if the agent
wants to know if it believes (), it must perform {(a),”
which is represented as a DoWhen transformer. For
example, “Look at A to find out its color” can be
represented as

DoWhen(LOOKAT(A), Color(A, ?color))

Act-Act Transformers: These are propositions
specifying plan decompositions for complex actions
(called PlanAct transformers), where (8) is a com-
plex act and (a) is a plan that decomposes it into
simpler acts. For example, in the sentence, “To pile
A on B first put B on the table and then put A on
B” (where piling involves creating a pile of two blocks
on a table), piling is a complex act and the plan that
decomposes it is expressed in the proposition

PlanAct(SEQUENCE(PUT(B, TABLE), PUT(A, B)),
PILE(A,B))

Thus, we are able to represent beliefs, acts, rea-
soning rules, and plans using the same knowledge
representation formalism. The formalism makes ap-
propriate semantic distinctions between various con-
ceptual entities. A single operating module, the ra-
tional engine, carries out inference as well as act-
ing. In the next section, we present an example that
demonstrates how the agent, using the architecture
described, is able to act in service of inference.

4 EXAMPLE

In order for the failed inference of Section 2 to suc-
ceed, the agent only needs to have the following set
of beliefs:

Looking is a primitive action. If you want
to know the color of something, look at it.

The primitive act of looking at something is modeled
so that, when performed, it will result in the addition
of a belief about the color of the entity being looked
at. Thus, in a case where the color of the block A is
indeed red, the agent, may exhibit the following be-
havior:

Is A wooden?
I wonder if A is wooden.
I wonder if A is colored red.

I wonder if A is a block.
I know A is a block.

Since A is a block I infer
If you want to know the color of A look at it.

I intend to do the act look at A.
I wonder if the act look at A has any preconditions.

Now doing: Look at A.
Sensory-add: A is colored red.

Since A is a block and A is colored red
and all red colored blocks are wooden
I infer A is wooden.

Notice how, in the above example, a backward chain-
ing query lead the agent to perform an action in
order to answer the query. Thus, acting was per-
formed in service of inference. We have also ab-
stracted the main features of our architecture into a
general object-oriented BDI architecture (called the
OK BDI architecture) which we are in the process
of developing[2]. The object-orientedness of the OK
architecture is amenable to a concurrent implemen-
tation (our present architecture is also implemented
using a quasi-concurrent computational paradigm).
The architecture is also amenable to extensions in its
ontology, its underlying logic, and its underlying ac-
tion theory [5].

5 SUMMARY

By making a semantic clarification, an operational
commitment, and an ontological commitment that
maintains proper distinctions between beliefs, plans,

acts, reasoning rules, and reacting rules, we are able
to arrive at an integrated BDI architecture that is ca-
pable of acting in service of inference (and vice versa).

References

[1] Michael P. Georgeff. Planning. In Annual Re-
views of Computer Science Volume 2, pages 359
400. Annual Reviews Inc., Palo Alto, CA, 1987.

[2] Deepak Kumar. From Beliefs and Goals to In-
tentions and Actions An Amalgamated Model
of Acting and Inference. PhD thesis, State Uni-
versity of New York at Buffalo, 1993.

[3] Deepak Kumar. Rational engines for BDI ar-
chitectures. In Amy Lansky, editor, Proceed-
ings of The 1993 AAAI Spring Symposium on
Foundations of Automated Planning, pages 78
82. AAAI Press, March 1993.

[4] Deepak Kumar. The SNePS BDI architecture.
Journal of Decision Support Systems—Special
Issue on Logic Modeling, 1994. Forthcoming.

[5] Deepak Kumar, Susan Haller, and Syed S. Ali.
Towards a Unified AI Formalism. In Proceed-
ings of the Twenty-Seventh Hawaii International

Conference on System Sciences. IEEE Computer
Society Press, Los Alamitos, CA, 1994.

[6] Deepak Kumar and Stuart C. Shapiro. Deduc-
tive efficiency, belief revision and acting. Journal

of Ezxperimental and Theoretical Artificial Intel-
ligence (JETAI), 5(2), 1993.

[7] J. P. Martins and S. C. Shapiro. A model for
belief revision. Artificial Intelligence, 35(1):25
79, 1988.

[8] John McCarthy. Mental situation calculus. In
Joseph Y. Halpern, editor, Theoretical Aspects
of Reasoning about Knowledge—Proceedings of
the 1986 Conference, page 307, 1986.

[9] S. C. Shapiro and The SNePS Implementation
Group. SNePS-2 User’s Manual. Department, of
Computer Science, SUNY at Buffalo, 1989.

[10] Stuart C. Shapiro and William J. Rapaport.
SNePS considered as a fully intensional propo-
sitional semantic network. In Leslie Burkholder,
editor, Philosophy and the Computer, pages 75—
91. Westview Press, Boulder, CO, 1992.

