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Abstract

A cognitive agent is expected to use awareness of the environment and its own body to direct
its actions. Such awareness is required for the simplest and most common type of composite
acts: sequences. To perform a sequence of acts, a cognitive agent should start performing
one step when, and only when, it comes to believe that the previous one has been completed.
We present a model for interleaving action, reasoning, and perception in order to allow for the
conscious performance of sequences of acts. To define such a model, the notion of act completion
needs to be characterized. This is achieved by developing a formal system in which acts are
classified along the dimensions of telicity and primitiveness. The proposed system includes and

goes beyond the traditional binary telic/atelic distinction.



1 Introduction

Cognitive agents should act consciously. When carrying out a sequence of acts, an agent should be
aware of the progression of its acts, and should reason, using its perception of the environment and
awareness of its own body, to decide when to move to the next step in the sequence. Most acting
systems in artificial intelligence do not explicitly follow this strategy. They either do not focus on
the execution of (but rather on reasoning about) actions or they somehow overlook and avoid the
issue completely.

We present a model for acting that makes use of reasoning, perception, and bodily feedback
to direct the agent’s actions. We present the model in the framework of the SNePS knowledge
representation and reasoning system (Shapiro and Rapaport, 1987; Shapiro and Rapaport, 1992;
Shapiro and the SNePS Implementation Group, 1999) and apply it to an agent designed using the
GLAIR architecture (Hexmoor et al., 1993; Hexmoor and Shapiro, 1997). Section 2 outlines the
problem in detail and discusses related work. Section 3 provides an analysis of the structure of acts
using the linguistic notion of telicity. We argue that different types of telicity (we go beyond the
traditional binary telic/atelic distinction) correspond to different intentions the agent should have
while performing its actions. In section 4, we discuss primitive and composite acts and present
our approach to characterizing both types. Section 5 explains in some detail the architecture of
our agent, discusses the structure of various types of acts, defines the crucial technical notion of
goals, and presents the concept of cascaded acts which we use to model conscious performance of
sequences of acts. In Section 6, we present some examples of our theory in action. Finally, Section
7 fills in all the technical details by providing formal semantics for act execution and completion.
The paper has been written in such a way that readers not interested in the fine technical details

can skip Section 7 and still get the basic message.



2 Reasoning, Bodily Feedback, and Sequential Acting

2.1 The Problem

Before getting into a detailed discussion of what we are trying to do in this paper, let us first briefly
point out what it is that we are not doing. First, we have nothing much to add to discussions of
consciousness in cognitive science and philosophy. In this paper, expressions like “consciousness”
and “awareness” refer to a level of representation of information that includes entities that an agent
can reason or talk about. Thus, an agent may be aware (or conscious) of whether it is holding
a block in as much as it can reason or talk about such a situation. Nevertheless, it might not
be aware, and hence cannot discuss or reason about, any of the perceptual and/or proprioceptual
processes involved in believing that it holds a block. Second, we do not address planning problems.
We assume that our agent has a prestored library of plans (or recipes, a la (De Eugenio, 1998)) or
a collection of high-level programs (Levesque et al., 1997) that it uses to achieve its goals. Third,
we do not address problems that may arise from various concurrent processes communicating with
each other to affect the behavior of the agent. Finally, in this paper, we do not consider errors and
interrupts that may happen during acting (but see (Ismail and Shapiro, 2000a)). Nevertheless, our
approach has been designed with these considerations firmly in mind. The problem that we are
addressing here is, we believe, more fundamental.

Consider an agent that is performing a sequence of acts (ag ... a,). The agent may be involved
in such an activity either because it was instructed to do so, or because it was asked to achieve
some goal for which it needs to perform that sequence of acts as indicated by some recipe. What
does performing a sequence of acts mean? Intuitively, to perform «; and then as and then as, etc.
The simple concept of performing one act and then another seems to be a very fundamental one.

However, when considering what it requires to actually behave in such a manner, it turns out that



this concept is indeed fundamental but far from simple, or at least not as simple as it may seem.

For example, consider the following instructions:

(1) Pick up the block and then walk to the table and then put the block on the table.

(2) Run to the store and then buy a bottle of milk and then run back here.

(3) Stick a stamp on the envelope and then bring the secretary here and then give her the

envelope.

In the three cases, the English word then stands for an important constraint on how to behave
according to the given instruction. In particular, in (1) for instance, the agent should first start
picking up the block and it should start walking to the table when, and only when, it is holding
the block. Similarly, it should start putting the block on the table when and only when it is near

the table. That is, the above instructions could be more explicitly represented as follows:

(1’) Start picking up the block; and when you are holding the block, start walking to the table;

and when you are near the table, start putting the block on the table.

(2’) Start running to the store; and when you are in the store, start buying a bottle of milk; and

when you have bought a bottle of milk, start running back here.

(3') Start sticking a stamp on the envelope; and when there is a stamp on the envelope, start

bringing the secretary here; and when the secretary is here, start giving her the envelope.

As should be obvious, the above versions of (1), (2), and (3) are linguistically awkward. They,
however, represent a more detailed account of what the agent would do in order to behave correctly.
There are two main differences between the two versions of the instructions. First, note the use of

start. Indeed, the only thing that an agent is guaranteed to do is to start performing some act.!

"Where start could be interpreted as intend.



Whether it will actually perform the act or not depends on many factors including the occurrence
of errors and various environmental conditions. Second, the agent moves on to the next step in a
sequence of acts when and only when it has completed the previous one. The important point here
is that the agent does not start the first act and then start the second and then the third etc.; it
must start the i act only when the (i — 1) act has been successfully completed.

In this paper, we propose a theory for the performance of sequences of acts. Given instructions
as those in (1)-(3) (either in a formal or a natural language), we need our theory to ensure that the
agent would actually behave along the lines of (1')-(3"). One important feature of our theory (and,
for that matter, any theory that would address the same issue) is that perception, bodily feedback,
and reasoning should all be integrated into the acting system in such a way that they actually
direct the execution of acts. In particular, knowing when an act is complete is a reasoning process
that in many cases (see the above examples) is initiated by perception and/or bodily feedback. It
is this conscious awareness of what it has done that directs the agent in its execution of a sequence
of acts.

Now, our readers might (rightfully) wonder why there is a problem in the first place. After all,
there have been numerous Al applications where robots adequately performed the tasks required
of them without the need for a sophisticated theory of sequential acting. How were these robots at
all successful? To answer this question, it might be sufficient to review the relevant literature and
discuss how existing acting systems approach the issue of sequencing, which we do in Section 2.2.
However, part of the answer to the question could be provided without delving into the details of
particular systems. Granted, years of research have lead to the development of successful robots
that do not seem to have any problems performing a sequence of acts. But that can only be said
based on the observable behaviors of those robots. Correct behavior could be achieved in a number

of ways, but is the underlying methodology robust? Is it theoretically well-worked-out so that it



may be generalizable to novel, more ambitious domains? The problem that we are addressing here
is not just how to achieve appropriate behavior, but how to explain it and flesh out the fine details
that contribute, as generally as possible, to the correct execution of a sequence of acts. At the core
of our problem is determining what constitutes the completion of an act. A large part of this paper
is dedicated to developing an ontology of acts categorized according to their completion conditions.
This is an issue that has not been addressed before in any depth and that, we believe, should be
carefully examined to develop better action executors.

As shall be illustrated in Section 2.2, there have been two main attitudes toward the issue
of action execution within the Al community. The first demotes action execution to the level of
implementation details that are typically not accounted for in the formal theory of action. This
essentially means that there is no principled method by which the correct sequencing of acts is
achieved. The second attitude grants execution more attention but only considers acts for which
no reasoning is required to determine when they are complete. This facilitates building robots
where the reasoning system does not have to worry about the sequential execution of acts; it is
notified by a lower-level component when it should issue the next act in the sequence. Nevertheless,
such systems are obviously not robust since they only work under the assumption that no reasoning

is needed to determine completion. As we shall argue below, this is far from reasonable.

2.2 Related Work

As far as we know, nobody else has explicitly addressed the problem of sequential acting before.
To start with, research oriented towards developing languages for representing and reasoning about
actions and plans does not say anything about the correct execution of sequences of acts in real time

in the real world.? For example, see (Traverso and Spalazzi, 1995), (Artale and Franconi, 1998),

’

?In the sense of (1')-(3).



or (Chen and De Giacomo, 1999) for recent proposals with various concerns. In these systems,
there is some construct in the formal language denoting sequences of acts.? The semantics of these
constructs either specify temporal constraints on the component acts or implicitly use variants of
the English then. No mention is made of acts being complete and agents being aware of it. We
believe that such issues should be accounted for in the semantics of the action language.

Research within the GOLOG family (including standard GOLOG (Levesque et al., 1997), its
concurrent version: CONGOLOG (De Giacomo et al., 2000), and its temporal version (Reiter,
1998)) may be divided into those versions of GOLOG with an off-line interpreter and those with an
on-line interpreter. With an off-line interpreter, the output of the system is a sequence of actions
that would lead to the goal sought should they be executed in order. However, execution is assumed
to be carried out by a different component of the system and there is no mention of how sequences
of acts would actually be performed in real time in the world.

On-line interpreters of GOLOG (De Giacomo et al., 1998; De Giacomo and Levesque, 1998)

account for the actual execution of actions and recovery from errors that may affect their outcome.

The robot is executing a program on-line. By this, we mean that it is physically per-
forming the actions in sequence, as these are specified by the program. After each exe-
cution of a primitive action or of a program test action, the execution monitor observes
whether an exogenous action has occurred.” (De Giacomo et al., 1998, pp. 453-454;

our emphasis)

Nevertheless, nothing is mentioned about how the monitor knows that the action has been suc-
cessfully completed. The implicit assumption is that when the agent is acting, it is acting, and
control returns to the main execute-monitor loop when the action is finished (see the sample Prolog

implementations presented in (De Giacomo and Levesque, 1998) and (De Giacomo et al., 1998)).

3Indirectly in the case of (Traverso and Spalazzi, 1995).



This would work so long as the action is merely simulated.* However, if the action initiates certain
activities in a hardware robot, the monitor should wait for these activities to terminate not merely
for their initiation to be over. The mail-delivery GOLOG agent described in (Lespérance et al.,
1998), which is an actual hardware robot, seems to satisfy this requirement. The following outlines

the gist of the recipe presented therein for trying to serve a customer.

1. Start going to the customer.

2. Wait until you are not moving.

3. If you have reached the customer, then serve the customer.

4. Else if you are stuck, then handle failure.

This looks very much like the sequences in (1’)-(3') and indeed results in the appropriate behavior.
Nevertheless, it does not provide any insights into the general issue of sequential acting; the correct
way to act is explicitly represented in the recipe rather than being implemented in the semantics of
the GOLOG sequencing operator. New sequences would also have to be explicitly expanded in the
same way, thereby missing important generalizations that could be made regarding the structure
of sequential acting. In addition, such representations are also far removed from natural linguistic
instructions (note the awkwardness of (1')-(3')), a consequence that we would like to avoid in
building cognitive agents.

