
Propositional, First-Order And Higher-Order Logics:

Basic Definitions, Rules of Inference, and Examples∗

Stuart C. Shapiro
Department of Computer Science and Engineering

University at Buffalo, The State University of New York
226 Bell Hall

Buffalo, NY 14260-2000
shapiro@cse.buffalo.edu

1 What is Logic?

Logic is the study of correct reasoning. It is not a particular KRR language. Thus, it is not proper to say
“We are using (or not using) logic as our KRR language.” There are, indeed, many different logics. For
more details on logics, see (Haack, 1978), (McCawley, 1981), and the various articles on Logic in (Shapiro,
1992) beginning with (Rapaport, 1992).

2 Requirements to Define a Logic

A logic consists of two parts, a language and a method of reasoning. The logical language, in turn, has two
aspects, syntax and semantics. Thus, to specify or define a particular logic, one needs to specify three things:

Syntax: The atomic symbols of the logical language, and the rules for constructing well-formed, nonatomic
expressions (symbol structures) of the logic.

Semantics: The meanings of the atomic symbols of the logic, and the rules for determining the meanings
of nonatomic expressions of the logic.

Syntactic Inference Method: The rules for determining a subset of logical expressions, called theorems
of the logic.

3 CarPool World

We will use CarPool World as a simple example. In CarPool World, Tom and Betty carpool to work. On
any day, either Tom drives Betty or Betty drives Tom. In the former case, Tom is the driver and Betty is
the passenger. In the latter case, Betty is the driver and Tom is the passenger.
∗This is a preprint version of Stuart C. Shapiro, Propositional, First-Order And Higher-Order Logics: Basic Definitions,

Rules of Inference, and Examples. In Lucja M. Iwańska & Stuart C. Shapiro, Eds., Natural Language Processing and Knowledge
Representation: Language for Knowledge and Knowledge for Language, AAAI Press/The MIT Press, Menlo Park, CA, 2000,
379-395, and may differ slightly from the final, published version. All quotes should be from and all citations should be of the
published version.

1

4 Propositional Logic

4.1 Propositional CarPool World

Propositional logics (sometimes called Sentential Logics) conceptualize domains at, but not below the level
of sentences (or propositions). So the finest analysis of CarPool World is that there are six sentences:

Betty drives Tom. Tom drives Betty.
Betty is the driver. Tom is the driver.
Betty is the passenger. Tom is the passenger.

4.2 Syntax

The syntactic expressions of propositional logics consist of atomic propositions and nonatomic, well-
formed propositions (wfps).

Syntax of Atomic Propositions

• Any letter of the alphabet, e.g.: P

• Any letter of the alphabet with a numeric subscript, e.g.: Q3

• Any alphanumeric string, e.g.: Tom is the driver

is an atomic proposition.

Syntax of Well-Formed Propositions (WFPs)

1. Every atomic proposition is a wfp.

2. If P is a wfp, then so is ¬P .

3. If P and Q are wfps, then so are

(a) (P ∧Q) (b) (P ∨Q)

(c) (P ⇒ Q) (d) (P ⇔ Q)

4. Nothing else is a wfp.

We will not bother using parentheses when there is no ambiguity, in which case ∧ and ∨ will have
higher priority than ⇒, which, in turn will have higher priority than ⇔. For example, we will write
P ∧Q⇔ ¬P ⇒ Q instead of ((P ∧Q)⇔ (¬P ⇒ Q)).

An example wfp in CarPool World is

Tom is the driver ⇔ ¬Betty is the driver

4.3 Semantics

To specify the semantics of a propositional logic, we must give the semantics of each atomic proposition and
the rules for deriving the semantics of the wfps from their constituent propositions. There are actually two
levels of semantics we must specify: extensional semantics and intensional semantics.

The extensional semantics (value or denotation) of the expressions of a logic are relative to a par-
ticular interpretation, model, or situation. The extensional semantics of CarPool World, for example, are
relative to a particular day. The denotation of a proposition is either True or False. If P is an expression
of some logic, we will use [[P]] to mean the denotation of P . If we need to make explicit that we mean the
denotation relative to situation S, we will use [[P]]S .

The intensional semantics (or intension) of the expressions of a logic are independent of any specific
interpretation, model, or situation, but are dependent only on the domain being conceptualized. If P is
an expression of some logic, we will use [P] to mean the intension of P . If we need to make explicit that

2

we mean the intension relative to domain D, we will use [P]D. Many formal people consider the intension
of an expression to be a function from situations to denotations. For them, [P]D(S) = [[P]]S . However,
less formally, the intensional semantics of a wfp can be given as a statement in a previously understood
language (for example, English) that allows the extensional value to be determined in any specific situation.
Intensional semantics are often omitted when a logic is specified, but they shouldn’t be.

