The Biology and Technology of Intelligent Autonomous Agents, Luc Steels

Of Elephants and Men

Johan M. Lammens!, Henry H. Hexmoor?, and Stuart C. Shapiro?

! Advanced Robotics Technology and Systems Laboratory, Scucla Superiore
S. Anna, 56127 Pisa, Italy; e-mail lammens@arts.sssup.it

2 Computer Science Department, State University of New York at Buffalo,
NY 14260, USA; e-mail {hexmoor|shapiro}@cs.buffalo.edu

Abstract. In the elephant paper, Brooks criticized the ungrounded-
ness of traditional symbol systems and proposed physically grounded
systems as an alternative. We want to make a contribution towards
integrating the old with the new. We describe the GLAIR agent ar-
chitecture that specifies an integration of explicit representation and
reasoning mechanisms, embodied semantics through grounding sym-
bols in perception and action, and implicit representations of special-
purpose mechanisms of sensory processing, perception, and motor
control. We present some agent components that we place in our ar-
chitecture to build agents that exhibit situated activity and learning,
and some applications. We believe that the Brooksian behavior gener-
ation approach goes a long way towards modeling elephant behavior,
which we find most interesting, but that in order to generate more
deliberative behavior we need something more.

1 Introduction and Overview

In the elephant paper [11] appearing in the proceedings of the predecessor
of the current workshop, Brooks criticizes the ungroundedness of traditional
symbolic AI systems, and proposes physically grounded systems as an al-
ternative, particularly the subsumption architecture. Subsumption has been
highly successful in generating a variety of interesting and seemingly intel-
ligent behaviors in a variety of mobile robots. As such it has established
itself as an influential approach to generating complex physical behavior in
autonomous agents. In the current paper we explore the possibilities for in-
tegrating the old with the new, in an autonomous agent architecture that
ranges from physical behavior generation inspired by subsumption to clas-
sical knowledge representation and reasoning, and a new proposed level in
between the two. Although we are still struggling with many of the issues
involved, we believe we can contribute to a solution for some of the problems
for both classical systems and physically grounded systems mentioned in [11],
in particular:

— The ungroundedness of symbolic systems (referred to as “the symbol
grounding problem” by [19]): our architecture attempts to ground high
level symbols in perception and action, through a process of embodimentA
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— The potential mismatch between symbolic representations and the agent’s
sensors and actuators: the embodied semantics of our symbols makes sure
that this match exists.

— Our symbolic representations do not have to be named entities. The
knowledge representation and reasoning (KRR) system we use in our
implementations allows the use of unnamed intensional concepts.

— We have some ideas about how to automate the construction of behavior
generating modules through learning, but much remains to be done.

We agree with the requirement of physically implemented (as opposed to
simulated) systems as the true test for any autonomous agent architecture,
and to this end we are working on several different implementations. We will
present both our general multi-level architecture for intelligent autonomous
agents with integrated sensory and motor capabilities, GLAIR3, and a phys-
ical implementation and two simulation studies of GLAIR-agents.

By an architecture we mean an organization of components of a system,
what is integral to the system, and how the various components interact.*
Which components go into an architecture for an autonomous agent has tra-
ditionally depended to a large extent on whether we are building a physical
system, understanding/modeling behaviors of an anthropomorphic agent, or
integrating o select number of behaviors. The organization of an architec-
ture may also be influenced by whether or not one adopts the modularity
assumption of Fodor [17], or a connectionist point of view, e.g. [46], or an
anti-modularity assumption as in Brooks’s subsumption architecture [9]. The
modularity assumption supports (among other things) a division of the mind
into a central system, i.e., cognitive processes such as learning, planning, and
reasoning, and a peripheral sysiem, i.e., sensory and motor processing [13].
Our architecture is characterized by a three-level organization into a Knowl-
edge Level (KL), a Perceptuo-Motor Level (PML), and a Sensory-Actuator
Level (SAL). This organization is neither modular, anti-modular, hierarchi-
cal, anti-hierarchical, nor connectionist in the conventional sense. It inte-
grates a traditional symbol system with a physically grounded system, i.e., a
behavior-based architecture. The most important difference with a behavior-
based architecture like Brooks’s subsumption is the presence of three dis-
tinct levels with different representations and implementation mechanisms
for each, particularly the presence of an explicit knowledge level. Representa-
tion, reasoning (including planning), perception, and generation of behavior
are distributed through all three levels. Our architecture is best described
using a resolution pyramid metaphor as used in computer vision work [6],
rather than a central vs. peripheral metaphor.

