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representation formalism.� The modeled agent's reasoning and acting be-havior is implemented using an amalgamatedmodel of inference and acting.The above considerations are satis�ed by an im-plemented BDI (for Belief-Desire-Intention) architec-ture. In doing so, the architecture makes some se-mantic, ontological, as well as operational commit-ments. The architecture makes a semantic clari�-cation between inference and acting|that they arethe same. Inference is a kind of acting: mental act-ing. This leads to an operational commitment|anarchitecture's reasoning and acting behavior shouldbe carried out by a single module (as opposed to tra-ditional approaches that employ two or more sepa-rate modules: an inference engine; a planner; and anacting executive). We call such a module a rationalengine as it is solely responsible for the agent's rea-soning, planning, and acting behavior. Not only doesthe modeled agent use inference in service of acting,it also employs acting in service of inference. In thispaper, we describe the architecture that results whenone makes the above set of commitments.2 MOTIVATIONConsider a modeled agent that has the set of beliefsacquired via an understanding of the following sen-tences about a blocksworld domain:Blocks are supports. Red colored blocksare wooden. Picking up is a primitive ac-tion. Putting is a primitive action. Beforepicking up a block the block must be clear.After picking up a block the block is not



clear and it is held. If a block is on a sup-port then after picking up the block the sup-port is clear and the block is not on the sup-port. Before putting a block on a supportthe block must be held and the support mustbe clear. After putting a block on a supportthe block is not held, the block is clear, andthe block is on the support. After puttinga block on another block the latter block isnot clear.There is a table. The table is a support.A, B, and C are blocks. A is clear and itis on the table. B is clear and it is on thetable. C is clear and it is on the table.Now, consider posing the following queries (or re-quests) to the agent holding the above set of beliefs:1. Is A a support?2. Is A wooden?3. What blocks are wooden?4. Pick up A.5. Put B on C.6. Pick up a wooden block.7. Put A on a wooden block.Query 1 can be answered using standard backwardchaining inference (italicized text is system response):Is A a support?I wonder if A is a support.I wonder if A is a block.I know A is a block.Since A is a block and blocks are supportsI infer A is a support.Queries 2 and 3 are similar to query 1 except in bothcases, the inference will fail to produce an answersince the agent does not have any beliefs about blocksbeing wooden or red:Is A wooden?I wonder if A is wooden.I wonder if A is a block.I wonder if A is Red.I know A is a block.I don't know if A is wooden.Of course, the agent could, as in the paragraphsabove, acquire beliefs about the colors of blocks.However, our motivation here is to model behaviorthat would lead the agent to perform a belief ac-quisition act (like looking at an object) that wouldlead to its knowing the color of the block. This is asituation where an agent forms an explicit intentionto act purely driven by its reasoning processes. In

other words, the agent is said to be acting in serviceof inference. This is vastly di�erent from intentionsthat an agent forms by an explicit request (as in 4{6 above). The latter being the norm for traditionalplanning/acting systems (i.e., inference, if used, is al-ways in service of acting)[1]. For instance, for re-quest 4, the agent will typically exhibit the followingbehavior:Pickup A.I intend to do the act Pickup A.I wonder if the act Pickup A has any preconditions.I wonder if A is a block.I know A is a block.Since A is a blockand before picking up a block it must be clearI infer before picking up A it must be clear.The act Pickup A has the following precondition:A is clear.I wonder if A is clear.I know A is clear.It is satis�ed.Now doing: Pickup A: : : etc.Clearly, inference is being used in service of acting.In the case of the failed query, the agent does have toknow about the act of looking at objects. However, inthe traditional planning and reasoning architectures,there is no way to relate backward chaining queriesto actions that, if performed, may bring about thebeliefs necessary in order to facilitate an answer. Re-quests 6 and 7 are explicit requests for performingacts where the agent would bene�t by being able toact in service of inference which is in service of act-ing!. In the next section, we describe an architecturethat provides a solution to the above problem.3 A BDI ARCHITECTUREThe belief-desire-intention architecture we have de-veloped is based on our analysis of the relationshipbetween beliefs, plans, acts, and the process of rea-soning and acting. This has led us to make severalcommitments.3.1 Semantic CommitmentsLet us look closely at the mechanism of inference.Reasoning is the process of forming new beliefs fromother beliefs using inference rules. The connec-tives and quanti�ers of the inference rules govern thederivation of new beliefs. Reasoning can be looked atas a sequence of actions performed in applying infer-



