L e T

P Martinrsz Ir

T

Deductive Efficiency + Belief Revision:

How they affect an ontology of actions and acting
Deepak Kumar and Stuart C. Shapiro
Department of Computer Science
226 Bell Hall
State University of New York at Buffalo
Buffalo, NY 14260
kumard, shapiro@cs.buffalo.edu

Abstract

The SNePS inference engine is optimized for de-
ductive efficdency, i.e., all beliefs acquired via infer-
ence are added to the agent’s beliefs so that future
queries may be answered by a retrieval rather than
rederivation. An assumption-based truth mainte-
nance system keeps track of the derivation histo-
ries of derived beliefs. We show how such an ar-
chitecture simplifies the ontology of propositional
representations of plans; acts; preconditions, and
effects of actions. In addition, the deductive effi-
ciency of the basic system automatically extends
itself to efficient search of plans, and hierarchical
plan decompositions.

1 Introduction

SNIP, the SNePS inference
package [Hull 1986, Pinto-Ferreira et al. 1989] is optimized
for deductive efficiency, i.e., all beliefs acquired via inference
are added to the agent’s beliefs 80 that future queries may be
answered by a retrieval rather than rederivation. Of course, it
is imperative, then, to have a built-in truth maintenance sys-
tem (TMS) so as to detect inconsistencies that may arise be-
cause of new information and to guarantee a consistent belief
space of the modeled agent. Traditionally truth maintenance
(or belief revision) systems conjure up images of detection
of contradicting beliefs and their subsequent revision; or, in
some more adventurous cases, reasoning about the future, as
in a planning situation; or, in a planning domain, detecting
inconsistencies in an already formulated plan; or, more typi-
cally, reasoning about the beliefs of other agents. SNeBR, the
SNePS system for belief revision {Martins and Shapiro 1988)
has been used for some of these tasks. It forms
an integral part of SNePS 2.1 [Shapiro and Group 1989,
Shapiro and Martins 1989], i.e. anyone working with SNePS
has at their disposal at least the facility of an ATMS (i.e. con-
tradiction detection and subsequent belief revision). It turns
out that the guarantee of the presence of such an integrated
ATMS can be exploited to simplify certain propositional rep-
resentations for planning and acting. Additionally, together
with the deductive efficiency of the inference engine, one gets
viable alternatives to overcome the STRIPS assumption while
modeling agents that act. This paper presents evidence of
some of these not so obvious results that we claim denote a
partial “integration heaven” (term from Paul Roeenbloom).
First we present an example of the SNePS inference engine
and the TMS operations involved. Then we discuss our de-
cisions about deductive efficiency. Then we present proposi-
tional representations for planning and acting aflected by the
presence of deductive efficiency and belief revision.

2 The SNePS Inference Engine

To illustrate some of the features of the SNePS inference en-
gine, assume that the agent has the following beliefs:

93

A is a block.
All blocks are supports.

which are represented as SNePS propositions X22 and M1 (see
Figure 1). In this paper we are using a linear predicate-logic
notation to illustrate the examples. In reality, the proposi-
tions are represented as semantic network nodes. The nota-
tion used in the paper may appear as a higher-order logic.
However, remember that all entities (individuals, proposi-
tions, rules, acts) are represented using SNePS nodes and all
nodes form terms in SWM, the underlying logic of SNePS.

. Each {formula in the example denotes a belief of the agent and

is numbered. The numbers used for formulas are names of
the corresponding SNePS nodes. The exclamation mark ()
after a node name indicates that the agent currently believes
the proposition represented by the node. M1 and M22 are
called supported wffs (swffs) which form the basic objects of
SWM, the logic underlying the inference and belief revision
system. Associated with each swfl is a support containing
an origin tag— which is hyp for hypotheses, and der for de-
rived swfis; an origin set— which contains those (and oniy
those) hypotheses used in the derivation of the swff; and 2
restriction sel—which records inconsistency information. All
beliefs of the agent reside in a belief space which is a set of all
the hypotheses and all the swfls derived from them. Thus,
the propositions shown in Figure 1 are hypotheses and form
the agent’s current belief space. When the agent is asked the
query

What is a support?

using backward chaining through the rule represented by Mt
the agent is able to deduce

A is a support.

which is represented by the proposition M53 (see Figure 2).
Note that the agent has now added the newly derived be-
lief to its current beliel space along with the origin tag of
der and an origin set containing the hypotheses M1 and M22
indicating that these were used in its derivation.

