
Dependency-Directed Reconsideration
Belief Base Optimization for Truth Maintenance Systems

Frances L. Johnson and Stuart C. Shapiro
Department of Computer Science and Engineering; SNePS Research Group

Center for Multisource Information Fusion; Center for Cognitive Science
University at Buffalo, The State University of New York

201 Bell Hall, Buffalo, NY 14260-2000, USA
{flj | shapiro}@cse.buffalo.edu

Abstract

We define reconsideration, a non-prioritized belief change
operation on a finite set of base beliefs. Reconsideration is a
hindsight belief change repair that eliminates negative effects
caused by the order of previously executed belief change op-
erations. Beliefs that had previously been removed are re-
turned to the base if there no longer are valid reasons for
their removal. This might result in less preferred beliefs be-
ing removed, and additional beliefs being returned. The end
product is an optimization of the belief base, converting the
results of a series of revisions to the very base that would
have resulted from a batch revision performed after all base
beliefs were entered/added. Reconsideration can be done by
examining the entire set of all base beliefs (both currently be-
lieved and retracted) — or, if the believed base is consistent,
by examining all retracted beliefs for possible return. This,
however, is computationally expensive. We present a more
efficient, TMS-friendly algorithm, dependency-directed re-
consideration (DDR), which can produce the same results by
examining only a dynamically determined subset of base be-
liefs that are actually affected by changes made since the last
base optimization process. DDR is an efficient, anytime, be-
lief base optimizing algorithm that eliminates operation order
effects.

Introduction and Motivation
As a knowledge representation and reasoning (KRR) sys-
tem gathers information to reason about, it has to update
its belief space. When performing belief change operations
— whether belief change operations are performed on log-
ically closed theories (Alchourrón, Gärdenfors, & Makin-
son 1985) or finite bases (Nebel 1989; Hansson 1991), us-
ing ideal or resource-bounded agents (Wassermann 1999;
Williams 1997)) — there is no doubt that the order of the
operations performed usually affects the makeup of the cur-
rent belief base, because of the effects of consistency main-
tenance.

New information can enter the system and might conflict
with existing information. This can happen when multi-
ple sources give contradictory information or when a single
source changes his mind or simply because we are modeling
a changing world.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

As we will show, maintaining consistency as information
is gathered (belief change in series) can result in a base that
is less optimal than if consistency maintenance were put
off until all the information was gathered (a batch opera-
tion). But, how can we know when all the information is
gathered? And how can the system reason before the batch
consistency-restoring operation is performed?

Some real world implementations only reason about a
known fixed domain of possible base beliefs. We focus,
instead, on a reasoning system that can receive new infor-
mation and that needs to maintain a current base from which
to reason. We are concerned with improving this kind of
system so that it can

1. maintain a consistent base from which to reason

2. re-optimize its base after a series of belief changes.

We define reconsideration, which was first introduced
in (Johnson & Shapiro 2004b), as a belief change op-
eration that optimizes a finite belief base by eliminating
the effects of the order in which belief change operations
have been performed. As a result of reconsideration, be-
liefs retracted earlier might be recovered1, and some cur-
rently believed (weaker) beliefs might be retracted. We then
present an efficient algorithm for implementing reconsid-
eration called dependency-directed reconsideration (DDR)
(Johnson & Shapiro 2004a; 2004b).

Preliminaries
Foundations Approach
We assume that the KRR systems that will use reconsider-
ation will follow a foundations approach to belief revision
(Hansson 1999). That is, they distinguish between core be-
liefs (i.e. base beliefs, also called hypotheses in (Martins &
Shapiro 1988)), which have independent standing, and de-
rived beliefs. The set of base beliefs is the belief base and is
assumed to be finite. We also assume the systems will use
non-prioritized revisions (Hansson 1999).

1This is very different from the recovery of “retracted” beliefs
during either saturated kernel contractions (Hansson 1999) or the
second part of Hybrid Adjustment (Williams & Sims 2000). The
similarity to belief liberation (Booth et al. 2003), is discussed later
in this paper.

AAAI-05 / 313

Notation and Terminology
For this paper, we use a propositional language, L, which is
closed under the truth functional operators ¬,∨,∧,→, and
↔. Formulas of the language L are denoted by lowercase
letters (p, q, r, . . .). Sets and sequences are denoted by up-
percase letters (A,B, C, . . .).

A derives p is denoted as A ` p. Cn is defined by
Cn(A) = {p | A ` p}, and Cn(A) is called the closure
of A.

A belief base B is consistent iff for every p ∈
Cn(B),¬p /∈ Cn(B). In other words: B is consistent iff
B 6 ` ⊥, where ⊥ denotes logical contradiction. The closure
of a belief base is referred to as its theory or belief space.

Given a finite belief base, B, the set of p-kernels of B is
the set {A | A ⊆ B,A ` p and (∀A′ (A)A′ 6 `p} (Hansson
1999). The p-kernels actually used to derive p are called p’s
origin sets in (Martins & Shapiro 1988).

A minimally inconsistent subset of a set A is some S ⊆ A
s.t. S `⊥, but for all S′ (S, S′ 6 ` ⊥. These sets are referred
to as nogoods in the ATMS literature (de Kleer 1986; Forbus
& de Kleer 1993), and we will adopt that term in this paper.

Assuming a Linear Ordering
The Linear Ordering We assume that there is a linear
preference ordering (�) over the beliefs in the current base.
This ordering might change when new information is added
to the base. Unless otherwise stated, we assume this order-
ing is recency-independent.

