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Abstract.
Optimized Recovery (OR) adds belief base optimization to the traditional Re-

covery postulate—improving Recovery adherence without sacrificing adherence to
the more accepted postulates or to the foundations approach. Reconsideration and
belief liberation systems both optimize a knowledge base through consolidation of
a chain of base beliefs; and recovered base beliefs are returned to the base. The
effects match an iterated revision axiom and show benefits for pre-orders, as well.
Any system that can resolve an inconsistent belief base can produce these results.
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1. Introduction

1.1. Motivation

This paper shows how existing belief change operations can be used to optimize a belief
base and improve the return of previously retracted base beliefs to the base—offering the
best aspects of the Recovery postulate while retaining a true foundations approach as is
required for implemented systems.

Any agent reasoning from a set of beliefs must be able to perform basic belief
change operations, including expansion, contraction and consolidation. Briefly, expan-
sion is adding a belief to a set without concern for any inconsistencies it might raise;
contraction of a set by a belief results in a set that does not entail (cannot derive) that
belief — it is the removal or retraction1 of that belief; and consolidation of a finite set
of beliefs produces a consistent subset of the original set. These are discussed in more
detail in Section 1.3.

The Recovery postulate for belief theory contraction [1] states that a logically closed
belief theory K is contained in the belief theory that results from contraction of K by a
belief p followed by union with {p} and deductive closure. One feature of Recovery is

1This paper is a revised version of a 2005 IJCAI workshop paper [13].
2Correspondence to: Frances Johnson, University at Buffalo, Department of Computer Science and

Engineering, 201 Bell Hall, Buffalo, NY 14260-2000, USA. Tel.: +1 716-998-8394; Fax: +1 716-645-3464;
E-mail: flj@cse.buffalo.edu

1The term retraction is also used in the literature to define a specific subclass of contraction. In this paper,
we use the term retraction as a synonym for removal.



that any beliefs lost, due to contraction by p, should become reasserted when p is returned
and closure is performed; it is this feature of recovery that is a key element of our paper.

Although a belief base can be infinite and deductively closed (theoretically), we are
focusing on the base of an implemented system which consists solely of input to the
system (e.g., observations, sensor readings, rules). This follows the foundations approach
(see discussion in [7] and [10]), where base beliefs have independent standing and are
treated differently from inferred beliefs, and results in a finite base that is not deductively
closed.2 We refer to the closure of a belief base as its belief space.

The well accepted Success postulate [10]) requires that contraction of a belief base
B by some belief p is successful when p is absent from the resulting base and its logical
closure (unless p ∈ Cn(∅). Recovery does not hold in general for belief base contraction,
because additional base beliefs removed during contraction by some belief p might not
return (or be derivable) when p is returned to the base. This is because the base is not
deductively closed prior to the contraction.

There are base contraction operations that do satisfy Recovery by inserting
“Recovery-enhancing" beliefs into the base during contraction. These inserted beliefs,
however, do not come from an input source, so this technique deviates from the foun-
dations approach as we are applying it for an implemented system. Adding new base
beliefs during contraction also violates the Inclusion postulate [1,10], which states that
the result of contracting a belief theory/base should be a subset (⊆) of that theory/base.
This is discussed further in Section 5.2.

The research defining belief liberation [2] and reconsideration [11,12] supports the
concept that removing a belief from a base might allow some previously removed beliefs
to return.3 Both liberation and reconsideration research discuss a re-optimization of the
current belief base when the sequence of all base beliefs has been altered. It is this re-
optimization that is instrumental in defining Optimized Recovery and in providing the
recovery feature that has been missing in base belief change. Our discussion of various
recovery formulations is accompanied by a table that illustrates all cases where these
formulations do (or do not) hold for base belief change.

1.2. Notation and Terminology

For this paper, we use a propositional language, L, which is closed under the truth func-
tional operators ¬,∨,∧,→, and ↔. Atoms of the language L are denoted by lowercase
letters (p, q, r, . . .). Sets and sequences are denoted by uppercase letters (A,B,C, . . .).
If set A derives p, it is denoted as A ` p. Cn, is defined by Cn(A) = {p | A ` p}, and
Cn(A) is called the closure of A. A set of beliefs S is consistent iff S 6 ` ⊥, where ⊥
denotes logical contradiction. A belief theory, K, is a logically closed set of beliefs (i.e.
K = Cn(K)) [1]. We will use B for a belief base and K for a belief theory.

