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GLAIR (Grounded Layered Architecture with Integrated Reasoning) is a multilayered cognitive

architecture for embodied agents operating in real, virtual, or simulated environments con-
taining other agents. The highest layer of the GLAIR Architecture, the Knowledge Layer (KL),

contains the beliefs of the agent, and is the layer in which conscious reasoning, planning, and act

selection is performed. The lowest layer of the GLAIR Architecture, the Sensori-Actuator Layer
(SAL), contains the controllers of the sensors and e®ectors of the hardware or software robot.

Between the KL and the SAL is the Perceptuo-Motor Layer (PML), which grounds the KL

symbols in perceptual structures and subconscious actions, contains various registers for pro-

viding the agent's sense of situatedness in the environment, and handles translation and com-
munication between the KL and the SAL. The motivation for the development of GLAIR has

been \Computational Philosophy", the computational understanding and implementation of

human-level intelligent behavior without necessarily being bound by the actual implementation

of the human mind. Nevertheless, the approach has been inspired by human psychology and
biology.

Keywords: GLAIR; SAL; KL; computational philosophy.

1. Introduction

GLAIR (Grounded Layered Architecture with Integrated Reasoning) is a multi-

layered cognitive architecture for embodied agents operating in real, virtual, or

simulated environments containing other agents [Hexmoor et al., 1993; Lammens

et al., 1995; Shapiro and Ismail, 2003]. It was an outgrowth of the SNePS Actor

[Kumar and Shapiro, 1991], and was motivated by a desire to add online sensing and

acting to a ¯rst-person reasoning agent. We have been interested in the origins of

agents' beliefs in sensation and proprioception, giving a reasoning agent a sense of

situatedness, and grounding its symbols in perception and action. The attitude

guiding our work has been what is called \Computational Philosophy" in [Shapiro,

1992], that is, the computational understanding and implementation of human-level

intelligent behavior without necessarily being bound by the actual implementation of
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the human mind. Nevertheless, our approach has been inspired by human psychology

and biology.

GLAIR includes: a term-logic-based symbolic reasoning system that allows higher-

order representation and reasoning, and supports metacognitive reasoning; an acting

system that connects reasoning with planning and acting; a model of perception that

extracts knowledge from raw sense data via a gradation of abstractions; semantic and

episodic memory; and support for the use of natural language by agents.

Although GLAIR is a cognitive architecture appropriate for implementing various

cognitive agents, we tend to name all our cognitive agents \Cassie". So whenever in

this paper we refer to Cassie, we mean one or another of our implemented GLAIR

agents.

2. GLAIR as a Layered Architecture

2.1. The layers

The GLAIR Architecture and its layers are illustrated in Fig. 1. The highest layer,

the Knowledge Layer (KL), contains the beliefs of the agent, and is the layer in which

conscious reasoning, planning, and act selection is performed.

Fig. 1. The GLAIR Architecture: The KL layer is the agent's mind, the PML and SAL layers are its brain/

body. The KL and PMLa layers are independent of whether the agent's body is implemented in software,
virtual reality, or hardware. If the PMLc and SAL run on a di®erent computer from the KL, PMLa, and

PMLb, then the PMLb and PMLc communicate over I/P sockets, one for each modality. The SAL controls

the sensors and e®ectors.
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The lowest layer of the GLAIR Architecture, the Sensori-Actuator Layer (SAL),

contains the controllers of the sensors and e®ectors of the hardware or software robot.

Between the KL and the SAL is the Perceptuo-Motor Layer (PML), which, itself

is divided into three sublayers. The highest, the PMLa, grounds the KL symbols in

perceptual structures and subconscious actions, and contains various registers for

providing the agent's sense of situatedness in the environment. The lowest of these,

the PMLc, directly abstracts the sensors and e®ectors into the basic behavioral

repertoire of the robot body. The middle PML layer, the PMLb, handles translation

and communication between the PMLa and the PMLc.

2.2. Mind-body modularity

The KL constitutes the mind of the agent; the PML and SAL, its body. However, the

KL and PMLa layers are independent of the implementation of the agent's body, and

can be connected, without modi¯cation, to a hardware robot or to a variety of

software-simulated robots or avatars. Frequently, the KL, PMLa, and PMLb have

run on one computer; the PMLc and SAL on another. The PMLb and PMLc handle

communication over I/P sockets.a

3. The Behavior Cycle

Several cognitive architectures, such as ACT-R [Anderson and Lebiere, 1998], Soar

[Laird et al., 1987], Icarus [Langley et al., 2004], and PRODIGY [Carbonell et al.,

1990] are based on problem-solving or goal-achievement as their basic driver. GLAIR,

on the contrary, is based on reasoning: either thinking about some percept (often

linguistic input), or answering some question. The acting component is a more recent

addition, allowing a GLAIR agent also to obey a command: either a command to

perform an act or a command to achieve a goal. However, the focus of the design

remains on reasoning. Problem-solving versus reasoning, however, are not incom-

patible tasks, but alternative approaches to the ultimate goal of achieving an

AI-complete [Shapiro, 1992] system.

GLAIR agents execute a sense-reason-act cycle, but not necessarily in a strict

cyclical order. GLAIR was developed around implementations of SNePS as an

interactive natural language comprehension, knowledge representation, and reason-

ing system. The basic behavior cycle is:

(1) input a natural language utterance

(2) analyze the utterance in the context of the current beliefs

. the analysis may require and trigger reasoning

. the analysis may cause new beliefs to be added to the KL

aOther interprocess communication methods might be used in the future.
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(3) if the utterance is a statement

(a) add the main proposition of the statement as a belief

(b) that proposition will be output

if the utterance is a question

(a) perform backward reasoning to ¯nd the answer to the question

(b) the answer will be output

if the utterance is a command

(a) perform the indicated act

(b) the proposition that the agent performed the act will be output

(4) generate a natural language utterance expressing the output proposition

. reasoning may be performed to formulate the utterance

The categorization of input into either statement (informative), question (inter-

rogative), or command (imperative) assumes that there are no indirect speech acts

[Searle, 1975] or that the real speech act has already been uncovered. An alternative

would be to represent each input as \X said S", and reason about what the agent

should do about it. Natural language analysis and generation is an optional part of

the GLAIR Architecture. If it is omitted, the utterance is expressed in a formal

language, such as SNePSLOG [Shapiro and The SNePS Implementation Group,

2008] (the formal language used in this paper) and only step (3) is performed.