ence rules to derive beliefs from other beliefs. Thus,an inference rule can be viewed as a rule specify-ing an act|that of believing some previously non-believed proposition|but the \believe" action is al-ready included in the semantics of the propositionalconnective. Thus, another way of characterizing aninference engine is as a mental actor or a mental act-ing executive. During backward chaining, the mentalacting executive forms the intention of believing theconsequents of a rule if its antecedents are satis�ed(i.e., preconditions are ful�lled). Similarly for forwardchaining. McCarthy has also suggested that inferencecan be treated as a mental action [8]. Alternatively,plans can be viewed as rules for acting. Reasoningrules pass a truth or a belief status from antecedentto consequent, whereas acting rules pass an intentionstatus from earlier acts to later acts. In order to ex-ploit this relationship between inference and actingwe must make an architectural commitment.3.2 Architectural CommitmentsThe above discussion suggests that we may be ableto integrate our models of inference and acting byeliminating the acting component of the architecture.While it may sound appealing to rede�ne all the infer-ence mechanisms as a bunch of explicit plans (underthe new interpretation, this is theoretically possible),we have refrained from doing so. The trade-o� hereis that of the long-standing tradition of inference be-ing a basic primitive in an AI system as well as theoptimized implementation of inference (where previ-ous deductions are not repeated, if valid), which is anecessity. The resulting uni�ed acting and reasoningengine, which we are calling a rational engine, hasto operate on beliefs as well as acts[3]. This poses achallenge to the underlying knowledge representationscheme, which leads us to the ontological commit-ments described in the next section.The SNePS Rational Engine, called SNeRE[2, 4],is an integrated reasoning and acting module thatuses a logic called SWM[7]. It is the module re-sponsible for the agent's reasoning processes. It isalso the module responsible for the agent's actingand planning behavior. It employs an assumption-based truth maintenance (ATMS) system[7]. Thus,inferences, once drawn, are retained by the agentas long as their underlying support persists. TheATMS is also employed for implementing the ex-tended STRIPS assumption[1] for acting[6]. More-over, as will be evident in the section below, the ra-tional engine is capable of modeling reactive as wellas belief acquisition behavior (cases where inferencecan lead to acting).

3.3 Ontological CommitmentsThe key to success lies not only in making the abovesemantic and architectural commitments but also animportant ontological commitment: all knowledge re-quired by the agent for reasoning, planning, and act-ing should be represented in a single formalism. Weimpose an additional requirement that the modeledagent be capable of interaction using natural lan-guage.The modeled agent's beliefs, plans, acts, andrules are represented in the SNePS semantic networkformalism[10]. SNePS is an intentional, propositionalsemantic network system. Nodes in the semantic net-work represent conceptual entities|individuals, andstructured individuals. Structured individuals can bepropositions, which are used to represent beliefs, oracts and plans. Representing beliefs as well as actsas conceptual entities provides the central uniformframework for the architecture. Any conceptual en-tity represented in the system can be the object ofa belief, plan, or act. By the same token, it can bereasoned about (or acted upon, as the case may be)and discussed by the agent representing it.Acts can be primitive or complex (ones that willhave to be decomposed into a plan) and are clas-si�ed as physical, mental, or control acts. Physicalacts are domain speci�c acts (like PICKUP or PUT).Mental acts are the acts of believing (or disbeliev-ing) a proposition (i.e., they bring about changes inthe agent's belief space). Control acts are used tostructure plans (i.e., they control the agent's inten-tions). Our repertoire of control acts includes actsfor sequencing (linear plans), conditional acts, itera-tive acts, nondeterministic choice and ordering acts,and quali�er acts |acts whose objects are only de-scribed and not yet fully identi�ed (as in requests 6and 7 in Section 2) (see [2, 4]).3.3.1 TransformersIn addition to standard beliefs that an agent is ableto represent, we also de�ne a special class of beliefscalled transformers. A transformer is a propositionalrepresentation that subsumes various notions of in-ference and acting. Being propositions, transformerscan be asserted in the agent's belief space; they arealso beliefs. In general, a transformer is a pair ofentities|(h�i; h�i), where both h�i and h�i can spec-ify beliefs or acts. Thus, when both parts of a trans-former specify beliefs, it represents a reasoning rule.When one of its parts speci�es beliefs and the otheracts, it can represent either an act's preconditions, orits e�ects, or a reaction to some beliefs, and so on.What a transformer represents is made explicit by