Note that we use the term set to refer to any set of beliefs—whether finite or infinite,
deductively closed or not.

2Note that we do not consider the rare case of a finite base that is considered “closed" if it contains at
least one (but not all) of each logically equivalent belief in its deductive closure. This is rare and unlikely in a
real-world implementation of any appreciable size.

3This is very different from the recovery of retracted beliefs during either saturated kernel contractions [8]
or the second part of Hybrid Adjustment [16]



Given a belief base, B, the set of p-kernels of B is the set {A | A ⊆ B,A ` p and
(∀A′ ( A)A′ 6 `p} [8].

Truth maintenance systems (TMSs) [6] retain the information about how a belief
is derived, distinguishing between base and derived beliefs. An assumption-based truth
maintenance system (ATMS) [5] stores the minimal set of base beliefs underlying a
derivation. A nogood in the ATMS literature is an inconsistent set of base beliefs. We
will define a ⊥-kernel (falsum-kernel) as a minimally inconsistent nogood: a set S s.t.
S `⊥, but for all S′ ( S, S′ 6 ` ⊥.

1.3. Background

This section briefly reviews the traditional belief change operations of expansion and
contraction of a logically closed belief theory K [1] and expansion, kernel contraction
and kernel consolidation of a finite belief base B. [8,10].

1.3.1. Expansion

K +p (the expansion of the belief theory K by the belief p) is defined as Cn(K∪{p}).
B + p (the expansion of the belief base B by the belief p) is defined as B ∪ {p}.

1.3.2. Kernel Contraction

The contraction of a base B [or theory K] by a belief p is written as B ∼ p [K ∼ p].
For this paper, B ∼ p is the kernel contraction [8] of the belief base B by p (retrac-

tion of p from B) and, although constrained by several postulates, is basically the base
resulting from the removal of at least one element from each p-kernel in B — unless
p ∈ Cn(∅), in which case B ∼ p = B.

A decision function determines which beliefs should be removed during kernel con-
traction.4 Although minimal damage to a knowledge base is a desirable feature of a deci-
sion function, it often comes with increased computational cost; when choosing a deci-
sion function for an implemented system, the tradeoff between minimizing damage and
minimizing complexity must be considered.

Given a belief base B, if the belief theory K is the belief space for B (K =
Cn(B)), then the contraction of this belief space by p through the use of kernel contrac-
tion is defined as K ∼ p =def Cn(B ∼ p).

1.3.3. Kernel Consolidation

Consolidation (the removal of any inconsistency) is defined for belief bases only. Any
inconsistent belief theory is the set of all beliefs (due to deductive closure), so operations
on belief theories focus on preventing inconsistencies, as opposed to resolving them.

B! (the kernel consolidation of B) is the removal of at least one element from each
⊥-kernel in B s.t. B! ⊆ B and B!6 ` ⊥. This means that B! =def B ∼⊥.

4An example of six different decision functions can be seen in the six different adjustment strategies used
by SATEN [16].



1.4. Recovery

Recovery does not hold for kernel contraction when elements of a p-kernel in B are
retracted during the retraction of p, but are not returned as a result of the expansion by
p followed by deductive closure. Not only do these base beliefs remain retracted, but
derived beliefs that depend on them are also not recovered.

Example 1 Given the base B = {s, d, s → q}, B ∼ s ∨ d = {s → q}, and (B ∼
s∨ d) + s∨ d = {s∨ d, s → q}. Not only do we not recover s or d as individual beliefs,
but the derived belief q is also not recovered.

We feel the assertion of s ∨ d means that its earlier retraction was, in hindsight,
not valid for this current state, so all effects of that retraction should be undone. There
are various criticisms of Recovery in the literature (see [10] and [15] for discussions
and further references); their argument is that Recovery is not as essential an axiom for
contraction as the other axioms, which we do not dispute.