The only place where the completion of a component act is explicitly stated in the semantics
of sequences is (Davis, 1992, p. 41). Informally, he states that a sequence of two acts is active if
the first is active and not yet completed or the second is active and the first is completed. This

suggests (but does not guarantee) that the second act may only be activated when it is known that

4This is not to say that all GOLOG applications use software simulations. For example, see (Tam et al., 1997)

where a discussion of using GOLOG in the control of two hardware robotic platforms is presented.



the first one has been completed. (Davis, 1992) also mentions that for some acts (what he calls

finite acts), the reasoning system is notified that they are complete:

The command to execute [finite acts] is shipped off to a black box: an effector con-
trol unit, or a separate module, or even a lower-level planner. It is assumed that the
black box knows what it means to “begin”, “continue”, “interrupt”, “resume”, and
“complete” such an act, and can report to the plan interpreter when the act has been

completed.” (Davis, 1992, p. 41)

We may interpret this as an indication of some sort of bodily feedback (where the body is Davis’s
black box). Nevertheless, this issue is not explicitly related to the execution of sequences. In addi-
tion, given Davis’s discussion, it appears that the completion of a finite act is somehow determined
by the cessation of bodily activity. As we shall argue below, this is not sufficient for all types of
acts, since some reasoning might be needed to determine completion.

Research on interleaving sensing, planning, and execution (Georgeff and Lansky, 1987; Ambros-
Ingerson and Steel, 1988; Shanahan, 1998, for example) addresses issues that are related to our
problem here. In these systems, planning and execution are interleaved (or performed concurrently)
in a producer-consumer kind of model. When the planner reaches a primitive act, the executive
performs it. The sensory system updates some knowledge base with changes in the environment
that are taken into consideration by the planner. It is not clear, however, how the planner knows
when to send a new primitive act to the executive, essentially the problem of when to move to the

next step in a sequence. For example, Shanahan discusses the sense-plan-act cycle:

The robot’s sensors are read, then a bounded amount of time is allotted to processing
sensor data before the robot moves on to planning. Then a bounded amount of time is
given over to planning before the robot proceeds to act. Having acted, the robot consults

its sensors again, and the cycle is repeated. (Shanahan, 1998, p. 8; our emphasis)
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How does the robot know that it has acted? It is not clear how to answer this question in light
of Shanahan’s discussion. It is, however, clear that the sense-plan-act cycle is not consciously
controlled by the agent, i.e., it is not encoded in Shanahan’s logic. Apparently, some subconscious
mechanism controls the cycle. Why is that a problem? It is a problem because, as we shall argue
below, it is sometimes necessary to reason about whether an act is complete.

Reviewing previous work, we obviously needed to read between the lines, in an attempt to come
up with answers to the question of how the discussed systems address the problem of sequential act-
ing that we outlined in Section 2.1. This shows that the problem has not been explicitly addressed.
Even though the discussed systems certainly have their means of overcoming, or overlooking, the
problem, there is yet no generalized theory to be found.

One might think that there is nothing fundamentally deep about this problem. In particular, we
may suggest that concurrent processing can totally eliminate any problems with sequential acting.
For example, consider the following system. There are two concurrent processes, p; and ps. pp
carries out reasoning and possibly interacting with another agent (typically, a human user). po
controls the execution of sequences of acts and has direct access to the status of the body (this is,
more or less, the organization assumed in (Davis, 1992)). Suppose that the agent is instructed to
perform a sequence of acts. Having received the instruction, p; sends it to po which starts executing
the sequence. py initiates one act, sleeps until the body finishes execution, and then initiates the
next act. This keeps on repeating until the whole sequence has been performed. In the meantime,
p1 is active, available for interacting with the user and can, at any time, interrupt po causing it to
stop the execution of the sequence.

Although this seems to solve the problem, it actually does not. The main problem is how pg
operates. Note that ps initiates an act when the current activity of the body terminates. However,

just termination is no guarantee that the act has actually been performed successfully. Something
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might have gone wrong during execution and it may not be appropriate to assume that the act
has been completed. Suppose for the sake of the argument, however, that ps can somehow tell
whether the act actually succeeded. That is, ps initiates an act only when the body has actually
carried out the previous one. In this case, such a system might be sufficient for some sequences.
For example, it may correctly perform the sequence in (1). However, consider (2). The act “buy a
bottle of milk” does not seem to be primitive. That is, it is not one continuous bodily activity; the
agent would need to reason and follow a plan in order to buy a bottle of milk. Such a plan may be
another sequence of acts including walking to the dairy section, picking up a bottle of milk, walking
to the cashier, paying the money, and possibly interacting with other agents. Merely monitoring
the state of the body is obviously not sufficient for ps to tell when to initiate the act following that
of buying the milk. The agent has to know, using both bodily feedback and reasoning, that the
goal of buying a bottle of milk has been achieved; according to (2'), that it has bought a bottle of
milk. Only then could the agent move on to the next step.

Consider another example. An interactive tutoring system is given the following high-level
instruction: “Explain the problem to the student and then test them”. Determining when the test
should be given is based on whether the student has understood the problem. But determining the
latter cannot be done without reasoning; the agent needs to reason, and even act, in order to figure
out whether the first act in the two-act sequence has been completed. No acting system that we
are aware of offers a principled, domain-independent, way to do this.

Even more interesting is the sequence in (3). The act “bring the secretary here” may be
performed by the agent calling the secretary, for instance. However, once it does that, its body is
no longer actively doing anything. This, by no means, should make the agent move on to the next
step; the secretary has to actually arrive, an event that can happen at any time and that is not

under the control of the agent.
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Waiting untill bodily activities terminate is obviously not sufficient to initiate the next step
in a sequence of acts. Nor is it sufficient to depend on the sub-conscious body to notify the
planner /reasoning system that an act is complete; determining whether an act is complete often
requires reasoning. We need a theory of an agent that is conscious of what it is doing, aware of the
outcome of its activities, and whether they actually achieve their intended goals. In the rest of the

paper, we propose such a theory.

3 Telicity

Central to the issue that we are discussing is the notion of completion. What constitutes the
completion of an act? The answer, as we shall argue below, depends on the type of the act.

Consider the following English instructions:
(4) Run.
(5) Run to the store.
(6) Run toward the store.

Upon hearing the above instructions, an agent would engage in certain activities in order to
carry out what it was asked to do. For an outsider, someone who did not hear the instructions, the
agent’s responses to (4), (5), and (6) may look exactly the same: the agent is running. Nevertheless,
the three instructions are intuitively different. The difference does not correspond to different motor
programs the agent executes, but rather to different intentions or beliefs the agent has.

One dimension along which linguists characterize events is that of telicity (Comrie, 1976; Dahl,
1981, for instance). An event is telic if it is described (or conceived of) as having a built-in definite
ending state. Otherwise, the event is considered atelic. Acts, the primary focus of this paper, are

special cases of events—events involving an agent carrying out some process. Thus, the telic/atelic
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distinction applies to acts as well. Accordingly, (5) is telic, where the definite ending state is the

® On the other hand, (4) and (6) are atelic; there is no specific state

agent’s being at the store.
whose achievement represents a (right) boundary for the activity of running.

As pointed out by many authors (see (Dowty, 1977), (Parsons, 1989), and, in a slightly different
sense, (Comrie, 1976, p. 47)), part of the meaning of each of the above instructions is the running
activity (in the case of (4), it may be all there is). This corresponds to the single motor program
that the agent executes. The conceptual telic/atelic distinction only comes into play in deciding
the agent’s intentions. In particular, its intentions regarding when to stop running. At the core of
the notion of telicity, is the issue of completion; the telic/atelic distinction can be characterized by
imposing constraints on the completion conditions of different types of acts. To precisely state such
conditions, we need to closely investigate the ontology of acts and introduce some formal notation
to discuss its features. We shall, however, fill in some of the details informally since they are not
pertinent (and might actually be distracting) to issues discussed in this paper.

The first important distinction is the distinction between an event (and, hence, an act) category
and its instances. For example, running to the store is an event category of which there may be
many (or no) instances—different particular occasions of running to the store. This is basically
a type/token distinction. Unless the distinction is clear from context, we shall reserve the terms
“act” and “event” to tokens, and refer to types as “act categories” and “event categories”. In what
follows, the expression Cat(e, £) means that £ is an event category for the particular event e.% Now,
the reason why this type/token distinction is crucial to our discussion is that telicity is a property
of event categories not individual instances. Nevertheless, an event category is telic, or atelic, in
virtue of particular patterns that its instances exhibit. In what follows, we shall analyze an act

category, A, as having a component p 4 representing the process that the agent has to carry out in

50f course the definiteness here is plagued by the vagueness of at.

5Note that the same event could fall under multiple categories.
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order to perform the act.” All act categories, telic and atelic, have such a component (which they
indeed share in the examples of (4), (5), and (6)). Some acts will also have another component,
s A, representing the state whose achievement signals the completion of the act.

In addition to act categories, there are two other classes of event categories that are relevant
to our discussion. These are the categories of onsets and cessations of states. Formally, for some
state, s, s is the category of events of s’s starting to hold (onsets of s), and |s is the category of
events of s’s ceasing to hold (cessations of s). The reason why these categories are relevant should
be clear from the discussion to follow. For the moment, however, recall that what distinguishes
telic acts is that their completion is characterized by the onset of some particular state.® Another
reason why onsets and cessations are important is that we are primarily interested in the onset of
the completion of an act. Formally, Complete(a) represents the state of the act (token) a’s being
complete. This type of state, has an important property—it is permanent. Once Complete(a)
starts to hold, it will always hold. An interesting result that follows from this is that, for any
a, there can only be a single instance of TComplete(a).” Let us refer to that single instance by
Onset(Complete(a)). The above formal machinery should suffice for the distinctions that we need
to make.

In some cases, (5) for example, the completion of the act is almost simultaneous with the agent’s
ending the process p (that is, the running). In such cases, telicity implies a strict condition on when
the agent should end the process that it is carrying out. For our agent to truthfully say that it has
run to the store, it has to stop running when, and only when, it is at the store. There are cases,

however, where such a relation between s and p fails to hold. Consider the following examples.

"We will drop the subscript if it is clear from the context.

8Note that we are counting on the reader’s intuitions regarding the distinctions between events and states. There
are many implicit assumptions that we are making and, though significant, they are not relevant to this paper. See

(Galton, 1984; Herweg, 1991) for a thorough discussion of the difference between states and events.

9This issue is discussed in detail by (Galton, 1984) who calls event categories like TComplete(c) once-only events.
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(7) Push the rock down the hill into the river.
(8) Slide the pen across the table to John.

Note that, in the case of (7), the process p ceases once the agent pushes the rock. Nevertheless, a
period of time elapses before the state s (the rock being in the river) starts to hold. During this
period, the agent is not, and typically cannot, do anything to help achieve s. Note that it is not

appropriate for the agent to utter (9) after having pushed the rock.!”
(9) I am pushing the rock down the hill into the river.

In examples like (5), the achievement of s is totally dependent on the agent’s behavior and the
cessation of p takes place when and only when the act is complete. In examples like (7) and (8)*!,
on the other hand, achieving the state s is only partially dependent on the agent’s behavior. The
agent merely initiates a sequence of events that (may) result in achieving the intended goal and
hence completing the act. These two cases correspond to sentences that (Talmy, 2000) describes
as involving extended causation and onset causation, respectively. Telic acts may therefore be
categorized into two types: telic with extended causation (denoted tglfc), where the cessation of
the process is almost simultaneous with the completion of the act; and telic with onset causation
(denoted t_e;hé) where a temporal gap separates the cessation of the process from the completion of
the act. To precisely state this, we need to introduce another piece of notation. Let Fi(e, &) denote
the first instance of event category £ following the start of the event e. Thus, a given act category

—e

—_...0
A is telic or telic according to the following constraints, where < denotes temporal precedence

among events.

ONote that saying that it has pushed the rock down the hill into the river is not appropriate either.

' Also recall the “bring the secretary here” example from Section 2.1.
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o tolic: Va[Cat(a, A) = Fi(a, |pa) < Onset(Complete(a))].12

o telic: Va[Cat(a, A) = [Fi(a, [pa) # Onset(Complete(a))AF1(a, [pa) # Onset(Complete())]].