If this input-reason-output behavior cycle seems too restricted for a cognitive

agent, note that the input might be \Perform a", where a is an act, or \Achieve g",

where g is a goal, and that might start an arbitrarily long sequence of behaviors. In

fact, any of the reasoning episodes might trigger a®erent or e®erent acts, and any act

might trigger reasoning [Kumar, 1993; Kumar and Shapiro, 1994].

There can be both passive and active sensing. Passive sensing, such as seeing the

environment as the agent navigates through it, may result in percepts that, in a data-

driven fashion, motivate the agent to perform some act. Active sensing, such as

attending to some speci¯c aspect of the environment, may be used in a goal-directed

fashion to gain particular information that can be used to decide among alternative

acts. For example, we have implemented a GLAIR delivery agent that navigates the

hallways of one °oor of a simulated building, and may be told to get a package from

one room, and deliver it to another. A primitive act of this agent is goForward():

\move one unit in the direction it is facing". As a result of such a move, and without

another act on its part, it believes either that it is facing a room, a blank wall, or more

corridor. Adding the appropriate belief to the KL is built into the PMLa imple-

mentation of goForward(), and is an example of passive sensing. On the other hand,

if the agent needs to know where it is, and it is facing a room, it can deliberately read

the room number by performing the primitive act, readRoomNumber(). This is an

example of active sensing.
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4. The KL: Memory and Reasoning

The KL contains the beliefs of the agent, including: short-term and long-term

memory; semantic and episodic memory; quanti¯ed and conditional beliefs used for

reasoning; plans for carrying out complex acts and for achieving goals; beliefs about

the preconditions and e®ects of acts; policies about when, and under what circum-

stances, acts should be performed; self-knowledge; and meta-knowledge.

The KL is the layer in which conscious reasoning, planning, and act selection is

performed. The KL is implemented in SNePS [Shapiro and Rapaport, 1992; Shapiro,

2000b; Shapiro and The SNePS Implementation Group, 2008], which is simul-

taneously a logic-based, frame-based, and graph-based knowledge representation and

reasoning system, that employs various styles of inference as well as belief revision.

As a logic-based KR system, SNePS implements a predicate logic with variables,

quanti¯ers, and function symbols. Although equivalent to First-Order Logic, its most

unusual feature is that every well-formed expression is a term, even those that denote

propositions [Shapiro, 1993]. This allows for meta-propositions, propositions about

propositions, without restriction and without the need for an explicit Holds predicate

[Morgado and Shapiro, 1985; Shapiro et al., 2007]. For example the asserted term,

Believe(B8,Rich(B8)) in the context of the asserted term, Propername(B8,

Oscar), denotes the proposition that Oscar believes himself to be rich [Rapaport

et al., 1997]. SNePS supports forward-, backward-, and bidirectional-reasoning

[Shapiro, 1987; Shapiro et al., 1982] using a natural-deduction proof theory, and

belief revision [Martins and Shapiro, 1988].

Every functional term in SNePS is represented as an assertional frame in which

the argument positions are slots and the arguments are ¯llers. This allows for sets of

arguments to be used to represent combinatorially many assertions. For example,

instanceOf({Fido, Lassie, Rover}, {dog, pet}) might be used to represent the

assertion that Fido, Lassie, and Rover are dogs and pets. It also allows sets to be used

for symmetric relationships, for example adjacent({US, Canada}) can represent the

assertion that the US and Canada are adjacent to each other [Shapiro, 1986]. The

frame view of SNePS supports \slot-based inference", whereby an asserted frame

logically implies one with a subset or superset of ¯llers in given slots [Shapiro, 2000a].

By treating the terms as nodes and the slots as labeled directed arcs, SNePS can be

used as a propositional graph [Shapiro and Rapaport, 1987]. This supports a style of

inference driven by following paths in the graph [Shapiro, 1978; 1991].

4.1. The uniqueness principle

A fundamental principle of SNePS is the Uniqueness Principle: \Each [entity]

represented in the [graph] is represented by a unique node" [Maida and Shapiro,

1982]. This means that if multiple beliefs are represented about some entity, there is

an arc or a path of arcs to the node representing that entity from each node repre-

senting each of those beliefs. If an active connection graph process (see Sec. 4.2) is

attached to that node, it is accessable from all these \using" nodes, and if that node is
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aligned with a PML-description (see Sec. 6.1), that PML-description is accessible

from all using nodes.

4.2. The active connection graph

Reasoning is performed by an active connection graph (ACS) [McKay and Shapiro,

1980; 1981]. Viewing the SNePS knowledge base as a propositional graph, every

proposition-denoting term can be considered to be a node with arcs pointing to its

arguments. This includes non-atomic propositions such as implications, each of which

has one set of arcs pointing to its antecedents and another pointing to its con-

sequents. Each proposition has a process charged with collecting and transmitting

inferred instances of its proposition along the arcs to interested other processes in a

multiprocessing, producer-consumer, message-passing system [Shubin, 1981]. This

allows recursive rules to be used without getting into an in¯nite loop, and prevents

the same inference from being worked on multiple times even if it is a subgoal in

multiple ways [McKay and Shapiro, 1981], and has not yet been satis¯ed.

The ACS is key to SNePS' bidirectional inference [Shapiro et al., 1982; Shapiro,

1987]. Inference processes are created both by backward inference and by forward

inference. If such a process is needed and already exists, a forward-chaining process

(producer) adds its results to the process's collection, and a backward-chaining

process (consumer) is added to the producer-process's consumers to be noti¯ed. If a

query is asked that cannot be answered, the processes established for it remain, and

can be found by subsequent forward inferences. When new beliefs are added to the

KL with forward inference, and existing consumer-processes are found for them, new

consumer-processes are not established. The result of this is that after a query,

additional new information is considered in light of this concern. In other words, a

GLAIR agent working on a problem considers relevant new data only as it relates to

that problem, focusing its attention on it.