3 Deductive Efficiency and Belief Revision

In the example above, the agent will continue to believe M53
as long as the beliefs M1 and M22 are held. If the earlier
query is repeated the answer is retrieved (i.e. Ais a support)
by simply looking at the belief status of M53. This is what we
mean by deductive efficiency, i.e. the inference engine does
not repeat the inference process used in deriving M53 since
it had already derived it earlier and its origin set still holds.

A derived proposition is automatically removed from the
agent’s belief space if any one of the hypotheses contained
in its origin set is removed. As beliefs of the agent change
because of actions this provides a built-in mechanism for re-
vising a belief space after an action is performed. All that
needs to be done by the agent after executing an action is to
perform the acts of believing the action’s consequences which

No.: Formuia

Support

M22! : Isa(A,BLOCK)
M1! : Vx[isa(x, BLOCK) — lsa(x, SUPPORT)]

< hyp, {M22!},{} >
< hyp, {M1!},{} >

Figure 1: M22: A s a block. M1: All blocks are supports

No.: Formula

Support

M22! ; Isa(A, BLOCK)
M1! : Vx[isa(x, BLOCK) — Isa(x, SUPPORT)]
MS3! : Isa(A, SUPPORT)

< hyp, {M22!}, {} >
< hyp, {M1!} {} >
< der, {M1!,M22!},{]} >

Figure 2: M22: A is » block. M1: All biocks sre supports. M53: A is a support.

involves adding or deleting of hypotheses directly related to
the act performed. SNePS provides two operations— add-to-
context and remove-from-context to add or remove hypotheses
from the agent’s belief space.

Another important eficiency criterion incorporated in the de-
sign of the SNePS inference engine is automatic re-inclusion
of derived beliefs into the current belief space if all of the hy-
potheses in their origin set come to be included. For example,
if for some reason M1 (or M22) was removed from the agent’s
belief space (using remove-from-context), M53 would also be
removed. At a later time if M1 (or M22) is again added to
the agent’s belief space, M53 is automatically replaced. Thus
maintaining deductive efficiency.

The combination of above three features (deductive efficiency,
automatic revision of the belief space, and automatic re-
inclusion of derived beliefs) in an ATMS-based inference en-
gine has a significant influence on the design of propositional
representations for planning and acting and the mechanism
of acting itself. We will discuss these next.

4 Propositional Representations for
actions

\We will present an overview of our representations of ac-
tions through an example. See [Kumar and Shapiro 1991a,
Kumar and Shapiro 1991b) for more details. Consider the
blocksworld action of picking up a block. We inform the
agent about the action by first saving

All blocks are supports.
Picking up is a primitive action.

which results in the propositions represented by M1 and M2
(see Figure 3). Preconditions of acts are also represented as
propositions. Thus the input

Before picking up a block the block must be clear.

is interpreted as a generic rule specifying a precondition for
picking up a block. The rule is represented by node M3 in
Figure 3. It could be paraphrased as, “For all x, if x is a block
then the act of picking up x has the precondition that x is
clear.” Eflects are similarly represented. Thus the foliowing

After picking up a block the block is not ciear and the block is
held.

is represented by two rules— one specifyving the effect that
the block is no longer clear (M6); and the other specifying

94

that the block is held (M8). Figure 4 shows the agent’s belief
space after the effects of the act of picking up a block are also
added.

Fl

5 Acting and Belief Revision

Beliefs of the agent change frequently during acting. Every
time an action is performed the world changes. Accordingly,
the agent’s beliefs about the world should also change. Typ-
ically, eflects of an action (represented as STRIPS-style op-
erators [Fikes and Nilsson 1971]) are specified as add-delete
lists so that after the action is performed the belief space is
updated by using the operator's add-delete list. A STRIPS
assumption underlies such implementations. Traditional
schemes for using an ATMS for an acting system recommend
that effects of performing actions should only be added and
a consistency maintenance function applied to detect incon-
sistencies in the belief space, and select an appropriate set
of beliefs to be removed 8o as to make the belief space con-
sistent [Drummond 1987). While belief revision systems are
built to detect inconsistencies, automated selection of beliefs
to be removed is not a viable option. Typically an ATMS, as
does SNeBR, enters a dialog with the user so that the user
can select the beliefs to be removed upon detection of some
inconsistency.

