
Co-Designing Agents
�

Albert Goldfain and Michael W. Kandefer and Stuart C. Shapiro
Department of Computer Science and Engineering,

University at Buffalo, Buffalo, NY 14260
{ag33|mwk3|shapiro}@cse.buffalo.edu

Josephine Anstey
Department of Media Studies,

University at Buffalo, Buffalo, NY 14260
jranstey@buffalo.edu

Abstract

In this paper we sketch a new approach for agent design and
operability called co-designing agents (CDA). As a working
definition, we take a CDA to be an agent that participates in
some aspect of its own design. The precise manner and de-
gree of a CDA’s participation will ultimately be a design-time
decision, but by considering a specific agent implementation
(that of AI actor-agents in a virtual drama) we are able to ex-
tract a general set of CDA requirements. The CDA approach
utilizes concepts from several areas of active research in AI.
We present a broad summary of the relevant literature and
discuss its applicability to CDA design. We then consider
the SNePS knowledge representation, reasoning, and acting
system as a potential CDA implementation platform.

Introduction
The task or problem to which an AI agent is set impacts the
entire design process, influencing the ultimate decisions on
such things as agent architecture, implementation language,
and knowledge representation scheme. Agent design tech-
niques in AI are almost as varied as the applications in which
the agents have been deployed. One interesting task which
can be given to an AI agent is to participate in the design
of AI agents. The lack of AI systems applied to design was
brought up recently by Grosz (2005) and Nakakoji (2005):

[I am] struck by how little has been done in developing
one family of intelligent systems, ‘intelligent project
coaches’ that participate with people in the design
and operation of complex systems. As computer
systems themselves become more complex, and their
design and maintenance an ever more critical problem,
building the capabilities for computer systems to
participate intelligently in these endeavors seems even
more important and the intellectual challenges of
�
Co-Designing Agents were the topic of a seminar at UB in the

Spring 2005 semester, we would like to thank the other members of
that seminar: Trupti Devdas Nayak, Carlos Lollett, Rahul Krishna,
Shawna Matthews, and Rashmi Mudiyanur. We are also grateful
to the members of the SNePS Research Group (SNeRG) for their
comments on an earlier presentation of this work.

Copyright c
�

2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

building such systems just as exciting (Grosz 2005)

Although design as a discipline has been an enduring
interest of both the AI and HCI communities, the im-
pact of such interest has yet to be felt in the available
design support tools. (Nakakoji 2005)

Both of these points suggest a need for systems that assist
a designer during the design and testing phases of agent de-
velopment. We will consider the implications of integrating
a design-assisting system with the AI agent itself.

We define a Co-Designing Agent (CDA) as an agent that
actively participates in some aspect of its own design. Both
the human designer and AI agent are in the “design loop”,
cooperating and serving specific roles in the design task. In
this paper, we flesh out a set of requirements that would al-
low a CDA to live up to its definition.

CDA and Cognitive Robotics
The CDA approach may be particularly useful for agents
that can interact and affect the real world, either as fully em-
bodied robots or agents with a simulated embodiment that
interact with a human user. In this section, we consider how
the CDA approach might impact robots with natural lan-
guage competence and multi-agent robotic systems. We then
turn to the domain of virtual drama, our original motivation
for the CDA model, to extract a set of CDA requirements.

Robots with Natural Language Competence
If the agent is a natural language (NL) competent robot, that
is, one that can both understand and generate NL utterances,
it will be natural for a human user to ask it to do things that it
does not yet know how to do, even though the task might be
within its capabilities. An explanation amounts to a program
that the robot should store for later use. This is a form of on-
the-job learning.

For one example, Fevahr Cassie (Shapiro & Ismail 2003)
knows how to go up, down, left, and right. We can tell her
how to make a square and make a figure eight by building
on that repertoire of actions, as shown here:
: To make a square go up and right and down and left.
I understand that to make a square go up and then go right

and then go down and then go left.

: Make a square.
I went up. I went right. I went down. I went left.

: To make a figure eight go up and left and down and right
and then make a square.

I understand that to make a figure eight go up and then go left
and then go down and then go right and then make a square.