The ACS can be deleted. It is then re-established the next time a forward- or

backward-inference begins. In this way the GLAIR agent changes its attention from

one problem to another. When this change of attention happens is, however, currently

rather ad hoc. A better theory of when it should happen is a subject of future research.

4.3. Contexts

Propositions may be asserted in the KL because they entered from the environment.

Either they were told to the agent by some other agent, possibly a human, or they are

the result of some perception. Alternatively, a proposition might be asserted in the

KL because it was derived by reasoning from some other asserted propositions. We

call the former hypotheses and the latter derived propositions. When a proposition is

derived, an origin set, consisting of the set of hypotheses used to derive it is stored

with it [Martins and Shapiro, 1988] à la an ATMS [de Kleer, 1986]. At each moment,

some particular context, consisting of a set of hypotheses, is current. The asserted

propositions, the propositions the GLAIR agent believes, are the hypotheses of the
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current context plus those derived propositions whose origin sets are subsets of that

set of hypotheses. If some hypothesis is removed from the current context (i.e., is

disbelieved), the derived propositions that depended on it remain in the KL, but are

no longer believed. If all the hypotheses in the origin set of a derived proposition

return to the current context, the derived proposition is automatically believed again,

without having to be rederived [Martins and Shapiro, 1983; Shapiro, 2000b].

5. The Acting Model

GLAIR's acting modelb consists of: actions and acts; propositions about acts; and

policies.

5.1. Policies

Policies specify circumstances under which reasoning leads to action. An example of a

policy is, \when the walk light comes on, cross the street". Policies are neither acts

nor propositions. We say that an agent performs an act, believes a proposition, and

adopts a policy. To see that policies are not acts, note that one cannot perform

\when the walk light comes on, cross the street". A good test for an expression �

being a proposition is its ability to be put in the frame, \I believe that it is not the

case that �". It does not make sense to say, \I believe that it is not the case that when

the walk light comes on, cross the street." Note that this is di®erent than saying, \I

believe that it is not the case that when the walk light comes on, I should cross the

street." An agent might explicitly believe \I should cross the street" without actually

doing it. However, if a GLAIR agent has adopted the policy, \when the walk light

comes on, cross the street", and it comes to believe that if the walk light is on, it will

cross the street (or at least try to).

Policies are represented as functional terms in the KL, along with other conscious

memory structures. Three policy-forming function symbols are built into GLAIR,

each of which takes as arguments a proposition � and an act �:

. ifdo(�; �) is the policy, \to decide whether or not �, perform �";

. whendo(�; �) is the policy, \when � holds, perform �";

. wheneverdo(�; �) is the policy, \whenever � holds, perform �".

A blocks-world example of ifdo is \To decide whether block A is red, look at it":

ifdo(ColorOf(A,red), lookAt(A)) [Kumar and Shapiro, 1994].c

The policies whendo and wheneverdo are similar to the production rules of

production systems in that they are condition-action rules triggered when forward-

chaining matches the condition. In the case of both whendo and wheneverdo, if the

policy has been adopted, the agent performs � when forward inference causes � to be

believed. Also, � is performed if � is already believed when the policy is adopted.

bParts of this section were taken from [Shapiro et al., 2007].
cifdo was called DoWhen in [Kumar and Shapiro, 1994].
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The di®erence is that a whendo policy is unadopted after ¯ring once, but a wheneverdo

remains adopted until explicitly unadopted.

5.2. Categories of acts

An act may be performed by an agent, and is composed of an action and zero or more

arguments. For example, for the Fevahrd version of Cassie [Shapiro, 1998; Shapiro and

Ismail, 2003] (henceforth CassieF ), the term find(Bill) denotes the act of ¯nding Bill

(by looking around in a room for him), composed of the actionfind and the object Bill.e

Acts may be categorized on two independent dimensions: an act may be either an

external, a mental, or a control act; and an act may be either a primitive, a de¯ned, or

a composite act.

5.2.1. External, mental, and control acts

Actions and, by extension, acts, may be subclassi¯ed as either external, mental, or

control. External acts either sense or a®ect the real, virtual, or simulated outside world.

An example mentioned above from the Fevahr version of Cassie is find(Bill). No

external acts are prede¯ned in the architecture; they must be supplied by each agent

designer.

Mental acts a®ect the agent's beliefs and policies. There are four:

(1) believe(�) is the act of asserting the proposition � and doing forward inference

on it;

(2) disbelieve(�) is the act of unasserting the proposition �, so that it is not

believed, but its negation is not necessarily believed;

(3) adopt(�) is the act of adopting the policy �;

(4) unadopt(�) is the act of unadopting the policy �.

Before believe changes the belief status of a proposition �, it performs a limited

form of prioritized belief revision [Alchourr�on et al., 1985]. If andor(0,0){. . . ; �; . . .}

is believed,f it is disbelieved. If andor(i,1){�1; �2; . . .} is believed, for i = 0 or

i = 1, and �2 is believed, �2 is disbelieved.

Control acts are the control structures of the GLAIR acting system. The

prede¯ned control actions are:

. achieve(�): If the proposition � is not already believed, infer plans for bringing it

about, and then perform do-one on them;

d\Fevahr" is an acronym standing for \Foveal Extra-Vehicular Activity Helper-Retriever".
eActually, since the Fevahr Cassie uses a natural language interface, the act of ¯nding Bill is represented by

the term act(lex(find),b6), where: find is a term aligned with the English verb ¯nd; lex(find) is the

action expressed in English as \¯nd"; and b6 is a term denoting Bill. However, we will ignore these

complications in this paper.
fandor [Shapiro, 1979; 2010] is a parametrized connective that takes a set of argument-propositions,

and generalizes and, inclusive or, exclusive or, nand, nor, and exactly n of. A formula of the form andor

(i; j){�1; . . . ; �n} denotes the proposition that at least i and at most j of the �k's are true.
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. snsequence(�1; �2): Perform the act �1, and then the act �2;

. prdo-one({pract(x1; �1),…, pract(xn; �n)}): Perform one of the acts �j, with

probability xj=
P

i xi;