Architectures for building physical systems, e.g., robotic architectures [3],
tend to address the relationship between a physical entity, (e.g., a robot), sen-

3 Grounded Layered Architecture with Integrated Reasoning
* QOur discussion of architecture in this paper extends beyond any particular phys-
ical or software implementation.



sors, effectors, and tasks to be accomplished. Since these physical systems are
performance centered, they often lack general knowledge representation and
reasoning mechanisms. These architectures tend to be primarily concerned
with the body, that is, how to get the physical system to exhibit intelligent
behavior through its physical activity. One might say these systems are not
concerned with consciousness. These architectures address what John Pol-
lock calls Quick and Inflezible (Q&I) processes [49]. We define consciousness
for a robotic agent operationally as being aware of one’s environment, as evi-
denced by (1) having some internal states or representations that are causally
connected to the environment through perception, (2) being able to reason
explicitly about the environment, and (3) being able to communicate with
an external agent about the environment.5

Architectures for understanding/modeling behaviors of an anthropomor-
phic agent, e.g., cognitive architectures [4, 49, 42], tend to address the re-
lationships that exist among the structure of memory, reasoning abilities,
intelligent behavior, and mental states and experiences. These architectures
often do not take the body into account. Instead they primarily focus on
the mind and consciousness. Our architecture ranges from general knowledge
representation and reasoning to body-dependent physical behavior, and the
other way around.

We are interested in autonomous agents that are embedded® in a dynamic
environment. Such an agent needs to continually interact with and react to
its environment and exhibit intelligent behavior through its physical activity.
To be successful, the agent needs to reason about events and actions in the
abstract as well as in concrete terms. This means combining situated activity
with acts based on reasoning about goal-accomplishment, i.e., deliberative
acting or planning. In the latter part of this paper, we will present a family
of agents based on our architecture. These agents are designed with a robot
in mind, but their structure is also akin to anthropomorphic agents. Figure 1
schematically presents our architecture.

There are several features that we hope contribute to the robustness of
our architecture. We highlight them below (an in-depth discussion follows
later):

— We differentiate conscious reasoning from unconscious Perceptuo-Motor
and Sensori-Actuator processing.”

5 A machine like a vending machine or an industrial robot has responses, but it
is unconscious. See [15] for a discussion of independence of consciousness from
having a response. Also, intelligent behavior is independent of consciousness in
our opinion.

¢ “Embedded agents are computer systems that sense and act on their environment,
monitoring complex dynamic conditions and affecting the environment in goal-
oriented ways.” ([31] page 1).

" We consider body-related processes to be unconscious, but that is not meant
to imply anything about their complexity or importance to the architecture as
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Fig. 1. Schematic representation of the agent architecture. Width of control and
data paths suggests the amount of data passing through (bandwidth). Sensors in-
clude both world-sensors and proprio-sensors.

— The levels of our architecture are semi-autonomous and processed in
parallel.®

— Conscious reasoning takes place through explicit knowledge representa-
tion and reasoning. Unconscious behavior makes use of several different
mechanisms.

— Conscious reasoning guides the unconscious behavior, and the uncon-
scious levels, which are constantly engaged in perceptual and motor pro-
cessing, can alarm the conscious level of important events, taking control
if necessary. Control and generation of behavior are layered and not ex-
clusively top-down.

a whole. Indeed, we believe that the unconscious levels of our architecture (the

Perceptuo-Motor level and the Sensori-Actuator level) are at least as important
to the architecture as the conscious one (the Knowledge level). We reserve the
term sub-conscious for implicit cognitive processes such as category subsumption
in KRR systems. See [56] for a discussion of sub-conscious reasoning.
This autonomy is similar to Brooks’s subsumption architecture [9], but at a
more macroscopic level. Brooks does not distinguish between the three levels
we describe, as his work is solely concerned with behaviors whose controlling
mechanism we would situate at the Perceptuo-Motor level.



