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Abstract
The Recovery postulate for contraction says that
any beliefs lost due to the contraction of some be-
lief p should return if p is immediately re-asserted.
Recovery holds for logically closed sets of beliefs,
but it does not hold for belief bases (sets of beliefs
that are not logically closed). This paper discusses
the Recovery aspect of the belief base optimizing
operation of reconsideration (which performs hind-
sight belief change) and compares it to the adher-
ence to Recovery of traditional base and belief lib-
eration contraction operations. We also discuss the
similarities and differences between the belief base
manipulations for belief liberation vs. those for
reconsideration — because both approaches sup-
port the concept that removing a belief from a base
might allow some previously removed beliefs to re-
turn.

1 Introduction
1.1 Motivation
Any agent reasoning from a set of beliefs must be able to
perform basic belief change operations, including expansion,
contraction and consolidation. Briefly, expansion is adding
a belief to a set without concern for any inconsistencies it
might raise; contraction of a set by a belief results in a set
that does not entail (cannot derive) that belief — it is the re-
moval or retraction1 of that belief; and consolidation of a set
of beliefs produces a consistent subset of the original set. See
Section 1.3 for more details.

The Recovery postulate for contraction[Alchourrón et al.,
1985] says that a logically closed set K is contained in the set
that results from contraction of K by a belief p followed by
union with {p} and deductive closure.

A belief base, according to the foundations approach (see
discussion in [Gärdenfors, 1992] and [Hansson, 1999]), is a
finite set of core or base beliefs (also called hypotheses in
[Martins and Shapiro, 1988]) that have independent standing

1The term retraction is also used in the literature to define a spe-
cific subclass of contraction. In this paper, we use the term retraction
as a synonym for removal.

and are treated differently from derived beliefs. A base is,
typically, not logically closed.

Contraction of a belief base B by some belief p is success-
ful if p is absent from the resulting base and its logical clo-
sure. Although Recovery does not hold in general for belief
base contraction (due to the lack of closure before contrac-
tion), it does hold in some specific cases.

The research defining belief liberation [Booth et al., 2003]
and reconsideration [Johnson and Shapiro, 2005] supports
the concept that removing a belief from a base might allow
some previously removed beliefs to return.2 Because of this
common view, we could not present the Recovery aspect of
reconsideration without first examining the similarities and
differences between these works (see Section 3.4). We then
use belief liberation terminology and reconsideration in sep-
arate formulations of the Recovery postulate; and we discuss
and compare the specific cases that do (or do not) adhere to
these formulations as well as to the traditional Recovery pos-
tulate for belief bases.

1.2 Notation and Terminology

For this paper, we use a propositional language, L, which is
closed under the truth functional operators ¬,∨,∧,→, and
↔. Formulas of the language L are denoted by lowercase
letters (p, q, r, . . .). Sets and sequences are denoted by up-
percase letters (A,B,C, . . .). If set A derives p, it is denoted
as A ` p. Cn, is defined by Cn(A) = {p | A ` p}, and
Cn(A) is called the closure of A. A belief base B is con-
sistent iff B 6 ` ⊥, where ⊥ denotes logical contradiction. A
belief set (a.k.a theory), K, is a logically closed set of beliefs
(i.e. K = Cn(K)) [Alchourrón et al., 1985]. We will use B
for a belief base and K for a belief set.

Given a finite belief base, B, the set of p-kernels of B is
the set {A | A ⊆ B,A ` p and (∀A′ ( A)A′ 6 `p} [Hansson,
1994]. The p-kernels known to derive p are called p’s origin
sets in [Martins and Shapiro, 1988].

A nogood in the ATMS literature [de Kleer, 1986; For-
bus and de Kleer, 1993] is a minimally inconsistent set S s.t.
S `⊥, but for all S′ ( S, S′ 6 ` ⊥.

2This is very different from the recovery of retracted beliefs dur-
ing either saturated kernel contractions [Hansson, 1994] or the sec-
ond part of Hybrid Adjustment [Williams and Sims, 2000]



1.3 Background
This section briefly reviews the traditional belief change op-
erations of expansion and contraction of a logically closed
belief set K [Alchourrón et al., 1985] and expansion, kernel
contraction and kernel consolidation of a finite belief base B.
[Hansson, 1994; 1999].

Expansion
K + p (the expansion of the belief set K by the belief p) is
defined as Cn(K ∪ {p}).
B + p (the expansion of the belief base B by the belief p) is
defined as B ∪ {p}.