The first simply means that an act is t_e:h(.‘ if its tokens are not complete by the cessation of the
process p. The conjunction characterizing the second means that and an act is tgii.c if p ceases around
the time at which s starts to hold. If we think of times as points, then this simply means that the
two times are identical.’® For convenience, we shall refer to this relation (i.e., the conjunction of £
and #) by the symbol “=".

In general, the difference between telic acts (whether t_(;h(.: or tgii.c) and atelic acts, hinges on
the existence of certain temporal constraints on when the act is considered complete. For telic acts,
there is a state (s) that the act cannot be considered complete before, nor could it extend after, it
starts. For atelic acts, no state so constrains the completion of the act. Going to a higher level of

abstraction, let us define the two following predicates for a general act, «, and state, s.
e R(q, s) = Onset(Complete(a)) > Fi(a, Ts).
e L(a, s) = Onset(Complete(a)) < Fi(a, 1s).

Thus, R(a, s) (L(a, s)) holds if a starts to be complete after (before) the state s starts to hold.

Now, for any act category, A, the following holds:
e LIN. VsVa[Cat(a,.A) = [Onset(Complete(a)) = Fi(a,Ts) V Rla, s) V L(a, s)]].1

The above axiom should be understood as follows. First, the disjunction is to be taken as exclusive.
That is, only one of the three relations may hold between a given act and a given state. Second,

LIN merely outlines the different temporal relations that are, by default, possible between two

12We follow (Galton, 1984) in assuming that processes form a subcategory of states, hence |p.a.
'3However, if we think of times as intervals, then it only means that the two times overlap.

4Note that this is the familiar linearity axiom adopted in temporal logics. See (van Benthem, 1983).
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F]_ (G, TS)
| |

| Time

o starts here

Figure 1: The structure of telic acts; Onset(Complete(«)) is around Fi(a, 1s).

events. Characterizing different types of acts is achieved by asserting the existence of states that
constrain LIN. For example, telic acts are characterized by the existence of some state, s, for which
only the first disjunct in the consequent of LIN is possible. Figure 1 depicts the constraints on
the temporal structure of a general telic act category, A. Here, we are only interested in those
times starting with and following the start of «, an arbitrary instance of A. The shaded part of
the time line represents times at which o does not start to be complete, i.e., those that cannot
be the temporal location of Onset(Complete(«)). The vertical arrow marks the only time at which
Complete(a) may start to hold: the same time at which s starts to hold.!®

In this paper, we are interested in act categories, A that may be characterized by constraints
of the form:

dsVa([Cat(a, A) — [Onset(Complete(a)) = Fi(a, Ts) V C(a,s)]].

Where C(a, s) is R(e, s), L(a, s), their disjunction, or F' (for falsehood). The third case

corresponds to no constraints on LIN.'6 The last case reduces to the constraint on telic acts.

Definition 3.1 An act category A is said to have the +R (+L) feature if C(a, s) includes R(a, s)

(L(e, s)) as a disjunct. Otherwise, A has the -R (<L) feature.

Given the above definition, it seems that we have four possible types of acts corresponding to the
four possible combinations of the R and L features. This enables us to make distinctions that go

beyond the traditional binary telic/atelic classification.

5Here we are adopting a coarse-grained perspective, considering times as points. However, the formal analysis is

general enough to also cover an interval-based ontology of time.

16Note that, in that case, whether the s is existentially or universally quantified does not matter.
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Definition 3.2 Let A be an act category.

A is telic if it is (-R, -L):

dsVa[Cat(a, . A) = Onset(Complete(a)) = Fi(a, T9)].

—
A is right-atelic (denoted atelic) if it is (+R, -L):

dsVa([Cat(a, A) — [Onset(Complete(a)) = Fi(a, 1s) V R(a,s)]].

-
A is left-atelic (denoted atelic) if it is (-R, 4+L):

dsVa([Cat(a, A) — [Onset(Complete(ar)) = Fi(a, 1s) V L, s)]].

—
A is left-right-atelic (denoted atelic) if it is (+R, 4+L):

VsVa[Cat(a, A) = [Onset(Complete(a)) = Fi(a, Ts) V R(a,s) V L(a,s)]].17

—>
For example, (4) is atelic; there is no state at/before/after which the agent must stop running

>
(see Figure 2). Classical examples of atelicity are mostly of atelic acts. Sentence (6) represents a

%
atelic act. The agent may stop running at any time before reaching the store. However, once at the

store, the agent must stop running since continuing to run would be away from, not toward, the
%
store (see Figure 3). The class of atelic acts also explains certain cases that (Dahl, 1981) discusses.

For example, consider the following sentences.'®

1"Note that a stronger definition may be given by using a modal theory to indicate the necessity of the above

conditions. For example, telic acts would be characterized by the formula

Is[OVa[Cat(a, . A) = Onset(Complete(a)) = Fi(a, 15)]]-

However, instead of taking the modal stance at the syntactic level, we prefer to do it at the semantic level. In
particular, act tokens should be interpreted as all conceivable tokens of a given act category, not just the ones that

happen to have occurred.
18 These are Dahl’s (1981) (18) and (22), respectively.
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F,(a,s)
|

| = Time

o starts here

—>
Figure 2: The structure of atelic acts; Onset(Complete(«)) is not constrained.

F, (a,1s)

} = Time

o starts here

«—

Figure 3: The structure of atelic acts; Onset(Complete(a)) is not after F1(a, Ts).

F, (a,1s)

} = Time

o starts here

—

Figure 4: The structure of atelic acts; Onset(Complete(a)) is not before Fi(a, Ts).
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(10) John is trying to build a house.

(11) The submarine moved toward the north pole.

According to (Dahl, 1981, p. 86), the existence of some state beyond which the process cannot
continue rules out the possibility of the above sentences being atelic. Accordingly, Dahl treats
them as telic. Such a move proves to be problematic as Dahl himself notices. However, given the
proposed analysis, the presence of such a state beyond which the process cannot continue only

P
means that the sentences are -R. In that case, they could be either telic or atelic, and according

-
to our analysis they indeed are atelic (since they are 4+L). This resolves the problems discussed by
Dahl and at the same time supports the intuition that sentences like (10) and (11) are different

—>
from the more traditional atelic examples (i.e., those that are atelic according to our analysis).

—
Examples of atelic acts are those that essentially lack the L feature. Such acts have to reach

some state but then may go on indefinitely (see Figure 4). An example from the domain of the

running agent is (12).

(12) Run past the store.

Other examples are:

(13) Run no less that 2 miles.

(14) Drink no less than three cups of coffee.
(15) They lifted at least four tables.'

Other examples are those analyzed by Declerck (1979) as sentences that “can be used to describe
situations that are unnecessarily protracted beyond the potential terminal point” (Declerck, 1979,

pp. 783-784).
¥Due to (Verkuyl, 1989, p. 83).
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(16) John painted the door.
(17) John sharpened the saw.
(18) John washed the sheet.?”

A more elaborate discussion of the linguistic ramifications of the proposed analysis is beyond the
scope of this paper; future work shall address these issues in more detail.?!

An agent that is expected to exhibit correct behavior should distinguish the four classes of acts
mentioned above (five classes, if we consider the tgii.c and t_(;hé distinction). However, one should
remember that telicity is a linguistic notion, it’s about sentences (or conceptualizations) rather
than actual performances. If an agent is given the instruction (4), even though no restrictions are
provided as to when to stop running, it will probably have the (implicit) intention of “stop when
at the store”, “stop when tired”, or “stop when something interesting happens”; for instance. It
definitely is not intending to keep on running forever. That is, before starting to run, the agent
would generally foresee a (maybe not very well-defined) state at which the act would be complete.??
Acts falling in any of the other three classes have certain restrictions on such an ending state—its
temporal location with respect to the distinguished state, s. An agent acting in real time should
be aware of these states since they provide a way for consciously controlling the performance of
composite acts, in particular sequences of acts. Before further investigating this point, we need to

make precise the notions of primitive and composite acts.

20These are (respectively) sentences (15), (91a), and (91b) in (Declerck, 1979). Also see the examples in footnote

33 therein.

21 . . . . .. . . . .
In fact, (Koenig and Muansuwan, in press) independently discuss similar ideas in accounting for a semantic

mystery in the aspectual system of Thai.

*2More technically, the act would be conceived of as bounded even though it might not be telic. See (Depraetere,

1995) for an interesting discussion on the difference between telicity and boundedness.
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4 Primitive and Composite Acts

To begin with, an act is either primitive or composite. That is, the two notions are complementary;
in order to define one, it suffices to define the other. In what follows, we shall attempt to give an
informal characterization of primitive acts; acts that do not conform with such a characterization
shall be considered composite.

Consider two ways by which we may characterize primitive acts. We may call these the epistemic
characterization and the kinesthetic characterization. For the former, an act is primitive if the
agent does not need to (or even cannot) be “told” how to perform it. For instance, it is hard to
linguistically explain to an agent how to ride a bicycle (or tie a shoe lace), maybe show it, but not
tell it. Accordingly, such an act may be considered epistemically primitive. On the other hand,
one may explain to the agent how to cross the street for instance: press the button, wait for the
walk light, and then walk to the other side. Crossing the street would therefore be considered
epistemically composite. In general, an act is epistemically primitive if the agent knows how to do
it but cannot (easily) reason about how it does it.23

Kinesthetic characterization of primitive acts is based on the relation between an agent’s inten-
tions and its body. Here, an act is primitive if the agent has no control over its performance. For
instance, a person may intend to move her arm and she can do that by contracting her muscles in
a certain way. She has some control over the degree and speed of these contractions and she can
interrupt the motion of her arm by simply deciding to do so. Nevertheless, she does not have full
control over the whole process. The movement of the arm is made up of bits of events that are pre-
determined by our neuro-muscular make-up. The person does not have control over, or awareness
of, the quality, duration, or speed of such events; neither can she interrupt them once they start.

Actions that directly reduce to such uncontrollable events are what we may call kinesthetically

23This is, more or less, the distinction between procedural and declarative knowledge.
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primitive. Anything else is kinesthetically composite. In this case, the epistemically primitive acts
of riding the bicycle or tying the shoe lace would be kinesthetically composite. However, if an act
is kinesthetically primitive then it is also epistemically primitive.

The above characterizations are just two examples of what a primitive act may be. The philoso-
phy of action literature contains various possible accounts for what may be a basic act; a notion that
is similar (if not identical) to that of primitive acts (Goldman, 1970; McCann, 1998, for instance).
This research, however, is primarily concerned with human action. What is reasonable to assume
about humans need not be suitable for other agents, robots for instance. Humans are extremely
complex agents; they are provided with a set of primitive acts that could be combined in various
ways to yield a large set of composite acts. This is required because of the complex environment in
which humans exist. Other agents might exist in less demanding environments and therefore need
not be as complex. In particular, computational agents are usually designed to operate in relatively
simple environments. In such environments, due to the limited number of behaviors expected from
the agent, primitiveness may be very coarsely defined. For example, finding a red robot, making
spaghetti, and giving coffee to a person are considered primitive acts in the systems described by
Shapiro (1998), Artale and Franconi (1998), and Reiter (1998), respectively. Such acts are arguably
not primitive for humans (not even epistemically primitive).

The main point is that an act’s being primitive or composite depends on the very nature of the
agent. We assume that “[ajny behaving entity has a repertoire of primitive actions it is capable of
performing” (Shapiro et al., 1989, original emphasis). In designing an artificial agent, one has to
make decisions regarding which acts are primitive and which are not. The notion of primitiveness
that we adopt in this work has mainly an epistemic nature but also has some kinesthetic features.

In particular, we make the following assumptions (P stands for primitive).
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P1. The agent can perform any of its primitive acts; it cannot reason about how it performs them.