— Lower level mechanisms can pre-empt higher level ones. This is kind
of subsumption on its head, but everything depends on the placement
of behaviors in the hierarchy of course. We haven’t quite decided yet
whether inhibition should work the other way around as well.

— There is a correspondence between terms in the Knowledge Representa-
tion and Reasoning system on one hand, and sensory perceived objects,
properties, events, and states of affairs in the world and motor capabilities
on the other hand. We call this correspondence alignment.

— Our architecture should be appropriate both for modeling elephants and
for modeling chess-playing agents.®

2 The GLAIR Architecture

In this section we discuss in detail our autonomous agent architecture for
integrating perception and acting with grounded, embodied, symbolic rea-
soning.

2.1 Related Work

Architectures proposed in the literature do not fall into neatly separable
classes, mainly because the scope of the models and the motivations vary
widely. However, we can divide a review of related work into theoretical issues
of agent architectures, on the one hand, and implemented architectures, on
the other.

Theoretical Issues. We believe that behavior-based AI has adopted the
right treatment of every day behavior for agents that function in the world.
However, this has been done at the expense of ignoring cognitive process-
ing such as planning and reasoning. Clearly, what is needed is an approach
that allows for both. We believe that our architecture meets this need. As
in behavior-based AI, GLAIR gains validity from its being grounded in its
interaction with the environment, while it benefits from a knowledge level
that, independent of reacting to a changing environment, performs reasoning
and planning.

The Model Human Processor (MHP) is a cognitive model [12] that sug-
gests the three components of perception, cognition, and motor. Cognition
consists of working memory, long-term memory, and the cognitive processor.
Perception is a hierarchy of sensory processing. Motor executes the actions in
the working memory. This is a traditional symbol-system decomposition of
human information processing. This type of decomposition has shown only
limited success in building physical systems. Despite this, systems like SOAR
adhere to this model. In our architecture, we deliberately avoid this kind

® Though not necessarily for chess-playing elephants.



of top-down problem decomposition by allowing independent control mecha-
nisms at different levels to take control of the agent’s behavior, and pre-empt
higher level control while doing so. It may be necessary to allow higher level
mechanisms to selectively inhibit lower-level ones as well, but we have found
no good reason to do so yet.

A situated agent, at any moment, attends to only a handful of entities
and relationships in its immediate surroundings. In this type of setting, the
agent often does not care to uniquely identify objects. It is sufficient to know
the current relationship of the relevant objects to the agent, and what roles
the objects play in the agent’s activities. Agre and Chapman in [2] proposed
indexical-functional representations (which [1] refers to as deictic representa-
tions) to be the more natural way agents refer to objects in common everyday
environments. They called entities and relationships of interest entities and
aspects, respectively. With respect to its current activities, the agent needs
only to focus on representing those entities and relationships. Although the
objects in the environment come and go, the representations of entities and
relationships remains the same. For example, the-cup-that-I-am-holding® is
an indexical-functional notation that abstracts the essentials of what the
agent needs to know in its interaction. These representations serve to limit
the scope of focus on entities. For example, if the agent wants to pick up
a cup, it does not need to know who owns the cup or how much coffee the
cup can hold; only the relevant attributes of the cup apply. We believe that
systems endowed with general KRR abilities can and should generate deictic
representations to create and maintain a focus on entities in the world, but
we have not yet designed an implementation strategy.