. do-one({�1; . . . ; �n}): Nondeterministically choose one of the acts �1; . . . ; �n, and

perform it;

. do-all({�1; . . . ; �n}): Perform all the acts �1; . . . ; �n in a nondeterministic order;

. snif({if(�1; �1), …, if(�n; �n), [else(�)]}): Use backward inference to

determine which of the propositions �i hold, and, if any do, nondeterministically

choose one of them, say �j, and perform the act �j. If none of the �i can be inferred,

and if else(�) is included, perform �. Otherwise, do nothing;

. sniterate({if(�1; �1), …, if(�n; �n), [else(�)]}): Use backward inference

to determine which of the propositions �i hold, and, if any do, nondeterministically

choose one of them, say �j, and perform the act snsequence(�j, sniterate({if

(�1; �1), …, if(�n; �n), [else(�)]})). If none of the �i can be inferred, and if

else(�) is included, perform �. Otherwise, do nothing;

. withsome(x; �ðxÞ; �ðxÞ; ½��): Perform backward inference to ¯nd entities e such

that �ðeÞ is believed, and, if entities e1; . . . ; en are found, perform do-one({�ðe1Þ;
. . . ; �ðenÞ}). If no such e is found, and the optional act � is present, perform �;

. withall(x; �ðxÞ; �ðxÞ; ½��): Perform backward inference to ¯nd entities e such that

�ðeÞ is believed, and, if entities e1; . . . ; en are found, perform do-all({�ðe1Þ;
. . . ; �ðenÞ}). If no such e is found, and the optional act � is present, perform �.

The acts snif, sniterate, withsome, and withall all trigger reasoning. The

default implementation of do-one uses a pseudorandom number generator to choose

the act to perform, and the default implementation of do-all uses a pseudorandom

number generator to choose the order of the acts. However, an agent implementer

may replace either pseudorandom number generator with reasoning rules to make the

choice, in which case these acts will also trigger reasoning.

5.2.2. Primitive, de¯ned, and composite acts

GLAIR actions and acts may also be classi¯ed as either primitive, de¯ned, or com-

posite. Primitive acts constitute the basic repertoire of an GLAIR agent. They are

either provided by the architecture itself, or are implemented at the PMLa. An

example of prede¯ned action is believe; an example of primitive action de¯ned at

the PMLa is the Fevahr Cassie's find [Shapiro, 1998; Shapiro and Ismail, 2003].

Because primitive actions are implemented below the KL, GLAIR agents have no

cognitive insight into how they perform them.

A composite act is one structured by one of the control acts. For example, the

Wumpus-World Cassie [Shapiro and Kandefer, 2005], whose only primitive turning

acts are go(right) and go(left), can turn around by performing the composite act,

snsequence(go(right), go(right)).

A de¯ned act is one that, unlike composite acts, is syntactically atomic, and unlike

primitive acts, is not implemented at the PML. If a GLAIR agent is to perform a de¯ned
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act �, it deduces plans p for which it believes the proposition ActPlan(�; p), and per-

forms a do-one of them. Such a plan is an act which, itself, can be either primitive,

composite, or de¯ned.For example,Wumpus-WorldCassie's de¯nedactturn(around),

is de¯ned by ActPlan(turn(around), snsequence(go(right), go(right))).

5.3. Propositions about acts

Four propositions about acts are prede¯ned parts of the GLAIR Architecture:

(1) Precondition(�; �): In order for the agent to perform the act �, the proposition

� must hold.

(2) Effect(�; �): An e®ect of an agent's performing the act � is that the proposition

� will hold. The proposition � could be a negation, to express the e®ect that some

proposition no longer holds, such as Effect(putOn(x,y), �clear(y)).

(3) ActPlan(�; p): One way to perform the act � is to perform the plan p.

(4) GoalPlan(�; p): One way to achieve the goal that the proposition � holds is to

perform the plan p.

The only di®erence between a \plan" and an \act" is that a plan is an act that

appears in the second argument position of an ActPlan or a GoalPlan proposition.

However, in a proposition of the form ActPlan(�; p), it is assumed that p is \closer"

to primitive acts than � is.

5.4. Conditional plans

Consider a de¯ned act for which there are di®erent plans depending on circumstances.

For example, to get the mail, if I am at home, I go to the mailbox, but if I am in the

o±ce, I go to themailroom. Such conditional plansmay be represented by implications:

atðhomeÞ ¼> ActPlanðgetðmailÞ; goðmailboxÞÞ
atðofficeÞ ¼> ActPlanðgetðmailÞ; goðmailroomÞÞ

In a context in which at(home) is derivable, the plan for getting the mail will be

go(mailbox). When the context changes so that at(home) is no longer derivable,

ActPlan(get(mail), go(mailbox)) will no longer be asserted, nor derivable. How-

ever, when the context is re-entered, ActPlan(get(mail), go(mailbox)) will again

be asserted without the need to rederive it.

5.5. The acting executive

The procedure for performing an act is shown in Fig. 2. Notice that:

. Backward inference is triggered to ¯nd:

— the preconditions of act;

—whether each precondition currently holds;
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— the e®ects of act;

— plans that can be used to perform act, if act is not primitive.

. After the attempt is made to achieve the preconditions of act, perform(act) is

called again, which will again check the preconditions, in case achieving some of

them undid the achievement of others.

. E®ects of act are derived before act is performed in case the e®ects depend on the

current state of the world.

. If act is a de¯ned act, only one way of performing it is tried, and that is assumed to

be successful. This will be changed in future versions of GLAIR.

. After act is performed, all its e®ects are believed to hold. This is naive, and will be

changed in future versions of GLAIR. We have already implemented GLAIR

agents that only believe the e®ects of their acts that they sense holding in the

world, but this has been done by giving them no Effect assertions.

6. The PML: Connecting Mind and Body

6.1. Symbol anchoring

There are KL terms for every mental entity Cassie has conceived of,g including

individual entities, categories of entities, colors, shapes, and other properties of

entities. There are PML structures (at the PMLb and PMLc sub-levels) for features

of the perceivable world that Cassie's perceptual apparatus can detect and dis-

tinguish. Each particular perceived object is represented at this level by an n-tuple of

such structures, hv1; . . . ; vni, where each component, vi, is a possible value of some

perceptual feature domain, Di. What domains are used and what values exist in each

gMuch of Secs. 6.1�6.6 is taken from [Shapiro and Ismail, 2003].