P2. When performing a primitive act, the agent is aware that it is performing the act. Neverthe-
less, it has no conscious awareness of its progression, nor of its different stages if it has any.
Note that this is not a very unreasonable assumption; people, with enough skills, can perform
certain acts while their attention is totally directed to something else. We view our agent to

be skillful enough to carry out its primitive acts without any intellectual interference.

P3. In principle, the agent may interrupt its performance of a primitive act at any point.?* Of
course, “point” here is very coarse-grained; the agent cannot interrupt kinesthetically primi-

tive acts (the switching of a relay, for instance).

For example, we may consider running to the store a primitive act. That is, running, reaching the
store, and stopping are not consciously planned and serialized by the agent; it just knows how to
“run-to-the-store”. On a different account, running to the store may be a composite act involving
the agent continuing to run based on its conscious awareness of its position with respect to the
store. Our system allows us to adopt such an approach and to reduce all (physical) primitive acts
to basic movements as suggested in (Israel, 1995). We, however, choose to make the assumption

that the kind of coordination suggested above takes place at some sub-conscious level.

5 Acting Consciously

An agent that knows how to perform its primitive acts should be able to perform any sequence
of them. An arbitrary sequence of primitive acts is not primitive, though. Faced with a novel
sequence, the agent will have to consciously control its execution. Unlike primitive acts, sequences

of them have stages that the agent is aware of; it should proceed to one stage when, and only when,

% hat is only in principle since it is still being developed.
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the previous one has been completed. As pointed out in Section 1, most theories of acting do not
address this issue. A different theory is required, one that interleaves reasoning, and acting to give
the agent the ability to control and monitor the execution of a sequence of acts. Before getting into

the details of our proposal, we need to briefly discuss the system to which our theory is applied.

5.1 Cassie: An Embodied Agent

We use GLAIR (Grounded Layered Architecture with Integrated Reasoning) (Hexmoor et al.,
1993; Hexmoor and Shapiro, 1997) as the architecture of Cassie, our embodied agent. GLAIR
consists of three levels: the Knowledge Level (KL), the Perceptuo-Motor Level (PML), and the

Sensori-Actuator Level (SAL).

1. The Knowledge Level: The level at which conscious reasoning takes place. The KL is im-
plemented by the SNePS system (Shapiro and Rapaport, 1987; Shapiro and Rapaport, 1992;
Shapiro and the SNePS Implementation Group, 1999), where SNeRE (the SNePS Rational
Engine) (Kumar, 1994; Kumar and Shapiro, 1994a; Kumar and Shapiro, 1994b; Kumar, 1996)

is used for initiating and controlling the execution of acts.

2. The Perceptuo-Motor Level: The level at which routines for carrying out primitive acts
are located. This is also the location for other subconscious activities that allow for Cassie’s

consciousness of its body and surroundings.

3. The Sensori-Actuator Level: The level controlling the operation of sensors and actuators

(being either hardware or simulated).

Cassie’s awareness of her surroundings and her own body is represented by beliefs at the KL.
Where do these beliefs come from? They originate as sensations (i.e., states of various sensors)

at the SAL. These travel up to the PML which is responsible for translating them into SNePS
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propositions that are then asserted at the KL (for more on this see (Hexmoor et al., 1993; Hexmoor
and Shapiro, 1997)). In particular, those propositions sent from the PML are asserted at the KL
with forward inference. This allows Cassie to draw all conclusions that may be drawn from the
perceived situation.?®

As stated above, acts are initiated and controlled by SNeRE. Acts are represented by SNePS
terms at the KL. For every term representing a primitive act category, there is a procedure attached
to it (i.e., associated with it). SNeRE uses a network activation mechanism (Kumar, 1994) where
activating a primitive act (category) term corresponds to executing the procedure attached to it.
Each such activation corresponds to a particular act token. The following is a discussion of the

three types of acts recognized by SNeRE with examples of some of those readily provided by the

system that shall be referred to in the rest of the paper.

1. Physical Acts: These are primitive acts that affect the state of Cassie’s external environment
(the world). SNePS terms denoting physical acts are associated with procedures at the
PML. Examples include raising one’s arm, taking a step, finding a block, etc. Note that
the specification of physical acts depends on the level of granularity at which we set our
notion of “primitiveness”, a choice that is largely determined by the overall architecture of

the agent.

2. Mental Acts: These are primitive acts affecting Cassie’s mental state; adding or retracting

beliefs. Two mental acts are of particular relevance here:?0

25Tt should be noted that, ultimately, the proposed account of perception may require some revision. Forward

inference should be limited to only simple inferences, the definition of “simple” being the basic challenge.

% For clarity, we are using a slightly different syntax from that of (Shapiro and the SNePS Implementation Group,

1999).
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o believe(object1): if the negation of the proposition object! is asserted, removes it, asserts

object1, and initiates forward inference.?”

e disbelieve(object): unasserts the proposition object1.

3. Control Acts: These are acts that control various ways in which a set (possibly a single-
ton) of acts are to be performed. They are typically used to represent plans for performing
composite acts. The following is the syntax and operational semantics of the three SNeRE
control acts that are relevant to this paper (for a complete specification of the control acts

provided by SNeRE, see (Shapiro and the SNePS Implementation Group, 1999)).

e snsequence(objectl, ..., objectn): performs the acts objectl, ..., objectn in order.

e snif(objectl), where object! is a set of guarded acts, and a guarded act is either of the
form if(p,.A), or of the form else(Aqs.), where p is a proposition, called the condition
of the guarded act, and A and A are act terms. snif chooses at random one of the
guarded acts whose condition is asserted, and performs its act. If none of the conditions

is satisfied and the else clause is present, the Agse is performed.

e DoOne(objectl), where object! is a set of acts. DoOne performs an arbitrary act in

objectl.

snsequence does not actually perform its argument acts in order; rather, it only initiates them
in order. If these acts are physical acts, the procedures attached to them would be executed at the
PML. Such PML activities result in initiating lower level activities of the body. Bodily activities

typically proceed in a rate that is much slower than that of initiations at the PML. As a result of

?TReaders worried about contradictions that might still arise as a result of believing object! should rest assured;
SNeBR, the SNePS belief revision module (Martins and Shapiro, 1988), monitors and maintains the consistency of

the knowledge base.
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Figure 5: The RLP Cube.

this, they would not be given a chance to continue to completion, but would be interrupted as soon
as a new activity is initiated by the PML routines. For example, responding to a command to go to
location A and then to location B, an agent would start going toward A and then abruptly changes
directions and heads toward B.2® A control act that would interleave acting, bodily feedback, and

reasoning is certainly required. This shall be presented in Section 5.5.

5.2 The Anatomy of Acts

In this section we put together the ideas developed in sections 3 and 4 and take a close look at
the resulting system. In doing so, we develop a deeper understanding of the structure of acts; in
particular, the structure of their execution. Such an understanding is essential to the study of the
properties different kinds of acts exhibit when they are embedded in a sequence. In section 3, we
analyzed telicity in terms of two binary features: R and L. Adding a feature, P, for primitiveness,

we end up with a three-dimensional feature space: the RLP cube (see Figure 5). Are there acts

% This behavior was actually observed in the process of experimenting with an embodied Cassie (Shapiro, 1998)
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corresponding to the eight vertices of the cube? And if so, what is the structure of these acts?
First, consider the bottom plane, that of composite acts. Consider an agent with two primitive
acts: pouring coffee from a pot into a cup and taking one sip of coffee from the cup. In such a case,

one can readily come up with four acts to fill the bottom plane.

—

(19) Drink coffee. (atelic)

—

(20) Drink no less than three cups of coffee. (atelic)

-
(21) Drink no more than three cups of coffee. (atelic)

(22) Drink three cups of coffee. (telic)

Drinking one cup of coffee is the composite act of sipping from a cup of coffee until it is empty.
A precondition for such an act is for the cup to contain coffee, a state that may be achieved by
pouring coffee from the pot into the cup. The above acts are therefore composite for such an
agent. To act according to (19), the agent will start the process of drinking one cup of coffee. Note
that since this process is composite, it requires the agent’s conscious monitoring and control. The
process may then be repeated for an indefinite number of times. At any point, the agent may stop
drinking coffee by either finishing one cup and not starting to drink another or by just stopping
sipping coffee from a nonempty cup. Such a decision to stop drinking is certainly a conscious one
and may be caused by various events including the agent’s finding out that no more coffee is left
in the pot. Before starting to perform the act, the agent does not have a definite scenario of how
it will end, the only thing it knows is that at some time the act will be complete.

Oun the other hand, performing (22) requires the agent to, not only monitor what it is doing,
but also keep track of how many cups of coffee it has drunk to stop drinking when and only
when it finishes the third cup. In this case, the agent a-priori knows what completes the act.

Performing (20) is a simple sequence of the performance of (22) and (19). First the agent drinks
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three cups of coffee to reach the lower bound the instruction indicates and then continues to drink
coffee indefinitely. In this case, like in (19), the agent only knows that the act will eventually be
complete. However, unlike (19), the agent knows that the act will reach completion in a state in
which it has drunk three cups of coffee.

—
Whereas atelic acts like (20) are decomposable into two clearly distinguished components: one

telic and another amc, aﬁc acts like (21) are not as simply structured. The agent starts to drink
coffee while consciously monitoring the three-cups upper limit. In that respect, (21) is essentially
similar to (22). However, in the case of (21), the agent has one more degree of freedom; it does
not have to actually reach the three-cups limit for the act to be complete. Similar to (19), prior to
finishing three cups, the agent may decide to stop drinking at any point for reasons that may have
nothing to do with drinking coffee. It is as if the agent executes both (19) and (22) in parallel and
the act completes whenever one of them does.

Thus, while the execution of (+R, -L, -P) acts is structured by the sequencing of telic and

“—>
atelic acts, the execution of (-R, 4+L, -P) acts is made up of the interleaving, or parallel execution,

— — «—
of telic and atelic acts. This reveals the more complex nature of atelic and atelic acts over that

of telic and amc acts. This complexity is formally manifest in the different signs of the R and L
features which reflect the heterogeneous nature of these acts.

Things get more elusive as we move up to the plane of primitive acts. As pointed out in
section 4, designating an act as primitive or composite by and large depends on the nature of the
agent. One might, therefore, argue that we can fill the upper plane by just thinking of an agent for
which (19)-(22) designate primitive acts. However, as we shall argue, such a move is, at least, not

obviously valid. Consider our running agent from section 3.2 One might consider (4) (repeated

here for convenience) to be primitive, and hence (+R, +L, +P).

29 As mentioned above, we might consider an agent for which (19)-(22) are primitive. However, since those examples
are not even epistemically primitive for humans, we choose to discuss other examples that could be more appreciated

by the reader. Such a choice of examples has no effect on the claims to follow.
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(4) Run.

To perform (4), the agent starts running and then may cease to run at any point it decides to.
Note that this is compatible with our assumptions P1-P3: (i) the agent may know how to run
but not how it runs, (ii) the agent may be unaware of the different stages of the running process,
and (iii) it may interrupt the running at any point thereby putting an end to its activity. Thus,
—
the main difference between primitive and composite atelic acts is that the agent has no control
over or awareness of the structure of the former but consciously controls and monitors that of the
latter. In both cases, however, the agent has the same epistemic status regarding their completion:
it only knows that at some state they would be complete, without any further qualification of such

a state.

For the same, or a slightly different, agent, (5) may be considered primitive.

(5) Run to the store.