When a � b and b 6� a, then a � b; and a � b
implies a � b . Any base can be represented as a unique
sequence of beliefs in order of descending preference: B =
p1, p2, . . . , pn , where if i 6= j, then pi 6= pj and pi �
pi+1 , 1 ≤ i < n (pi is preferred over pi+1 ; pi+1

is weaker than pi). Equality over sequences is defined as
p1, p2, . . . , pn = q1, q2, . . . , qm when n = m and (∀i, 1 ≤
i ≤ n) : pi = qi .

Non-equal beliefs that are logically equivalent may have
different preferences. They will, nevertheless, survive belief
change operations, or not, together.

Measuring Preference Given a set of base beliefs B∪ =
p1, ..., pn, (ordered according to �), a numerical value for
credibility can be calculated from the preference ordering:

• Cred(pi, B
∪,�) = 2n−i

• For B ⊆ B∪,
if B 6 ` ⊥, then Cred(B,B∪,�) =

∑
q∈B Cred(q, B∪,�

),
otherwise, B `⊥, and Cred(B,B∪,�) = -1 .

Essentially, the credibility of a base is equivalent to the bit
vector of its elements. We can define �B∪ to be a linear or-
dering over bases: B �B∪ B′ if and only if Cred(B,B∪,�
) ≥ Cred(B′, B∪,�). Likewise, B �B∪ B′ if and only if
Cred(B,B∪,�) > Cred(B′, B∪,�).

Optimal Base Given a possibly inconsistent set of base
beliefs, B∪ = p1, p2, ..., pn, ordered by �, the base B is
considered optimal w.r.t. B∪ and � if and only if B ⊆ B∪

and (∀B′ ⊆ B∪) : B �B∪ B′. This favors a single strong
belief over multiple weaker beliefs.

Reconsideration results in a base that is optimal w.r.t. the
current B∪ and the current ordering. Although requiring a
linear ordering is unrealistic for real world applications, we
use it, because it simplifies the algorithm explanations and
proofs. These explanations and proofs are fully detailed in
(Johnson 2005) — including a proof to show that the algo-
rithms work with a pre-order that determines a unique weak-
est element in each nogood.

Operations on a Base
Introduction For this paper, we use Hansson’s belief base
operations of expansion, kernel consolidation, and kernel
semi-revision (Hansson 1991; 1997; 1999).

Expansion B + a (the expansion of the belief base B by
the belief a) is defined as B ∪ {a}.
Kernel Consolidation Briefly, B! (the kernel consolida-
tion of B) is the removal of at least one element from each
nogood in B s.t. B! ⊆ B and B!6 ` ⊥.

For this paper, we refer to the weakest belief in a nogood
as that nogood’s culprit, and the operation of selecting the
beliefs to be removed from a base B to resolve an inconsis-
tency is called culprit selection — selecting which culprits to
remove. We assume this selection is determined by a global
incision function (Hansson 1999) maximizing the value of
Cred(B!, B∪,�):
(∀B′ ⊆ B) : B! �B B′ — consolidation of a base is the
optimal subset of that base (w.r.t. B and �). (C1)

Kernel Semi-Revision The kernel semi-revision of the
base B by the belief a (written as B ∗? a) is expansion by
a followed by consolidation, where the consolidation opera-
tion might actually remove a: B ∗? a =def (B + a)! .

Kernel semi-revision is a form of non-prioritized belief
change (Hansson 1999). This is in contrast to prioritized
revision of B by a (written as B ∗ a), which must adhere to
the (Success) postulate: a ∈ (B ∗ a).

Contraction for Consistency-Maintenance Only For
this paper, we will define reconsideration for a system that
performs expansion, kernel consolidation and kernel semi-
revision, but not user-initiated contraction (e.g. removing
some belief p from a belief base/space even if there was no
inconsistency) — thus, any removal of a base belief from
the base is done solely to eliminate a contradiction. As ex-
plained in (Chopra, Georgatos, & Parikh 2001) “Agents do
not lose beliefs without a reason: to drop [i.e. retract] the
belief . . . p is to revise by some information that changes our
reasoning.” Similarly, reconsideration supports the idea that
beliefs should not remain lost (retracted) without a reason.

Example of Operation Order Side-Effects
The examples below illustrate the effect that operation order
can have on a belief base.2 Given the base B0 = {s, d}
(also represented as a sequence: B0 = s, d), we show the

2These examples are based on the Cleopatra’s children example
mentioned in (Hansson 1991; 1999).

AAAI-05 / 314

results of adding two more beliefs using semi-revision. The
beliefs to be added are ¬(s ∨ d) and s ∨ d , with the
preference ordering: s ∨ d � ¬(s ∨ d) � s � d.
Example1: B0 ∗? ¬(s∨ d) = {¬(s∨ d)}, where the retrac-
tion of both s and d were required to maintain consistency.
Subsequently, {¬(s ∨ d)} ∗? (s ∨ d) forces ¬(s ∨ d) to be
retracted. The resultant base is B1 = {s ∨ d}.
Example2: If we reverse the order, however, of the two ad-
ditions — i.e. first add s ∨ d, then add ¬(s ∨ d) — the
addition of s∨d would not force any retractions for consis-
tency maintenance, and the following addition of ¬(s ∨ d)
would “fail”. First, B0 ∗? (s ∨ d) = {s ∨ d, s, d}. Then,
{s∨d, s, d}∗?¬(s∨d) = {s∨d, s, d}. The belief ¬(s∨d)
would not be added to the base, because it directly contra-
dicts the more preferred s ∨ d. The resultant base would
be B2 = {s ∨ d, s, d} = s ∨ d, s, d.