Fig. 2. The acting executive.
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domain depend on the perceptual apparatus of the robot. We call the n-tuples of

feature values \PML-descriptions".

Each KL term for a perceivable entity, category, or property is grounded by being

aligned with a PML-description, possibly with un¯lled (null) components. For

example, CassieF used two-component PML-descriptions in which the domains were

color and shape. The KL term denoting CassieF 's idea of blue was aligned with a

PML-description whose color component was the PML structure the vision system

used when it detected blue in the visual ¯eld, but whose shape component was null.

The KL term denoting people was aligned with a PML-description whose shape

component was the PML structure the vision system used when it detected a people

in the visual ¯eld, but whose color component was null.

Called a PML-description with some null components an \incomplete PML-

description", and one with no null components a \complete PML-description". KL

terms denoting perceivable properties and KL terms denoting recognizable categories

of entities are aligned with incomplete PML-descriptions. Examples include the

terms for blue and for people mentioned above, and may also include terms for the

properties tall, fat, and bearded, and the categories man and woman. The words for

these terms may be combined into verbal descriptions, such as \a tall, fat, bearded

man", whose incomplete PML-descriptions may be used to perceptually recognize the

object corresponding to the entity so described.

A complete PML-description may be assembled for an entity by unifying the

incomplete PML-descriptions of its known (conceived-of) properties and categories.

Once a PML-description is assembled for an entity, it is cached by aligning the term

denoting the entity directly with it. Afterwards, Cassie can recognize the entity

without thinking about its description. On the other hand, Cassie may have a

complete PML-description for some object without knowing any perceivable prop-

erties for it. In that case, Cassie would be able to recognize the object, even though

she could not describe it verbally.

If Cassie is looking at some object, she can recognize it if its PML-description is the

PML-description of some entity she has already conceived of. If there is no such

entity, Cassie can create a new KL term to denote this new entity, align it with the

PML-description, and believe of it that it has those properties and is a member of

those categories whose incomplete PML-descriptions unify with the PML-description

of the new entity. If there are multiple entities whose PML-descriptions match the

object's PML-description, disambiguation is needed, or Cassie might simply not

know which one of the entities she is looking at.

6.2. Deictic registers

An important aspect of being embodied is being situated in the world and having

direct access to components of that situatedness. This is modeled in GLAIR via a set

of PML registers (variables), each of which can hold one or more KL terms or PML

structures. Some of these registers derive from the theory of the Deictic Center
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[Duchan et al., 1995], and include: I, the register that holds the KL term denoting the

agent itself; YOU, the register that holds the KL term denoting the individual

the agent is talking with; and NOW, the register that holds the KL term denoting the

current time.

6.3. Modality registers

Especially on hardware robots, the sensors and e®ectors can operate simultaneously.

To take advantage of this, GLAIR supports a set of modalities. A modality represents

a limited resource — a PMLc-level behavior that is limited in what it can do at once

(for example, a robot cannot go forward and backward at the same time), but is

independent of the behaviors of other modalities (a robot can navigate and speak at

the same time). Each modality runs in a separate thread, and uses its own com-

munication channel between the PMLb and PMLc layers. Each KL primitive action

is assigned, at the PMLa layer, to one or more modalities.

A set of PML registers termed \modality registers" give GLAIR agents knowledge

of what they are doing. For example, if one of Cassie's modalities was speech, and she

was currently talking to Stu, her SPEECH register would contain the KL term denoting

the state of Cassie's talking to Stu (and the term denoting Stu would be in the YOU

register). In many cases, a single modality of an agent can be occupied by only one

activity at a time. In that case the register for that modality would be constrained to

contain only one term at a time.

One of the modality registers we have used is for keeping track of what Cassie is

looking at. When she recognizes an object in her visual ¯eld, the KL term denoting

the state of looking at the recognized entity is placed in the register, and is removed

when the object is no longer in the visual ¯eld. If one assumed that Cassie could be

looking at several objects at once, this register would be allowed to contain several

terms. If asked to look at or ¯nd something that is already in her visual ¯eld, Cassie

recognizes that fact, and does not need to do anything.

Modalities that have been implemented in various GLAIR agents include speech,

hearing, navigation, and vision. We intend to make the organization into modalities a

more thoroughgoing and pervasive principle of the architecture. That version of the

architecture will be called MGLAIR.

6.4. Actions

Each KL action term that denotes a primitive action is aligned with a procedure in

the PMLa. The procedure takes as arguments the KL terms for the arguments of the

act to be performed. For example, when Cassie is asked to perform the act of going to

Bill, the PMLa going-procedure is called on the KL Bill-term. It then ¯nds the PML-

description of Bill, and (via the SAL) causes the robot hardware to go to an object in

the world that satis¯es that description (or causes the robot simulation to simulate

that behavior). The PMLa going-procedure also inserts the KL term denoting the
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state of Cassie's going to Bill into the relevant modality register(s), which, when NOW

moves, causes an appropriate proposition to be inserted into Cassie's KL.

6.5. Time

The NOW deictic register always contains the KL term denoting the current time

[Shapiro, 1998; Ismail, 2001; Ismail and Shapiro, 2000; 2001; Shapiro and Ismail,

2003]. Actually, since \now" is vague (it could mean this minute, this day, this year,

this century, etc.), NOW is considered to include the entire semi-lattice of times that

include the smallest current now-interval Cassie has conceived of, as well as all other

times containing that interval.

NOW moves whenever Cassie becomes aware of a new state. Some of the circum-

stances that cause her to become aware of a new state are: she acts, she observes a

state holding, she is informed of a state that holds. NOW moves by Cassie's conceiving

of a new smallest current now-interval (a new KL term is introduced with that

denotation), and NOW is changed to contain that time. The other times in the old NOW

are defeasibly extended into the new one by adding propositions asserting that the

new NOW is a subinterval of them.