4.3.1 Intensional Semantics of Atomic Propositions

The intensional semantics of atomic propositions must be specified for each particular propositional logic.
For example, the intensional semantics of the atomic propositions of CarPool World are:

[Betty drives Tom] = The person named “Tom” gets a ride in to work with the person named “Betty”.

[Tom drives Betty] = The person named “Betty” gets a ride in to work with the person named “Tom”.

[Betty is the driver] = The person named “Betty” is the driver of the car.

[Tom is the driver] = The person named “Tom” is the driver of the car.

[Betty is the passenger] = The person named “Betty” is a passenger in the car.

[Tom is the passenger] = The person named “Tom” is a passenger in the car.

Note that each atomic proposition is a single indivisible symbol; the fact that the atomic propositions look
like English sentences whose meanings are paraphrases of the intensional semantics is purely for mnemonic
purposes. One should never rely on “pretend it’s English” semantics.

4.3.2 Intensional Semantics of WFPs

Since the logical connectives ¬, ∧, ∨,⇒, and⇔ are commonly used, the following clauses are the standard
ones for deriving the intensional semantics of wfps from the intensional semantics of their constituents:

• [¬P] = It is not the case that [P].

• [P ∧Q] = [P] and [Q].

• [P ∨Q] = Either [P] or [Q] or both.

• [P ⇒ Q] = If [P] then [Q].

• [P ⇔ Q] = [P] if and only if [Q].

4.3.3 Extensional Semantics of Atomic Propositions

The denotation of an atomic proposition is a truth value, True or False. Each way of assigning a truth value
to each atomic proposition forms one situation. For example, each column of the following table gives one
situation of CarPool World.

Denotation in Situation
Proposition 1 2 3 4 5
Betty drives Tom True True True False False
Tom drives Betty True True False True False
Betty is the driver True True True False False
Tom is the driver True False False True False
Betty is the passenger True False False True False
Tom is the passenger True False True False False

This shows 5 situations. Since there are 6 propositions, and each one can have either of 2 truth values, there
are 26 = 64 different situations in CarPool World. We will see below how to limit these to the two that
“make sense.”

3

4.3.4 Extensional Semantics of WFPs

Just as there is a standard way to derive the intensional semantics of wfps from their constituents, so is there
a standard way to compute the denotations of wfps from their constituents. These are:

• [[¬P]] is True if [[P]] is False. Otherwise, it is False.

• [[P ∧Q]] is True if [[P]] is True and [[Q]] is True. Otherwise, it is False.

• [[P ∨Q]] is False if [[P]] is False and [[Q]] is False. Otherwise, it is True.

• [[P ⇒ Q]] is False if [[P]] is True and [[Q]] is False. Otherwise, it is True.

• [[P ⇔ Q]] is True if [[P]] and [[Q]] are both True, or both False. Otherwise, it is False.

These can also be shown in the following truth tables.

P True False
¬P False True

P True True False False
Q True False True False
P ∧Q True False False False
P ∨Q True True True False
P ⇒ Q True False True True
P ⇔ Q True False False True

Notice that each column of these tables represents a different situation.

4.3.5 Semantic Properties of WFPs

A wfp is either satisfiable, contingent, valid, or contradictory according to the situations in which it
is True. A wfp is satisfiable if it is True in at least one situation, contingent if it is True in at least one
situation and False in at least one situation, valid if it is True in every situation, and contradictory of it
is False in every situation. For example, as the following table shows, ¬P , Q ⇒ P , and P ⇒ (Q ⇒ P) are
satisfiable, ¬P and Q⇒ P are contingent, P ⇒ (Q⇒ P) is valid, and P ∧ ¬P is contradictory.

P True True False False
Q True False True False
¬P False False True True
Q⇒ P True True False True
P ⇒ (Q⇒ P) True True True True
P ∧ ¬P False False False False

If A is a well-formed expression of a logic L, it is standard to write |=L A (The symbol “|=” is called a
“double turnstyle”.) to indicate that A is valid in logic L. The subscript may be omitted if it is clear from
context. Thus, the above truth table shows that |= P ⇒ (Q⇒ P). Valid wfps are also called tautologies.