The two examples differ only in the order that the addi-
tions take place, yet the resulting base in Example1 (B1)
is a proper subset of the optimal B2. It is easy to see that
B1 is not optimal, because the return of both s and d would
expand the base without introducing any inconsistency.

Note that B2 is the base that would result if both beliefs
had been added (in any order) before consistency mainte-
nance was triggered: B2 = ((B0+(s∨d))+(¬(s∨d)))! =
((B0 + ¬(s ∨ d)) + (s ∨ d))! .

When reading about reconsideration in the next section,
keep in mind that performing reconsideration at the end of
Example 1 would return both s and d to the belief base. Re-
consideration would not alter the base in Example 2, because
that base is already optimal.

Reconsideration
We present the theory of reconsideration (Johnson &
Shapiro 2004b)) as a method for achieving the optimal be-
lief base by reconsidering past belief change operations in
light of more recently acquired information. This requires
maintaining a set of all beliefs (currently believed or not).

Let B0 be a finite belief base. Let Bn be the belief
base that results from a series of expansion and consolida-
tion operations on B0 (and the subsequent resulting bases:
B1, B2, B3, . . .). We define B∪ =

⋃
0≤i≤n Bi , with a cur-

rent linear ordering �. Xn is the set of base beliefs re-
moved (and currently dis-believed: Bn ∩ Xn = ∅) from
these bases during the course of the series of operations:
Xn =def B∪ \Bn .

For the remainder of this paper, all triples are assumed
to be of the form 〈B,B∪,�〉, where � is the linear or-
dering of B∪, X = B∪\B and Cn(〈B,B∪,�〉) = Cn(B).

Reconsideration of 〈B,B∪,�〉 is written 〈B,B∪,�〉 !∪ and
defined as : 〈B,B∪,�〉 !∪ =def 〈B∪!, B∪,�〉 .

Theorem 1 The base resulting from reconsideration is op-
timal w.r.t. B∪ and �.
Proof: 〈B,B∪,�〉 !∪ =def 〈B∪!, B∪,�〉 . (∀B′ ⊆ B∪) :
B∪! �B∪ B′. (from C1) �

We also note that the result of reconsideration is unaf-
fected by the currently believed base:

Observation 1 Given that Bopt is the optimal base w.r.t.
B∪ and �, (∀B ⊆ B∪) : 〈B,B∪,�〉 !∪ = 〈Bopt, B

∪,�〉.

Dependency-Directed Reconsideration
A naive implementation of reconsideration, by looking at all
of B∪ and determining what should be retracted to estab-
lish consistency, becomes computationally more expensive
as B∪ increases in size. Similarly, the more efficient algo-
rithm (used if B is consistent) of examining elements in X
to see if any can be returned to the base also becomes com-
putationally more expensive as X and B∪ increase in size.

The best way to improve the implementation is to re-
duce the number of retracted base beliefs whose removal
is to be reconsidered. This can be done by the process
of dependency-directed reconsideration (DDR, briefly de-
scribed in (Johnson & Shapiro 2004a; 2004b)) which uses
the nogoods in B∪.

The DDR Process
If consolidation results in removing some base belief, p,
from the base, this might allow a currently disbelieved
weaker base belief, q, to return to the base — e.g. q can
return if the reasons for disbelieving it depended on p being
believed. Specifically, a belief can return if it either (1) does
not raise an inconsistency or (2) if any inconsistencies raised
can be resolved by retracting only weaker beliefs. DDR is
the process of:

1. due to a retraction — determining which beliefs should
be examined for possible return to the base and inserting
them onto a global priority queue

2. for a retracted belief q which might be able to return to
the base — determining whether q can return, and, if so,
whether there is a set R of weaker conflicting beliefs in
the base that needs to be removed from the base to main-
tain consistency

3. if some q can return — executing the simultaneous ex-
change of q into the base and R out
Because a retracted belief points to the removed beliefs

to be examined for possible return to the base, DDR is
“dependency-directed” (a phrase first coined in (Stallman &
Sussman 1977)).

Defining a Knowledge State
A knowledge state is a five-tuple: 〈B , B∪ , I , � , Q〉,
where :
• B is a set of base beliefs that are currently believed (the

current base)
• B∪ is the set of all base beliefs, believed or not
• X is the set of currently disbelieved base beliefs. It is

defined as X =def B∪ \B and is called the exbase.
• I is a set of all the nogoods in B∪.

I = {S | S ⊆ B∪, S `⊥, and (∀S′ (S) : S′ 6 ` ⊥}
• � is a linear preference ordering on the beliefs in B∪

• Q is a sequence, possibly empty, of tagged be-
liefs (〈p1, τ1〉, 〈p2, τ2〉, . . . , 〈pn, τn〉) s.t.

AAAI-05 / 315

– pi ∈ X

– i 6= j ⇒ pi 6= pj

– pi � pi+1 , 1 ≤ i < n

– τ ∈ {justout , in?, both}
Unless otherwise stated, we assume the notational default

that (for i ∈ {0, 1, 2, . . .}) any knowledge state referred to
as KS i is the five-tuple 〈 Bi , B∪

i , Ii , �i , Qi 〉 and
that Xi = B∪

i \ Bi .3 For a knowledge state referred to as
KS , the five-tuple elements are B, B∪, I, �, and Q ,
respectively, and X = B∪\B . This will remain unchanged
for the duration of this paper. We also allow the shorthand
expression p ∈ Q to stand for ∃τ s.t. 〈p, τ〉 ∈ Q. Likewise,
the deductive closure of a knowledge state is defined as the
closure of its base: Cn(KS) =def Cn(B).