Implemented Architectures. Brooks’s subsumption architecture, [9, 10,
11], clusters behaviors into layers. Low-level behaviors, like deciding the di-
rection of motion and speed, can be inhibited (subsumed) by behaviors deter-
mined at higher levels, such as avoiding obstacles. Subsumption behaviors are
written as finite state machines augmented with timing elements. A compiler
is used to simulate the operation of finite state machines and parallelism.
This architecture is implemented on a variety of mobile robots. Frequently
used behaviors are placed at a lower level than less frequently-used behav-
iors. This organization of behaviors gives the system fast response time and
high reactivity. Our architecture is similar to Brooks’s in our intra-level im-
plementations of behaviors. However, the subsumption architecture lacks the
separation we have made into conscious and non-conscious spheres. In an-
thropomorphic terms, Brooks’s agents are all non-conscious. We believe that
the off-line specification and compilation of behavior modules is too inflexi-
ble for autonomous agents that can adapt to a wide range of circumstances,

10 This kind of designation is merely a mnemonic representation intended to suggest
the entity and aspect under consideration, for the purpose of our exposition. It
is not the actual representation that would be used by an agent.



especially if they have to learn from their interactions with the environment.
Pattie Maes has experimented with a version of a behavior-based architec-
ture, ANA [44], which consists of competence modules for action and a belief
set in a network relating modules through links denoting successors, predeces-
sors, and conflicts. Competence modules have activation levels. Activations
are propagated and the competence module with the highest activation level
is given control. Maes has explored learning and has applied her architecture
to robotic systems.

In the subsumption architecture, sensations and actions are abstracted
by giving them names like “straightening behavior” in order to make things
easier to understand for human observers. Much in the spirit of [1], we believe
that behavior modules should more naturally emerge from the interaction of
the agent with its environment. In contrast to hand coding behaviors and in
order to facilitate embodiment, in GLAIR we are experimenting with (un-
named) emergent behavior modules that are learned by a robot from scratch.
An (unnamed) behavior module can be thought of as a set of tuples (P,A)
where P is a set of grounded sensations and A is an instance of an act.
For instance, reaching for an object might be a set of tuples (vision/sonar
data, wheel motor actuation). After learning, this new behavior module will
become active only if the grounded sensations match any of the grounded
sensations experienced before. As a measure of abstraction and generaliza-
tion, we may allow near matches for sensations. To bootstrap the learning
process, we need a set of primary or first-order (“innate”, for the philosoph-
ically inclined) sensations and actions. We will return to this point briefly in
Sect. 3.3.

The Servo, Subsumption, Symbolic (SSS) architecture [14] is a hybrid ar-
chitecture for mobile robots that integrates the three independent layers of
servo control, Brooksian behavior based modules, and a symbolic layer. Our
architecture is similar to this in its general spirit of identification and integra-
tion of three distinct levels corresponding to levels of affinity-of-interaction
(i.e., the rate at which it is in real-time contact with the world) with the
outside world. This similarity also constitutes a point of departure, however,
in that SSS is defined with respect to specific (and different) implementation
techniques. For example, the symbolic layer in SSS seems to be a decision ta-
ble versus a general KRR system as intended in GLAIR. Unlike GLAIR, SSS
assigns particular tasks for each layer and uses a hard-wired interconnection
channel among layers.

Albus et al’s hierarchical control architecture [3] is an example of a robotic
architecture; we would say it is body centered. This architecture proposes ab-
straction levels for behavior generation, sensory processing, and world mod-
eling. By descending down the hierarchy, tasks are decomposed into robot-
motion primitives. This differs from our architecture, which is not strictly
top-down controlled. Concurrently, at each level of Albus’s hierarchy, feed-
back processing modules extract the information needed for control decisions



at that level from the sensory data stream and from the lower level con-
trol modules. Extracted environmental information is compared with the ex-
pected internal states to find differences. The differences are used for planning
at higher levels.

Payton in [48] introduced an architecture for controlling an autonomous
land vehicle. This architecture has four levels: mission planning, map-based
planning, local planning, and reflexive planning. All levels operate in parallel.
Higher levels are charged with tasks requiring high assimilation and low im-
mediacy. The lower levels operate on tasks requiring high immediacy and low
assimilation. Our architecture is similar in this respect. The reflexive planning
is designed to consist of pairs of the form (virtualsensor, re flezivebehavior).
Each reflexive behavior has an associated priority, and a central blackboard
style manager arbitrates among the reflex behaviors. Some of the problems
with the earlier implementation due to using the blackboard model were
solved in [53].