In the SNePS acting system we define two mental actions—
BELIEVE and DISBELIEVE, that are used to update the be-
liefs of the agent after an action is performed. The eflectory
components of the two actions are the operations add-to-
context and remove-from-context respectively. The TMS facil-
itates automatic revision of the belief space after a hypothesis
is removed as a result of some DISBELIEVE action (all de-
rived beliefs having the disbelieved hypothesis in their origin
set are also removed). This implements the extended STRIPS
assumption [Georgeff 1987]. For example, if the agent’s belief
space is that of Figure 4 and it is told

A is a block. A is clear.

which get represented by nodes M22 and M23 respectively in
Figure 5, and asked to perform the act

Pick up A.
the acting system infers the propositions

A precondition of picking up A is that A is clear.
An effect of picking up A is that A is no longer clear.
An effect of picking up A is that A is held.

I B BN BN SN B B B A |

No.: Formula Support
M1! : Vx[lsa(x, BLOCK) — lIsa(x, SUPPORT)] < hyp, {M11}, {} >
M2! : Isa(PICKUP, PRIMITIVE) < hyp, {M21}. {} >
M3t : ¥x{lsa(x, BLOCK) — ActPrecondition(PICKUP(x), Clear(x))] < hyp, {M3!},{} >

Figure 3: M1: Al blocks are supports. M2: Picking up is 2 primitive action. M3: Before picking up a block the block must be
clear.

No.: Formula Support
, M1!: ¥x{lsa(x, BLOCK) — lsa(x, SUPPORT)] < hyp, {M1!}.{} >
M2! : Isa(PICKUP, PRIMITIVE) — < hyp, {M21},{} >
M3! : ¥x([Isa(x, BLOCK) — ActPrecondition(PICKUP(x), Clear(x))] < hyp, {M3!},{} >
“M6! : Vx[isa(x, BLOCK) — ActEffect(PICKUP(x), ~Clear(x))] < hyp, {M6!},{} >
LMB8! : ¥x[Isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x))] < hyp, (M8!},{} >

Figure 4: The SNePS representation of the act of picking up a block. (M1: All blocks are supports. M2: Picking up is a primitive
action. M3: Before picking up a block the block must be clear. M6: After picking up a block the block is not clear. M8: After
picking up a block the block the block is heid.)

No.: Formula Support
M1! : ¥x{Isa(x, BLOCK) — Isa(x, SUPPORT)] < hyp, (M1}, {} >
M?2! : isa(PICKUP, PRIMITIVE) < hyp, {M2!},{} >
M3t : ¥x[lsa(x, BLOCK) — ActPrecondition(PICKUP(x),Clear(x)}] < hyp, {M3!},{} >
M6! : Vx{Isa(x, BLOCK) — ActEffect(PICKUP(x), ~Clear(x))) < hyp, {M6!}, {} >
M8! : Vx(Isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x))] < hyp, {M8!}, {} >
M22! : Isa(A, BLOCK) < hyp, {M22!},{} >
\\y&ga! Clear{A). < hyp, {M23}, {} >
26! : ActPrecondition(PICKUP({A),Clear(A)) < der, {(M22!, M3}, {} >
M29! : ActEffect(PICKUP(A), Held(A)) < der, {M22!, M8}, {] >
M30! : ActEffect(PICKUP(A), ~Clear(A)) < der, {M22!,M6!}, {} >

Figure 5: The agent’s belief space after the preconditions and effects of PICKUP(A) have beed deduced (M1: All biocks are
supports. M2: Picking up is a primitive action. M3: Before picking up a block the biock must be clear. M6: After picking up 2
block the block is not clear. M8: After picking up a block the block the block is held. M22: A is a block. M23: A is clear. M26:
A precondition of picking up A is that A is clear. M29: An effect of picking up A is that A is held. M30: An effect of picking up A
is that A is no longer clear.}

No.: Formula Support
M1! : ¥x{lsa(x, BLOCK) — Isa(x, SUPPORT)] < hyp, {M1!},{} >
M2! : 1sa(PICKUP, PRIMITIVE) < hyp, {M2!}.{} >
M3! : Vx[lsa(x, BLOCK) — ActPrecondition(PICKUP(x),Clear(x))} < hyp, {M3'},{} >
M6! : Vx([lsa(x, BLOCK) — ActEffect(PICKUP(x),~Clear(x))] < hyp, {M6!}, {} >
M8! : ¥x{Isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x))] < hyp, {M8!},{} >
M22! : Isa(A, BLOCK) < hyp, {M22!}, {} >
M26! ; ActPrecondition(PICKUP(A),Clear(A)) < der, {M22!,M3!},{} >
M29! : ActEffect(PICKUP(A), Held(A)) < der, {M221,M8'}, {} >
M30! : ActEffect(PICKUP(A), ~Clear(A)) < der, {M22!.M8!}, {} >
M28! : ~Clear(A) < hyp, {M28!},{} >
M27! : Held(A) < hyp, {M271}. {} >