The information in I can be represented in a graph con-
necting base beliefs to the nogoods they are in (for an exam-
ple, see Figure 1).

Functions for Q (1) Empty(Q) = true if Q is empty, else
false. (2) First(Q) returns the first element in the priority
queue (non-destructively), unless Empty(Q), in which case
it returns false. (3) Rest(Q) returns a priority queue just like
Q but without its first pair (non-destructively). If Empty(Q),
it returns false.

Knowledge State Preference Ordering Given a knowl-
edge state, KS = 〈B,B∪, I,�, Q〉, if First(Q) = 〈p, τ〉,
then QImpact(KS) = Cred(p, B∪,�). If Empty(Q),
QImpact(KS) = 0. If Cred(B,B∪,�)=-1, then @KS ′ s.t.
KS �KS KS ′. Otherwise, given the knowledge state
KS 1 = 〈B1, B

∪, I,�, Q1〉:
• If Cred(B,B∪,�) = Cred(B1, B

∪,�
) and QImpact(KS) = QImpact(KS 1), then
KS �KS KS 1

• KS �KS KS 1 if either
– Cred(B,B∪,�) > Cred(B1, B

∪,�) or
– Cred(B,B∪,�) = Cred(B1, B

∪,�
) and QImpact(KS) < QImpact(KS 1).

• If KS �KS KS 1, then KS �KS KS 1.
Since QImpact(KS) is determined by First(Q), different

queues with identical first elements will have the same im-
pact. Therefore, �KS is not linear.

A knowledge state KS is optimal iff Empty(Q) and B is
optimal w.r.t. B∪ and �.

Knowledge State Belief Change Operations
Introduction The operations that can be performed on
(and change) a knowledge state, KS = 〈B,B∪, I,�,
Q〉, are addition, consolidation, and reconsideration.

Knowledge State Addition KS +! 〈p,�p〉 is adding p
to KS — where the belief p (along with necessary pref-
erence ordering information regarding that belief, �p) is
added to the knowledge state (using semi-revision (Hans-
son 1997)) The result is a new knowledge state, KS 1 =
〈B1, B

∪
1 , I1,�1, Q1〉, where

3For example: KS1 = 〈 B1 , B∪
1 , I1 , �1 , Q1 〉 .

• B1 = B ∗? p Note:p is not guaranteed to be in B1

• B∪
1 = B∪ ∪ {p}

• X1 = B∪
1 \B1

• I1 = {N | N ⊆ B∪
1 and N is a nogood }

• �1 is � adjusted to include the preference information
�p — which positions p relative to other beliefs in B∪,
while leaving the order of other beliefs in B∪ unchanged.
The resulting ordering is the transitive closure of these
orderings.4 If this re-ordering results in altering the culprit
for a nogood, a corresponding change is reflected in Q1,
see below.

• Q1 is similar to Q with the following changes: (1) if p
was in Q and is now in B1, then it is not in Q1; (2) (∀b ∈
B) if b ∈ X1, then 〈b, justout〉 ∈ Q1; (3) if p ∈ B
and, after the re-ordering, p is a new culprit for an existing
nogood, then, if the previous culprit is in X , it is now in
Q1 with a tag of in? .

Knowledge State Consolidation KS ! is consolidation of
KS which produces KS 2 = 〈B!, B∪, I,�, Q2〉, where Q2

is similar to Q adjusted so that: (∀p) If p ∈ B and p 6∈
B2, then 〈p, justout〉 ∈ Q2.

Reconsideration KS !∪ is reconsideration of KS which
produces KS 3 =〈B∪!, B∪, I,�, Q3〉, where Q3 is empty.

DDR Algorithms
In the following algorithms for implementing DDR, all
changes are to local variables except for line 18 of DDR,
where the current knowledge state gets updated with the lat-
est improvement towards optimality.
DDR-Q-Insert(p,�, Q) inserts the belief p into the queue
and adjusts its tag to indicate that it should be considered for
possible return to a base. The resulting tag will depend on
whether p is already in the queue Q and, if so, with what tag.

DDR-Q-Insert(p,�, Q) returns a priority-queue (Q′) like
Q, where:
if 〈p, in?〉 ∈ Q, then Q′ = Q
if 〈p, both〉 ∈ Q, then Q′ = Q
if 〈p, justout〉 ∈ Q, then Q′ = Q with the tag for p is
changed from justout to both .
if p 6∈ Q, then Q′ = Q with 〈p, in?〉 inserted into it.

Safe-Return (p,KS) evaluates whether a belief, p, can be
returned to the current belief base (B). A belief can return to
the base if either (1) it does not raise an inconsistency or (2)
every inconsistency its return would trigger can be resolved
through the removal of weaker beliefs. This function returns
a pair: a boolean and a set of beliefs (R). If p cannot return
to the base, the boolean is false and R = ∅. If p can return
to the base, the boolean is true and R contains the beliefs
to be removed from the base for consistency maintenance
— it is possible for R to be empty. Preconditions: B 6 ` ⊥
and p 6∈ B. Postconditions if p cannot return: (∀B′ ⊆ B) :

4We assume that if p ∈ B∪, the location of p in the sequence
might change — i.e. its old ordering information is removed before
adding �p and performing closure — but all other beliefs remain
in their same relative order.