Related to the notion of validity is the notion of logical implication. The set of wfps {A1, . . . , An}
logically implies the wfp B in logic L (written A1, . . . , An |=L B) if and only if B is True in every situation
in which every Ai is True. This is how domain knowledge can be used to reduce the set of situations to only
those that “make sense.” For example, in CarPool World, we want to specify that:

• Betty is the driver or the passenger, but not both:

Betty is the driver ⇔ ¬Betty is the passenger

4

• Tom is the driver or the passenger, but not both:

Tom is the driver ⇔ ¬Tom is the passenger

• If Betty drives Tom, then Betty is the driver and Tom is the passenger:

Betty drives Tom ⇒ Betty is the driver ∧ Tom is the passenger

• If Tom drives Betty, then Tom is the driver and Betty is the passenger:

Tom drives Betty ⇒ Tom is the driver ∧ Betty is the passenger

• Finally, either Tom drives Betty or Betty drives Tom:

Tom drives Betty ∨ Betty drives Tom

The following table shows the only two situations of CarPool World (numbered as in the previous table)
in which all five of these wfps are True.

Denotation in Situation
Proposition 3 4
Betty drives Tom True False
Tom drives Betty False True
Betty is the driver True False
Tom is the driver False True
Betty is the passenger False True
Tom is the passenger True False

Notice that these are precisely the two commonsense situations.
Logical implication and logical validity are related by the following

Metatheorem 1: A1, . . . , An |=L B if and only if |=L A1 ∧ · · · ∧An ⇒ B

The significance of this is that if one is interested in determining either logical validity or logical implication,
one may solve the other problem instead.

4.4 Inference in Propositional Logics

There are two basic varieties of inference methods in propositional logics, Hilbert-style methods, and
natural deduction methods. Hilbert-style inference methods use a large number of (logical) axioms and
a small number of rules of inference, whereas natural deduction methods use a small number of (logical)
axioms (or even none at all) and a large number of rules of inference. Usually there are two rules of inference
for each logical connective, ¬, ∧, ∨, ⇒, and ⇔, an introduction rule, and an elimination rule. These
are usually abbreviated by writing the logical connective before “I” or “E”, respectively. For example ¬I is
the “negation introduction” rule, and ∧E is the “and elimination” rule. The rule ⇒ E is also often called
modus ponens.

In Hilbert-style methods, a derivation of a wfp, A, from a set of assumptions (or non-logical axioms,)
Γ, is a list of wfps in which each wfp in the list is either a logical axiom, or a non-logical axiom, or follows
from previous wfps in the proof according to one of the rules of inference. A Hilbert-style proof of a wfp,
A, is a derivation of A from an empty set of assumptions. If A can be derived from Γ in the logic L, we
write Γ `L A, (The symbol “`” is called a “turnstyle”.) while if A can be proved in L, we write `L A. If A
can be proved in L, A is called a theorem of L.

I will present a natural deduction inference method in more detail. This method is based on methods due
to Gentzen, Kleene, and Fitch (see (Kleene, 1950, 86–99,442–443) and (Fitch, 1952)). In this presentation,
A and B will stand for any wfps of some propositional logic, Γ,∆,Θ,Λ, and Φ will stand for any (possibly
empty) sets of wfps of this logic, and “,” will stand for set union, where if either argument of “,” is A or B,
the singleton set {A} or {B}, respectively, should be understood instead. A derivation, in this method is a
list of expressions of the form Γ `L ∆, where each expression in the list is either an instance of the

5

Axiom: Γ,∆ `L ∆

or follows from previous expressions according to one of the following rules of inference. (I will omit the
subscript, since all these rules deal with the same logic.)

Hyp: If Γ ` Θ then Γ,∆ ` Θ

Thin: If Γ ` Φ,Θ then Γ ` Θ

Cut: If Γ ` Φ,Λ and ∆,Φ ` Θ then Γ,∆ ` Λ,Θ

∧I: If Γ ` A,B,Θ then Γ ` A ∧B,Θ

∧E: If Γ ` A∧B,Θ then Γ ` A,B,Θ or Γ ` A,Θ or
Γ ` B,Θ

∨I: If Γ ` A,Θ then Γ ` A ∨B,Θ or Γ ` B ∨A,Θ

∨E: If Γ, A ` Θ and Γ, B ` Θ then Γ, A ∨B ` Θ

¬I: If Γ, A ` B,¬B,Θ then Γ ` ¬A

¬E: If Γ ` ¬¬A,Θ then Γ ` A,Θ

⇒ I: If Γ, A ` ∆, B then Γ ` A⇒ B

⇒ E: If Γ ` A,A⇒ B,∆ then Γ ` B,∆

⇔ I: If Γ ` A⇒ B,B ⇒ A,∆ then Γ ` A⇔ B,∆

⇔ E: If Γ ` A,A⇔ B,∆ then Γ ` B,∆
and if Γ ` B,A⇔ B,∆ then Γ ` A,∆

Every line of such a derivation of the form Γ `L ∆ indicates that every wfp in the set ∆ can be derived
in the logic L from the set of assumptions Γ, and every line of the form `L ∆ indicates that every wfp in ∆
is a theorem of L. The expression Γ `L ∆ may also be interpreted as a knowledge base in which the wfps
in Γ are assumptions, or domain rules and the wfps in ∆− Γ are derived propositions.