Figure 6: Belief space of the agent after the act PICKUP(A) is performed (M1: All blocks are supports. M2: Picking up is a
primitive action. M3: Before picking up a block the block must be clear. M6: After picking up a block the block is not ciear. M8:
After picking up a block the block the block is held. M22: A is a block. M26: A precondition of picking up A is that A is clear.
M29: An effect of picking up A is that A is held. M30: An effect of picking up A is that A is no longer clear. M28: A is not clear.
M27: Ais held.)

95

which are represented by nodes M26, M30 aad M29 respec-
tively (Figure 5). Since the precondition is satished (i.e. the
agent believes M23) the action will be executed and there-
after the agent will perform the acts

BELIEVE(Held(A))
DISBELIEVE(Ciear(A))

of believing the eflects (indicated by beliefs M30, M29).
The efiector component of the mental act of believing (BE-
LIEVE(p)) is implemented using remove-from—context on —p
and add-to-context on p and DISBELIEVE(p) is remove-from-
context on p and add-to-context on —p. Thus after the act is
performed and its effects believed, we will have the revised
belief space shown in Figure 6.

This example illustrates one of the advantages of deductive
efficiency employed by the inference engine— once the agent
has derived the preconditions and eflects of performing an
action on a specific object they become derived beliefs in
the agent's belief space, hence future retrieval of precondi-
tions/eflects of the same act will not require rederivation.
(l.e. as long as the assumptions underlying the propositions
M26. M29 and M30 hold, they will be believed. The assump-
tions being M3 and M22 for M26, M8, M22 for M29, and MS,
M22 for M30. As soon as the agent comes to disbelieve any
one of the underlying assumptions, the corresponding derived
beliefs will be removed from the agent’s belief space. Thus,
if an action has any context-sensitive eflects, we can include
the condition qualifying the context in the antecedent part
of the rule specifying the eflects. This is presented next.

5.1 Context-sensitive effects

In a world where blocks are considered supports, the following
additional eflects need to be specified for picking up a biock:

if a block is on a support then after picking up the block the
block is not on the support and the support is clear.

The belief space after the above two propositions and

B is a block.
AisonB.

are added to the belief space of Figure 4 is shown in Figure 7.
Next. if the agent is now requested to

Pickup A.
the agent will deduce two additional preconditions

An effect of picking up A is that A is no longer on B.
An effect of picking up A is that B is clear.

which are represented by derived propositions M35 and M36
(Figure 8 shows the new belief space).

However, these propositions hold only in the case where A is
on B. Notice that the origin sets of M35 and M36 contain the
hypotheses M1, M21 (which were used to derive M34), M22,
and M24. After the act is performed the mental actions

BELIEVE(Held(A))
DISBELIEVE(Clear(A))
BELIEVE(Clear(B))
DISBELIEVE(On(A,B))

will be performed. The last mental action removes M24 from
the agent’s belief space. Since M35 and M36 contain M24
in their respective origin sets they are also removed. The
revised belief space after this is shown in Figure 9.

96

Two things are illustrated by this examplie— that the repre-
sestation of context-sensitive effects is trivial; and automatic
removal of derived propositions can be achieved by the belief
revision system. The former, in traditional STRIPS style rep-
resentations of the blocksworld requires the mse of an extra
operator, unstack [Nilsson 1980), which is unmatural. Thus,
aot only do we eliminate the need for operators as separate
representations for actions, we also end up with fewer, sim-
pier, and at the same time more versatile representations for
actions. The latter (automatic belief revision by removal of
derived propositions) implements the extended STRIPS as-
sumption.