: Make a figure eight.
I went up. I went left. I went down. I went right.
I went up. I went right. I went down. I went left.

Using NL for on-the-job instruction has also been done by
Lauria and colleagues in the context of a hardware robot that
can be given directions for navigating in a small model city.
Their robot participates in its design by using NL generation
to ask for explanations of directions it doesn’t understand:

User: Go to the library.
Robot: How do I go to the library?
User: Go to the post office, go straight ahead, the li-
brary is on your left (Lauria et al. 2001, p. 40).

Multiagent Robotic Systems
The CDA approach does not preclude systems of interacting
individual robots. In a multiagent setting, the designer must
address the needs of a community of cooperating agents as
they work towards a common goal. Agents in a multiagent
setting usually require a sophisticated method of coordina-
tion and planning to function properly.

The Robocup competition (see http://www.
robocup.org) is a good example of a multiagent
robotic setting involving soccer-playing robots. At a high
level of development, one in which the base systems have
been developed and the robots are learning to coordinate
and form strategies, the designer takes on the role of coach
and the robots take on the role of a team of players. In
such a model, the players can report to the designer per
their individual roles within the team (e.g., the role of a
position during a certain play). The coach-designer and
agent-player paradigm may be considered one instance of
the CDA approach.

Virtual Drama Actor Agents
The CDA design approach was originally motivated by “The
Trial The Trail”, a virtual drama project (Shapiro et al. 2005;
Nayak 2005; Anstey et al. 2004). The “actors” in the drama
are automated SNePS-based AI agents in a virtual reality im-
mersive environment (Anstey et al. 2003). The human par-
ticipant interacts with the agents and the virtual world via:
(1) a “wand”, a hand-held participant-controlled device for
navigation, and (2) a headset for tracking the participant’s
perspective. Like human actors, the agents are constrained
by a predefined script. However, unlike typical scripts, there
is room for an agent to respond to the human participant’s
actions. Such responses are not considered exceptions or
error conditions, but are rather desirable improvisational be-
haviors meant to provide a more immersive and participant-
specific experience. An agent’s script is structured by a se-
ries of well-defined segments (acts and scenes), as well as a
set of policies that handle participant-contingent behavior.

Agents are implemented using the GLAIR architecture
and the SNePS knowledge representation, reasoning, and
acting system (see the section on SNePS below). Each agent
has access to several modalities of sensory input. IP sockets

are used as a communication medium between the agent’s
embodiment in the virtual world and the agent’s mind. A
dedicated IP socket is assigned to each agent modality. An
agent’s embodiment in the virtual drama belongs to the agent
alone. That is to say, agents must reason about the internal
states of other agents and the human participant by utilizing
their own (unique) point-of-view.

Using a traditional stimulus-response model for actor
agents (in which each world event triggers a particular line
of speech or agent reaction) can quickly lead to repetitive be-
havior by the agent. For instance, if an actor agent must re-
spond to a user movement by saying “keep still”, we would
not want the agent to repeat this exact line for a rapid succes-
sion of user movements. Such unrealistic behavior is highly
problematic in the domain of virtual drama. It exposes the
actors as AI agents and gives the participant a less believable
performance. This problem can be alleviated somewhat by
providing more responses for the agent. However, there is
no way for the designer to know a priori which scenes will
evoke certain user behaviors. Even if the type of behavior
might be anticipated, the duration, sequence, and mode of
participant feedback will vary.

CDA Requirements
Problem domains such as virtual drama seem to demand a
set of requirements that are not immediately addressed by
simple stimulus-response systems (such as some production
systems and reactive planners). These include:
� Responsiveness to unexpected events: The agent should

be adaptable enough to react in a consistent and believable
manner. This will keep the human participant on track
through the plot.

� Notion of a scene context: The agent should be aware
that a behavior (including speech, gesture, or act) may
mean different things in different contexts.

� Offline contingency planning: The agent should antici-
pate situations that may lead to problems during a perfor-
mance before the performance.

� A model of itself: The agent should have some descrip-
tion of its own embodiment and role in the drama.

� Reporting ability: The agent should produce reports of
its actions after those actions are completed.