specifying its parts. When believed, transformers canbe used during the acting/inference process, which iswhere they derive their name: they transform actsor beliefs into other beliefs or acts and vice versa.Transformations can be applied in forward and/orbackward chaining fashion. Using a transformer inforward chaining is equivalent to the interpretation\after the agent believes (or intends to perform) h�i,it believes (or intends to perform) h�i." The back-ward chaining interpretation of a transformer is, \ifthe agent wants to believe (or know if it believes) orperform h�i, it must �rst believe (or see if it believes)or perform h�i." There are some transformers thatcan be used in forward as well as backward chain-ing, while others may be used only in one of thosedirections. This depends upon the speci�c proposi-tion represented by the transformer and whether ithas any meaning when used in the chaining process.Since both h�i and h�i can be sets of beliefs or anact, we have four types of transformers| belief-belief,belief-act, act-belief, and act-act.Belief-Belief Transformers: These are standardreasoning rules (where h�i is a set of antecedentbelief(s) and h�i is a set of consequent belief(s)).Such rules can be used in forward, backward, aswell as bidirectional inference to derive new beliefs.For example, a class of transformers that representantecedent-consequent rules is called AntCq trans-formers. In this paper, rather than drawing semanticnetworks, we will use the linear notationh�i ! h�ito write them. For example \All blocks are supports"is represented as8x[Isa(x; BLOCK)! Isa(x; SUPPORT)]In addition to the connective above (which is alsocalled an or-entailment), our current vocabularyof connectives includes and-entailment, numerical-entailment, and-or, thresh, and non-derivable. Otherquanti�ers include the existential, and the numericalquanti�ers (see [9]).Belief-Act Transformers: These are transformerswhere h�i is a set of belief(s) and h�i is a set of acts.Used during backward chaining, these can be propo-sitions specifying preconditions of actions, i.e. h�i isa precondition of some act h�i. For example, the sen-tence \Before picking up A it must be clear" may berepresented asPreconditionAct(Clear(A); PICKUP(A))Used during forward chaining, these transformerscan be propositions specifying the agent's desires to

react to certain situations, i.e. the agent, upon com-ing to believe h�i will form an intention to performh�i. For example, a general desire like \Wheneversomething is broken, �x it" can be represented as8x[WhenDo(Broken(x); FIX(x))]Act-Belief Transformers: These are the proposi-tions specifying e�ects of actions as well as those spec-ifying plans for achieving goals. They will be denotedActEffect and PlanGoal transformers respectively.The ActEffect transformer will be used in forwardchaining to accomplish believing the e�ects of act h�i.For example, the sentence, \After picking up A it isno longer clear" is represented asActEffect(PICKUP(A);:Clear(A))It can also be used in backward chaining during theplan generation process (classical planning). ThePlanGoal transformer is used during backward chain-ing to decompose the achieving of a goal h�i into aplan h�i. For example, \A plan to achieve that A isheld is to pick it up" is represented asPlanGoal(PICKUP(A); Held(A))Another backward chaining interpretation that canbe derived from this transformer is, \if the agentwants to know if it believes h�i, it must perform h�i,"which is represented as a DoWhen transformer. Forexample, \Look at A to �nd out its color" can berepresented asDoWhen(LOOKAT(A); Color(A; ?color))Act-Act Transformers: These are propositionsspecifying plan decompositions for complex actions(called PlanAct transformers), where h�i is a com-plex act and h�i is a plan that decomposes it intosimpler acts. For example, in the sentence, \To pileA on B �rst put B on the table and then put A onB" (where piling involves creating a pile of two blockson a table), piling is a complex act and the plan thatdecomposes it is expressed in the propositionPlanAct(SEQUENCE(PUT(B; TABLE); PUT(A; B));PILE(A; B))Thus, we are able to represent beliefs, acts, rea-soning rules, and plans using the same knowledgerepresentation formalism. The formalism makes ap-propriate semantic distinctions between various con-ceptual entities. A single operating module, the ra-tional engine, carries out inference as well as act-ing. In the next section, we present an example thatdemonstrates how the agent, using the architecturedescribed, is able to act in service of inference.



4 EXAMPLEIn order for the failed inference of Section 2 to suc-ceed, the agent only needs to have the following setof beliefs:Looking is a primitive action. If you wantto know the color of something, look at it.The primitive act of looking at something is modeledso that, when performed, it will result in the additionof a belief about the color of the entity being lookedat. Thus, in a case where the color of the block A isindeed red, the agent, may exhibit the following be-havior:Is A wooden?I wonder if A is wooden.I wonder if A is colored red.I wonder if A is a block.I know A is a block.Since A is a block I inferIf you want to know the color of A look at it.I intend to do the act look at A.I wonder if the act look at A has any preconditions.: : :Now doing: Look at A.Sensory-add: A is colored red.Since A is a block and A is colored redand all red colored blocks are woodenI infer A is wooden.Notice how, in the above example, a backward chain-ing query lead the agent to perform an action inorder to answer the query. Thus, acting was per-formed in service of inference. We have also ab-stracted the main features of our architecture into ageneral object-oriented BDI architecture (called theOK BDI architecture) which we are in the processof developing[2]. The object-orientedness of the OKarchitecture is amenable to a concurrent implemen-tation (our present architecture is also implementedusing a quasi-concurrent computational paradigm).The architecture is also amenable to extensions in itsontology, its underlying logic, and its underlying ac-tion theory [5].5 SUMMARYBy making a semantic clari�cation, an operationalcommitment, and an ontological commitment thatmaintains proper distinctions between beliefs, plans,
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