As for logical implication and logical validity, derivation and proof in either Hilbert-style or natural
deduction inference methods are related by the following

Metatheorem 2: A1, . . . , An `L B1, . . . , Bm if and only if `L A1 ∧ · · · ∧An ⇒ B1 ∧ · · · ∧Bm

Again, the significance of this is that if one is interested in finding either a derivation or a proof, one may
solve the other problem instead.

4.4.1 Example Derivation

As an example, I’ll show a derivation from the CarPool World domain knowledge (non-logical axioms) of the
proposition Tom drives Betty ⇒ ¬Betty drives Tom. To save space, I’ll use the following abbreviations.

BdT : Betty drives Tom
TdB : Tom drives Betty
Bd : Betty is the driver
Td : Tom is the driver
Bp : Betty is the passenger
Tp : Tom is the passenger

1. TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp ` TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp Axiom
2. TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp ` Td ∧Bp, Td⇔ ¬Tp ⇒ E, 1
3. TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp ` Td, Td⇔ ¬Tp ∧E, 2
4. TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp ` ¬Tp ⇔ E, 3
5. BdT,BdT ⇒ Bd ∧ Tp ` BdT,BdT ⇒ Bd ∧ Tp Axiom
6. BdT,BdT ⇒ Bd ∧ Tp ` Bd ∧ Tp ⇒ E, 5
7. BdT,BdT ⇒ Bd ∧ Tp ` Tp ∧E, 6
8. TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp,BdT,BdT ⇒ Bd ∧ Tp ` ¬Tp, Tp Cut , 4 , 7
9. TdB, TdB ⇒ Td ∧Bp, Td⇔ ¬Tp,BdT ⇒ Bd ∧ Tp ` ¬BdT ¬I, 8

10. TdB ⇒ Td ∧Bp, Td⇔ ¬Tp,BdT ⇒ Bd ∧ Tp ` TdB ⇒ ¬BdT ⇒ I, 9

This derivation actually only uses three of the five assumptions. The others may be added by the rule of
Hyp.

6

5 First-Order Predicate Logic

5.1 Predicate CarPool World

First-Order Predicate Logics (FOPLs) conceptualize domains at and below the level of propositions, down
to the level of individuals, properties, and relations. In FOPL CarPool World, there are two individuals,
Betty and Tom, two unary properties, being a driver and being a passenger, and one binary relation, drives.

5.2 Syntax

The syntactic expressions of FOPLs consist of terms, atomic formulas, and nonatomic, well-formed
formulas (wffs). Terms, in turn, consist of individual constants, variables, arbitrary individuals,
undetermined individuals and functional terms. Functional terms, atomic formulas, and wffs are
nonatomic symbol structures. The atomic symbols of FOPLs are individual constants, variables, arbitrary
individuals, undetermined individuals, function symbols, and predicate symbols. (Note: arbitrary
individuals and undetermined individuals are not usually mentioned, but I introduce them so that every
formula in a derivation can have a clear semantics.)

Syntax of Atomic Symbols

Individual Constants:

• Any letter of the alphabet (preferably early),
• any (such) letter with a numeric subscript,
• any character string not containing blanks nor other punctuation marks.

is an individual constant, for example: a,B12 ,Betty ,Tom ′s mother in law .

Variables:

• Any letter of the alphabet (preferably late),
• any (such) letter with a numeric subscript.

is a variable, for example: x, y, u6.

Arbitrary Individuals and Undetermined Individuals

• Any symbol that could be used as an individual constant or as a variable could also be used
as an arbitrary individual or an undetermined individual,

for example, someone, a driver , someone ′s mother .

Function Symbols:

• Any letter of the alphabet (preferably early middle)
• any (such) letter with a numeric subscript
• any character string not containing blanks.

is a function symbol, for example: f , g2 ,mother of .

Predicate Symbols:

• Any letter of the alphabet (preferably late middle),
• any (such) letter with a numeric subscript,
• any character string not containing blanks.

is a predicate symbol, for example: P,Q4, odd ,Driver .

Each function symbol and predicate symbol must have a particular arity, which may be shown explicitly
as a superscript, for example: mother of 1 ,Drives2 , g3

2 . The arity need not be shown explicitly if it is
understood.