AAAI-05 / 316

If ((B ∪ {p}) \ B′)6 ` ⊥, then B �B∪ ((B ∪ {p}) \ B′).
Postconditions if p can return: ((B ∪ {p}) \ R)6 ` ⊥, ((B ∪
{p}) \ R) �B∪ B, and (∀r ∈ R) : r ∈ B, p � r, and
(((B ∪ {p}) \R) ∪ {r}) `⊥.

KS-Add-Remove(KS , p, R) returns a knowledge state
KS 1 similar to KS but with belief p returned to the base,
belief set R removed from the base, and the priority queue
adjusted to reflect these changes. Preconditions: B 6 `⊥, R ⊆
B, p 6∈ B, p ∈ Q and (∀r ∈ R) : p � r. Postconditions:
p ∈ B1, R ⊆ X1, B1 6 ` ⊥, p 6∈ Q1,KS 1 �KS KS and
(∀r ∈ R) : p � r, (B1 ∪ {r}) `⊥ and 〈r, justout〉 ∈ Q1 .

Update-KS-Justout(KS , p) returns a knowledge state
KS 1 like input KS with its queue updated s.t. p 6∈ Q1 and
all disbelieved culprit nogood-mates of p are inserted into
the queue by DDR-Q-Insert. Preconditions: B 6 ` ⊥, p ∈ X,
and p ∈ Q with tag of justout or both. Postconditions:
p 6∈ Q1, KS 1 �KS KS and (∀q ∈ X) : If p � q and
(∃N ∈ I) s.t. {q, p} ⊆ N , then q ∈ Q with a tag of in? (or
both) as determined by DDR-Q-Insert.

DDR Algorithm
DDR(KS) takes the system knowledge state (KS) as input,
and improves it incrementally (with each pass throught the
loop), until it is optimal w.r.t. B∪ and �. B∪, I,and � are
unaffected by DDR. Preconditions: B 6 ` ⊥. Postconditions:
Let KS fin be the system knowledge state. Bfin 6 ` ⊥ and
Empty(Qfin). Loop conditions: At line 2: KS ′top equals the
system knowledge state. After line 18 : KS ′bot equals the
system knowledge state. For each pass: KS ′bot � KS ′top.

procedure DDR(KS)
1 KS ′ ← 〈B,B∪, I,�, Q 〉 ← KS
2 loop until Empty(Q)
3 〈p, τ〉 ← First(Q)
4 if1 (τ = in? or τ = both) , then
5 〈 can-return, R〉 ← Safe-Return(p,KS ′)
6 if2 can-return , then
7 KS ′ ← KS-Add-Remove(KS ′, p, R)
8 else2

9 if3 τ = both , then
10 KS ′ ← Update-KS-Justout(KS ′, p)
11 else3

12 Q← Rest(Q)
13 endif3
14 endif2
15 else1

16 KS ′ ← Update-KS-Justout(KS ′, p)
17 endif1
18 KS ← KS ′ ;;; DESTRUCTIVE
19 end loop

Note that the loop in the DDR algorithm works its way
through the dynamically changing elements of the priority
queue. Each element is processed in turn and how it is pro-
cessed depends of its tag, τ .

If τ = justout , then the belief was retracted and the DDR
process will insert onto the queue the appropriate beliefs to
be considered for possible return to the base. If τ = in?,

then DDR determines whether the belief can return to the
base and, if so, returns it (with appropriate consistency main-
tenance). If τ = both , then the belief is first processed as if
its tag is in? — only if the belief cannot return to the base
will it then be processed as if it has the tag justout .

Theorem 2 Given a knowledge state KS and DDR(KS)
run to completion results in the knowledge state
KS fin, KS fin is optimal (w.r.t. B∪ and � of KS).

The proof for this theorem is long (and is given in (Johnson
2005)), but it can be shown that: ∀p ∈ Xfin : ∃N ∈ Ifin

s.t. (1) (∀q ∈ N) q � p and (2) (N \ {p}) ⊆ Bfin . This
equates to optimality.

DDR Example
Example3 Using B∪ from Figure 1, consider a knowledge
state KS 1 where B∪

1 = B∪ \{¬p},�1 is like� without the
preference information for¬p, and Empty(Q1). The optimal
base w.r.t. B∪

1 and �1 would be B1 = p, p→q, p→r, m→
r, s, s→t, w→v, w→k, p→v, z→v, n, w, m, z. KS 1 ∗?
〈¬p,�¬p〉 (where �¬p= ¬p � p) now forces the retraction
of p to form KS 2 whose base is B2 = ¬p, p→q, p→r, m→
r, s, s→t, w→v, w→k, p→v, z→v, n, w, m, z.

Most systems stop here (with a sub-optimal base) because
they focus on maintaining consistency but do not review pre-
vious belief change operations to see if they could be im-
proved using hindsight. The set of retracted base beliefs
(X2) is {p,¬q,¬r,¬v,¬t,¬k}, B∪

2 = B∪ (from Figure 1),
and �2=�.

The optimal base w.r.t. B∪ and �, would be: B =
¬p, p→ q, p→ r, m→ r, s, s→ t, w→v, w→k, p→v, z→
v, n,¬q,¬r, w, z.