Rosenschein and Kaelbling’s work [30, 31] describes tools (REX, GAPP,
RULER) that, given task descriptions of the world, construct reactive control
mechanisms termed situated automata. Their architecture consists of percep-
tion and action components. The robot’s sensory input and its feedback are
inputs to the perception component. The action component computes ac-
tions that suit the perceptual situation. We should note that unlike Brooks’s
behavior modules, situated automata use internal states, so their decisions
are not Markovian (i.e., they are not ahistoric). They are mainly intended
to produce circuits that operate in real time, and some properties of their
operation are provable. The mechanism for generating situated automata,
although impressive, seems too inflexible for autonomous agents that have
to operate in a wide variety of (possibly unknown) circumstances. Perhaps
the operation of our Perceptuo-Motor level could be modeled by a situated
automaton, but we are not convinced that this is the right formalism to use,
due to its inflexibility.

Gat in [18] describes ATLANTIS, an architecture for the control of mo-
bile robots. This architecture has three components: control, sequencing, and
deliberation. The control layer is designed as a set of circuit-like functions
using Gat’s language for circuits, ALPHA. The sequencing is a variation of
Jim Firby’s RAP system [16]. The deliberation layer is the least described
layer. As with situated automata, we are not convinced that this is the right
kind of formalism to use, for the same reasons.

An architecture for low-level and high-level reactivity is suggested in [22].
High-level reactivity is reactivity at the conceptual level. This architecture
suggests that an autonomous agent maintains several different types of goals.
High-level reactivity is charged with noticing impacts of events and actions
in the environment on the agent’s goals. Subsequently, high-level reactivity
needs to guide the agent’s low-level reactivity. Low-level reactivity is at the
sensory, perceptual, and motor level. The mechanism for low-level reactivity



is similar to other reactive systems that have components for perception and
action arbitration. The novelty of this architecture is the incorporation of
high-level reactivity and a supervisory level of planning and reasoning, which
guides the choice of low-level reactive behaviors. In our present conception
of agent architecture, we avoid a sharp separation between the two types of
reactivity. We also relax the top-down nature of interaction between levels.
Reactivity may be initiated at any level of our architecture either due to
interaction with other levels or in direct response to external stimuli.

SOAR [38] was designed to be a general problem solving architecture.
SOAR integrates a type of learning known as chunking in its production sys-
tem. Recently, SOAR has been applied to robotic tasks [37]. In this frame-
work, planning and acting is uniformly represented and controlled in SOAR.
This approach lacks the ability of our architecture for generating behavior
at non-conscious levels as well as the conscious level (or at different levels in
general), and for having different-level behaviors interact in an asynchronous
fashion. It also lacks our multi-level representations.

Simmons’s Task Control Architecture (TCA) [61] interleaves planning
and acting by adding delay-planning constraints to postpone refinement of
planning until execution. For example, a plan for a robot to collect used cups
for trash is decomposed into: navigate to the cup; pick it up; navigate to trash
bin; deposit the cup. Since the robot does not have sensory information about
the cup yet, the plan to pick it up is delayed until the robot gets close enough.
Selectively delaying refinement of plans allows for reactivity. This type of
“stepwise refinement” follows effortlessly from our architecture, without the
need to explicitly implement it. Since conscious planning which goes on at
the Knowledge level uses a more coarse-grained world model, there is simply
no possibility to express fine details of planning and execution. These can
only be represented and/or computed at the lower Perceptuo-Motor level
and Sensori-Actuator level. Planning and execution in our architecture may
proceed in a lock-step fashion, but they need not be. (see the discussion of
engaged vs. disengaged reasoning in Sect. 2.6). TCA uses a message-passing
scheme among modules that allows concurrent execution of tasks. It has been
used to control the six-legged walking robot Ambler and a cup-collecting
robot.