We do, however, prefer to adhere to Recovery whenever possible, predicated on the
fact that recovered beliefs were at one time in the base as base beliefs. The recovery
of those previously retracted base beliefs should occur whenever the reason that caused
them to be removed is, itself, removed (or invalidated). In such a case, the previously
retracted beliefs should be returned to the base, because they were base beliefs and the
reason for disbelieving them no longer exists.

2. Reconsideration

2.1. Assuming a Linear Preference Ordering

In defining reconsideration, we make the assumption that there is a linear preference or-
dering (�) over all base beliefs [11,12]. See [14] (also in these proceedings) for a discus-
sion of reconsideration on non-linear pre-orders. Although the beliefs may be ordered by
recency, we assume a different ordering may be used. Thus, any base can be represented
as a unique sequence of beliefs in order of descending preference: B = p1, p2, . . . , pn ,
where pi � pi+1, 1 ≤ i < n. Note: pi � pj means that pi is strictly preferred over pj (is
stronger than pj) and is true iff pi � pj and pj 6� pi.

2.2. The Knowledge State for Reconsideration

The knowledge state used to formalize reconsideration [11,12] is a tuple with three
elements. Starting with B0 = ∅, Bn is the belief base that results from a series of
expansion and consolidation operations on B0 (and the subsequent resulting bases:
B1, B2, B3, . . .).5, and B∪ =

⋃
0≤i≤n Bi. Xn is the set of base beliefs removed (and

currently dis-believed: Bn ∩Xn = ∅) from these bases during the course of the series of
operations: Xn =def B∪ \Bn .

5Adding beliefs to a finite base by way of expansion followed by consolidation is a form of non-prioritized
belief change called semi-revision [9].



The knowledge state is a triple of the form 〈B,B∪,�〉, where� is the linear ordering
of B∪, X = B∪ \ B and Cn(〈B,B∪,�〉) = Cn(B). All triples are assumed to be in
this form.

A numerical value for credibility of a base is calculated from the preference order-
ing of B∪ = p1, . . . , pn: Cred(B,B∪,�) =

∑
pi∈B 2n−i (the bit vector indicating the

elements in B) when B 6 ` ⊥. Otherwise, when B `⊥, Cred(B,B∪,�) = -1.
A linear ordering over bases (�B∪) is also defined: B �B∪ B′ if and only if

Cred(B,B∪,�) ≥ Cred(B′, B∪,�).

2.3. Optimal Base

Given a possibly inconsistent set of base beliefs, B∪ = p1, p2, ..., pn, ordered by �, the
base B is considered optimal w.r.t. B∪ and � if and only if B ⊆ B∪ and (∀B′ ⊆
B∪) : B �B∪ B′. This favors retaining a single strong belief over multiple weaker
beliefs.

As in [11,12], an operation of contraction or consolidation produces the new base B′

by using a global decision function that maximizes Cred(B′, B∪,�) w.r.t. the operation
being performed. Note: maximizing Cred(B′, B∪,�) without concern for any specific
operation would result in B′ = B∪! .

Observation 1 The consolidation of a base B is the optimal subset of that particular
base (w.r.t. B∪ and �): B! ⊆ B and (∀B′ ⊆ B) : B! �B∪ B′.

2.4. Operations on a Knowledge State

The following are operations on the knowledge state B = 〈B,B∪,�〉.

Expansion of B by p and its preference information, �p , is:
B + 〈p,�p〉 =def 〈B + p, B∪ + p,�1〉, where �1 is � adjusted to incorporate
the preference information�p — which positions p relative to other beliefs in B∪,
while leaving the relative order of other beliefs in B∪ unchanged. The resulting
ordering is the transitive closure of these relative orderings.6

Contraction of B by p is: B ∼ p =def 〈B ∼ p, B∪,�〉.
Reconsideration of B [11,12] is: B!∪ =def 〈B∪!, B∪,�〉 .

Theorem 1 [11,12] The base resulting from reconsideration is optimal w.r.t. B∪ and �.
Proved using Obs. 1.

Observation 2 Reworded from [12] Given any knowledge state for B∪ and �, re-
consideration on that state produces the optimal knowledge state: (∀B ⊆ B∪) :
〈B,B∪,�〉!∪ = 〈Bopt, B

∪,�〉, where Bopt is the optimal base w.r.t. B∪ and � (be-
cause Bopt = B∪!).