Kernel Contraction
The contraction of a base B [or set K] by a belief p is written
as B ∼ p [K ∼ p].

For this paper, B ∼ p is the kernel contraction [Hansson,
1994] of the belief base B by p (retraction of p from B) and,
although constrained by several postulates, is basically the
base resulting from the removal of at least one element from
each p-kernel in B — unless p ∈ Cn(∅), in which case B ∼
p = B. Given a belief base B, if K is the belief space for B
(K = Cn(B)), then K ∼ p = Cn(B ∼ p).

Kernel Consolidation
Consolidation (the removal of any inconsistency) is defined
for belief bases only. Any inconsistent belief set is the set
of all beliefs (due to closure in classical logic), making in-
consistency removal a non-issue — set operations focus on
preventing inconsistencies from occurring.

B! (the kernel consolidation of B) is the removal of at least
one element from each nogood in B s.t. B! ⊆ B and B!6 ` ⊥.
This means that B! =def B ∼⊥.

1.4 Recovery
Recovery does not hold for kernel contraction when elements
of a p-kernel in B are retracted during the retraction of p, but
are not returned as a result of the expansion by p followed
by deductive closure. Not only do these base beliefs remain
retracted, but derived beliefs that depend on them are also not
recovered.
Example Given the base B = {s, d, s → q}, B ∼ s ∨ d =
{s → q}, and (B ∼ s∨d)+s∨d = {s∨d, s → q}. Not only
do we not recover s or d as individual beliefs, but the derived
belief q is also not recovered.

We feel the assertion of s ∨ d means that its earlier retrac-
tion was, in hindsight, not valid for this current state, so all
effects of that retraction should be undone. There are various
criticisms of Recovery in the literature (see [Hansson, 1999]
and [Williams, 1994] for discussions and further references).
We address these criticisms in [Johnson, 2005], but state our
general argument below.

Our defense of Recovery is predicated on the fact that the
recovered beliefs were at one time in the base as base beliefs.
The recovery of those previously retracted base beliefs should
occur whenever the reason that caused them to be removed is,
itself, removed (or invalidated). In this case, the previously
retracted beliefs should be returned to the base, specifically
because they were base beliefs and the reason for disbelieving
them no longer exists.

2 Reconsideration
2.1 Assuming a Linear Preference Ordering
In defining reconsideration, [Johnson and Shapiro, 2005]
make the assumption that there is a recency-independent, lin-
ear preference ordering (�) over all base beliefs. Thus, any
base can be represented as a unique sequence of beliefs in
order of descending preference: B = p1, p2, . . . , pn , where
pi � pi+1, 1 ≤ i < n. Note: pi � pj means that pi is strictly
preferred over pj (is stronger than pj) and is true iff pi � pj

and pj 6� pi.

2.2 The Knowledge State for Reconsideration
The knowledge state used to formalize reconsideration [John-
son and Shapiro, 2005] is a tuple with three elements. Start-
ing with B0 = ∅, Bn is the belief base that results from a
series of expansion and consolidation operations on B0 (and
the subsequent resulting bases: B1, B2, B3, . . .).3, and B∪ =⋃

0≤i≤n Bi. Xn is the set of base beliefs removed (and cur-
rently dis-believed: Bn ∩ Xn = ∅) from these bases during
the course of the series of operations: Xn =def B∪ \Bn .

The knowledge state is a triple of the form 〈B,B∪,�〉,
where � is the linear ordering of B∪, X = B∪ \ B and
Cn(〈B,B∪,�〉) = Cn(B). All triples are assumed to be in
this form.

A numerical value for credibility of a base is calcu-
lated from the preference ordering of B∪ = p1, . . . , pn:
Cred(B,B∪,�) =

∑
pi∈B 2n−i (the bit vector indicating the

elements in B) when B 6 ` ⊥. Otherwise, when B `⊥,
Cred(B,B∪,�) = -1.

A linear ordering over bases (�B∪) is also defined: B �B∪

B′ iff Cred(B,B∪,�) ≥ Cred(B′, B∪,�).

2.3 Optimal Base
Given a possibly inconsistent set of base beliefs, B∪ =
p1, p2, ..., pn, ordered by �, the base B is considered op-
timal w.r.t. B∪ and � if and only if B ⊆ B∪ and (∀B′ ⊆
B∪) : B �B∪ B′. This favors retaining a single strong belief
over multiple weaker beliefs.