Whenever Cassie acts, the modality registers change (see above), and NOW moves.

The times of the state(s) newly added to the modality registers are included in the new

NOW semi-lattice, and the times of the state(s) deleted from the modality registers are

placed into the past by adding propositions that assert that they precede the new NOW.

To give GLAIR agents a \feel" for the amount of time that has passed, the PML

has a COUNT register acting as an internal pacemaker [Ismail, 2001; Ismail and

Shapiro, 2001]. The value of COUNT is a non-negative integer, incremented at regular

intervals. Whenever NOW moves, the following happens:

(1) the value of COUNT is quantized into a value � which is the nearest half-order of

magnitude [Hobbs and Kreinovich, 2001] to COUNT, providing an equivalence

class of PML-measures that are not noticeably di®erent;

(2) a KL term d, aligned with �, is found or created, providing a mental entity

denoting each class of durations;

(3) a belief is introduced into the KL that the duration of t1, the current value of

NOW,is d, so that the agent can have beliefs that two di®erent states occurred for

about the same length of time;

(4) a new KL term, t2 is created and a belief is introduced into the KL that t1 is

before t2;

(5) NOW is reset to t2;

(6) COUNT is reset to 0, to prepare for measuring the new now-interval.

6.6. Language

Cassie interacts with humans in a fragment of English. Although it is possible to

represent the linguistic knowledge of GLAIR agents in the KL, use reasoning to
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analyze input utterances [Neal and Shapiro, 1985; 1987a, 1987b; Shapiro and Neal,

1982], and use the acting system to generate utterances [Haller, 1996; 1999], we do

not currently do this. Instead, the parsing and generation grammars, as well as the

lexicon, are at the PML. (See, e.g., [Rapaport et al., 1997; Shapiro, 1982; Shapiro and

Rapaport, 1995].) There are KL terms for lexemes, and these are aligned with lexemes

in the PML lexicon. We most frequently use a KL unary functional term to denote

the concept expressed by a given lexeme, but this does not allow for polysemy, so we

have occasionally used binary propositions that assert that some concept may be

expressed by some lexeme. There may also be KL terms for in°ected words, strings of

words, and sentences. This allows one to discuss sentences and other language con-

structs with GLAIR agents.

6.7. Qualia

The PML-descriptions seem to be an implementation of qualia, \the ine®able sub-

jective qualities of experience, such as the redness of red or the indescribable smell of

turpentine" [Blackmore, 2005].

Since every KL term is a node in the SNePS propositional graph (see Sec. 4), and

each entity represented in the graph is represented by only one node (see Sec. 4.1),

every entity Cassie believes to be blue is connected with the node that is aligned with

the PML-description whose color component is what Cassie's vision system takes to

be blue, and similarly with other entities represented by nodes that are aligned with

PML-descriptions.

Let us call the PML-description whose color component is what Cassie's vision

system takes to be blue Cassie's PML-blue-description. Cassie cannot describe her

PML-blue-description other than by saying that it is what blue things look like.

Whenever she looks at such a blue object, her vision system will activate her PML-

blue-description, which, being aligned with her term for the property blue, she could

describe, using the lexeme also aligned with the blue term, as \blue".

The number, symbol, or data structure that implements Cassie's PML-blue-

description is completely arbitrary as long as it is what Cassie's vision system acti-

vates when focused on blue objects, and as long as it is aligned with Cassie's blue

term. Oscar, another GLAIR agent, might use a di®erent number, symbol, or data

structure as his PML-blue-description, but, as long as Cassie and Oscar are con-

structed appropriately, they will agree on what is blue without ever being able to

compare their actual PML-blue-descriptions.

Thus, PML-descriptions seem to accord with philosophers' descriptions of qualia.

6.8. Bodily feedback

The control acts snsequence, do-all, sniterate, and withall each cause a

sequence of acts to be performed before it is completed. In a normal, single-processor,

procedural/functional architecture this would not cause a problem as each act in the

sequence would be performed only after the previous one returns control to the
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control act. However, in GLAIR, primitive acts are performed in modalities operating

concurrently with reasoning, so it is important for the control act to get feedback

from the body that an act has completed before it proceeds to the next act in the

sequence. Think of the problem deaf people have speaking at a \normal" rate without

being able to hear themselves. In previous agents [Shapiro et al., 2005a, 2005b],

bodily feedback for the speech modality was provided for via the hearing modality,

but this was included explicitly at the KL and using a special pacedSequence act. We

intend to build bodily feedback directly into the GLAIR architecture in the future.

7. Properties of Cognitive Architectures

In this section, we discuss GLAIR using properties listed in [Langley et al., 2009] to

facilitate a comparison with other cognitive architectures.

7.1. Representation of knowledge

Knowledge (more properly, beliefs) is represented in the GLAIR Knowledge Layer in

SNePS, which is simultaneously a logic-based, assertional frame-based, and graph-

based knowledge representation and reasoning system. Noteworthy features of the

SNePS representation are: every well-formed expression is a term, even those

denoting propositions; all beliefs and conceived-of entities are represented in the same

formalism, including reasoning rules (such as conditionals), acting plans, and policies;

every entity represented in SNePS is represented by a single SNePS term/node.

SNePS is more fully discussed above and in the cited papers.

Single notation versus mixture of formalisms: Although all knowledge is

represented in a single formalism, namely SNePS, SNePS, itself, is simultaneously

three di®erent formalisms: logic-based, which supports a natural-deduction-style

inference mechanism; assertional frame-based, which supports inference from one

frame to another with a subset or superset of ¯llers in some of the slots; and

graph-based, which supports inference of labeled arcs from the presence of paths

of labeled arcs.

Support for meta-knowledge: Since every SNePS expression is a term, including

those that denote propositions, propositions about propositions may be rep-

resented without restriction and without the need for an explicit Holds predicate.

A SNePS agent that reasons about the beliefs of other agents has been described

and implemented [Chalupsky, 1996], but this facility is not part of the current

standard SNePS.