Optimized-addition to B (of the pair 〈p,�p〉) [11] is:
B +!∪ 〈p,�p〉 =def (〈B,B∪,�〉+ 〈p,�p〉)!∪ .

6We assume that if p ∈ B∪, the location of p in the sequence might change — i.e. its old ordering informa-
tion is removed before adding �p and performing closure — but all other beliefs remain in their same relative
order.



If B∪ and � are known, a shorthand expression is used: (1) B +!∪ 〈p,�p〉 to stand for
〈B,B∪,�〉 +!∪ 〈p,�p〉; and (2) B∪ +!∪ 〈p,�p〉 to stand for 〈B′, B∪,�〉 +!∪ 〈p,�p〉 for
any B′ ⊆ B∪. If the effect of adjusting the ordering by �p is also known, then 〈p,�p〉
can be reduced to p.

Observation 3 Optimized-addition does not guarantee that the belief added will be in
the optimized base — it might get removed during reconsideration.

Example 2 Let B∪ = p, p→q,¬q, p→r,¬r, m→r, m. And assume that B = B∪! =
p, p→q, p→r, m→r, m. 〈B,B∪,�〉 +!∪ 〈¬p,�¬p〉 = ¬p, p→q,¬q, p→r,¬r, m→r,
assuming that �¬p indicates ¬p � p. Notice the return of ¬q and ¬r to the base due
to the removal of p, and the simultaneous removal of m to avoid a contradiction with
¬r and m→r. If, on the other hand, �¬p indicated p � ¬p, then the base would have
remained unchanged.

3. Belief Liberation

3.1. Basic Notation

In this section, we summarize σ-liberation [2] and compare it to reconsideration. Like
reconsideration, liberation assumes a linear sequence of beliefs σ = p1, . . . , pn. The
sequence is ordered by recency, where p1 is the most recent information7 the agent has
received (and has highest preference), and the set [[σ]] is the set of all the sentences
appearing in σ.

Since the ordering in this sequence is based on recency, for the remainder of this
section, all comparisons between features of liberation and those of reconsideration are
predicated on the assumption that both of their sequences are ordered by recency.8

3.2. A Belief Sequence Relative to K

In [2] the ordering of σ is used to form the maximal consistent subset of [[σ]] iteratively
by defining the following: (1) B0(σ) = ∅. (2) for each i = 0, 1, . . . , n − 1: if Bi(σ) +
p(i+1) 6 ` ⊥, then B(i+1)(σ) = Bi(σ) + p(i+1), otherwise B(i+1)(σ) = Bi(σ). That is,
each belief — from most recent to least — is added to the base only if it does not raise
an inconsistency.

Definition 1 [2] Let K be a belief theory and σ = p1, . . . , pn a belief sequence. We say
σ is a belief sequence relative to K iff K = Cn(Bn(σ)).

3.3. Removing a Belief q from K

In [2] the operation of removing the belief q is defined using the following: (1)
B0(σ, q) = ∅. (2) for each i = 0, 1, . . . , n− 1: if Bi(σ, q)+ pi+1 6 `q, then B(i+1)(σ, q) =
Bi(σ, q) + p(i+1), otherwise B(i+1)(σ, q) = Bi(σ, q). Note that “Bn(σ) = Bn(σ,⊥)

7We have reversed the ordering from that presented in [2] to avoid superficial differences with the ordering
for reconsideration. We have adjusted the definitions accordingly.

8We discuss the effects of a recency-independent ordering in Section 5.2.



and Bn(σ, q) is the set-inclusion maximal amongst the subsets of [[σ]] that do not imply
q."[2]

Given a belief sequence σ relative to K, σ is used to define an operation ∼σ for
K such that K ∼σ q represents the result of removing q from K [2]: K ∼σ q =
Cn(Bn(σ, q)) if q 6∈ Cn(∅), otherwise K ∼σ q = K.

Definition 2 [2] Let K be a belief theory and ∼ be an operator for K. Then ∼ is a
σ-liberation operator (for K) iff ∼ = ∼σ for some belief sequence σ relative to K.