As in [Johnson and Shapiro, 2005], an operation of con-
traction or consolidation produces the new base B′ by using
a global incision function4 that maximizes Cred(B′, B∪,�)
w.r.t. the operation being performed. Note: maximizing
Cred(B′, B∪,�) without concern for any specific operation
would result in B′ = B∪! .

Observation 2.1 The consolidation of a base B is the opti-
mal subset of that particular base (w.r.t. B∪ and�): B! ⊆ B
and (∀B′ ⊆ B) : B! �B∪ B′.

2.4 Operations on a Knowledge State
The following are operations on the knowledge state
B = 〈B,B∪,�〉.

3Adding beliefs to a finite base by way of expansion followed
by consolidation is a form of non-prioritized belief change called
semi-revision [Hansson, 1997].

4An incision function is the function that determines which be-
liefs should be removed during the operations of kernel contraction
and kernel consolidation.



Expansion of B by p and its preference information, �p , is:
B + 〈p,�p〉 =def 〈B + p, B∪ + p,�1〉, where �1 is � ad-
justed to incorporate the preference information �p — which
positions p relative to other beliefs in B∪, while leaving the
relative order of other beliefs in B∪ unchanged. The resulting
ordering is the transitive closure of these relative orderings.5
Contraction of B by p is:
B ∼ p =def 〈B ∼ p, B∪,�〉.
Reconsideration of B [Johnson and Shapiro, 2005]
is: B!∪ =def 〈B∪!, B∪,�〉 .
Theorem 2.1 [Johnson and Shapiro, 2005] The base result-
ing from reconsideration is optimal w.r.t. B∪ and �. Proved
using Obs. 2.1.
Observation 2.2 Reworded from [Johnson and Shapiro,
2005] Given any knowledge state for B∪ and �, reconsid-
eration on that state produces the optimal knowledge state:
(∀B ⊆ B∪) : 〈B,B∪,�〉!∪ = 〈Bopt, B

∪,�〉, where Bopt is
the optimal base w.r.t. B∪ and � (because Bopt = B∪!).
Optimized-addition to B (of the pair 〈p,�p〉) is:
B +!∪ 〈p,�p〉 =def (〈B,B∪,�〉+ 〈p,�p〉)!∪ .
If B∪ and � are known, we adopt the shorthand writing of:
(1) B +!∪ 〈p,�p〉 to stand for 〈B,B∪,�〉+!∪ 〈p,�p〉; and (2)
B∪ +!∪ 〈p,�p〉 to stand for 〈B′, B∪,�〉 +!∪ 〈p,�p〉 for any
B′ ⊆ B∪. If the effect of adjusting the ordering by�p is also
known, then 〈p,�p〉 can be reduced to p.
Observation 2.3 Optimized-addition does not guarantee
that the belief added will be in the optimized base — it might
get removed during reconsideration.
Example Let B∪ = p, p→q,¬q, p→r,¬r, m→r, m. And
assume that B = B∪! = p, p→q, p→r, m→r, m. 〈B,B∪,�
〉 +!∪ 〈¬p,�¬p〉 = ¬p, p→q,¬q, p→r,¬r, m→r, assuming
that �¬p indicates ¬p � p. Notice the return of ¬q and ¬r
to the base due to the removal of p, and the simultaneous
removal of m to avoid a contradiction with ¬r and m→r.
If, on the other hand, �¬p indicated p � ¬p, then the base
would have remained unchanged.

Implementing Reconsideration
[Johnson and Shapiro, 2005] presents a TMS-friendly, ef-
ficient, anytime algorithm that implements reconsideration.
Rather than examining all beliefs in B∪, or even X , the algo-
rithm uses connections between beliefs and their shared no-
goods, so that a retracted belief points to the removed beliefs
which should be examined for possible return to the base.
Therefore, the algorithm is “dependency-directed” (a phrase
first coined in [Stallman and Sussman, 1977]); and it is called
dependency-directed reconsideration (DDR).

3 Belief Liberation
3.1 Basic Notation
In this section, we summarize σ-liberation [Booth et al.,
2003] and compare it to reconsideration. Like reconsidera-
tion, liberation assumes a linear sequence of beliefs which is

5We assume that if p ∈ B∪, the location of p in the sequence
might change — i.e. its old ordering information is removed before
adding �p and performing closure — but all other beliefs remain in
their same relative order.

called σ = p1, . . . , pn. The sequence is ordered by recency,
where p1 is the most recent information6 the agent has re-
ceived (and has highest preference), and the set [[σ]] is the set
of all the sentences appearing in σ.