In any specific predicate logic language individual constants, variables, arbitrary individuals, undeter-
mined individuals, function symbols, and predicate symbols must be disjoint.

7

Syntax of Terms

• Every individual constant, every variable, every arbitrary individual, and every undetermined
individual is a term.

• If fn is a function symbol of arity n, and t1, . . . , tn are terms, then fn(t1, . . . , tn) is a (functional)
term.
(The superscript may be omitted if no confusion results.)
For example: Drives2 (Tom,mother of 1 (Betty)).

• Nothing else is a term.

Syntax of Atomic Formulas

• If Pn is a predicate symbol of arity n, and t1, . . . , tn are terms, then Pn(t1, . . . , tn) is an atomic
formula.

For example, child-in2(Sally, family-of 2(John, mother-of 1(Sally))) (The superscript may be omitted
if no confusion results.)

Syntax of Well-Formed Formulas (WFFs)

• Every atomic formula is a wff.

• If P is a wff, then so is ¬P .

• If P and Q are wffs, then so are

(a) (P ∧Q) (b) (P ∨Q)

(c) (P ⇒ Q) (d) (P ⇔ Q)

• If P is a wff and x is a variable, then ∀x(P) and ∃x(P) are wffs. ∀ is called the universal
quantifier. ∃ is called the existential quantifier. P is called the scope of quantification.

• Nothing else is a wff.

We will not bother using parentheses when there is no ambiguity, in which case ∀ and ∃ will have
the highest priority, then ∧ and ∨ will have higher priority than ⇒, which, in turn will have higher
priority than⇔. For example, we will write ∀xP (x)∧∃yQ(y)⇔ ¬P (a)⇒ Q(b) instead of ((∀x(P (x))∧
∃y(Q(y)))⇔ (¬P (a)⇒ Q(b))).

Every occurrence of x in P, not in the scope of some occurrence of ∀x or ∃x, is said to be free in P
and bound in ∀xP and ∃xP. Every occurrence of every variable other than x that is free in P is also
free in ∀xP and ∃xP.
A wff with at least one free variable is called open. A wff with no free variables is called closed, An
expression with no variables, arbitrary individuals, or undetermined individuals is called ground.

5.2.1 Syntax of FOPL CarPool World

In FOPL CarPool World, we will use the following atomic symbols:

Individual constants: Betty ,Tom

Variables: x , y

Arbitrary Individuals: anyone

Undetermined Individuals: someone

8

Unary predicate symbols: Driver ,Passenger

Binary predicate symbol: Drives

In FOPL CarPool World, the six atomic propositions of Propositional CarPool World become the six
wffs:

Drives(Betty, Tom) Drives(Tom,Betty)
Driver(Betty) Driver(Tom)
Passenger(Betty) Passenger(Tom)

5.3 Substitutions

A substitution is a set of pairs, {t1/v1, . . . , tn/vn} where the ti are terms, the vi are variables, arbitrary
individuals, or undetermined individuals, and ∀i, j[i 6= j ⇒ vi 6= vj] . The result of applying a substitution
to a wff A, written A{t1/v1, . . . , tn/vn} is obtained by simultaneously replacing every occurrence of each
arbitrary or undetermined individual vi in A by ti, and every free occurrence of each variable vj in A by tj ,
as long as any variable that occurs in ti or tj remains free in the result.

Examples
•P (x, y){x/y, y/x} = P (y, x)
•(Drives(x , someone)⇒ ∃xPassenger(x)){Betty/x ,Tom/someone}
= (Drives(Betty ,Tom)⇒ ∃xPassenger(x))

5.4 Semantics

Although the intensional semantics of a FOPL depends on the domain being formalized, and the extensional
semantics depends also on a particular situation, we can specify the types of the entities usually given as the
intensional and as the extensional semantics of FOPL expressions.

5.4.1 Semantics of the “Standard” Predicate Logic

The usual semantics of FOPL assumes a Domain, D, of individuals, functions on individuals, sets of
individuals, and relations on individuals. Let I be the set of all individuals in the domain D.

Semantics of Atomic Symbols

Individual Constants:
If a is an individual constant, [[a]] is some particular individual in I.

Function Symbols:
If fn is a function symbol of arity n, [[f n]] is some particular function in D,
[[f n]]: I × · · · × I︸ ︷︷ ︸

n times

→ I

Predicate Symbols:

• If P 1 is a unary predicate symbol, [[P1]] is some particular subset of I.
• If Pn is a predicate symbol of arity n, [[Pn]] is some particular subset of the relation

I × · · · × I︸ ︷︷ ︸
n times

.