4. Comparing Reconsideration and Liberation

4.1. The Sequence σ is Used for Defining Liberation

The research in belief liberation focuses on defining liberation operators for some belief
theory K relative to some arbitrary σ. The focus is on K and how it changes when a
contraction is performed — whether there is any σ that indicates that a given contraction
operation is an operation of σ-liberation. Liberation research does not advocate main-
taining any one, specific σ. It is clearly stated that σ-liberation does not adhere to Recov-
ery, but if you maintain a belief base as a recency-ordered sequence, σ, then liberation
terminology can be directly related to that of reconsideration and re-optimization.

4.2. Similarities

Assume B∪ = [[σ]] and is ordered by recency. We refer to the belief theory associated
with σ as Kσ .

Bn(σ) is the maximal consistent subset of [[σ]] — i.e. Bn(σ) = [[σ]]! = B∪! . Sim-
ilarly, Bn(σ, p) is the kernel contraction of [[σ]] by p. In other words, Bn(σ, p) = B∪ ∼
p.9 Thus, K ∼σ p = Cn(B∪ ∼ p).

If B = B∪! = Bn(σ), then we can define σB to be a recency ordering of just
the beliefs in Bn(σ), and Kσ = KσB

. Now we can define contraction of an optimal
knowledge state in terms of contraction for σ-liberation: B ∼ p = (Kσ ∼σB

p)∩B and
Cn(〈B,B∪,�〉∼ p) = Kσ ∼σB

p.
Let us define σ-addition (adding a belief to σ) as follows: σ + p is adding the belief

p to the sequence σ = p1, . . . , pn to produce the new sequence σ1 = p, p1, . . . , pn.10

If σ is the sequence for B∪, then the optimized addition of p to any knowledge state
for B∪ results in a base equivalent to the base for p added to σ: Given B∪ +!∪ p =
〈B′, B∪ + p,�′〉, then B′ = Bn+1(σ + p).11

Likewise, σ-addition followed by recalculation of the belief theory is equivalent to
optimized-addition followed by closure: Kσ+p = Cn(B∪ +!∪ p).

9Note: specifically not Bn(σ, p) = B∪! ∼ p.
10This is also the technique described in [3].
11This notation for the base associated with a σ-addition is not inconsistent with the notation in [2] for the

base associated with a σ-liberation operation. Addition changes the sequence, so we are determining the base
for the new sequence (σ + p): B(σ + p). The operation of σ-liberation changes the base used to determine the
belief theory (from B(σ) to B(σ, p)), but the sequence σ remains unchanged.



(TR) (LR) (OR)

Case K ⊆ Cn((B ∼ p) + p) K ⊆ Cn((K ∼σ p) + p) K ⊆ Cn((B ∼ p) +!∪ p)

but also B ⊆ (B ∼ p) +!∪ p
(i) (ii)

ordered by recency ordered by recency ordered by recency p ∈ B∪ and �1=�
1. p ∈ Cn(B); YES YES YES YES

P = {{p}} optimal possibly inconsistent optimal optimal
2. p ∈ Cn(B); NO NO YES YES

P \ {{p}} 6= ∅ consistent possibly inconsistent optimal optimal
3. p 6∈ Cn(B); YES YES YES NA

B + p6 ` ⊥ optimal optimal optimal
4. p 6∈ Cn(B); YES YES NO YES

B + p `⊥ inconsistent inconsistent optimal optimal
Table 1. This table indicates whether each of three recovery formulations (TR, LR and OR) always holds in
each of four different cases (comprising all possible states of belief). K = Cn(B) and p = 〈p,�p〉. See the
text for a detailed description. If contraction is used for consistency maintenance only, a column for adherence
to either B ⊆ (B +!∪ ¬p) +!∪ p (ordered by recency) or Kσ ⊆ K(σ+¬p)+p would match (OR-i).11

4.3. Cascading Belief Status Effects

It is important to realize that there is a potential cascade of belief status changes (both
liberations and retractions) as the belief theory resulting from a σ-liberation operation of
retracting a belief p is determined; and these changes cannot be anticipated by looking at
only the ⊥-kernels and kernels for p. This is illustrated in the example below.