Since the ordering in this sequence is based on recency, for
the remainder of this section, all comparisons between fea-
tures of liberation and those of reconsideration are predicated
on the assumption that both of their sequences are ordered by
recency.7

3.2 A Belief Sequence Relative to K

In [Booth et al., 2003] the ordering of σ is used to form the
maximal consistent subset of [[σ]] iteratively by defining the
following: (1) B0(σ) = ∅. (2) for each i = 0, 1, . . . , n − 1:
if Bi(σ) + p(i+1) 6 ` ⊥, then B(i+1)(σ) = Bi(σ) + p(i+1),
otherwise B(i+1)(σ) = Bi(σ). That is, each belief — from
most recent to least — is added to the base only if it does not
raise an inconsistency.

Definition 3.1 [Booth et al., 2003] Let K be a belief set and
σ = p1, . . . , pn a belief sequence. We say σ is a belief se-
quence relative to K iff K = Cn(Bn(σ)).

3.3 Removing a Belief q from K

In [Booth et al., 2003] the operation of removing the be-
lief q is defined using the following: (1) B0(σ, q) = ∅. (2)
for each i = 0, 1, . . . , n − 1: if Bi(σ, q) + pi+1 6 `q, then
B(i+1)(σ, q) = Bi(σ, q) + p(i+1), otherwise B(i+1)(σ, q) =
Bi(σ, q). Note that “Bn(σ) = Bn(σ,⊥) and Bn(σ, q) is the
set-inclusion maximal amongst the subsets of [[σ]] that do not
imply q.”[Booth et al., 2003]

Given a belief sequence σ relative to K, σ is used to define
an operation ∼σ for K such that K ∼σ q represents the result
of removing q from K [Booth et al., 2003]: K ∼σ q =
Cn(Bn(σ, q)) if q 6∈ Cn(∅), otherwise K ∼σ q = K.

Definition 3.2 [Booth et al., 2003] Let K be a belief set and
∼ be an operator for K. Then ∼ is a σ-liberation operator
(for K) iff ∼ = ∼σ for some belief sequence σ relative to K.

Example[Booth et al., 2003] Suppose K = Cn(p ∧ q) and
let σ = p → q, p,¬p ∧ ¬q be the belief sequence relative
to K — where ¬p ∧ ¬q was originally blocked from inclu-
sion in B3(σ) by the inclusion of the more recent (and more
preferred) belief p. Suppose we wish to remove p. We must
first compute B3(σ, p). We have B0(σ, p) = ∅, B1(σ, p) =
{p → q} = B2(σ, p), and B3(σ, p) = {p → q,¬p ∧ ¬q}.
Hence K ∼σ p = Cn(B3(σ, p)) = Cn(¬p ∧ ¬q) Note how,
when determining B2(σ, p), p is nullified, which leads to the
reinstatement, or liberation, of ¬p ∧ ¬q.

3.4 Comments On Liberation
Key Difference from Reconsideration
Reconsideration was intended specifically to improve adher-
ence to Recovery for belief base contraction. The research in

6We have reversed the ordering from that presented in [Booth
et al., 2003] to avoid superficial differences when comparing their
ordering with ours. We have adjusted the definitions accordingly.

7The differences between a recency-independent ordering and
ordering by recency are discussed in Section 4.2.



belief liberation focuses on defining liberation operators for
some belief set K relative to some arbitrary σ. The focus is
on K and how it changes when a contraction is performed —
whether there is any σ that shows that a given contraction op-
eration is an operation of σ-liberation. The authors do not ad-
vocate maintaining any one, specific σ. Although it is clearly
stated that σ-liberation does not adhere to Recovery, the sim-
ilarity between σ-liberation and reconsideration prompted us
to compare them in detail.

Similarities to Reconsideration
Assume B∪ = [[σ]] and is ordered by recency, and we refer
to the belief set associated with σ as Kσ .
Bn(σ) is the maximal consistent subset of [[σ]] — i.e.