Semantics of Ground Terms

Individual Constants:
If a is an individual constant, [[a]] is some particular individual in I.

Functional Terms:
If fn is a function symbol of arity n, and t1, . . . , tn are ground terms, then [[f n(t1 , . . . , tn)]] =
[[f n]]([[t1]], . . . , [[tn]]).

9

Semantics of Ground Atomic Formulas

• If P 1 is a unary predicate symbol, and t is a ground term, then [[P1 (t)]] is True if [[t]] ∈ [[P1]], and
False otherwise.

• If Pn is an n-ary predicate symbol, and t1, . . . , tn are ground terms, then [[Pn(t1 , . . . , tn)]] is True
if 〈[[t1]], . . . , [[tn]]〉 ∈ [[Pn]], and False otherwise.

Semantics of WFFs

• If P is a ground wff, then [[¬P]] is True if [[P]] is False, otherwise, it is False.

• If P and Q are ground wffs, then [[P ∧Q]] is True if [[P]] is True and [[Q]] is True, otherwise, it is
False.

• If P and Q are ground wffs, then [[P ∨Q]] is False if [[P]] is False and [[Q]] is False, otherwise, it is
True.

• If P and Q are ground wffs, then [[P ⇒ Q]] is False if [[P]] is True and [[Q]] is False, otherwise, it
is True.

• If P and Q are ground wffs, then [[P ⇔ Q]] is True if [[P]] and [[Q]] are both True or both False,
otherwise, it is False.

• If P is a wff containing the arbitrary individual x, then [[P]] is True if [[P{t/x}]] is True for every
ground term, t. Otherwise, it is False.

• If P is a wff containing the undetermined individual x, then [[P]] is True if there is some ground
term, t such that [[P{t/x}]] is True. Otherwise, it is False.

• [[∀xP]] is True if [[P{t/x}]] is True for every ground term, t. Otherwise, it is False.

• [[∃xP]] is True if there is some ground term, t such that [[P{t/x}]] is True. Otherwise, it is False.

Recall that the intensional semantics of an expression can be given as an English statement that allows
the extensional value to be determined in any specific situation.

In this presentation, I do not give semantics to non-ground expressions. Some people do, but I think that
is confusing.

5.4.2 Intensional Semantics of FOPL CarPool World

The intensional semantics of the atomic symbols of FOPL CarPool World are:

Individual constants:

Betty: The individual named Betty.

Tom: The individual named Tom.

Unary predicate symbols:

Driver : The set of drivers on a given day.

Passenger : The set of passengers on a given day.

Binary predicate symbol:

Drives: The relation that holds between a driver and a passenger when the former drives the latter to
work on a given day.

The intensional semantics of other ground expressions in FOPL CarPool World can be derived from these
according to the format of the previous subsection.

10

5.4.3 Extensional Semantics of FOPL CarPool World

The extensional semantics of some expressions in FOPL CarPool World in four different situations (that is,
on four different days) are:

Denotation in Situation (Day)
Expression 1 2 3 4
Driver {Betty, Tom} {Betty} {Tom} {}
Passenger {Betty, Tom} {Tom} {Betty} {}
Drives {〈 Betty, Tom 〉, 〈 Tom, Betty 〉} {〈 Betty, Tom 〉} {〈 Tom, Betty 〉} {}
Driver(Betty) True True False False
Driver(Tom) True False True False
Passenger(Betty) True False True False
Passenger(Tom) True True False False
Drives(Betty, Tom) True True False False
Drives(Tom, Betty) True False True False

5.4.4 Semantic Properties of WFFs

Just as for wfps, a wff is satisfiable if it is True in at least one situation, contingent if it is True in at least
one situation and False in at least one situation, valid if it is True in every situation, and contradictory
of it is False in every situation. The terms tautology and logical implication are also defined for wffs as
they are for wfps, as is the notation |=L A and A1, . . . , An |=L B. Metatheorem 1 also applies to FOPL as
well as to Propositional Logic.

In a logical language without function symbols, with n Individual Constants and kj predicates of arity

j,there are
∑
j(kj × nj) ground atomic propositions, and 2

∑
j
(kj×nj) situations. In CarPool World, this

comes to 22×21+1×22
= 256 situations. If we add even one function symbol, we get an infinite number of

ground terms, and, therefore, an infinite number of situations. For example, if we add the unary function
symbol mother of to CarPool World, we get the ground terms, mother of(Tom), mother of(mother of(Tom)),
mother of(mother of(mother of(Tom))), . . .