DDR can be performed on KS 2 (KS 2 !∪) to produce this
optimal base. When KS 1 ∗? 〈¬p,�¬p〉 produces KS 2,
B2 is as described above, and Q2 contains the single pair
〈p, justout〉. DDR on KS 2 goes through the following
steps:

1. Process〈p, justout〉. Result: KS 3 = 〈B2, B
∪
2 , I,�, Q3〉,

where Q3 = 〈¬q, in?〉, 〈¬r, in?〉, 〈¬v, in?〉
2. Process 〈¬q, in?〉. Result: KS 4 =
〈(B2 ∪ {¬q}), B∪

3 , I,�, Q4 = 〈¬r, in?〉, 〈¬v, in?〉〉
3. Process 〈¬r, in?〉. Result: KS 5 =
〈(B4 ∪ {¬r}) \ {m}, B∪

4 , I,�, Q5〉, where Q5 =
〈¬v, in?〉, 〈m, justout〉. Note: ¬r � m.

4. Process 〈¬v, in?〉. Result: KS 6 = 〈B5, B
∪
5 , I,�,

Q6 = 〈m, justout〉〉.
5. Process 〈m, justout〉. Result KS 7 = 〈B6, B

∪
6 , I,�,

Q7〉, where Empty(Q7) and B7 = B, which is optimal
w.r.t. B∪ and �. Note: B∪ = B∪

7 .
In step 3, ¬r returns to the base with the simulta-

neous removal of m (for consistency), because ¬r �
m (Cred(B5, B

∪,�) >Cred(B4, B
∪,�)). In step 4, once

DDR determines that ¬v cannot return to the base (due to
its being the culprit for the nogood {w → v, w,¬v}), it
would prune off the examination of the nogood containing
z, and the set containing ¬k would also not be examined or
affected. This is an example of how the nogoods examined

AAAI-05 / 317

Figure 1: A graph showing the elements of B∪ (circles/ovals) of a knowledge state, KS = 〈B,X, I,�, Q〉, connected to their
nogoods (rectangles), where B∪ = ¬p, p, p→q, p→r, m→r, s, s→t, w→v, w→k, p→v, z→v, n,¬q,¬r, w,¬v,m, z,¬t,¬k (in
decreasing order of preference w.r.t. �).

during DDR are determined dynamically. The nogood con-
taining s would also be ignored by DDR, because it is not
connected to p in any way. This last case is representative
of the possibly thousands of unrelated nogoods for a typical
belief base which would be checked during a naive operation
of reconsideration, but are ignored by DDR.

Discussion5

Benefits of DDR
DDR Produces Optimality If run to completion,
DDR(KS) makes the knowledge state optimal. (Th. 2)

DDR is an Anytime Algorithm The key elements of an
anytime algorithm (Dean & Boddy 1988) are that (1) the
answer is available at any point and (2) the quality of the
answer must improve as a function of time.

DDR starts with the current knowledge state (with a con-
sistent base). With each pass through the algorithm loop,
the knowledge state for the system gets updated with any
changes that the DDR algorithm makes (line 18). If DDR
is halted, the system knowledge state is the same as it was
at the start of that single loop pass — incorporating all the
improvements of the previous passes through the DDR loop.
Thus, the answer — the most recent answer — is available
at any point (1).

Let KS ′top = KS ′ at line 2. Let KS ′bot = KS ′ at line 18.
Changes to KS ′ occur at lines 7, 10, 12, or 16, exclusively.
For each pass through the DDR loop: KS ′bot � KS ′top.
Therefore, (2) is satisfied. Additionally, these incremen-
tal improvements towards optimality are both measurable
and recognizable — desirable attributes for an anytime al-
gorithm mentioned in (Zilberstein 1996).

DDR can be restarted at any time Whenever DDR is
stopped/halted, the system is left with a knowledge state KS
who’s Q has been properly maintained. Performing DDR on
KS will still result in an optimal knowledge state. NOTE:
Even if semi-revision is performed on the knowledge state
multiple times since DDR was stopped, recalling DDR and

5For full discussion and proofs, see (Johnson 2005).

running it to completion will still result in an optimal state
(optimal w.r.t. the current B∪ and ordering).

DDR offers diminishing returns with time With each
pass through the DDR loop, the changes to the base/exbase
involve less and less preferred beliefs, because any beliefs
more credible than the first belief in Q will (for these B∪

and �) remain in their current set (B or X). Diminishing
returns is another attribute mentioned in (Zilberstein 1996).

Adding DDR to an Existing TMS Making an existing
truth maintenance system6 DDR-capable involves very lit-
tle additional computational load. The reasoning system is
unaffected. The contradiction handling system must add a
few steps: maintaining the priority queue and the detected
nogoods with links to and from their elements.

We assume the TMS already has some technique for de-
termining the culprit in each nogood; we merely require that
the technique is consistent (resulting in a partial order over
the culprits). Any arbitrary linear ordering of all base beliefs
that is consistent with this pre-established partial order will
work with the DDR algorithms.

Recall that DDR can be started, stopped, and continued at
any time. If DDR is performed only during “down times”
(times when reasoning and belief change are not being per-
formed) there will be no perceivable effect — except that of
reasoning with a more optimal base.

When DDR must be performed prior to executing any fur-
ther reasoning or belief change operations, then the cost of
DDR is obviously preferred over that of an incorrect base,
and DDR is computationally less expensive than a naive
batch consolidation over all base beliefs in an effort to de-
termine the optimal base.

Reconsideration for Non-TMS Implementations Imple-
menting DDR in a system that does not already detect no-
goods might be computationally expensive. These systems

6By truth maintenance system, we are referring to systems that
already compute nogoods: such as JTMS, ATMS and LTMS as
discussed in (Forbus & de Kleer 1993) and the system described in
(Martins & Shapiro 1988).