Bn(σ) = [[σ]]! = B∪! . Similarly, Bn(σ, p) is the kernel con-
traction of [[σ]] by p. In other words, Bn(σ, p) = B∪ ∼ p.8
Thus, K ∼σ p = Cn(B∪ ∼ p).

If B = B∪! = Bn(σ), then we can define σB to be a
recency ordering of just the beliefs in Bn(σ), and Kσ = KσB

.
Now we can define contraction of an optimal knowledge state
in terms of contraction for σ-liberation: B ∼ p = (Kσ ∼σB

p) ∩B and Cn(〈B,B∪,�〉∼ p) = Kσ ∼σB
p.

Let us define σ-addition (adding a belief to σ) as follows:
σ + p is adding the belief p to the sequence σ = p1, . . . , pn

to produce the new sequence σ1 = p, p1, . . . , pn.9

If σ is the sequence for B∪, then the optimized addition of
p to any knowledge state for B∪ results in a base equivalent to
the base for p added to σ: Given B∪+!∪p = 〈B′, B∪+p,�′〉,
then B′ = Bn+1(σ + p).10

Likewise, σ-addition followed by recalculation of the be-
lief set is equivalent to optimized-addition followed by clo-
sure: Kσ+p = Cn(B∪ +!∪ p).

Cascading Belief Status Effects of Liberation
It is important to realize that there is a potential cascade of
belief status changes (both liberations and retractions) as the
belief set resulting from a σ-liberation operation of retracting
a belief p is determined; and these changes cannot be antici-
pated by looking at only the nogoods and kernels for p.
Example Let σ = p → q, p,¬p∧¬q, r → p∨q, r,¬r. Then,
B6(σ) = {p → q, p, r → p ∨ q, r}. Note that r ∈ Kσ and
¬r /∈ Kσ . K ∼σ p = Cn({p → q,¬p∧¬q, r → p∨q,¬r}).
Even though r is not in a p-kernel in [[σ]], r 6∈ K ∼σ p.
Likewise, ¬r is liberated even though @N s.t. N is a nogood
in [[σ]] and {¬r, p} ⊆ N .

Reconsideration has an identical effect. If B∪ = σ, and
B = B∪! = B6(σ), then 〈B,B∪,�〉 +!∪ 〈¬p,�¬p〉, where
�¬p indicates ¬p � p, would result in the base B1 =
{¬p, p → q,¬p ∧ ¬q, r → p ∨ q,¬r}.

8Note: specifically not Bn(σ, p) = B∪! ∼ p.
9This is also the technique described in [Chopra et al., 2001] —

though, again, we have reversed the order.
10Our notation for the base associated with a σ-addition is not

inconsistent with the notation of [Booth et al., 2003] for the base
associated with a σ-liberation operation. Addition changes the se-
quence, so we are determining the base for the new sequence (σ+p):
B(σ + p). The operation of σ-liberation changes the base used to
determine the belief set (from B(σ) to B(σ, p)), but the sequence
σ remains unchanged.

4 Improving Recovery for Belief Bases
4.1 Comparing Recovery-like Formulations
Let B = 〈B,B∪,�〉, s.t. B∪ = [[σ]], B = B∪! = Bn(σ)
and K = Kσ = Cn(B)), P = the set of p-kernels in B,
p = 〈p,�p〉, B1 = 〈B1, B

∪
1 ,�1〉 = (B ∼ p) +!∪ p, and

X1 = B∪
1 \B1. The first element in any knowledge state triple

is recognized as the currently believed base of that triple (e.g.
B in B), and is the default set for any shorthand set notation
formula using that triple (e.g. A ⊆ B means A ⊆ B).

Table 1 shows the cases where different Recovery formula-
tions hold — and where they do not hold. There is a column
for each formulation and a row for each case. The traditional
Recovery postulate for bases (Cn(B) ⊆ Cn((B ∼ p) + p))
is shown in column (TR). In column (LR), the recovery
postulate for σ-liberation retraction followed by expansion
(Liberation-recovery, LR, our term) is: K ⊆ ((K ∼σ p)+p).