� Explanation ability: The agent should indicate, in some
form of justification or explanation, the reasoning behind
its choice of actions.

By designing agents with these additional abilities, the
designer-agent relationship more closely resembles the hu-
man director-human actor relationship. The agent would
take an active role in its own development.

We believe that the domain of virtual drama is sufficiently
similar to other natural domains in which intelligent agents
have been (and will be) deployed. For the remainder of
the paper, we will consider how to best characterize the ad-
ditional CDA responsibilities, and how various approaches
from AI can benefit the CDA model.

The Job Cycle
The requirements for a CDA can be characterized as a cycle
of necessary agent responsibilities. In this cycle, a three-part
distinction is made with respect to the main “job” the agent
must perform:
1. Before being “on the job”:

(a) Answer questions of the form “What would you do in situa-
tion � ?”

(b) Think of situations that may occur, but in which the CDA
would not know what to do.

(c) Discover contradictory beliefs.
(d) Discover situations in which it is supposed to do contradic-

tory actions.
(e) Respond with possible plans for handling new requirements.

2. While “on the job”:

(a) Be able to answer questions of the form, “What are you doing,
and why?”

(b) Be able to answer questions of the form, “Why aren’t you
doing � ?”

3. After being “on the job”:

(a) Be able to report what it did at various times.
(b) Be able to report any problems it had, including situations it

couldn’t handle satisfactorily.
(c) Be able to answer questions of the form, “Why did you do

� ?”
(d) Be able to answer questions of the form, “Why didn’t you do

� ?”

This is only a preliminary list of abilities and questions;
indeed, several other interesting abilities could assist a co-
design. We call this a job cycle because there may be suc-
cessive iterations of the job. After ���	��
 may be before ���	�� .
In each stage question-answering and reporting is crucial.
Without feedback from the agent, the agent is not doing its
part in the design process. Also, at each stage, the agent
must be able to reason with models: (potentially) of itself,
of the user, of the world, and of other agents.

A CDA’s design goals are added to the task-specific goals
of a traditional AI agent functioning in the relevant problem
space. Thus, the CDA model will incur some overhead and
should be used only when the benefit to the designer out-
weighs the cost.

Design Scenarios
Not all of the abilities listed in the previous section may be
necessary for a particular task. Further fine tuning of re-
quirements is imposed by various design scenarios.

The simplest model of distributing design responsibilities
between an agent and its designer is one with a single de-
signer working on a single agent. The designer in this case
is the single trusted authority for the agent. Even in this
simplest of cases, the designer may be conflicted regarding
a design decision and could be assisted by a CDA in making
those decisions.

A different design scenario would involve a single de-
signer and multiple agents. This is the traditional model for
multi-agent systems (MAS). Each agent may have a unique

set of design goals as well as a unique set of task specific
goals.

A third design scenario would involve multiple design-
ers implementing a single agent. A particular agent design
may be sufficiently complex to require several cooperating
expert designers during implementation. Each expert might
be assigned a particular module or subsystem of the agent.
Unique avenues of participation open up for CDAs in such a
situation. The CDA may be able to alert the designers when
two design decision conflict across components. Such a sce-
nario also brings up issues that the other scenarios do not,
such as designer credibility (who should be trusted when de-
sign decisions are conflicting) and area of expertise (which
designer would find a particular piece of information most
useful).

Finally, a fourth design scenario would involve CDAs de-
signing other CDAs. This is an ideal case in which the CDA
is autonomous enough to apply co-design without any hu-
man intervention beyond the initial programming.

Related Work
The CDA model incorporates ideas from a number of active
AI research areas. This section gives a general overview
of several relevant systems that have been (or are currently
being) developed. This overview is not exhaustive, and ex-
amines general AI topics as well as some specific agent im-
plementations.

Planning Systems
Plans, in the AI literature, have been treated as “(possi-
bly partial) representations of future behavior” (Tate 2001).
Planning systems have been utilized in order to determine
and constrain this behavior. These systems are essential for
before-the-job and after-the-job activities. Before-the-job
the agent can discuss its intended plans to complete on-the-
job tasks. Meanwhile, the designer can correct or make sug-
gestions regarding the plans. After-the-job, the agent can as-
sess the overall success of its plans. The agent can describe
the flaws in the plans it chose or suggest improvements to
future plans.