If, in a foture situation, A is on B, the context-dependent ef-
fect removed earlier will automatically be re-included. This
way of specifying context-dependent effects seems to be bet-
ter than that used by SIPE [Wilkins 1988) for several reasons.
For one, we have eliminated the need for a separate specifica-
tion of actions as eperators. In SIPE, context-dependent ef-
fects are represented by domain rules. While domain rules of
SIPE help to make the operators more applicable the applica-
bility of the domain rules themselves (as a representation of a
causal theory) is not uniform in SIPE. In our representations
the 50 called traditional operator is constructed dynamically
at the time of acting, i.e. each time an act is performed. its
preconditions and eflects are deduced. Coupling deductive
efficiency with belief-revision provides a more natural, yet ef-
fident, way of representing actions, and at the same time, a
more uniform notion of a causal theory.

6 Conditional Plans

Like acts, we treat plans as mental entities that the agent can
have beliefs about. So, plans, once derived will be believed
by the agent as long as their underlying assumptions are be-
lieved. The agent can also be provided generic pre-packaged
abstract plans that form the agent’s plan library. Before in-
dulging in a plan generation phase, the agent, when asked
to do something, can retrieve specific plans from the plans it
already has beliefs about. We have propositional represen-
tations for plans that represent decompositions of complex
actions as well as those that specify ways of achieving goals.
The representations of plans are defined in terms of primitive
control actions which, in our repertoire, include sequencing,
conditional, and iterative acts (among others).

Retrieval of plans, similarly, benefits from the deductive effi-
ciency of the inference engine. Additionally, conditional plans
like the simple one below

If a block is on a support then a plan to achieve that the support
is clear is to pick up the block and then put the block on the
table.

can be represented, as in the case of context-sensitive effects,
by specifying the qualifying propositions as antecedents of
the rule specifying the plan. i.e.

Vx, y[lsa(x, BLOCK) A Isa(y, SUPPORT) A On(x, y)

— GoalPian(Clear(y), SEQUENCE(PICKUP(x), PUT(x, TABLE)))]

Once again, in a situation where A is on B, to clear B the
agent will use the above rule to derive :

A plan to clear B is to first pickup A and then put A on the
table.

which is a derived proposition having the qualifying situa-
tion On(A, B) as one of its assumptions. Once the plan is
executed it will no longer be believed. It will, as usual, be

¢

* o cintelns nt aree s <=

No.: Formula Support
M1! : ¥x{isa(x, BLOCK) — lsa(x, SUPPORT)] < hyp, {M11},{} >
M2! : Isa(PICKUP, PRIMITIVE) < hyp, {M2!},{} >
M3! : ¥x(Isa(x, BLOCK) — ActPrecondition(PICKUP(x), Clear(x))] < hyp, {M3t},{} >
Mé! : Vz}ln(x, BLOCK) — ActEffect(PICKUP(x), ~Clear(x))] < hyp, {Mé61},{} >
MB! : ¥x[Isa(x, BLOCK) ActEffect(PICKUP(x), Held(x))] < hyp, {M8!}, {} >
M22! : Isa(A,BLOCK) < hyp, {M221}, {} >
M23! : Clear(A) < hyp, {M23!}, {} >
M9! : ¥x, y(isa(x, BLOCK) A Isa(y, SUPPORT) A On(x, y)

— ActEffect(PICKUP(A),-0On(x,y))] < hyp, {M91}, {} >
M10! : Vx, y(lsa(x, BLOCK) A Isa(y, SUPPORT) A On(x, y)

— ActEffect(PICKUP(A), Clear(y))] < hyp, {M10!},{} >
M21! : Is3(B,BLOCK) < hyp, {le!}. {}>
M24! : On(A, B) < hyp, {M24!},{} >

Figure 7: The SNePS representation of the act of picking up a block including context-sensitive effects. (M1: All blocks are
supports. M2: Picking up is a primitive action. M3: Before picking up a block the block must be clear. M6: After picking up 2
block the block is not clear. M8: After picking up a block the block the block is held. M22: A is a block. M23: A is clear. M9: If
a block is on a support then an effect of picking up the block is that the block is not on the support. if 3 block is on a support then

Vs

an effect of picking up the block is that the support is clear. M21: B is a block. M24: Ais on B.)