Example 3 Let σ = p → q, p,¬p ∧ ¬q, r → p ∨ q, r,¬r. Then, B6(σ) = {p →
q, p, r → p ∨ q, r}. Note that r ∈ Kσ and ¬r /∈ Kσ . K ∼σ p = Cn({p → q,¬p ∧
¬q, r → p ∨ q,¬r}). Even though r is not in a p-kernel in [[σ]], r 6∈ K ∼σ p. Likewise,
¬r is liberated even though @N s.t. N is a ⊥-kernel in [[σ]] and {¬r, p} ⊆ N .

Optimized addition has a similar effect. If B∪ = σ, and B = B∪! = B6(σ), then
〈B,B∪,�〉+!∪ 〈¬p,�¬p〉, where �¬p indicates ¬p � p, would result in the base B1 =
{¬p, p → q,¬p ∧ ¬q, r → p ∨ q,¬r}.

5. Improving Recovery for Belief Bases

5.1. Comparing Recovery-like Formulations

Let B = 〈B,B∪,�〉, s.t. B∪ = [[σ]], B = B∪! = Bn(σ) and K = Kσ = Cn(B)),
P = the set of p-kernels in B, p = 〈p,�p〉, B1 = 〈B1, B

∪
1 ,�1〉 = (B ∼ p) +!∪ p,

and X1 = B∪
1 \ B1. The first element in any knowledge state triple is recognized as the

currently believed base of that triple (e.g. B in B), and is the default set for any shorthand
set notation formula using that triple (e.g. A ⊆ B means A ⊆ B).

Table 1 shows the cases where different recovery formulations hold — and where
they do not hold. There is a column for each formulation and a row for each case. The
traditional Recovery postulate for bases (Cn(B) ⊆ Cn((B ∼ p) + p)) is shown in
column (TR). In column (LR), the recovery postulate for σ-liberation retraction followed
by expansion (Liberation-recovery, LR) is: K ⊆ ((K ∼σ p) + p).

In column (OR), the recovery-like formulation for kernel contraction followed by
optimized-addition is: K ⊆ Cn((B ∼ p) +!∪ p) (called Optimized-recovery, OR).



OR can also be written as B ⊆ ((B ∼ p) +!∪ p), which is more strict than Recovery:
base beliefs are actually recovered in the base, itself, not just its closure.

Essentially, OR an axiom about contraction followed by optimized-addition—as op-
posed to the regular Recovery axiom, which describes the results of contraction followed
by expansion. In either case, recovering retracted beliefs is a desirable feature of con-
traction followed by either expansion or optimized-addition.

For column (OR-i), we assume that the ordering for B∪ and B∪
1 is recency. For col-

umn (OR-ii), we assume that the ordering is not recency-based, p ∈ B∪ (not applicable
for Case 3), and optimized-addition returns p to the sequence in its original place (i.e.
�=�1). Note that (OR) is not a true Recovery axiom for some contraction operation;
because it can be rewritten as K ⊆ Cn( ((B ∼ p) + p)!∪ ), where the re-optimizing
operation of reconsideration is performed after the expansion but before the closure to
form the new belief space.

YES means the formulation always holds for that given case; NO means it does not
always hold; NA means the given case is not possible for that column’s conditions. The
second entry indicates whether the base/theory is optimal w.r.t. B∪

1 (= B∪ + p = σ + p)
and its linear order. If not optimal, then a designation for consistency is indicated. Recall
that optimality requires consistency.

Theorem 2 Expansion of an optimal knowledge state by a belief that is consistent with
the base (and is not being relocated to a lower position in the ordering) results in a new
and optimal knowledge state: Given B = 〈B,B∪,�〉, where B = B∪! and X = B∪\B,
then (∀p s.t. B + p 6 ` ⊥): B + 〈p,�p〉 = 〈B + p, B∪ + p,�′〉!∪ = 〈B + p, B∪ + p,�′〉.
(Provided: if p = pi ∈ B∪ = pj ∈ (B∪ + p), then j ≤ i; otherwise !∪ might remove p.)
Proof: B = B∪! . (∀x ∈ X) : B +x `⊥ and (@B′ ⊆ B) s.t. both (B \B′)+x6 ` ⊥ and
(∀b ∈ B′)x � b. Since B + p 6 ` ⊥, then ∀B′′ ⊆ (B∪ + p) : (B + p) �B∪+p B′′.