The TRIPS system (Ferguson & Allen 1998) is promi-
nently known for maintaining the human designer in the
planning-system loop. In TRIPS, a human manager and the
system work collaboratively to create plans in “crisis” situa-
tions. In this collaboration, the job of the system is to inter-
pret the human user’s utterances for constructing a plan, and
acting upon them. Possible actions include: (1) providing
information about the user-constructed plan(s), (2) modify-
ing the plans based on new information, and (3) when re-
quested, providing the results of alternative plans.

User-Modeling
The ability for an agent to model a designer is necessary in
a multi-designer setting. In such settings, the agent requires
knowledge of which designer is working on each of its com-
ponents. Given a piece of information acquired on-the-job,
the agent needs a method of determining the designer for
which this information is most beneficial.

The field of user modeling has fostered a collaboration
between the fields of AI and Human Computer Interactions
(HCI). The goal of this collaboration is to create intelligent
tools that learn to interact with an individual user’s needs.
The GOMS model (goals, operators, methods and selection
rules) (John & Kieras 1996) is one user-modeling paradigm.
GOMS is integrated with an existing piece of software that
requires user modeling. The four GOMS properties are de-
fined as follows:

1. Goals: the task of recognizing a user’s goals and sub-
goals while using the software

2. Operators: the operations available to the user through
the software

3. Methods: learned plans composed of sub-goals and oper-
ators to accomplish a goal

4. Selection Rules: employed on a user-specific basis to de-
cide on which method is most appropriate when multiple
methods are available

User modeling is also relevant when a CDA’s task requires it
to deal with users that are not the designer. A designer may
want to collect information about the different use cases or
online user behaviors.

Multi-Agent Systems (MAS)
Much of the research done in MAS, in particular agent col-
laboration, can aid in the development of CDAs. Though
many definitions have been given for MAS (Sycara 1998;
Lesser 1995; Florez-Mandez 1999), a commonality is found
in the following properties:

1. Each agent in the system is autonomous (to a designer-
specified degree)

2. There is no global control of the system

3. Data is decentralized

MAS are similar to distributed artificial intelligence (DAI)
(Bond & Gasser 1988), except that DAI includes some
global control mechanism for the system. Like MAS, the
CDA model does not presuppose a global control. The
agent and designer act as separate, functioning agents and
are aided through each other’s capabilities and knowledge.
Both agent and designer are a part of the agent’s design pro-
cess. Control of this system need not be entirely in the hands
of the designer, and both can contribute to the design goals
of the system. This collaboration is essential to all of the
design scenarios given above.

Expert Systems
Expert systems have been employed for years as a means
for delivering expert advice to naive users (Rheingold 2000).
Though related to general question-answering systems, what
distinguishes them from typical answer generating systems
is user interaction. It is this component in implemented ex-
pert systems that can aid the CDA model.

Rheingold (2000) describes modern expert systems as
having three components: (1) task-specific knowledge, (2)
rules for making decisions, and (3) facility for answering

questions about the system’s own recommendations. The
culmination of these three properties allows for a user to be-
gin a learning interaction with the expert system. This inter-
action starts when the user engages a particular expert sys-
tem; such as MYCIN, a medical diagnostic tool. Once the
system is engaged a process is started in which the expert
system requests information from the user in order to make
an accurate assessment, and then provides a solution with an
accuracy measure. This process is done using a combination
of the first and second components. While an expert system
can end at this point it does little to assuage any doubts a
user might have with the results. It is here where question-
answering regarding system recommendations is essential.