How would (5)-as-primitive be performed? The only way to conceive of (5) as a primitive act, is to
assume that the agent is designed to reactively (not deliberately) stop when it reaches the store.
That is, the agent starts to run and as a reaction to reaching the store it stops running. This
involves no cognitive processing. In this case, it is easy to see that (5) is compatible with P1-P3.

Restricting ourselves to the same domain, can (6) and (12) be considered primitive (and there-

fore examples of (-R, +L, +P) and (+R, -L, +P) acts, respectively)?

(6) Run toward the store.

(12) Run past the store.

-
First, consider (6). Although, as noted above, atelic acts have a complex structure, there are ways

to conceive of (6) as primitive. A performance of (6) may be just a performance of (5)-as-primitive.

The only difference is that interrupting the first completes the act while interrupting the second
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does not.?° It could be shown that such an account is compatible with P1-P3. Regarding P1, the
agent need not know how it runs toward the store, in particular it need not know that it does that
by simply doing what it would do if it were running to the store. That is, the agent knows that it
can perform two acts, (5) and (6), what it is not aware of is how they are both performed and that
they are both actually performed in the same manner. Regarding P2, the agent has no awareness
(and need not have any) of the internal structure of the act. Finally, the agent may interrupt the
—
act at any point and like atelic acts, and unlike telic acts, the act would be considered complete.
We are aware that there might be some pragmatic difficulties with the above discussion. First,
it is not very clear how instructions like (6) may be useful in practice. Running toward the store is
usually something that one realizes has happened not something that one intends to do. That is,
the agent may intend to run to the store but end up only running toward the store. In addition,
—
since the existence of a atelic primitive act would be accompanied by that of a telic act, it does
not seem reasonable to make the former primitive. For example, one might consider only (5) to
be primitive, and performing (6) would simply be an intentional performance of (5) that may be
interrupted. Nevertheless, it should be noted that such concerns, although valid, do not provide

any argument against the logical possibility of (-R, +L, +P) acts. Other examples, may also stand

more strongly in the face of the above objections.

(23) Pour some coffee into the cup.

(24) Lift the block above the table.

Now, let us consider (12). One might argue that since (4) and (5) may be thought of as primitive,

then so is (12). Similar to our analysis of (20), (12) may be a sequence of (5) and (4). However,

39 Another interpretation is one where (6) merely indicates a direction for the running agent. In that case, the agent
does not really have to stop if it reaches the store. Although this is fine as far as the interpretation of the particular

-
English sentence goes, it falls outside the category of atelic acts which we are now investigating.
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for (12) to be primitive, the sequencing of (5) and (4) must be hard-wired into the agent; instead
of stopping when reaching the store as in (5)-as-primitive, the agent reactively starts performing
(4). Such an apparently plausible account is not totally sound though. According to P3, the agent
should be able to interrupt any of its primitive acts. Now, suppose that, for some reason, the
agent’s performance of (12) is interrupted. A reasonable requirement of an intelligent agent is to
remember what it has done. For our agent to know whether it has run past the store, it needs to
know whether it had reached the store at some point during the performance of (12). This simply
means that the agent is aware of the internal structure of (12). Obviously this contradicts the
assumption of (12)-as-primitive since it runs counter to P2. Note that this also means that the
agent knows (whether explicitly or implicitly, fully or partially) how it runs past the store, which
is incompatible with P1.

In general, starting from the assumption that an intelligent agent should know the outcome of

—
its activities, if a atelic act is interrupted, the agent needs to know during which of its two stages
the interruption occurred. Such necessary awareness of the structure of an act is contradictory to
— —

the notion of primitiveness. Note that this issue does not arise with telic and atelic (also, atelic)
acts since for the first, an interruption directly means that the act has not completed; and for the
second, an interruption signals the completion of the act. We shall therefore assume that no acts

correspond to the (+R, -L, +P) vertex of the RLP cube.

To summarize the above discussion we highlight the main points:

1. For atelic acts®!, the agent does not know how they will end, only that at some point, they

will. In particular, atelic acts reach completion when they are interrupted.

2. For telic acts, the agent knows exactly in what state they will be complete.

3. (+R, -L, +P) acts are not logically possible.
31Those with -R and/or -L features.
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5.3 Acts and Their Goals

Given a sequence of acts, (aq,...,an), @; (1 < i <n) should be performed when and only when
the agent believes that a;_; has been completed.?? The first problem though is to provide a precise
account of what it means for an act to be completed and how the agent would come to know of
such an event.

What it means for an act to be completed depends on whether it is telic or atelic. Telic acts
have two components, p and s (see Section 3), and the act is completed when and only when s
starts to hold. That is, Cassie noticing that s holds is sufficient for her to come to know that the
act is completed. This gives us an approximate idea of what we are seeking. An act is completed
when some state holds. In the process of performing a tgii.c act, the agent anticipates or foresees
some state that would signal the end of its activity. In a sense, such a state is the goal of the
act. The notion of goal alluded to here is a very localized one and is tightly associated with the
particular categorization of the corresponding act (more on this below). In particular it is not the
reason why the agent performs an act. The goal of an act, a, as far as this work is concerned, is
not a pragmatic one; it is that state that signals successful completion of « thereby allowing the
agent to start executing other acts contingent upon its completion.?® For a telic act, the goal is

identical with the state s.

32By performing an act we mean initiating the procedure attached to it. Also, to be precise we should say “perform
[cis]” rather than “perform «;”, where [a;] is the denotation of the term «;. However, we will allow ourselves to be

a little informal and use the simpler notation.

33In McCann’s terms (McCann, 1998), this is the result of the act. We choose not to adopt this terminology,
however, since it only works with telic acts. Goals of telic acts are consequences, according to McCann. Also the
term goal has been used by some linguists to refer to the same notion (see (Declerck, 1979, p. 762) and the quotes

therein).
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—>
Things are more complicated for atelic acts. A atelic act does not have an s component in the

first place; it is a pure process. It is not clear what the goal of such an act may be. One possibility
>
is to say that atelic acts do not have goals, and that such acts may be considered completed once
they start. That may not be a bad idea if the act is a mental act that is arguably instantaneous
(think of believe or disbelieve, for instance)34. However, if the act is physical, such an account does
—>
not seem plausible. Consider, for instance, the act Run which is atelic. If an agent is instructed
to run, one should be able to actually see it running. Ending the activity of running immediately
— —
after it starts is definitely unacceptable. The same holds for atelic and atelic acts.

According to Section 5.2, the only thing the agent knows about the completion of an atelic act
is that it will eventually happen. Thus, the goal of an atelic act, o, is simply the state Complete(«).
Cassie’s coming to believe that such a state holds is what causes her to move on to the following
step of a sequence in which « is embedded. How this belief emerges in Cassie’s mind is the subject
of the next section.

The above seems to provide fairly precise descriptions of what the goals of telic and atelic acts
are. What about control acts? Control acts are not the kind of acts that may be described as
telic or atelic. As long as the act does not have a cover term; i.e., an atomic conceptual structure

expressible by a simple sentence; it cannot be said to be telic or atelic. For example, consider the

following sequence describing a recipe for a useful exercise.
(run-a-mile, swim, take-a-shower)

It is not clear whether one can ascribe any telic properties to such an act without making a
category error. Control acts have structures that are far more complex than those of the acts
discussed so far. In particular, several states with complex temporal and causal (in case of snif)

relations make up the internal structure of control acts. What then is the goal of a control act, for

34 Also see (McCann, 1998, p. 85) on the same point.
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example an arbitrary snsequence? One might argue that the goal of a sequence of acts is the goal
of the last act in the sequence. That might sound appealing, but there are reasons not to adopt

such a position. For example, consider the following sequence:
(pick-up-a-block, mark-the-block, put-down-the-block)

Suppose that the three acts in the sequence are primitive. What is the goal of the Put-down-
the-block act? Given the localized sense of “goal” that we are assuming, it would be something
like being empty-handed; this is the state that signals the completion of putting down the block.
Intuitively, however, it does not seem right to say that this is the goal of the whole sequence. Being
empty-handed may be achieved if the agent drops the block before marking it. This, by no means,
signals successful completion of the sequence. In addition, a precondition of the above act is the
very state of being empty-handed (to allow for picking up a block); if the goal of performing an act
already holds, there is no need to perform it. In fact, in many cases, if the goal of an act already
holds, then there is no way to perform it (think of running to the store when one is already at the
store or putting down a block when one is empty-handed, for instance).

One may object by arguing that an agent might still need to perform an act even if its goal
already holds. The reasoning being that an act may be performed to achieve one of its effects (the
goal being only a distinguished effect). To support such an objection, one has to come up with a
situation in which the goal of some act holds and an agent, nevertheless, needs to perform it for
one of its effects. To start with, it is extremely difficult to come up with such a situation. Given
the notion of “goal” that we are adopting (i.e., the state that signals the successful completion of
an act), it is very hard to describe a realistic situation in which it is appropriate (or even possible)

to perform an act while its goal holds. However, let us try to construct such a situation.

John is a bachelor who leads a pretty dull social life. Due to the nature of his job, he

spends the whole day driving his car and visiting customers. To get out of the car, John
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unlocks his door, opens it, and steps out. John can unlock his door either manually
or electronically by pressing a button. Because John is always alone in the car, for
him the goal of pressing that button is to unlock his door. Nevertheless, pressing the
button causes the four doors of the car to be unlocked as a side effect. One day John
offers his colleague, Pat, a ride to work. When they arrive, John starts to perform the
usual three-step sequence to get out of the car. John’s door happens to be unlocked
because, for some reason, he has manually unlocked it on their way. That is, the goal of
unlocking the door is already achieved; John can directly open his door and step out of
the car. However, he still needs to perform the act of electronically unlocking his door

in order to unlock Pat’s door, a side effect of the act.

The above example seems to be a suitable one for an act whose goal holds and still needs to be
performed for one of its effects. The problem though is that this assumes that the relation between
an act and its goal is accidental; the goal is just an arbitrary effect of the act that happens to get
some special status due to pragmatic reasons (John’s life-style in the example). Such a position
confuses two concepts: the act category and the procedure attached to it. The act category is a
particular conceptualization of some motor program (a PML procedure). The same PML routine
may be attached to different act categories. The act categories themselves have their goals as
inherent parts of their characterization. In the above example, one would have two act categories:
Unlock-my-door and, for example, Unlock-passenger-door (or even more specifically, Unlock-Pat's-
door). The goal of the first is my (i.e., John’s) door’s being unlocked and that of the second is
the passenger’s door’s being unlocked. Even though they may both be attached to the same PML
procedure (pushing the same button), the two act categories are distinct mental entities, and part
of that distinction is their distinct goals. More generally, for every effect of a PML procedure, one

may have a distinct act category with that effect as its goal.
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This indeed suggests that an act should not be performed if its goal already holds. The simple
assumption that the goal of a sequence is that of its last act is therefore not quite satisfactory.3?
Intuitively, the goal of a sequence of acts is to achieve the goals of its individual acts in order.
However, this is a more complicated way of saying “to correctly complete the act”. The problem is
that there is no one single state that, when achieved, would signal the completion of a control act;
the act being complete is something that the agent concludes based on its conscious monitoring of its
progression. Therefore, like atelic acts, the goal of a control act « is simply the state Complete(a),
such a state is asserted to be achieved not merely based on sensory input or interruptions but on
the very process of executing the control act. Of course, this is not an adequate description of what
exactly establishes Complete(«) for a control act. This point will be discussed in detail in Section?7.

We are now at a point where we can give a precise statement of what the goal of different
types of acts is. But now a questions arises: what is a goal associated with, an act category or an
act token? For telic acts, one can see that the goal is token-independent; all instances of a telic
act category have the same goal (note the scope of the quantifiers in Definition 3.2). For atelic
and control acts, however, this is not the case; a state Complete(a) is obviously a function of a
particular act token. We shall define goals for what we call a type-token association. This is a pair,
Ala], where A is an act category and « is a particular instance of it.36 Thus, a goal is defined for
a token under a certain categorization or, alternately, for a tokenized act category. The following

is a semi-formal definition of goals.