Case 1 In this simple case, {p} is the sole p-kernel in B. For all formulations, p is
removed then returned to the base, therefore all formulations hold.

Case 2 Since there are p-kernels in B that consist of beliefs other than p, some base
beliefs other than p must be retracted during contraction by p. Returning these removed
base beliefs is the recovery feature that is the central focus of this paper. For (TR), if
B = {p ∧ q}, then B ∼ p = ∅ and (B ∼ p) + p) = {p}. Therefore, K 6⊆ Cn((B ∼
p) + p), and (TR) does not hold. For (LR), if σ = p ∧ q, then K ∼σ p = ∅ and
(K ∼σ p) + p = Cn({p}). So, (LR) also does not hold. For (OR), since p ∈ Cn(B),
then B + p 6 ` ⊥. Thus B1 = B + p (from Theorem 2), so B ⊆ B1, and (OR) holds.

Case 3 Since p 6∈ Cn(B) and B +p 6 ` ⊥, we know p 6∈ B∪ — otherwise, (B +p) �B∪

B and B 6= B∪! as it was defined. Column (OR-ii) has NA (for “Not Applicable") as
its entry, because (OR-ii) assumes that p ∈ B∪. For the other columns, B ∼ p = B,
K ∼σ p = K = Cn(B), and B ∼ p = B. Clearly, (TR) holds and (LR) holds. (OR-i)
also holds (Theorem 2).

Case 4 Because p 6∈ Cn(B), B ∼ p = B and K ∼σ p = K = Cn(B). Since
B+p `⊥ and both (TR) and (LR) produce inconsistent spaces, they both hold. For (OR),
B ∼ p = B. For (OR-i), the optimized-addition puts p at the most preferred end of the
new sequence (most recent), so p ∈ B1 forcing weaker elements of B to be retracted
for consistency maintenance during reconsideration (recall B + p `⊥). Therefore (OR-



i) does not hold.12 For (OR-ii), optimized-addition returns p to the same place in the
sequence that it held in B∪ (recall B∪

1 = B∪ and �=�1). Therefore, B = B1 and
(OR-ii) holds.

5.2. Discussion

When comparing the traditional base recovery adherence (in column TR) to optimized
recovery adherence (shown in the OR columns), the latter results in improved adherence,
because:

1. if ordering by recency (OR-i), B is recovered in all cases where p ∈ Cn(B);
2. any beliefs removed due to contraction by p are returned (OR,1;OR,2)
3. if expansion by p would make the final base inconsistent (TR,4), B is not recov-

ered if recency ordered, but the final base is consistent and optimal (OR-i,4).
4. when the retraction of p is truly “undone" (column (OR-ii)), B is recovered in all

applicable cases;

Reconsideration eliminates the results of any preceding contraction, because B∪ is
unaffected by contraction: (B ∼ p)!∪ = B!∪. Likewise, optimized-addition also eliminates
the results of any preceding contraction: ∀q : (B ∼ q) +!∪ p = B +!∪ p.

If we consider contraction for consistency-maintenance only (assuming ordering by
recency), the recovery-like formulation B ⊆ (B +!∪ ¬p) +!∪ p would have column
entries identical to those in the column under (OR-i). Likewise, the entries in a column
for Kσ ⊆ K(σ+¬p)+p would also be identical to the entries for column (OR-i). These
results show adherence to (R3) in [4]: if ¬p /∈ K, then K ⊆ (K ∗ ¬p) ∗ p, where ∗
is prioritized revision (consistent addition of a belief requiring the belief to be in the
resulting belief theory) [1]. In the case where the ordering is not by recency, R3 still
holds provided (1) p � ¬p in the final ordering and (2) if p was in the original ordering,
it is not weaker in the new ordering.