2.2 Architecture Levels

We now proceed to discuss one of the distinguishing characteristics of GLAIR:
its three levels.

Motivation. The three levels of our architecture are of organizational as
well as theoretical importance. Organizationally, the layered architecture al-
lows us to work on individual levels in a relatively independent manner,
although all levels are constrained by the nature of their interactions with



the adjoining level(s). The architecture is hierarchical, in that level  can only
communicate with levels ¢ — 1 and ¢+ 1, if any.

The levels of our architecture are semi-independent. While control flows
mainly top-down and data mainly bottom-up, local control mechanisms at
any level can preempt higher-level control, and these local mechanisms fil-
ter the data stream for their own purpose, in parallel with higher-level ones.
Representations become coarser-grained from bottom to top, while control
data becomes more fine-grained from top to bottom. The terms in the Knowl-
edge Level’s KRR system model conscious awareness of the world (and the
body), and the perception and motor capabilities in the other levels provide
the grounding for an embodied semantics of the former. Routine, reflex-like
activities are controlled by close coupling of perception with motor actions
at the (unconscious) Perceptuo-Motor and Sensori-Actuator levels. This close
coupling avoids having to exert control over these activities from the conscious
level, as in purely top-down structured architectures with a symbol level at
the top of the hierarchy. In the latter kind of system, signals must first be
transformed to symbols and vice versa. The low-level coupling provides for
better real-time performance capabilities, and relieves the Knowledge level of
unnecessary work.

In general, we have multi-level layered representations of objects, prop-
erties, events, states of affairs, and motor capabilities, and the various levels
are aligned. By alignment we mean a correspondence between representations
of an entity at different levels. This organization contributes to the robust-
ness and computational efficiency of implementations. The semi-autonomous
nature of the levels allows for graceful degradation of system performance
in case of component failure or situation-dependent incapacitatedness. Lower
levels can function to some extent without higher-level control, and higher
levels can function to some extent without lower-level input.t?

Our architecture allows us to elegantly model a wide range of behaviors:
from mindless, spontaneous, reflex-like, and automatic behavior, e.g., “stop if
you hit an obstacle,” to plan-following, rational, incremental, and monitored
behavior, e.g., “Get in the car now, if you want to go to LA on Friday.”!?

In anthropomorphic terms, we identify the Knowledge level with con-
sciously accessible data and processing; the Perceptuo-Motor level with “hard-
wired,” not consciously accessible processing and data involved with motor
control and perceptual processing; and the Sensori-Actuator level with the
lowest-level muscular and sensor control, also not consciously accessible. The

1 For instance, in the context of autonomous vehicles, if obstacle avoidance or
returning to the base is a lower-level behavior than planning exploration strate-
gies, then a failure of the hardware implementing the latter does not necessarily
prevent the former.

12 The plan is to get in the car to go to the travel agency to get a ticket to fly to LA
on Friday. Today is Thursday and it is near the end of the business day. Also, the
agency won’t accept telephone reservations. This example is suggested in [50].



substrate of grounding and embodiment [19, 39, 62] of actions, concepts,
and reasoning is mainly the Perceptuo-Motor level and to some extent the
Sensori-Actuator level.

We will now explore representation and computation at the individual
levels in more detail.

The Knowledge Level. The Knowledge level contains a traditional KRR
and/or planning system like SNePS [58, 59], using a relatively course-grained
representation of objects, events (including actions), and states of affairs. For
instance, objects are represented at this level as unique atomic identifiers,
typically without further detail about their physical characteristics or precise
locations. It is possible to represent such detail explicitly at this level, but
not required. Only if the detail becomes important to the agent’s explicit
reasoning will it be represented, though not necessarily in the same way as at
a lower level. For example, knowledge about the physical size and weight of
an object might become available at the Knowledge Level through the agent’s
actively using measuring devices like a ruler or a scale, but this knowledge
is not the same as the embodied knowledge about dimensions and weight
represented at the Perceptuo-Motor level for the particular object or its object
class. As a rule of thumb, representations at this level are limited to objects,
events, and states of affairs that the agent needs to be consciously aware of in
order to reason and plan, and in order to communicate with other agents at
the grain size of natural language. The Knowledge level can be implemented
using different KRR and/or planning systems.