The default acts included as options in snif, sniterate, withsome, and

withall provide for lack-of-knowledge acting. The use of conditional plans, as

discussed in Sec. 5.4, has allowed a GLAIR agent to use contextual information to

select among alternative mathematical procedures to perform [Shapiro et al.,

2007].
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By including in the Knowledge Layer a term that refers to the agent itself,

GLAIR agents are able to represent and reason about beliefs about themselves.

As mentioned in Sec. 6.2, a deictic register in the PML is a pointer to the self-

concept. PMLa implementations of primitive acts can insert beliefs into the KL

about what the agent is currently doing, and the movement of time, as discussed

in Sec. 6.5, gives the agent an episodic memory.

Giving GLAIR agents knowledge of the actions they are currently performing

above the level of primitive actions is a subject of future work.

Declarative versus procedural representations: The Knowledge Layer contains

declarative representations of knowledge, even of procedures for carrying out

de¯ned acts (see Sec. 5.2.2). The PMLa contains implementations of primitive acts

in a way that is not cognitively penetrable. We have not yet experimented with

GLAIR agents that learn such procedural representations of primitive acts.

Semantic memory versus episodic memory: The Knowledge Layer is the locus

of both semantic and episodic memory. Most of the beliefs of GLAIR agents we

have developed so far are parts of semantic memory. As mentioned above, PMLa

implementations of primitive acts can insert beliefs into the KL about what the

agent is currently doing, and the movement of time, as discussed in Sec. 6.5, gives

the agent an episodic memory.

7.2. Organization of knowledge

Flat versus structured/hierarchical organization of knowledge: SNePS uses

an inherently structured organization of knowledge. Its term-based predicate

logic representation allows for nested functional terms, including proposition-

valued terms, the act-valued terms that constitute composite acts, and reasoning

rules. SNePS has often been used to represent hierarchical information, including

subsumption hierarchies, parthood and other mereological relations, and similar

information used in ontological reasoning.

Short-term versus long-term memory: GLAIR currently has no short-term

memory from which some memories migrate into long-term memory. The closest

thing to a short-term or working memory is the active connection graph (see

Sec. 4.2), which contains the demons currently working on one problem, which

are discarded when the agent changes to another problem.

8. Evaluation Criteria for Cognitive Architectures

In this section, we evaluate GLAIR according to criteria listed in [Langley et al.,

2009].

8.1. Generality, versatility, and taskability

Generality: The KL and PMLa layers are independent of the implementation of the

lower body and the environment as long as there is some way for the primitive
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sensory and e®ector acts at the PMLa layer to be implemented in the SAL layer.

The agent designer designs the PMLb and PMLc layers to e®ect the connection.

GLAIR agents have been active in: a real world laboratory setting [Shapiro, 1998];

a virtual reality world [Shapiro et al., 2005b]; a world simulated by ASCII input/

output [Kandefer and Shapiro, 2007]; and graphically simulated worlds [Shapiro

and Kandefer, 2005; Anstey et al., 2009].

Versatility: The GLAIR Architecture lends itself to modular design for new

environments and tasks. If the designers have a speci¯c agent body and environ-

ment inmind, they must identify the a®erent and e®erent behavior repertoire of the

agent. They can then specify the actions to be implemented at the PMLa layer.

These become the primitive actions at the KL layer, and high-level actions can be

programmed using the acting model described in Sec. 5. Since the control actions,

which include snsequence, snif, and sniterate, form a Turing-complete set, a

GLAIR agent can perform any task that can be composed computationally from its

primitive acts [B€ohm and Jacopini, 1966].

Once the KL primitive actions have been designed, it is common to test and

further develop the agent in a simulated environment before moving it to a

hardware robot in the real world, or to a more detailed simulation in a graphical

or virtual world.

Taskability: One bene¯t of representing acts in the same formalism as other

declarative knowledge is that agents that communicate with a GLAIR agent can

command it to perform tasks using the same communication language. The for-

mal language commonly used is SNePSLOG, the language in which the acting

model was explained in Sec. 5, but GLAIR agents have been built that use

fragments of English [Shapiro, 1989; Shapiro et al., 2000; Shapiro and Ismail,

2003; Kandefer and Shapiro, 2007]. The meaning of verb phrases are represented

in the act structures of the acting model. If English versions of control acts are

included in the fragment of English, GLAIR agents may be given composite acts

to perform. For example, CassieF [Shapiro, 1998; Shapiro and Ismail, 2003] can be

told to \Go to the green robot and then come here and help me". With appro-

priate grammatical support, natural language may be used to teach GLAIR

agents new tasks. For example, an early GLAIR agent was told, \IF a block is on

a support then a plan to achieve that the support is clear is to pick up the block and

then put the block on the table" [Shapiro, 1989; Shapiro et al., 2000].

8.2. Rationality and optimality

Rationality:When attempting to achieve a goal �, a GLAIR agent chooses an act �

to perform based on its belief that the act will achieve the goal, as expressed by

GoalPlan(�; �). However, we have not yet experimented with GLAIR agents

that formulate such beliefs by reasoning about the e®ects of various acts. That is,

we have not yet developed GLAIR agents that do traditional AI planning. Nor

have we experimented with GLAIR agents that formulate GoalPlan beliefs after
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acting and noting the e®ects of its acts. So a GLAIR agent is rational in the sense

that it selects an act that it believes will lead to the goal. However, it does not

know that the act will lead to the goal.

Optimality: The GLAIR Architecture allows for, but does not explicitly implement

as part of the architecture, agents that choose optimal actions based on pre-

ferences they form. This has been used to implement agents that can prefer

certain shortcut ways of performing arithmetical operations [Goldfain, 2008], and

by meta-cognitive agents such as those described in [Shapiro et al., 2007], which

are able to observe themselves at work and prefer e±cient (requiring fewer steps

than the alternatives) ways of accomplishing a goal.

8.3. E±ciency and scalability

SNePS does not place any formal restriction on the number of terms that can be

represented and stored, nor on the number of relations between them. There is a

naturally-occurring limit that depends on the computational resources available to

the system and will vary from one machine to the next. The upper limit for any

instance of SNePS depends on the heap size of the Lisp image in which it is running.