No.: Formula Support
M1! : ¥x[Isa(x, BLOCK) — isa(x, SUPPORT)] < hyp, (M1}, {} >
M2! : Isa(PICKUP, PRIMITIVE) < hyp, {M2!},{} >
M3! : Vx{Isa(x, BLOCK) — ActPrecondition(PICKUP(x),Clear(x))] < hyp, {M3!},{} >
M6! : Vx[lsa(x, BLOCK) — ActEffect(PICKUP(x), ~Clear(x))} < hyp, {Mé'}, {} >
M8! : Vx([Isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x))] < hyp, {M8!}, {} >
M22! : isa{A,BLOCK) < hyp, {M221},{} > -
M23!: Clear(A) < hyp, {M23t},{} >
M26! : ActPrecondition(PICKUP(A),Clear(A)) < der, {M22!,M3!},{} >
M29! : ActEffect(PICKUP(A), Held(A)) < der, {M22!,M8!},{] >
M30! : ActEffect(PICKUP(A), ~Clear(A)) < der, {M22!,M6!},{} >
MB9! : ¥x, y[isa(x,BLOCK) A Isa(y, SUPPORT) A On(x,y)

— ActEffect(PICKUP(K),=On(x,y))] < hyp, {M9!},{} >
M10! : V¥x, y[lsa(x,BLOCK) A Isa(y, SUPPORT) A Un(x, y)

—_ ActEﬁ'ect(PICKUP(M.Clear(y))] < hyp, {M10!},{} >
M21! : isa(B, BLOCK) < hyp, {M211},{} >
M24!: On(A,B) < hyp, {M24!},{} >
M34! : Isa(B, SUPPORT) < der, {(M211,M11}, {} >
M35! : ActEffect(PICKUP(A),-~On(A,B)) < der, (M1, M21!, M22!,M24!}, {} >
M36! : ActEffect(PICKUP(A), Clear(B)) < der, {M1!, M21!, M22t, M24!}, {} >

Figure 8: Belief space after the preconditions and effects of PICKUP(A) are deduced (M1: All blocks are supports. M2: Picking
up is a primitive action. M3: Before picking up a block the block must be clear. M6: After picking up a block the block is not clear.
M8: After picking up a block the block the block is held. M22: A is a block. M23: A is clear. M26: A precondition of picking up
A is that A is clear. M29: An effect of picking up A is that A is held. M30: An effect of picking up A is that A is no longer clear.
M28: A is not clear. M9: If a block is a support then an effect of picking up a block is that the block s no longer on the support.
M10: If a block is on a support then an effect of picking up a2 block is that the support is clear. M21: B s a block. M24: A is on
B. M34: B is a support. M35: An effect of picking up A is that A is not on B. M36: An effect of picking up A is that B is clear.)

97

1.

No.: Formula Support
M1! : ¥x{lea(x, BLOCK) — isa(x, SUPPORT)] < hyp, {M11},{} >
M2! : lsa(PICKUP, PRIMITIVE) < hyp {M21]. {} >
M3! : ¥x{isa(x, BLOCK) — ActPrecondition(PICKUP(x}, Clear(x))] < hyp, {M3!},{} >
M6! : Vflsa(x, BLOCK) — ActEffect(PICKUP(x),~Clear(x))] < hyp.{MG!{, >
M8! : ¥x{isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x))) < hyp,{M8!},{} >
M22! : isa(A,BLOCK) < hyp,{M221},{} >
M26! : ActPrecondition(PICKUP(A),Clear(A)) < der, {(M22!,M3!},{} >
M29! : ActEffect(PICKUP(A),Held(A)) < dert, M22!,M8!§, S
M30! : ActEffect(PICKUP(A),~Clear(A)) < der, {M22!,M6!},{} >

M9! : Vx, y[isa(x, BLOCK) A Isa(y, SUPPORT) A On(x,y)

— ActEffect(PICKUP(A), ~On(x,y)))

M10! : V¥x, y[isa(x,BLOCK) A Isa(y, SUPPORT) A On(x, y)
— ActEffect(PICKUP(A), Ciear(y))]
M21! : isa(B,BLOCK)
M34! : Isa(B,SUPPORT)
M37!: ~On(A,B)
M38! : Ciear(B)
M28! : =~Clear(A)
M27! : Held(A)

< hyp,{M101},{) >
< hyp, {M21!}, {
< der, {M21!,M1!),

< hyp, {M28!