AAAI-05 / 318

choose not to compute nogoods for some reason that prob-
ably includes the computational load, and to add nogood
detection and maintenance would probably be disadvanta-
geous. These systems may operate with more restricted
domains or logics, however, where a naive implementation
of reconsideration would be helpful (provided the computa-
tional load is not prohibitive).

The advantage of DDR for default logic systems is still
under exploration, but if a default logic system has a section
of its base that contains monotonic beliefs, DDR could be
helpful in maintaining the optimality of that section.

Related Work: Belief Liberation
Introduction Our B∪ is similar to the belief sequence,
σ, used in the definition of a retraction operator, called σ-
liberation, that can result in belief liberation (Booth et al.
2003). Belief liberation occurs when the retraction of a be-
lief from a base removes the conflict that forced the prior
retraction of some weaker belief. In this case, the weaker
belief can return to the base — it is “liberated” — as a part
of that retraction operation.

σ is a linear sequence of beliefs (p1, . . . , pn) ordered by
recency,where pn is the most recent information the agent
has received (and has highest preference). The set [[σ]] is
the set of all the sentences appearing in σ. Two immediate
differences between our B∪ and liberation’s σ are (1) our
ordering is recency-independent, whereas theirs is recency
and (2) the two orderings are in reverse order: the last ele-
ment of σ has highest preference, whereas our first element
ranks highest. The second difference is superficial, because
both sequences are traversed from strongest belief to weak-
est when determining the optimal base for that sequence.

Similarities Since both research groups assume a linear
ordering, if we assume that B∪ = [[σ]] and we order B∪

by recency, our optimal base (w.r.t. B∪ and the ordering)
would be equivalent to the base associated with σ. Likewise,
the belief space that is associated with σ, which we call Kσ ,
is equivalent to Cn(B∪!).

We define σ-addition (adding a belief to σ) as follows:
σ+p is adding the belief p to the sequence σ = p1, . . . , pn to
produce the new sequence σ1 = p1, . . . , pn, p. This is also
the technique described in (Chopra, Georgatos, & Parikh
2001). Now, given the knowledge state KS = 〈B, [[σ]], I �
, Q〉, where � is a linear ordering based on recency, we can
say that Cn((KS + 〈p,�p〉) !∪) = Kσ+p.

Key Difference The research in belief liberation focuses
on defining the retraction operation of σ-liberation for some
belief set K relative to some arbitrary σ. The focus is on
K and how it changes when a retraction is performed — i.e.
if the retraction is equivalent to an operation of σ-liberation
for some σ s.t. K = Kσ . The authors do not advocate
maintaining any one specific base belief sequence σ.

We are focusing on optimizing the belief base (and cor-
responding belief space) following some series of belief
change operations. We do not (in this paper) define any op-
eration of retraction, but assume retraction is for consistency
maintenance only (as a part of semi-revision) where the be-

lief that is retracted is determined by the incision function
during the consolidation operation.

DDR as a CSP
DDR can be framed as a boolean Constraint Satisfac-
tion Problem (CSP) to obtain a knowledge base KS =
〈B,B∪, I,�, Q〉 (Russell & Norvig 2003). The beliefs in
B∪ are the variables of the CSP. Their domain of possi-
ble values consists of: true (in the base) and false (in the
exbase). The nogoods represent multiary hard constraints,
and Figure 1 is a constraint hyper-graph.

There are two ways to optimize the result:
(1) Add Cred(B,B∪,�) as an objective function, which
must be maximized.
(2) Add a hierarchy of unary constraints: (∀p ∈ B∪) :
p = true , where the ordering of these constraints is identi-
cal to the ordering of the beliefs in B∪—(∀pi, pj ∈ B∪) :
pi = true � pj = true iff pi � pj .

When new beliefs are added to the knowledge state, we
then have an iterated CSP.

The Recovery Aspect of DDR
The Recovery postulate for belief theories states that K ⊆
(K ∼ p) + p where “∼” is theory contraction and “+”
is theory expansion (Alchourrón, Gärdenfors, & Makinson
1985). Recovery does not hold for bases, because returning
a previously removed belief to a base does not guarantee that
the kernels for that belief (which would also have been re-
moved) will also be returned to the base (or its belief space).

Reconsideration (including DDR) adheres to the follow-
ing recovery-like axiom:
If ¬p 6∈ Cn(KS), then BKS ⊆ BKS2, where KS2 =
((KS+〈¬p,�¬p〉) !∪+〈p,�p〉) !∪ and �p indicates p � ¬p.7

For a more detailed discussion of the Recovery aspect of
reconsideration, refer to (Johnson & Shapiro 2005).

Conclusions and Future Work
Reconsideration is a belief base optimizing operation that
eliminates operation order effects. Implementing reconsid-
eration in any system offers a mechanism for optimizing
both the belief base and the belief space. The computational
costs need to be weighed against the other needs of the sys-
tem.

DDR is an efficient, anytime, TMS-friendly algorithm
that implements reconsideration. Implementing DDR in a
TMS-style system allows optimization of the base in a com-
putationally friendly way:

• optimization can yield to urgent reasoning demands

• DDR optimizes the most important parts of the base first

• DDR can be performed in multiple stages that can inter-
leave with the addition of new information.

There no longer needs to be a trade-off between having a
consistent base ready for reasoning and having an optimal
base (by delaying consistency maintenance until all informa-
tion is gathered). DDR also provides an easy test for when

7This is similar to (R3) in (Chopra, Ghose, & Meyer 2002).