Definition 5.1 Let T' be a partial function from type-token associations to states such that T'(A[a])

is the goal of Alal. The function is defined as follows:

1. If Ais a telic act category, then I'(Ala]) = s, where goal(s, A) is deducible,

35Things are even more complicated with other control acts like snif.

36This will be slightly revised in Section 7, where o will not be required to be an instance of A.
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2. If A is a mental act category, then I'(Ala]) is undefined, and

3. If A is an atelic or a control act category, then I'(A[a]) = Complete(a).

Note the following:

1. T is a function. That is, we are assuming that each act has a unique goal (if it has any).

2. Cassie has explicit beliefs about the goals of telic acts. These are represented using propo-

sitions of the form goal(s,.A), where s satisfies the statement for telic acts in Definition 3.2.
«— —

Similarly, we can use l-goal(s, .A) and r-goal(s,.A) to associate atelic and atelic act categories

with their distinguished states. Ideally, however, knowledge about these associations should

be structural rather than assertional (Woods, 1975) since many linguists (in reference to telic

situations) argue that “reference to the goal is an essential part of the description of the

situation” (Declerck, 1989, p. 277; also see Depraetere, 1995).

5.4 Awareness

In the above section, we attempted to make precise the notion of an act being completed. The
question now is how to make Cassie aware of such an event. We vaguely hinted at the answer in our
preceding discussion of goals. Control acts are completed when all their stages are. The execution
of an arbitrary control act is under the conscious control of the agent. Therefore, when the final
stage of a control act « is over, Cassie would come to believe that the state Complete(«) holds.
Such a belief develops over time as Cassie monitors the successful completion of the different stages

—
of the act. The same applies for atelic acts which, as argued in Section 5.2, are sequences of telic

—>
and atelic acts. The details of exactly how this is achieved is presented in Section 7.

—

For atelic acts, Cassie knows that the act is completed as a result of the conscious decision to

interrupt it. If Cassie is performing an atelic act, then if, for whatever reason, she interrupts it,
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that causes her to believe that the state Complete(a) holds.>” Cassie may decide to interrupt an
atelic act for different reasons. First, she might interrupt it in order to allocate resources used by
the act to other, more important acts. Second, she can interrupt it if she realizes that the act can
no longer continue. This could be the result of various kinds of failures that Cassie is capable of
perceiving.

For telic acts (primitive or composite), the goal state is not a mental state, but rather a physical
one. This could be either a state of the agent’s body (like being empty-handed, for instance) or a
state of its environment (like the block’s being on the table). In both cases, the agent cannot just
believe that the goal is achieved; such knowledge would have to be based on perception and/or
bodily feedback. Where does this knowledge come from? As pointed out in Section 5.1, it comes
from the body, traveling all the way up to the mind. Recall that perception and bodily feedback
are modeled by having the body (basically, the SAL and the PML-SAL interface) pass information
up to the PML. This may be the status of various sensors and actuators. Such information is
translated at the PML and an assertion is added with forward inference to the KL.

Two points to note:

1. Whatever assertion will be added by the PML to the KL will be part of Cassie’s consciousness,
something that she can think or talk about. Deciding what such things are is part of the
design of the agent. Humans, for example, are not aware of any of the complicated processes
that underlie seeing a block on the table. We can talk about the block being on the table but
not about the states of rods and cones. On the other hand, one may decide that an agent

should be capable of reasoning and talking about the states of its sensors and effectors (as in

3TOf course, one may interrupt an act and then resume it; the interrupt is not a sign of completion in such a case.
We are currently working on a theory of interrupts, and until that is fully developed, we make the assumption that

interrupting an act is equivalent to ending it.
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(Shanahan, 1998)).

2. The assertion is done with forward inference since the goal of an act may not be what one
directly perceives (especially if it is a composite act). For example, consider the act Check
whether the light is on. The goal of such an act is simply to know whether the light is on.
However, one does not directly perceive that; one either sees that the light is on or that the
light is off. In either case, there could be a rule to the effect that “If I see that the light is on or
that the light is off. then I know whether the light is on”.?® By asserting whatever is perceived
with forward inference, the consequent of the rule would be derived, thereby realizing that

the goal of the act has been achieved.

-
atelic acts have a dual nature. In some respects they are like telic acts, in other respects they

—> —
are more like atelic acts. While performing a atelic act, «, the agent believes that achieving s

-
(see Section 3) completes the act. That is, s = Complete(a). However atelic acts may end in two
different ways. First, they might continue until they reach the state s beyond which they naturally
expire. In that case, s is asserted to be achieved with forward inference just like with telic acts.
This results in the belief that Complete(a) holds. Second, they may be interrupted at any point
«—>

during their progression. Similar to the case of atelic acts, the conscious decision to interrupt the
act results in Cassie’s believing that Complete(«) is achieved.

In summary, here is how Cassie comes to know that the goals of different types of acts have

been achieved (a denotes the act):

—
1. Control acts (including atelic acts): Coming to believe that the final stage of « is complete,

Cassie performs believe(complete(a)).

>
2. atelic acts: Interrupting «, Cassie performs believe(complete(a)).

38See (Maida and Shapiro, 1982) for a suggested representation of “knowing whether”.
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3. Telic acts: Perceiving (asserting with forward inference) a state s’ results in asserting s. Note

that s could itself be s’.

-
4. atelic acts: Same as (2) or (3), whichever happens first.

5.5 Cascades

Given a sequence of acts, Cassie should start performing the first and form the belief that, when
its goal is achieved, she can perform the rest of the sequence. That is, achieving the goal of the
first act will have a cascade effect resulting in the rest of the sequence being performed in a similar
fashion. Such an effect requires some way to transform the belief of a goal having been achieved
into a performance of an act (in this case a sequence). (Kumar, 1994) formalizes the required
notion of transformers (also see (Kumar and Shapiro, 1994a) and (Kumar and Shapiro, 1994b)).
The following is a slight modification of a proposition-act transformer suggested by Kumar (also

see (Shapiro and the SNePS Implementation Group, 1999))

e whendo(p, A), where whendo(p, .A) and p are propositions, and A is an act category. If for-
ward inference causes both whendo(p, A) and p to be asserted, then A is performed and

whendo(p, A) is disbelieved.??

We are now ready to give a precise account of the performance of sequences. This is achieved by

the following control act.

e cascade(A1,...,A,) where A4; (1 <i < mn)isan act term. In what follows, « is an instance

of .Al.

1. If T'(A;[a]) is not defined, then the cascade reduces to

39Tt has been brought to our attention, by Sam Steel and Antony Galton (personal communication), that there
might be categorial problems with considering whendo constructs to be propositions. The exact ontological status of

these constructs is a topic for future research.
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snsequence(.A;, cascade(As ... A,))

2. If T'(A1]e]) is deducible then the cascade reduces to

cascade(As, ..., A,)

3. Otherwise, it reduces to

snsequnce(believe(whendo(T'( A1 [a]), cascade(As, . .., A,))), A1).

As shown above, what the agent will exactly do when performing a cascade depends on two
factors: whether the first act has a goal and whether its goal is already achieved. If the first
act does not have a goal, then the cascade reduces to the sequential initiation of this act directly
followed by the execution of the rest of the cascade. According to Definition 5.1, this will happen
in case the first act is a mental act. It should be noted, however, that this is only the way we are
proposing to use cascade; other users may have other theories of acts and their goals, and this,
by no means, would affect the way cascaded acts are performed. In other words, the procedural
semantics of cascade is not dependent on Definition 5.1. If the goal of the first act is defined, the
second clause makes sure that the first act is not performed if its goal is already achieved. Note
that we are assuming that the first act in the cascade is tokenized. This is important to give precise
semantics of executing cascades. Section 7 provides a more precise account of how, and when,
acts are tokenized. If the goal of the first act does not already hold, then Cassie starts performing
the first act only after forming the belief that, when she is done, she will perform the rest of the
cascade. Note that this is guaranteed to work, since achieving the goal of an act results in forward
inference that would activate the believed whendo. Breaking up the sequence in this way, allows
for simple solutions to deal with errors and interrupts. This is the topic of current research (Ismail

and Shapiro, 2000a).
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6 Examples

In this section we use three simple examples to demonstrate the operation of cascades. The three
examples are simulations of an agent carrying out the instructions represented by (1)-(3) in Section
2.1. More impressive examples require either errors and interrupts, which we are still investigat-
ing, %0 or an actual robot acting in the world, something that we cannot present on paper. The
examples are only intended to give a feel of how cascading works. The demonstrations are the
output of actual SNePS runs. These outputs are slightly edited for formatting and are broken
down into sections to allow for explanation. The “:” is the SNePS prompt and inputs are either as-
sertions, commands, or simulated sensory inputs. Cassie’s acts are simulated by generating English

sentences describing what she is doing. These are surrounded by asterisks in the output.

First, we provide Cassie with some general rules about the goals of acts.

: all(x) (goal(holding(x), pickup(x))).
: all(x) (goal(at(x), {walkto(x), goto(x), runto(x)})).
: all(x,y) (goal(on(x, y), puton(x, y))).

: all(x,y) (goal(has(x, y), give(y, x))).

The above respectively assert that the goal of picking something up is to be holding it; the goal of
walking, going, or running to some place is to be at that place; the goal of putting some object, x,
on some object, y, is for x to be on y; and the goal of giving some object, y, to some agent, x, is for
x to have y. As mentioned before, one would ultimately like to have a natural language interface
that would extract the goals of acts by a detailed analysis of telic sentences.

The first example shows Cassie performing the sequence of acts presented in (1), repeated here

for convenience.

4OThey are also needed to demonstrate atelic acts
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(1) Pick up a block and then walk to the table and then put the block on the table.

In the initial situation Cassie is holding a block.

: holding(block).
: perform cascade(pickup(block),
walkto(table),
puton(block, table))
**xWalking to TABLEx*x*
: perform believe(at(table)) ;;Sensory input. At the table.
**xPutting BLOCK on TABLEx**
: perform believe(on(block, table)) ;;Sensory input.

; ;The block is on the table.

A couple of points to note. First, since the goal of picking up a block already holds, the act was
skipped and the second step in the cascade was performed right away. Second, note that Cassie
does not start putting the block on the table until she comes to know (via simulated perception)
that she is at the table (note the prompt)

The second example shows Cassie acting according to (2).

(2) Run to the store and then buy a bottle of milk and then come back here.

This example illustrates two main points: (i) cascading control acts and (ii) reasoning and acting

while performing a cascade. We first give Cassie recipes for performing some composite acts.

: all(x) (ActPlan(greet(x), {say("Hi", x), say("Hello", x)})).
: ActPlan(buy(bottle-of-milk),
cascade(goto(dairy-section),

pickup(bottle-of-milk),
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goto(cashier),

give(money, cashier)))

The first of these sentences says that to greet X (presumably a person) either say “Hi X” or “Hello
X”. The second says that to buy a bottle of milk (assuming that you're already in the store), go
to the dairy section, pick up a bottle of milk, go to the cashier, and give money to the cashier.
Next, we ask Cassie to perform (2). To simplify matters, the last step of the cascade is for
Cassie to run to the house. This matches (2) if we assume that the instruction was given in the

house. At the same time, it avoids complications introduced by deictic expressions.*!

: perform cascade(runto(store),
buy (bottle-of-milk),
runto (house))

**Running to STORE**

Now, Cassie has started running to the store but has not gotten there yet. In the meantime, we
can talk to Cassie and she can perform simultaneous acts as long as they do not interfere with her

running to the store.