One system that supports this ability is Debrief (John-
son 1994). The Debrief system is implemented utilizing an
episodic memory. This memory stores agent run-time ac-
tions alongside a condensed chunk of problem-state infor-
mation related to these actions. After the run, a user of the
system can ask the agent (through a menu interface) why an
agent took a certain course of action. To answer the ques-
tion, the agent first reconstructs the situation surrounding the
user-selected action by retrieving the condensed information
from episodic memory. The agent then checks the selected
action’s applicability, a test which involves “mental simu-
lation” or “replay” of the recalled information. This test is
done to ensure the Debrief recorded in episodic memory the
situation prior to the action in question, and not the situation
resulting from the action’s execution. If the action is appli-
cable, the agent attempts to determine the reason the selected
action was chosen by continuing with this mental “replay”.
During this process information about this action “replay”
is also stored, such as perceptions, stimuli, and conclusions.
As a last step, this information is examined for those fea-
tures that led to the action taken, as well as any alternative
choices of action that were available to the agent.

Agent-based Project Management
Petrie (1999) describes a particular class of problems associ-
ated with design and development, in particular those deal-
ing with distributed integrated project management. These
problems involve changes in the design of an artifact and the
subsequent effects on the development processes for the arti-
fact, as well as a method of coordinating changes. The solu-
tion described involves the use of software agent nodes over-
seeing a particular aspect of the development process. The
agent nodes receive messages about changes in the initial
design or plan and assist in collaborating with other agent
nodes to determine what has to change in the development
process due to the design change.

Though the system described has its ties in project man-
agement, in particular those involving the construction of
artifacts based on a plan, some of the aspects the system
considers is related to the CDA model. The CDA model is
based upon the idea that the agent will be continuously up-
dated, and its design changed. Both agent and designer(s)
contribute in this process, and must have an understanding
of each other’s roles in this process. The agent-based project
management technique discussed could aid the agent in de-
termining what design changes need to be heard by the de-

signer(s). This is not terribly useful in a single designer en-
vironment, as the designer would be the only source for de-
sign changes. However, in multiple designer scenarios, such
a tool could help sift out what changes a particular designer
needs to know about.

Domain Discovery Agents
A recurring feature of any design processes is the tendency
for a piece of technology to be supplanted by a newer, more
powerful version. In the realm of software, newer versions
often include bugfixes to previous versions and enhanced ca-
pabilities. In many industrial software projects, a revision
history is maintained to allow for backward-compatibility
and traceability of changes.

For a CDA, it may be useful for the agent to have access to
its own revision history. This would give the agent a log of
design changes between job iterations. This information can
be used by the agent to form a model of previous versions of
itself and to reason about its previous abilities. Additionally,
the agent could apply what was learned on the job towards
building a future version of itself.

The Mars Rovers (http://marsrovers.nasa.
gov/home/) are a good illustration of how human design-
ers can benefit from allowing an agent to discover features
of its environment and using this acquired information as
feedback for future agent design. The Mars Pathfinder So-
journer Rover mission involved sending an unmanned craft
to Mars to land and deploy a robotic agent capable of ac-
quiring images. It is generally agreed that what was learned
on this mission aided the designers in planning and engi-
neering the newer, more powerful robotic geologist rovers
Spirit and Opportunity (Squyres, Arvidson, & Bell 2004).
The images taken by Sojourner, along with the experience
of landing a rover on Mars suggested several engineering
improvements. These improvements were applied in the de-
sign of the Spirit and Opportunity Rovers. Design improve-
ments for the Spirit and Opportunity rovers were handled by
human designers (partly) based on the online domain infor-
mation collected by Sojourner. Thus, the ability to collect
on-the-job information and to log this information as a revi-
sion history is crucial to many applications of CDA design.
We also suggest that a CDA that has access to its own revi-
sion history would come closer to being capable of automat-
ing the inter-revision improvement process.

SNePS
Implementing a CDA requires a system capable of support-
ing a wide variety of features. The SNePS knowledge rep-
resentation, reasoning and acting system (Shapiro & Rapa-
port 1987; 1995) is a good candidate for a CDA implemen-
tation platform. The underlying data structure of SNePS is
a propositional semantic network representing the beliefs of
a cognitive agent. Semantic networks are general enough
to represent various kinds of information and, thus, can be
flexibly extended to include features of the CDA model. The
components of SNePS facilitate CDA development by al-
lowing for many of the requirements described above.

SNIP, the SNePS inference package (Shapiro & The
SNePS Implementation Group 2004), allows agents to infer

new information from an existing set of beliefs. Inference is
essential for CDA-designer communications, and for learn-
ing new information on the job.