AAAI-05 / 319

optimization may be needed: when the priority queue is not
empty.

Ongoing work involves dealing with conditions that are
less than ideal:

• working with a non-linear ordering

• dealing with nogood sets that do not have a unique weak-
est element

• dealing with a non-ideal reasoning systems, specifically
ones that are not guaranteed explicitly know every nogood
in B∪.

We are also implementing DDR into an existing TMS sys-
tem, SNePS (Shapiro & The SNePS Implementation Group
2004).

Acknowledgments
The authors are grateful for the insights and feedback of
William J. Rapaport, Carl Alphonce, Ken Regan, David R.
Pierce, Bharat Jayaraman, Doug Lenat, Samir Chopra, Jean-
Pierre Koenig, Erwin Segal, Jan Chomicki, John Santore and
the SNePS Research Group.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction
and revision functions. The Journal of Symbolic Logic
50(2):510–530.
Booth, R.; Chopra, S.; Ghose, A.; and Meyer, T. 2003. Be-
lief liberation (and retraction). In TARK ’03: Proceedings
of the 9th conference on Theoretical aspects of rational-
ity and knowledge, 159–172. ACM Press. Full version in
Studia Logica 79(1):47-72, 2005.
Chopra, S.; Georgatos, K.; and Parikh, R. 2001. Rel-
evance sensitive non-monotonic inference on belief se-
quences. Journal of Applied Non-Classical Logics 11(1-
2):131–150.
Chopra, S.; Ghose, A.; and Meyer, T. 2002. Iterated revi-
sion and recovery: a unified treatment via epistemic states.
In van Harmelen, F., ed., ECAI 2002: 15th European Con-
ference on Artificial Intelligence, number 77 in Frontiers in
Artificial Intelligence and Applications, 541–545. Amster-
dam, The Netherlands: IOS Press.
de Kleer, J. 1986. An assumption-based truth maintenance
system. Artificial Intelligence 28(2):127–162.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proc. of AAAI-88, 49–54.
Forbus, K. D., and de Kleer, J. 1993. Building Problem
Solvers. Cambridge, MA: MIT Press.
Hansson, S. O. 1991. Belief Base Dynamics. Ph.D. Dis-
sertation, Uppsala University.
Hansson, S. O. 1997. Semi-revision. Journal of Applied
Non-Classical Logic 7:151–175.
Hansson, S. O. 1999. A Textbook of Belief Dynamics,
volume 11 of Applied Logic. Dordrecht, The Netherlands:
Kluwer.

Johnson, F. L., and Shapiro, S. C. 2004a. Dependency-
directed reconsideration. In K. Forbus, D. Gentner, T. R.,
ed., Proceedings of the 26th Annual Meeting of the Cog-
nitive Science Society, CogSci2004, 1573. Mahwah, NJ:
Lawrence Erlbaum Assoc.
Johnson, F. L., and Shapiro, S. C. 2004b. Knowledge
state reconsideration: Hindsight belief revision. In Pro-
ceedings of the Nineteenth National Conference on Arti-
ficial Intellicence (AAAI-2004) and Sixteenth Conference
on Innovative Applications of Artificial Intelligence(IAAI-
2004), 956–957. Menlo Park, CA: AAAI Press
(http://www.aaai.org/).
Johnson, F. L., and Shapiro, S. C. 2005. Improving re-
covery for belief bases. In Morgenstern, L., and Pagnucco,
M., eds., Proceedings of the Sixth Workshop on Nonmono-
tonic Reasoning, Action and Change, in press. Edinburgh,
Scotland: IJCAII.
Johnson, F. L. 2005. Belief Change in a Deductively Open
Belief Space. Ph.D. Dissertation, Department of Computer
Science and Engineering, University at Buffalo, The State
University of New York, Buffalo, NY. Forthcoming.
Martins, J. P., and Shapiro, S. C. 1988. A model for belief
revision. Artificial Intelligence 35:25–79.
Nebel, B. 1989. A knowledge level analysis of belief re-
vision. In Brachman, R. J.; Levesque, H. J.; and Reiter,
R., eds., Proceedings of the First International Conference
on Principles of Knowledge Representation and Reasoning
(KR’89), 301–311.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition edition. http://aima.cs.berkeley.edu/.
Shapiro, S. C., and The SNePS Implementation Group.
2004. SNePS 2.6.1 User’s Manual. Department of
Computer Science and Engineering, State University of
New York at Buffalo, Buffalo, NY. Available as
http://www.cse.buffalo.edu/sneps/Manuals/manual261.ps.
Stallman, R., and Sussman, G. J. 1977. Forward rea-
soning and dependency-directed backtracking in a system
for computer-aided circuit analysis. Artificial Intelligence
9(2):135–196.
Wassermann, R. 1999. Resource-bounded Belief Revision.
Ph.D. Dissertation, University of Amsterdam, Amsterdam,
The Netherlands.
Williams, M.-A., and Sims, A. 2000. SATEN: An object-
oriented web-based revision and extraction engine. In
Baral, C., and Truszyński, M., eds., Proceedings of the
8th International Workshop on Non-Monotonic Reasoning
NMR’2000. CoRR article: cs.AI/0003059.
Williams, M.-A. 1997. Anytime belief revision. In Pro-
ceedings of the Fourteenth International Joint Conference
on Artificial Intelligence. San Mateo, CA: Morgan Kauf-
mann. 74–79.
Zilberstein, S. 1996. Using anytime algorithms in intelli-
gent systems. AI Magazine 17(3):73–83.

AAAI-05 / 320