: all(x) (wheneverdo(near(x), greet(x))).
: perform believe(near(Stu)) ;;Sensory input. Stu is near.

Hello STU

The first of the above two sentences tells Cassie that whenever she’s near someone, she should
greet them. The wheneverdo construct is similar to whendo (see Section 5.5) but the rule does not

get discarded when the act is activated; it is used for general acting rules, rather than occasional

“IThis does not mean that Cassie cannot understand deictic expressions. See various papers in (Duchan et al.,

1995).
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ones. By sensing that Stu is near, forward inference activates the rule, and Cassie greets Stu. The
important point here is that Cassie can reason and act while in the midst of performing a cascade.
Having reached the store, Cassie carries out the plan for buying a bottle of milk, all the while

observing the greeting rule.

: perform believe(at(store)) ;;Sensory input. At the store.
**Going to DAIRY-SECTIONx*x*
: perform believe(at(dairy-section)) ;;Sensory input.
; ;Reached the dairy section.
**Picking up BOTTLE-OF-MILK**
: perform believe(holding(bottle-of-milk)) ;;Sensory input.
; ;Holding the milk.

**Going to CASHIER**

: perform believe(near(Bill)) ;;Sensory input. Bill is near.
Hi BILL
: perform believe(at(cashier)) ;;Sensory input. Reached the cashier.

**Giving MONEY to CASHIER**
: perform believe(has(cashier, money)) ;;Sensory input.

; ;The cashier has the money.
**Running to HOUSE**
: perform believe(near(Sally)) ;;Sensory input. Sally is near.
Hello SALLY

: perform believe(at(house)) ;;Sensory input. At the house.

The second step of the top-level cascade (buying the milk) expanded into another lower-level cas-

cade. It is only after the latter has been completed that Cassie resumed performing the former.
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Observe that Cassie started running back to the house only after (successfully) giving the money
to the cashier. What initiated the act of running to the house? According to Definition 5.1, it is
achieving the goal Complete(buy(bottle-of-milk)). Note that Cassie does not come to know that this
goal has been achieved merely through sensory input; Cassie knows that by successfully finishing
the lower-level cascade. Asserting the completion of the act of buying the milk happens internally,
essentially when the last step of the lower-level cascade terminates successfully.

The final example demonstrates Cassie’s performance of the sequence of acts represented by
(3).

(3) Stick a stamp on the envelope and then bring the secretary here and then give her the

envelope.

In what follows, we assume Gloria to be the secretary.

: all(x) (ActPlan(bring(x), say("Come here", x))).
: goal(on(envelope, stamp), stickon(envelope, stamp)).

: goal (here(Gloria), bring(Gloria)).

The above defines the goals of sticking a stamp on the envelope and of bringing Gloria, and asserts

that to bring someone just call them.

perform cascade(stickon(envelope, stamp),
bring(Gloria),
give(envelope, Gloria))
**Sticking ENVELOPE on STAMP**
: perform believe(on(envelope, stamp)) ;;Sensory input.
; ;The stamp is on the envelope.

Come here GLORIA
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At this point, Cassie is physically not doing anything. Having called Gloria, she can only wait for
her to arrive in order to hand her the envelope. In the meantime, we can talk to Cassie and she

can engage in other activities.

: good-secretary(Gloria).

: perform believe(near(Bill)) ;;Sensory input. Bill is near.

Hi BILL

: late(Gloria).

: perform believe(here(Gloria)) ;;Sensory input. Gloria arrives.
**Giving ENVELOPE to GLORIA*x*

: perform believe(has(Gloria, envelope)) ;;Sensory input.

; ;Gloria has the envelope.

Merely terminating bodily activities would not have been an appropriate signal to start giving the
envelope to Gloria. Cassie had to wait till she senses that Gloria has arrived. The performance of
a cascade could be indefinitely extended in time since achieving some goals might be contingent

upon exogenous events (in this case, Gloria’s arrival).*?

7 Semantics of Act Execution and Completion

As pointed out in Sections 5.3 and 5.4, the goal of a control act, a, is the state Complete(a).
Cassie comes to believe in such a state by the very process of performing the control act. To

precisely explain what this last sentence means, we shall give formal operational semantics for the

“2Note that if the goal of bringing Gloria is for her to be near, rather than here, Cassie should have greeted her.
However, in such a case, Gloria being near would activate two acts: the pending cascade, and the greeting. We are
still investigating such cases in our current research. The basic idea is to define a system of dynamic priorities among

acts.
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different SNeRE constructs discussed in the paper. Recall from Section 5.1 that SNeRE makes
use of a network activation mechanism to control the performance of acts. The exact details of
how this works may be found in (Kumar, 1994). However, most of the details are irrelevant; the
only relevant notion is that of activation. Basically, an act is activated whenver Cassie decides
to perform it. Constructs like whendo and wheneverdo are activated when their conditions are
asserted with forward inference. The operational semantics of the different SNeRE constructs will
be given by inductively defining a single operation: Activate. Different definitions of the operation
correspond to different types of constructs it operates upon. One can think of these defintions
as reduction axioms used in, for example, (Mitchell, 1996) to provide operational semantics for
programming languages. Essentially, these are high-level renderings of A-reductions. The syntax

of a single definition for Activate will follow the following general schema.

Activate({pattern)) — (body).

The arrow represents a single reduction: the left-hand side reduces in one step to the right-hand side.
The body of the definition would look pretty much like the body of an algorithm employing control
structures such as sequencing (represented by “;”) and selection (represented by the familiar if ...
then ... else ...). These structures may be thought of as macros whose meanings can be formally
fleshed out using either A-abstractions or some abstract machine model in the style of VDL (Vienna
Description Language), for example (see (Pagan, 1981)). We shall, however, rely on the reader’s

intuitive understanding of algorithmic notation.

The “pattern” appearing on the left-hand side is one of five basic patterns of SNeRE constructs:

1. Ala]; an act type-token association as presented in Section 5.3

2. A[]; a SNePS term representing an act category that is not (yet) associated with a particular

token.
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3. A; a SNePS term representing an act category which may, or may not, be associated with a

token. That is, the pattern A subsumes the above two patterns.

4. whendo(p, A), where p represents a proposition and A is a pattern as in (3) above.

5. wheneverdo(p, A), where p represents a proposition and A is a pattern as in (3) above.

Any of the above basic patterns (except the last one) may be annotated with a superscript that
further restricts the types of constructs that it can match. We use triples of the form (=R, +L, +P)

(with the appropriate setting of 4+ and —) to refer to categories of acts corresponding to the different

possible vertices of the RLP cube (see Section 5.2). For example, the pattern ACRALEP) would
-
match any atelic act category. In addition, we use the superscripts “+M”, “—M” and “Ctr]l” to

designate categories of mental, non-mental, and control acts, respectively.

Figure 6 shows the definitions of Activate for mental acts and whendo and wheneverdo constructs
(the latter was presented in Section 6). Activating a mental act reduces, in one step, to initiating it.
Initiating a mental act is the simple (theoretically instantaneous and error-free) addition (believe) or
retraction (disbelieve) of a proposition from the knowledge base. As stated in Section 5.1, addition
and retraction are done in such a way to maintain the consistency of the knowledge base (Martins
and Shapiro, 1988). It should be noted that, once a mental act is activated, it is assumed that
its effects apply immediately. The only thing worth pointing out regarding definitions (2) and (3)
is that a whendo proposition is immediately retracted once it is activated, whereas a wheneverdo
persists.

Figure 7 outlines the definitions of Activate for (+R,+L,+P) acts. Note that these exclude
mental and control acts to which the notion of telicity does not apply. Before discussing definition
(4), let us first consider (5) and (6). The patterns on the left-hand sides of these definitions match

-
any non-atelic act category that is not associated with a particular token. This is typically the
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1.

2.

3.

Activate(ATM) — Initiate(A).
Activate(whendo(p, A)) — Activate(A); Activate(disbelieve(whendo(p, A))).

Activate(wheneverdo(p, A)) — Activate(A).

Figure 6: Reduction axioms for the activation of mental acts, whendo, and wheneverdo.

8.

9.

Activate(ACRALEP)) . Activate(believe(Cat(a, A)));
Activate(believe(whendo(s, believe(Complete(a))));
Activate( Ala]).

Where « is a newly introduced term and |-goal(s,.A) is deducible.

. Activate( AT RLEP ) s Activate(believe(Cat(a, A))); Activate(Alal)).

Where « is a newly introduced term.

. Activate( ATRALEP) ) Activate(believe(Cat(a, A))); Activate(Ala]).

Where « is a newly introduced term.

. Activate( AFRALAP) o]) — Initiate(Ala]).

Activate(ASTR=L=P) o)) — Activate(DoOne({A; : ActPlan(A, A;) is deducible})[]).

Activate( ASRAL=P)[a]) — Activate(DoOne({A; : ActPlan(A, A;) is deducible})[a]).

10. Activate( AFRAEL"P) 0]} — Activate(DoOne({A; : ActPlan(A, A;) is deducible})[a]).

Figure 7: Reduction axioms for the activation of (+R, +L, +P) acts.
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situation when an act is first activated. It is at this time that a token for the act is conceived—when
Cassie starts entertaining the performance of the act. Thus, the right-hand side of the definition
simply introduces a new token and then activates the resulting type-token association. Definition
— —
(4) is similar, but it only applies to atelic acts. The difference is that for atelic acts, a particular
performance may reach completion by either being interrupted or by achieving the state, s, beyond
which the act cannot continue. The second activation on the right-hand side of (4) guarantees that
once s is achieved the agent would believe that the act is complete (see the discusssion in Section
5.4). Definition (7) states that activating a primitive (physical) act reduces to initiating it, where
initiating a physical act corresponds to starting the PML process attached to it. Definitions (8),
(9), and (10) state that activating a composite act reduces to activating one of the plans that it
decomposes to (the activation of DoOne is defined below).

Why is more than one definition needed for composite acts? As (8), (9), and (10) show, we are
treating telic composite acts differently from atelic composite acts. In particular, for atelic acts, the
token associated with the composite act is passed down to its DoOne decomposition, whereas, for
telic acts, it is not. The basic idea behind passing the token to the decompostion of a composite act
is for Cassie to come to believe that the act is complete when its plan is (this is precisely illustrated
below). Now, this is reasonable if the composite act is atelic, and hence (9) and (10). For telic acts,
however, there are two reasons why passing the token is not a good idea. First, we do not need
it; a telic act is complete when some token-independent state starts to hold. Second, and more
important, it is outright wrong. Consider a composite ‘Zehg act. Such an act would reduce to some
plan. However, the performance of the plan’s being complete is no reason for Cassie to believe that
the act is. For example, although calling the secretary may be complete, the act of bringing her is
not necessarily complete at the same time. To avoid such complications, we choose not to pass the

token to the decomposition of any telic act.
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11. Activate(cascade()[a]) — Activate(believe(Complete(a))).
12. Activate(cascade( A TEER ) Ay L AL ]) —
if s is deducible then Activate(cascade(As, ..., A, )[a1])
else
Activate(believe(Cat(ag, A1)));
Activate(believe(whendo(s, believe(Complete(as))));
Activate(cascade(A; (), A2, ..., Ap)[aq]).
Where as is a newly introduced term and Il-goal(s,.A;) is deducible.
13. Activate(cascade( A THER ) Ay, L Ay []) —
Activate(believe(Cat(ag, A1))); Activate(cascade(A1[as], Aa, ..., Ap)[cu]).
Where a9 is a newly introduced term.
14. Activate(cascade(A§+R’ﬂ"ip>H,.,42,...,An)[al]) —
Activate(believe(Cat(ae,.A1))); Activate(cascade(A;[aa], As, ..., Ap)[a1]).
Where a9 is a newly introduced term.
15. Activate(cascade(ASMY[], Ag, ..., An)[a1]) —
Activate(believe(Cat(ag, A1))); Activate(cascade(A;[as], Az, ..., Ap)[aq]).