SNeRE, the SNePS Rational Engine (Kumar 1993), is a
model of acting for SNePS agents. SNeRE generates a trace
of inference during action which can serve as an on-the-job
report of its activities. SNePS agents can modify their un-
derlying semantic network during an act, thus leaving an
episodic memory of the act. SNeRE also allows SNePS
agents to select plans based on context. Procedural informa-
tion (i.e., “How do I do X?”) is stored in the same semantic
network as conceptual information (i.e., “What is X?”).

SNeBR, the SNePS Belief Revision component (Shapiro
& Johnson 2005), allows SNePS agents to detect contradic-
tory beliefs during inference and report the inconsistency to
the designer. The designer can then proceed to abandon one
of the agent beliefs that led to the contradiction.

GLAIR, the Grounded Layered Architecture with Inte-
grated Reasoning (Hexmoor & Shapiro 1997; Shapiro & Is-
mail 2003), is used for embodied SNePS agents (both phys-
ical and simulated embodiments). GLAIR specifies how an
agent acquires beliefs about its own actions and percepts,
and how it has a sense of its own situatedness in the world.
This allows a SNePS-based CDA to obtain knowledge from
on-the-job sensory experience.

SNePS agents are capable of metacognition (Shapiro et
al. forthcoming), reasoning about their own reasoning and
underlying representations. Metacognition is essential for
supporting the self-modeling feature of a CDA. A CDA is
an inherently incomplete (yet perpetually improving) agent
and, as such, must be able to communicate its beliefs about
itself to its designer.

For the purposes of communicating with the agent,
SNePS provides two programatic interfaces for the designer.
SNePSUL (a Lisp-like language) and SNePSLOG (a Prolog-
like language). SNePS agents have also been provided a
natural-language interface using an ATN parser/generator
(Shapiro & The SNePS Implementation Group 2004).

Conclusion
We have described several requirements for the CDA model
and some relevant literature from AI supporting this model.
New developments in several fields we have not discussed
(e.g., mixed-initiative planning and agent software engineer-
ing) will also be relevant to future development of the model.
We have considered a job cycle characterization of CDA re-
sponsibilities. CDAs are a generalization of a specific type
of agent which was motivated by the problem domain of vir-
tual drama. Aspects of the CDA model have been added
to the actor agent implementation in the form of an actor
agent requesting more lines from the director when it has ex-
hausted all of the ones it knows (Nayak 2005). This is a par-
tial solution to the problem of repetetive participant behavior
because it allows the agent to make its own determination as
to whether a series of behaviors is repetitive enough to use
up all relevant lines.

A designer should consider the following questions dur-
ing the design phase of agent building:

� What design aspect can be automated by the agent?
� What are the benefits and costs of automating some design

aspect?
� What shortcoming of a traditional agent design is over-

come by using the CDA model?

By considering CDAs in different problem domains, the
model can become a useful way to think about the role of
an AI agent.