We have not evaluated SNePS in terms of formal computational complexity. A

recent technical report on SNePS' e±ciency [Seyed et al., 2008] shows that the system

can reason over knowledge bases that include tens of thousands of terms/prop-

ositions, though some reasoning tasks take many seconds to complete in this situ-

ation. The same report outlines steps to increase the number of supported memory

elements and the speed with which they are processed by the system. Some of these

planned modi¯cations have already been implemented in the latest releases. Other

proposed changes include introducing a sophisticated scheme for moving to long-term

memory information in the KB that is not being used in the service of reasoning at

that time and is not likely to be used soon. SNePS 3 (currently under development)

will introduce even more e±ciency gains.

8.4. Reactivity and persistence

GLAIR's use of separate bu®ers for separate perceptual modalities facilitates reac-

tivity by ensuring that sensory data from one modality does not block and demand all

of an agent's \attention". In some of our work with GLAIR-based agent-actors for

virtual drama [Shapiro et al., 2005a], agents interact with human audience partici-

pants in a 3D virtual world that allows the human a great deal of freedom to move

around in, and e®ect changes within, the world. In one case, the agent's task is to

guide the participant on a quest and complete a series of activities. The participant's

actions cannot be fully anticipated, and may include verbally addressing the agent,

losing interest and wandering o®, making unrestricted movements unrelated to the

task, etc. The agent's task then consists of following and keeping up with the partici-

pant and reacting as appropriately as is possible to her actions while simultaneously
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trying to convince her to participate in the assigned task. This requires an imple-

mentation of persistence in which the agent keeps track of goals for the current task

(and the greater quest), while simultaneously dealingwith unpredictable changes in the

environment due to the participant's activities.

8.5. Improvability

GLAIR includes several forms of learning:

Learning by being told: Propositions and policies added to the KL, whether from a

human, another agent, or via perception are immediately available for use. For

example, a GLAIR agent is instructable. If it is unable, due to lack of knowledge,

to perform some act, a human may instruct it so that the agent will be able to

perform that act in the future.

Contextual learning: As discussed in Sec. 4.3, when a proposition � is derived in a

context C, its origin set o, a set of hypotheses, is stored with it. As the agent

performs, the context will probably change and some of the hypotheses in o be

removed from the context. When a new context arises that again contains all the

hypotheses in o; � will again be asserted without having to be rederived. Consider

a conditional plan such as � ¼> GoalPlan(�; p). The ¯rst time the plan is

considered in an appropriate context, � and then GoalPlan(�; p) will have to be

derived. If another situation arises in which the hypotheses in o are asserted,

GoalPlan(�; p) will be asserted without the need for rederivation.

Experience-based deductive learning: Consider the general de¯nition of tran-

sitivity, expressible in SNePSLOG as

allðrÞ ðTransitiveðrÞ
¼> allðx; y; zÞðfrðx; yÞ; rðy; zÞg & ¼> rðx; zÞÞÞ

along with the belief that Transitive(ancestor). The ¯rst time an ancestor

question is posed to Cassie, she will use the transitivity de¯nition to derive

allðx; y; zÞ ðfancestorðx; yÞ; ancestorðy; zÞg
& ¼> ancestorðx; zÞÞ

and then answer the question. The speci¯c ancestor rule will be stored in the

Knowledge Layer. The next time an ancestor question is posed, Cassie will use

the speci¯c ancestor rule, but not the general transitivity de¯nition. Even

though the knowledge base is now larger (two rules are stored instead of one), the

second question will be answered more quickly than if the ¯rst question had not

been asked. Cassie has developed a kind of expertise in ancestor-reasoning [Choi

and Shapiro, 1991; Choi, 1993].

Several other forms of improvability have not yet been added to GLAIR. For

example, we have not yet experimented with agents that use the observed e®ects of
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its acts to modify or extend its plans. Nor have we yet experimented with agents that

\compile" de¯ned acts into primitive acts.

8.6. Autonomy and extended operation

The GLAIR acting system allows for agents that act autonomously for long periods of

time, though we have not made any formal measure of agents' degrees of autonomy.

Many of our agents can act inde¯nitely independent of any explicit instructions from,

or interactions with, an operator by pursuing goals, following plans, and responding

to changes in the environment as they are perceived.

9. Current Status and Future Concerns

SNePS has been under development, with numerous uses, modi¯cations, additions,

and reimplementations since before 1979 [Shapiro, 1979]. Likewise, GLAIR has been

under development since before 1993 [Hexmoor et al., 1993], and has been used for a

variety of agents; for some examples see [Shapiro and Kandefer, 2005; Kandefer and

Shapiro, 2007; Anstey et al., 2009]. MGLAIR is still being de¯ned, although proto-

type versions have been used to build a variety of agents [Shapiro et al., 2005a].

Several issues that are certainly important for cognitive architectures have not yet

been addressed in the development of GLAIR. These include uncertainty and con-

siderations of real-time operation to limit the amount of reasoning before acting.

10. Summary

GLAIR (Grounded Layered Architecture with Integrated Reasoning) is a multi-

layered cognitive architecture for embodied agents operating in real, virtual, or

simulated environments containing other agents. The highest layer of the GLAIR

Architecture, the Knowledge Layer (KL), contains the beliefs of the agent, including

semantic and episodic memory, and is the layer in which conscious reasoning,

planning, and act selection is performed. The KL is implemented in SNePS, a logic-,

assertional frame-, and propositional graph-based knowledge representation and

reasoning system, distinguishing characteristics of which include that every well-

formed expression is a term, including those that denote propositions, and that every

entity represented in SNePS is represented by a single SNePS term/node. Policies

and several control acts connect reasoning with acting.

The lowest layer of the GLAIR Architecture, the Sensori-Actuator Layer (SAL),

contains the controllers of the sensors and e®ectors of the hardware or software robot.

Between the KL and the SAL is the Perceptuo-Motor Layer (PML), which grounds

the KL symbols in implemented actions and PML-descriptions, contains deictic and

modality registers for providing the agent's sense of embodiedness and situatedness in

the environment, and handles translation and communication between the KL and

the SAL. PML-descriptions seem to be an implementation of qualia, the ine®able
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subjective qualities of experience, that many philosophers consider to be character-

istic of consciousness.
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