5.4.5 Domain Rules of FOPL CarPool World

In Propositional CarPool World five sentences were needed to constrain the situations to the two common-
sense ones. In FOPL CarPool World, only three domain rules are needed:

• Each person is the driver or the passenger, but not both:

∀x (Driver(x)⇔ ¬Passenger(x))

• If one person drives the other, then the former is the driver and the latter is the passenger:

∀x∀y(Drives(x , y)⇒ Driver(x) ∧ Passenger(y))

• And again, either Tom drives Betty or Betty drives Tom:

Drives(Tom,Betty) ∨Drives(Betty ,Tom)

One can (relatively) easily verify that, of the 256 situations of FOPL CarPool World, only Situations 2
and 3 above make all these three wffs True.

11

5.5 Inference

Inference in Predicate Logics is just like inference in Propositional Logics, with the addition of axioms and/or
rules of inference for the universal and existential quantifiers. For the Natural Deduction system given above,
the additional rules of inference are

∀I If Γ ` A{t/x}, where t is any arbitrary individual that does not occur in Γ, then Γ ` ∀xA.

∀E If Γ ` ∀xA then Γ ` A{t/x}, where t is any term.

∃I If Γ ` A{t/x}, where t is any term, then Γ ` ∃xA.

∃E If Γ ` ∃xA then Γ ` A{t/x}, where t is any undetermined individual that does not occur in Γ.

Confusingly, each of these four rules commonly goes by two different names:

Abbreviation Our Name Other Common Name
∀I Universal Introduction Universal Generalization
∀E Universal Elimination Universal Instantiation
∃I Existential Introduction Existential Generalization
∃E Existential Elimination Existential Instantiation

Metatheorem 2 applies to FOPL as well as it does to Propositional Logic.

5.5.1 Example Proof

In this example proof of the theorem ¬∀xA(x)⇒ ∃x¬A(x), the following atomic symbols are used:

Variable: x

Arbitrary individual: b

Predicate symbol: A

1. ¬∀xA(x) ` ¬∀xA(x) Axiom
2. ¬∃x¬A(x) ` ¬∃x¬A(x) Axiom
3. ¬A(b) ` ¬A(b) Axiom
4. ¬A(b) ` ∃x¬A(x) ∃I, 3
5. ¬∃x¬A(x),¬A(b) ` ∃x¬A(x),¬∃x¬A(x) Cut , 2, 4
6. ¬∃x¬A(x) ` ¬¬A(b) ¬I, 5
7. ¬∃x¬A(x) ` A(b) ¬E, 6
8. ¬∃x¬A(x) ` ∀xA(x) ∀I, 7
9. ¬∀xA(x),¬∃x¬A(x) ` ∀xA(x),¬∀xA(x) Cut , 1, 8

10. ¬∀xA(x) ` ¬¬∃x¬A(x) ¬I, 9
11. ¬∀xA(x) ` ∃x¬A(x) ¬E, 10
12. ` ¬∀xA(x)⇒ ∃x¬A(x) ⇒ I, 11

5.5.2 Example Derivation

As an example, I’ll present the FOPL version of the derivation from Section 4.4.1 of

Drives(Tom,Betty)⇒ ¬Drives(Betty ,Tom)

from the CarPool World domain rules. To save space, I’ll use the following abbreviations.

B : Betty
T : Tom
Dr : Driver
Pr : Passenger
D : Drives

12

1. D(T,B) ` D(T,B) Axiom
2. ∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` ∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) Axiom
3. ∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` ∀y(D(T, y)⇒ Dr(T) ∧ Pr(y)) ∀E, 2
4. ∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` D(T,B)⇒ Dr(T) ∧ Pr(B) ∀E, 3
5. D(T,B),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` D(T,B), D(T,B)⇒ Dr(T) ∧ Pr(B) Cut , 1 , 4
6. D(T,B),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` Dr(T) ∧ Pr(B) ⇒ E, 5
7. D(T,B),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` Dr(T) ∧E, 6
8. ∀x(Dr(x)⇒ ¬Pr(x)) ` ∀x(Dr(x)⇒ ¬Pr(x)) Axiom
9. ∀x(Dr(x)⇒ ¬Pr(x)) ` Dr(T)⇒ ¬Pr(T) ∀E, 8