References
Anstey, J.; Pape, D.; Shapiro, S. C.; and Rao, V. 2003.
Virtual Drama with Intelligent Agents. In Thwaites, H.,
ed., Hybrid Reality: Art, Technology and the Human Fac-
tor, Proceedings of the Ninth International Conference on
Virtual Systems and MultiMedia (VSMM). 521–528.
Anstey, J.; Pape, D.; Shapiro, S. C.; Telhan, O.; and Nayak,
T. D. 2004. Psycho-Drama in VR. Proceedings of The
Fourth Conference on Computation Semiotics (COSIGN
2004) 5–13.
Bond, A. H., and Gasser, L. 1988. An Analysis of Prob-
lems and Research in Distributed Artificial Intelligence. In
Bond, A. H., and Gasser, L., eds., Readings in Distributed
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann
Publishers.
Ferguson, G., and Allen, J. 1998. TRIPS: An Intelligent
Integrated Problem-Solving Assistant. In Proceedings of
the Fifteenth National Conference on Artificial Intelligence
(AAAI-98). Menlo Park, CA: AAAI Press. 567–573.
Florez-Mandez, R. A. 1999. Towards a standardization of
multi-agent system frameworks. ACM Crossroads, Issue
5.4 on Intelligent Agents.
Grosz, B. J. 2005. Whither AI: Identity Challenges of
1993-1995. AI Magazine 26(4):42–44.
Hexmoor, H., and Shapiro, S. C. 1997. Integrating Skill
and Knowledge in Expert Agents. In Feltovich, P. J.;
Ford, K. M.; and Hoffman, R. R., eds., Expertise in Con-
text. Menlo Park, CA / Cambridge, MA: AAAI Press/MIT
Press. 383–404.
John, B. E., and Kieras, D. E. 1996. Using GOMS for user
interface design and evaluation: which technique? ACM
Transactions on Computer-Human Interaction 3(4):287–
319.
Johnson, W. L. 1994. Agents that Learn to Explain Them-
selves. Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI 1994) 1257–1263.
Kumar, D. 1993. A unified model of acting and inference.
Twenty-Sixth Hawaii International Conference on System
Sciences Volume III 483–492.
Lauria, S.; Bugmann, G.; Kyriacou, T.; Bos, J.; and Klein,
E. 2001. Training personal robots using natural language
instruction. IEEE Intelligent Systems 16(5):38–45.
Lesser, V. 1995. Multiagent Systems: An Emerging Sub-
discipline of AI. ACM Computing Surveys 27(3):342–343.

Nakakoji, K. 2005. Special Issue on Computational Ap-
proaches for Early Stages of Design. Knowledge-Based
Systems 18:381–382.
Nayak, T. D. 2005. Patofil: An MGLAIR Agent for a
Virtual Reality Drama. Technical Report SNeRG Technical
Note 38, University at Buffalo.
Petrie, C.; Goldmann, S.; and Raquet, A. 1999. Agent-
Based Project Management. Lecture Notes in Computer
Science 1600:339–363.
Rheingold, H. 2000. Knowledge Engineers and Epistemo-
logical Entrepreneurs. In Tools for Thought: The History
and Future of Mind-Expanding Technology. Cambridge,
MA: MIT Press. 274–295.
Shapiro, S. C., and Ismail, H. O. 2003. Anchoring in
a grounded layered architecture with integrated reasoning.
Robotics and Autonomous Systems 43:97–108.
Shapiro, S. C., and Johnson, F. L. 2005. Automatic be-
lief revision in SNePS. In Baral, C., and Truszczynski,
M., eds., Proceedings of the 8th International Workshop
on Nonmonotonic Reasoning, Action, and Change. Edin-
burgh, Scotland: IJCAI. 96–103.
Shapiro, S. C., and Rapaport, W. J. 1987. SNePS Con-
sidered as a Fully Intensional Propositional Semantic Net-
work. In Cercone, N., and McCalla, G., eds., The Knowl-
edge Frontier: Essays in the Representation of Knowledge.
New York, NY: Springer Verlag. 262–315.
Shapiro, S. C., and Rapaport, W. J. 1995. An Introduction
to a Computational Reader of Narrative. In Duchan, J. F.;
Bruder, G. A.; and Hewitt, L. E., eds., Deixis in Narrative:
A Cognitive Science Perspective. Hillsdale, NJ: Lawrence
Erlbaum Associates. 79–105.
Shapiro, S. C., and The SNePS Implementation Group.
2004. SNePS 2.6.1 User’s Manual.
Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005. MGLAIR Agents in
Virtual and other Graphical Environments. Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05) 1704–1705.
Shapiro, S. C.; Rapaport, W. J.; Kandefer, M.; Johnson,
F. L.; and Goldfain, A. forthcoming. Metacognition in
SNePS. AI Magazine.
Squyres, S. W.; Arvidson, R. E.; and Bell, J. F. 2004.
The Opportunity Rover’s Athena Science Investigation at
Meridiani Planum, Mars. Science 306(5702):1698–1703.
Sycara, K. 1998. Multiagent Systems. AI Magazine
19(2):79–92.
Tate, A. 2001. Planning. In Wilson, R. A., and Keil, F. C.,
eds., The MIT Encyclopedia of the Cognitive Sciences.