}

)

}

|

}
< hyp, {M9!},{} >

}

§

)
< hyp, {M271!) %

Figure 9: Beliefl space after the act PICKUP(A) is performed (M1: All blocks are supports. M2: Picking up is a primitive action.
M3: Before picking up a block the block must be ciear. M6: After picking up a block the block is not clear. M8: After picking up
2 block the block the block is held. M22: A is a block. M26: A precondition of picking up A is that A is clear. M29: An efiect
of picking up A is that A is held. M30: An effect of picking up A is that A is no longer clear. M9: If a block is a support then an
effect of picking up a block is that the block is no longer on the support. M10: If a block is on a support then an effect of picking
up a block is that the support is clear. M21: B is a block. M34: B is a support. M37: A is not on B. M38: B is clear. M28: A is

not clear. M27: A is heid.)

re-included in the belief space if a similar sitnation (i.e. A is
on B) is attained. While preconditions of plans can be deait
by specifying them in the antecedents of rules, plans that in-
clude conditional actions still use conditional control actions
(See [Kumar and Shapiro 1991b]) as part of the plan.

7 Remarks

A basic premise of our approach stems from the empirical ob-
servation that, typically, good knowledge representation and
reasoning systems are bad candidates for planning/acting
modeling and vice versa. I one wishes to extend a good KR
system for planning/acting modeling one can take the easy
way out by simply integrating a mutually exclusive off-the-
shelf planning/acting system. This only results in paradigm
soups. The approach we have taken is to extend the KR
system by extending its ontology and at the same time pre-
serving its foundations. The resuiting architecture is simple,
more uniform, and offers viable solutions to some of the stan-
dard problems. In this paper we have tried to demonstrate
that in a deductive approach to modeling rational agents,
where a uniform representational formalism is used, certain
unusual and appealing benefits can be gained by integrating
deductive efficiency with an assumption based truth main-
tenance system. The resulting agent architecture is simple,
uniform, has simpler yet versatile representations, providing
deductive efficency as well as alternate approaches to dealing
with the STRIPS assumption.

References

[Drummond 1987) Mark E. Drummond. A representation
of action and belief for automatic planning systems. In
Michael P. Georgefl and Amy L. Lansky, editors, Rea-
soning about Actions and Plans - Proceedings of the 1986

98

Workshop, pages 189-212, Los Altos, CA, 1987. AAAI and
CSLI, Morgan Kaufimann.

[Fikes and Nilsson 1971] Richard E. Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial Intelligence,
5:189-208, 1971.

[Georgeff 1987) Michael P. Georgefl. Planning. In Annual
Reviews of Computer Science Volume 2, pages 359-400.
Annual Reviews Inc., Palo Alto, CA, 1987.

[Hull 1986) R. G. Hull. A new design for SNIP the SNePS
inference package. SNeRG Technical Note 14, Department
of Computer Science, SUNY at Buffalo, 1986.

[Kumar and Shapiro 1991a] Deepak Kumar and Stuwart C.
Shapiro. Architecture of an intelligent agent in SNePS.
SIGART Bulletin, 2(4):89-92, August 1991,

[Kumar and Shapiro 1991b] Deepak Kumar and Stuart C.
Shapiro. Modeling a rational cogritive agent in SNePS.
In B. Barahona, L. Moniz Pereira, and A. Porto, editors,
EPIA 91: 5th Portugese Conference on Artificial Intelli-
gence, Lecture Notes in Artificial Intelligence 541, pages
120-134. Springer-Verlag, Heidelberg, 1991.

[Martins and Shapiro 1988] J. P. Martins and S. C. Shapiro.
A model for belief revision. Artificial Intelligence,
35(1):25-79, 1988.

[Nilsson 1980) Nils J. Nilsson. Principles Of Artificial Intel.
ligence. Tioga Publisking Company, Palo Alto, CA, 1980.

[Pinto-Ferreira et al. 1989] Carlos Pinto-Ferreira, Nuna J.
Mamede, and Jo ao P. Martins. SNIP 2.1— The SNePS
Inference Package. Technical Report GIA 89/5, Technical
University of Lisbon, December 1989.

]

o
[P TRRE APP—

i

[Shapiro and Group 1989] S. C. Shapiro and The SNePS Im-
plementation Group. SNePS-2 User's Manual. Depart-
ment of Computer Sdence, SUNY at Buffalo, 1989.

[Shapiro and Martins 1989} S. C. Shapiro and J. P. Martins.
Recent advances and developments — the SNePS 2.1 re-
port. In D. Kumar, editor, Current Trends in SNePS-
Semantic Network Processing System: Proceedings of the
First Annual SNePS Workshop, pages 1-13, Buffalo, NY,
1989. Springer-Verlag.

[Wilkins 1988} David E. Wilkins. Practical Planning-
Extending the Classical Al Planning Paradigm. Morgan
Kaufmann, Palo Alto, CA, 1988.

99

ti

" 3