We also note that the improved recovery compliance that reconsideration provides
does not involve the addition of new beliefs to the belief base during contraction. Belief
base contraction can adhere to Recovery if the contraction operation to remove p also
inserts p → q into the base, for every belief q that is removed during that retraction of p.
However, this deviates from our assumption of a foundations approach, where the base
beliefs represent the base input information from which the system or agent should rea-
son. Not only would this technique insert unfounded base beliefs13, but the recovery of
previously removed beliefs would only show up in the belief space; whereas reconsider-
ation actually returns the removed beliefs to the belief base.

An additional benefit is that the belief removed (whether through contraction or re-
vision by a contradicting belief) need not be reasserted in its original syntactic form.
Any logically equivalent assertion will have the same effect: provided the newly asserted
belief survives re-optimization, it and all those beliefs just retracted will be returned to
the base. In fact, any belief that is inconsistent with the removed belief’s negation will
have this same effect (assuming it is consistent with the starting base).

12Producing an optimal base is preferred to adhering to a recovery-like formulation by having an inconsistent
base.

13The new beliefs are not from some input source, but derived from the contraction operation. This violates
the foundations approach as well as the Inclusion postulate (as discussed in Section 1.1).



Example 4 Given a knowledge state triple with B∪ = B = {s, d, s → q}, B ∼ s∨ d =
{s → q}, as described in Example 1, (B ∼ s∨ d)+!∪ (s∨ d) = (B +!∪ ¬(s∨ d))+!∪ (s∨
d) = {s ∨ d, s, d, s → q} and q is derivable. Similarly, if the belief that is asserted last
(and strongest) is merely inconsistent with ¬(s ∨ d), the recovery of retracted beliefs is
performed just the same: (B +!∪ ¬(s ∨ d)) +!∪ (p ∧ (¬s → (d ∧m))) results in a final
base B2 = {p ∧ (¬s → (d ∧m))), s, d, s → q} and q is derivable (as is m).

If the linear ordering is not based on recency and �1 6=�, then there are cases where
Optimized-recovery does not hold even though the resulting base will still be optimal—
those cases where p does not survive the optimization process. For Case 1, if p is re-
inserted into the ordering at a weaker spot, it might be retracted during reconsideration
if it is re-asserted in a position that is weaker than the conflicting elements of one of
its pre-existing ⊥-kernels and the decision function favors retracting p. This could also
happen in case 2, unless the elements of some p-kernel are all high enough in the order to
force the retraction of the beliefs conflicting with p. In Case 3 all recovery formulations
always hold. In Case 4, if p is inserted into the final ordering at a strong enough position,
it could survive the reconsideration step of optimized-addition — in which case, (OR)
would not hold. These exceptions are typical of any re-ordering of beliefs.

The benefits of reconsideration are not limited to linear orderings. A discussion of
reconsideration on pre-orders is offered in [11] and [14] along with a table showing
reconsideration using the six adjustment strategies implemented in SATEN [16], where
five bases are improved—three to optimal, showing full recovery and adhering to (R3).14

Assuming an implemented TMS system retains its ⊥-kernels, reconsideration (and
its recovery-like benefits) can be implemented using an efficient, anytime algorithm
called dependency-directed reconsideration (DDR) [11,12]. Examining a small subset
of B∪ in a series of steps, the process can be suspended whenever reasoning, acting or
belief change need to be performed. The system performs these operations on the most
credible base it has at that time. DDR can be re-called later to continue its optimization,
which will be adjusted to take the interleaved operations into account.

6. Conclusions and Future Work

Optimized Recovery (OR) adds belief base optimization to the traditional Recovery pos-
tulate allowing a system to experience the restoration of p-kernels in the base when re-
asserting p without sacrificing adherence to the other more accepted postulates (such as
Success and Inclusion) or to the foundations approach. Reconsideration (determining the
base for a belief sequence) optimizes a base through consolidation of a chain of base
beliefs. The effects match the iterated revision axiom (R3) and show benefits for total
pre-orders, as well. Any system that implements consolidation can produce these results.
The anytime algorithm for DDR can be implemented in a TMS.

Future work includes exploring how this research relates to other iterated belief
change axioms and improving the current implementation of reconsideration in an exist-
ing ATMS so that it can handle non-linear orderings.

14Consolidation (!) is called theory extraction in [16]. We assume a � ¬a.
SATEN website: http://magic.it.uts.edu.au/systems/saten.html
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