10. D(T,B),∀x(Dr(x)⇒ ¬Pr(x)),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` Dr(T), Dr(T)⇒ ¬Pr(T) Cut , 7 , 9
11. D(T,B),∀x(Dr(x)⇒ ¬Pr(x)),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` ¬Pr(T) ⇒ E, 10
12. D(B, T) ` D(B, T) Axiom
13. ∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` ∀y(D(B, y)⇒ Dr(B) ∧ Pr(y)) ∀E, 2
14. ∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` D(B, T)⇒ Dr(B) ∧ Pr(T)) ∀E, 13
15. D(B, T),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` D(B, T), D(B, T)⇒ Dr(B) ∧ Pr(T)) Cut , 12 , 14
16. D(B, T),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` Dr(B) ∧ Pr(T) ⇒ E, 15
17. D(B, T),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` Pr(T) ∧E, 16
18. D(B, T), D(T,B),∀x(Dr(x)⇒ ¬Pr(x)),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` Pr(T),¬Pr(T) Cut , 10 , 17
19. D(T,B),∀x(Dr(x)⇒ ¬Pr(x)),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` ¬D(B, T) ¬I, 18
20. ∀x(Dr(x)⇒ ¬Pr(x)),∀x∀y(D(x, y)⇒ Dr(x) ∧ Pr(y)) ` D(T,B)⇒ ¬D(B, T) ⇒ I, 19

Again, the final domain rule may be added by the rule of Hyp.

6 Some Properties of Logics

Three important properties of logics are soundness, consistency and completeness.

• A logic L is sound if Γ `L A implies Γ |=L A. This also implies that `L A implies |=L A. That is,
every theorem is valid.

• A logic L is consistent if there is no wff A for which both `L A and `L ¬A. That is, there is no wff
such that both it and its negation are provable. If at most one of A and ¬A can be valid, soundness
implies consistency.

• A logic L is complete if, for every wff A, |=L A implies `L A. That is, every valid wff is provable.

It is the essence of what we mean by correct reasoning that any logic we use be sound. Completeness,
however, is less important because it says nothing about how long a proof will take. We might give up on
a proof that is taking too long, and then we will not know if the wff we were trying to prove is a theorem
or not. Nevertheless, all propositional logics, as well as FOPL CarPool World both sound and complete.
The famous Gödel Incompletness Theorem says that any formal system that is strong enough to represent
arithmetic is either inconsistent or incomplete. However, none of these logics is that strong.

7 Type Theory and Higher-Order Logics

Type theory was developed by Bertrand Russell (Russell, 1908) in order to ban such paradoxical formulas
as

∃x∀y[x(y)⇔ ¬y(y)]

which may be read as

There is a property, x, which holds of every property, y, that does not hold of itself.

or as

13

There is a set, x, that contains all sets that don’t contain themselves.

Note that an instance of this formula is
R(R)⇔ ¬R(R)

That is, the Russell Set is a member of itself if and only if it isn’t a member of itself.
In type theory, terms denoting individuals are assigned the type 0. A predicate symbol, P , may take

terms and other predicate symbols as arguments, but there must be some positive integer, i such that P
takes at least one argument that is of type i and no argument of type greater than i. P is then assigned
the type i+ 1. nth-Order Predicate Logic allows the use of predicate symbols of type at most n, and allows
variables to range over terms of type at most n− 1. Thus, both

∃R[Kinship(R) ∧R(Lou, Stu)]

and
∀R[Symmetric(R)⇔ ∀x∀y(R(x, y)⇔ R(y, x))]

are second-order formulas. Ω-Order Predicate Logic does not limit the size of n, but still requires that a
predicate of type i take one argument of type i − 1 and no argument of type i or greater. So the Russell
Paradox is not well-formed in nth-Order Predicate Logic for any n.

Acknowledgments

The material in this Appendix is based on the tutorial, “Foundations of Logic & Inference” given at the
14th International Joint Conference on Artificial Intelligence, August 20, 1995, and the course, Reasoning
in Artificial Intelligence, given at the First International Summer Institute on Cognitive Science (FISI),
University at Buffalo, Buffalo, NY, July, 1994.

References

Fitch, F. B. (1952). Symbolic Logic: An Introduction. Ronald Press, New York.

Haack, S. (1978). Philosophy of Logics. Cambridge University Press, New York.

Kleene, S. C. (1950). Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ.

McCawley, J. D. (1981). Everything that Linguists have Always Wanted to Know about Logic∗ ∗but were
ashamed to ask. The University of Chicago Press, Chicago.

Rapaport, W. J. (1992). Logic. In Shapiro, S. C., editor, Encyclopedia of Artificial Intelligence, pages
851–853. John Wiley & Sons, New York, second edition.

Russell, B. (1908). Mathematical logic as based on the theory of types. American Journal of Mathematics,
30:222–262.

Shapiro, S. C., editor (1992). Encyclopedia of Artificial Intelligence. John Wiley & Sons, New York, second
edition.

14