In column (OR), the recovery-like formulation for ker-
nel contraction followed by optimized-addition is: K ⊆
Cn((B ∼ p)+!∪ p) (called Optimized-recovery, OR). We also
claim B ⊆ ((B ∼ p) +!∪ p), which is more strict than Recov-
ery: base beliefs are recovered in the base, itself, not just its
closure. For column (OR-i), we assume that the ordering for
B∪ and B∪

1 is recency. For column (OR-ii), we assume that
the ordering is not recency-based, p ∈ B∪ (not applicable for
Case 3), and optimized-addition returns p to the sequence in
its original place (i.e. �=�1). Note that (OR) is not a true
Recovery axiom for some contraction operation; because it
can be rewritten as K ⊆ Cn( ((B ∼ p) + p)!∪ ), where re-
consideration is performed after the expansion but before the
closure to form the new belief space.

YES means the formulation always holds for that given
case; NO means it does not always hold; NA means the given
case is not possible for that column’s conditions. The second
entry indicates whether the base/set is optimal w.r.t. B∪

1 (=
B∪ + p = σ + p) and its linear order. If not optimal, then a
designation for consistency is indicated. Recall that optimal-
ity requires consistency.

Theorem 4.1 Expansion of an optimal knowledge state by
a belief that is consistent with the base (and is not being
relocated to a lower position in the ordering) results in a new
and optimal knowledge state: Given B = 〈B,B∪,�〉, where
B = B∪! and X = B∪ \ B, then (∀p s.t. B + p 6 ` ⊥):
B + 〈p,�p〉 = 〈B + p, B∪+ p,�′〉!∪ = 〈B + p, B∪+ p,�′〉.
(Provided: if p = pi ∈ B∪ = pj ∈ (B∪ + p), then j ≤ i;
otherwise !∪ might remove p.)
Proof: B = B∪! . (∀x ∈ X) : B +x `⊥ and (@B′ ⊆ B) s.t.
both (B \B′) + x6 ` ⊥ and (∀b ∈ B′)x � b. Therefore, since
B + p 6 ` ⊥, then ∀B′′ ⊆ (B∪ + p) : (B + p) �B∪+p B′′. �

Case 1 In this simple case, {p} is the sole p-kernel in B.
For all formulations, p is removed then returned to the base,
therefore all cases hold.
Case 2 Since there are p-kernels in B that consist of beliefs
other than p, beliefs other than p must be retracted during
contraction of p. For (TR), if B = {p ∧ q}, then B ∼ p = ∅
and (B ∼ p)+p) = {p}. Therefore, K 6⊆ Cn((B ∼ p)+p),
and (TR) does not hold. For (LR), if σ = p ∧ q, then K ∼σ

p = ∅ and (K ∼σ p) + p = Cn({p}). So, (LR) also does



(TR) (LR) (OR)
Case K ⊆ Cn((B ∼ p) + p) K ⊆ Cn((K ∼σ p) + p) K ⊆ Cn((B ∼ p) +!∪ p)

but also B ⊆ (B ∼ p) +!∪ p
(i) (ii)

ordered by recency ordered by recency ordered by recency p ∈ B∪ and �1=�
1. p ∈ Cn(B); YES YES YES YES

P = {{p}} optimal possibly inconsistent optimal optimal
2. p ∈ Cn(B); NO NO YES YES

P \ {{p}} 6= ∅ consistent possibly inconsistent optimal optimal
3. p 6∈ Cn(B); YES YES YES NA

B + p 6 ` ⊥ optimal optimal optimal
4. p 6∈ Cn(B); YES YES NO YES

B + p `⊥ inconsistent inconsistent optimal optimal

Table 1: This table indicates whether each of three different Recovery formulations (TR, LR and OR) holds in each of four
different cases (which comprise all possible states of belief). K = Cn(B) and p = 〈p,�p〉. YES means the formulation
always holds for that given case; NO means it does not always hold; NA means the given case is not possible for that column’s
conditions. See the text for a detailed description. Note: If requiring contraction for consistency maintenance only, a column
for adherence to either B ⊆ (B +!∪ ¬p) +!∪ p (ordered by recency) or Kσ ⊆ K(σ+¬p)+p would match (OR-i).11

not hold. For (OR), since p ∈ Cn(B), then B + p 6 ` ⊥. Thus
B1 = B + p (from Theorem 4.1), so B ⊆ B1, and (OR)
holds.
Case 3 Since p 6∈ Cn(B) and B + p 6 ` ⊥, we know p 6∈ B∪