Where as is a newly introduced term.

16. Activate(cascade(Af", Az, ..., Ay)[a]) — Activate(A,); Activate(cascade(As, ...

17. Activate(cascade(A; ™M, As, ..., Ay)[a]) —
if (A1) is deducible then Activate(cascade(As, ..., A,)[a])
else Activate(believe(whendo(I'(A;), cascade(As, . .., A,)[a]))); Activate(A;)

Figure 8: Reduction axioms for the activation of cascade.
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Figure 8 represents a summary of the main outcome of the paper. It outlines definitions of
cascade activations and is, thus, a precise statement of how sequential acting works according to
our theory. Definition (11) simply states that activating an empty cascade with an associated token,
a, reduces (in two steps) to believing that « is complete. Defionitions (12) through (16) outline
how activation works for different cases of the non-tokenized head of a cascade. (12), (13) and
(14) correspond to definitions (4), (5), and (6), respectively, of Figure 7. Their main purpose is to
introduce a token for the head of the cascade. The reason this is needed is that performing a cascade
essentially involves reasoning about the goal of its first act. As argued in Section 5.3, goals are
only defined for type-token associations of acts, not for non-tokenized act categories. In addition,
Cassie’s performing a cascade requires her to reason about the particular future performance of its
first act (before actually starting to perform it) and thus conceiving of it. Definition (15) is similar
to (13) and (14); it introduces a new token for the control act that heads the cascade. Since mental
act are assumed to be complete once activated, (16) activates the rest of the cascade right after
activating the mental head-act. Finally, (17) represents the general case for any type of tokenized
non-mental head-act. In this case, the function I' is defined for the head of the cascade and the
definition follows the semi-formal outline presented in Section 5.5. In general, note how the token
associated with the activated cascade is passed from the activation of a non-empty cascade to the
activation of its tail. When activations recurse deep enough to reach an empty cascade, definition
(11) applies and the agent comes to believe that the whole cascade is complete.

To further illustrate how Cassie comes to believe that a control act is complete (the case of
cascade in Figure 8 is already an example), Figure 9 shows definitions of Activate for the SNeRE
control acts mentioned in the body of the paper. Just like with (=R, +L, +P) acts, (18) introduces a
new token for a newly-activated control act (this is where the cascade tokens in Figure 8 come from).

Definitions (19) and (20) for snsequence are self-explanatory. The main reason we include them
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here is to make clear the difference between cascade and snsequence. In particular, an snsequence is
complete once all of its elements are activated in order. Note that, as per (20), snsequence does not
wait for the completion of any of its acts, which is the intended semantics. The tail of a non-empty
cascade, on the other hand, blocks following the activation of the head. It is reactivated (indirectly
through the activation of whendo) only when the head-act is complete.

Definition (21) for DoOne provides another example of control act activation and is also needed
since it is used on the right-hand sides of definitions (8), (9), and (10) of Figure 7. Informally,
activating a DoOne reduces to activating an arbitrary act from its set-of-acts argument. There are
two points to note. First, a cascade is wrapped around the act chosen for activation. This is done
to ensure that the whole DoOne act is believed to be complete when and only when the chosen
act is. Second, the definition does not apply when the argument of DoOne is the empty set. This
means that the act would simply fail if this were the case. Thus, given Defintions (8), (9) and (10),
the activation of a composite act fails if no plan could be deduced for it.

The two definitions for snif activations only differ with respect to the presence or absence of an
else clause. Again note that a cascade is wrapped around the chosen act to ensure that the whole
snif act is believed to be complete when and only when the chosen act is.

Now, given the above system of axioms, it should be obvious that the normal form of any
activation (i.e., the form beyond which it cannot be reduced) is a sequence of initiations. Note that
this conforms with our discussion in Section 2.1, where we stated that the only thing that an agent
is guaranteed to do is to start performing some act. To illustrate how the reduction axioms work,

we shall work through a simple example. Consider the following example from Section 6.
cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria))

Cassie’s deciding to perform this act activates it. Since it is a control act, it matches the pattern

in Definition (18), introducing a token for the new performance:
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18.

19.

20.

21.

22,

23.

Activate(AM])) — Activate(believe(Cat(a, A))); Activate(Ala]).
Where « is a newly introduced term.

Activate(snsequence()[a]) — Activate(believe(Complete(a))).

Activate(snsequence(Ay, As, ..., A,)[a]) — Activate(A;); Activate(snsequence(As, ...

Activate(DoOne({A;}I"_1)[a]) — Activate(cascade(A;)[a])
for some arbitrary 1 < i < n.
Activate(snif ({if (p;, A;) }iey)[o]) —
if 3i,1 < i < n, such that p; holds then Activate(cascade(A;)[a])
else Activate(believe(Complete(av))).
Activate(snif ({if (pi, Ai) }7—q U {else(An+1)})[a]) —
if 3i,1 < i < n, such that p; holds then Activate(cascade(A;)[a])

else Activate(cascade(Ay,+1)[a]).

Figure 9: Reduction axioms for the activation of a collection of control acts.
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Activate(cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria))) —
Activate(believe(Cat(aq, cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria)))));

Activate(cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria)) [a1]).

By Definition (1), the first element in the resulting sequence reduces to an initiation:
Initiate(believe(Cat(c, cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria))))).
The second element is an activation of a tokenized cascade whose head is a telic act. This

matches Definition (13):

Activate(cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria)) [a1]) —
Activate(believe(Cat(aq, stickon(envelope, stamp))));

Activate(cascade(stickon(envelope, stamp)[az], bring(Gloria), give(envelope, Gloria)) [a1]).

This results, again, in a two-element sequence. The first reduces to an initiation as per Definition
(1), and the second matches the left-hand side of Definition (17). Assuming that there is no stamp

on the envelope (i.e., I'(stickon(envelope, stamp) is not deducible), then

Activate(cascade(stickon(envelope, stamp)|az], bring(Gloria), give(envelope, Gloria)) [a1]) —
Activate(believe(whendo(on(envelop, stamp), cascade(bring(Gloria), give(envelope, Gloria))[a1])));

Activate(stickon(envelope, stamp)[as]).

Through two further reductions using Definitions (1) and (7), the initially-activated cascade is
reduced to the following normal form:
Initiate(believe(Cat(aq, cascade(stickon(envelope, stamp), bring(Gloria), give(envelope, Gloria)))));
Initiate(believe(Cat(az, stickon(envelope, stamp))));
Initiate(believe(whendo(on(envelop, stamp), cascade(bring(Gloria), give(envelope, Gloria))[a1])));

Initiate(stickon(envelope, stamp) [ao]).
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It should be noted that, in practice, SNeRE does not fully reduce an activation to some normal
form before starting the actual initiations. Rather, once an Initiate form is reached, the corre-
sponding actual initiation immediately takes place.

Now, suppose that Cassie succeeds in sticking the stamp on the envelope. Perceiving this state
results in activating the believed whendo (third element in the above normal form), which, following
Definition (2), activates the pending cascade. Without getting into much detail, the activated

cascade reduces to yet another normal form (—* denotes reduction in zero or more steps):

*

Activate(cascade(bring(Gloria), give(envelope, Gloria)) [a1]) —
Initiate(believe(Cat(as, bring(Gloria))));
Initiate(believe(whendo(here(Gloria), cascade(give(envelope, Gloria))[a1])));
Initiate(believe(Cat(ay, DoOne({say(“Come here”, Gloria)}))));
Initiate(believe(Cat(as, say(“Come here”, Gloria))));
Initiate(believe(whendo(said(“Come here”, Gloria), cascade()[au])));

Initiate(say(“Come here”, Gloria)|as]).

The above normal form is a sequence of six initiations. The first two should be obvious enough.
The next four are what the activation of the composite act bring(Gloria) reduces to. There are two
points to note here. First, note that the token associated with bring(Gloria) (as3) is not the same
one associated with the DoOne to which it decomposes (a4). The reason is that bring(Gloria) is a
‘;511(.: act and is not complete by simply performing the plan of calling Gloria (see Definition (8)).
Second, we assume said(“Come here”, x) to be the goal of the primitive act say(“Come here”, x).
This might seem rather dubious. However, for some primitive telic acts like saying something, it is
not exactly clear if there is an easily-indentifiable state that signals their completion.*? It could be

argued that for such acts, the goal is simply Complete(«), for some token . The difference between

43 (McDermott, 1982, p. 109) discusses a similar class of acts that “are done for their own sake”.
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these and atelic acts is that Complete(a) should not be asserted if the act is interrupted, but only
when the lower PML process runs normally to completion. For the sake of the above example,
however, we choose not to complicate matters by carving out a further partition in the ontology of
acts.

Now suppose that Gloria arrives. This activates the single-element pending cascade, resulting

in the following reduction to normal form:

Activate(give(envelope, Gloria))[a]) —*

Initiate(believe(Cat(cg, give(envelope, Gloria))));
Initiate(believe(whendo(has(Gloria, envelope), cascade()[a1])));

Initiate(give(envelope, Gloria) [ag)).

Once Gloria has the envelope, the pending empty cascade is activated and, following Definition

(11), Cassie comes to believe that the original act that she set out to perform is finally complete.

&8 Conclusions

Performing sequences of acts is not as simple as it may seem. An embodied agent that properly
executes a sequence of acts reasons, making use its awareness of the environment and its own body,
about when to move to the next step in the sequence. Such an apparently simple concept does not
seem to have been explicitly addressed in general, precise, and abstract enough terms.

When an agent is acting, it has a certain conceptualization of what it is doing. Such concep-
tualizations vary along the dimension of telicity. Different types of telicity correspond to different
criteria regarding what signals successful completion of an act. Successful completion of an act
is signaled by some state —the goal— starting to hold. Telic acts have a built-in goal that is

essentially part of their structure. Atelic acts, on the other hand, do not have such a built-in goal,
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and complete by being consciously terminated by the agent at some arbitrary point. Control acts,
which are neither telic nor atelic in the classical senses of the terms, are consciously performed.
The agent is aware of their progression and the goal of such acts is simply the state of their being
complete, something that the agent comes to believe by virtue of its very performance of the act.
We introduced a mechanism for performing sequences of acts, cascades, that gives the agent
conscious control of their execution. To cascade a sequence of acts, the agent starts performing the
first and forms the belief that when its goal is achieved it shall (recursively) perform the rest of the
cascade. Although our presentation of cascades has been primarily within the confines of the SNePS
system, the proposal is a theoretical one and, thus, system-independent. The cascading mechanism
itself is conceptually simple, but it is founded on a thorough investigation of the non-trivial notion

of act completion.

9 Future Work

The cascading mechanism presented in this paper might seem a little bit reactive. However, we are
currently developing an agent that makes use of cascades and can, at any point, reason about what
to do next based on a dynamic system of priorities among acts. This agent is capable of handling
interrupts and errors. It is primarily the use of cascades that gives the agent a chance to think
about what to do and allows it to interleave various processes (Ismail and Shapiro, 2000a). The
agent also uses a model of temporal progression based on (Shapiro, 1998) that we are planning
to extend to account for various problems of temporal granularity (Ismail and Shapiro, 2000b).
Other directions in which this work may proceed include a thorough linguistic investigation of the
different types of telicity presented and whether they may help us understand more about linguistic

aspect.
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