— otherwise, (B+p) �B∪ B and B 6= B∪! as it was defined.
Column (OR-ii) has NA (for “Not Applicable”) as its entry,
because (OR-ii) assumes that p ∈ B∪. For the other columns,
B ∼ p = B, K ∼σ p = K = Cn(B), and B ∼ p =
B. Clearly, (TR) holds and (LR) holds. (OR-i) also holds
(Theorem 4.1).
Case 4 Because p 6∈ Cn(B), B ∼ p = B and K ∼σ

p = K = Cn(B). Since B + p `⊥ and both (TR) and
(LR) produce inconsistent spaces, they both hold. For (OR),
B ∼ p = B. For (OR-i), the optimized-addition puts p at
the most preferred end of the new sequence (most recent),
so p ∈ B1 forcing weaker elements of B to be retracted
for consistency maintenance during reconsideration (recall
B + p `⊥). Therefore (OR-i) does not hold.11 For (OR-
ii), optimized-addition returns p to the same place in the se-
quence that it held in B∪ (recall B∪

1 = B∪ and �=�1).
Therefore, B = B1 and (OR-ii) holds.

4.2 Discussion
When comparing the traditional base recovery adherence (in
column TR) to optimized recovery adherence (shown in the
OR columns), the latter produces improved adherence, be-
cause:

1. when the retraction of p is truly “undone” (column (OR-
ii)), B is recovered in all applicable cases;

2. using a recency-based ordering (OR-i), B is recovered
in all cases where p ∈ Cn(B);

3. if expansion by p traditionally makes the final base in-
consistent (TR,4), although B is not recovered, the final
base is consistent and optimal (OR-i,4).

11Producing an optimal base is preferred to adhering to a
recovery-like formulation by having an inconsistent base.

Reconsideration eliminates the results of any preceding
contraction, because B∪ is unaffected by contraction: (B ∼
p)!∪ = B!∪. Likewise, optimized-addition also eliminates the
results of any preceding contraction: ∀q : (B ∼ q) +!∪ p =
B +!∪ p.

If we consider contraction for consistency-maintenance
only (assuming ordering by recency), the recovery-like for-
mulation B ⊆ (B +!∪ ¬p) +!∪ p would have column entries
identical to those in the column under (OR-i). Likewise, the
entries in a column for Kσ ⊆ K(σ+¬p)+p would also be
identical to the entries for column (OR-i).12

We also note that the improved Recovery aspect that recon-
sideration provides does not involve the addition of extra be-
liefs to the belief base. A belief base can “adhere” to Recov-
ery if the contraction operation to remove p also inserts p → q
into the base, for every belief q that is removed during that re-
traction of p. However, this deviates from our assumption of
a foundations approach, where the base beliefs represent the
base input information from which the system or agent should
reason. Not only would this technique insert unfounded base
beliefs, but the recovery of previously removed beliefs would
only show up in the belief space; whereas reconsideration ac-
tually returns the removed beliefs to the belief base.

If the linear ordering is recency-independent and �1 6=�,
then there are cases where Optimized-recovery does not hold
even though the resulting base will still be optimal. For Case
1, if p is re-inserted into the ordering at a weaker spot, it might
be retracted during reconsideration if it is re-asserted in a po-
sition that is weaker than the conflicting elements of some
pre-existing nogood and the incision function favors retract-
ing p. This could also happen in case 2, unless the elements
of some p-kernel are all high enough in the order to force the
retraction of the beliefs conflicting with p. In Case 3 all Re-
covery formulations always hold. In Case 4, if p is inserted
into the final ordering at a strong enough position, it could

12The (OR-i) results for B ⊆ (B +!∪ ¬p) +!∪ p and Kσ ⊆
K(σ+¬p)+p show adherence to (R3) in [Chopra et al., 2002].



survive the reconsideration step of optimized-addition — in
which case, (OR) would not hold.

5 Conclusions and Future Work
From Section 3.4, we see that a system that can implement σ-
liberation can also implement reconsideration and vice versa.

Kernel consolidation of a finite belief base has adherence
results for Optimized-recovery (OR) that are preferred over
the adherence results for the traditional Recovery postulate
for base contraction. Thus, reconsideration imparts a Recov-
ery aspect to belief bases.

Although σ-liberation retraction was never intended to ad-
here to Recovery, if we require that contractions are for con-
sistency maintenance only, it adheres identically as well as
kernel contraction adheres to OR.

Ongoing work involves formalizing reconsideration for
non-linear belief orderings (those lacking comparability
and/or anti-symmetry) and exploring adherence to the
recovery-like postulates in [Chopra et al., 2002] (altered us-
ing optimized-addition).
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