Traditional use of the concept of world modeling refers to building models
of interactions between the agent and its environment at the conscious level.
These models maintain internal states for the agent. The difference in our use
of the term “world model” is that we do not intend to have a precise model
of all objects in the environment. Instead, we want to model only the entities
relevant to the agent’s interaction with its world. This requires filtering out
some details accessible at the Perceptuo-motor level as the entities are aligned
with their counterparts on the Knowledge level. This is known as “percep-
tual reduction”. Physical details of interaction with entities are handled at
the Perceptuo-motor level. Representations at the Knowledge level are needed
only for explicit reasoning about entities, and contain only the information
necessary for doing so. That might include details about physical characteris-
tics in some cases, but it need not. In other cases, it may be limited to a non-
descript intensional representation [57] of an object. Conversely, some entities
may be represented at the Knowledge level but not at the Perceptuo-Motor
level (abstract concepts, for instance). Knowledge level representations are
needed for reasoning about entities; Perceptuo-Motor level representations
are needed for physically interacting with entities.



The Perceptuo-Motor Level. The Perceptuo-Motor level uses a more fine-
grained representation of events, objects, and states of affairs. For instance,
they specify such things as size, weight, and location of objects on the kine-
matic side, and shape, texture, color, distance, pitch, loudness, smell, taste,
weight, and tactile features on the perceptual side. At this level, enough de-
tail must be provided to enable the precise control of actuators, and sensors
or motor memory must be able to provide some or all of this detail for partic-
ular objects and situations. The Perceptuo-Motor level is partly eligned with
the Knowledge level, in that there is a correspondence between some object
identifiers at the Knowledge level and some objects at the Perceptuo-motor
level.

Kinematic and perceptual representations of particular objects or typical
object class instances may be unified or separate, and both kinds of repre-
sentations may be incomplete. Also at this level are elementary categorial
representations; the kinds of representations that function as the grounding
for elementary symbols at the Knowledge level, i.e., sensory-invariant repre-
sentations constructed from sensory data by the perceptual processor [19].

The representations at this level are embodied (cf. [39]), meaning that
they depend on the body of the agent, its particular dimensions and char-
acteristics. Robots will therefore have different representations at this level
than people would, and different robots will have different representations
as well. These representations are agent-centered and agent-specific. For in-
stance, they would not be in terms of grams and meters, but in terms of
how much torque to apply to an object to lift it,!® or what percentage of
the maximum to open the hand to grasp an object. Weights of things in this
kind of representation are relative to the agent’s lifting capacity, which is ef-
fectively the maximum weight representable. An agent may have a conscious
(Knowledge level) understanding and representation of weights far exceeding
its own lifting capacity, but that is irrelevant to the Perceptuo-Motor level.
When it comes to lifting it, a thousand-pound object is as heavy as a ten-
thousand-pound one, if the capacity is only a hundred. Similarly, sizes are
relative to the agent’s own size. Manipulating small things is not the same
as manipulating large things, even if they are just scaled versions of each
other. A consequence of using embodied representations is that using dif-
ferent “body parts” (actuators or sensors) requires different representations

13 Of course this also depends on how far the object is removed from the body, or
how far the arm is stretched out, but that can be taken into account (also in body-
specific terms). People’s Perceptuo-Motor level idea of how heavy something is is
most likely not in terms of grams, either (in fact, a conscious estimate in grams
can be far off), but in terms of how much effort to apply to something to lift
it. That estimate can be off, too, which results in either throwing the object up
in the air or not being able to lift it at the first attempt, something we have all
experienced. On the other hand, having a wrong conscious estimate of the weight
of an object in grams does not necessarily influence one’s manipulation of the
object.



to be programmed or (preferably) learned. While that may be a drawback
at first, once the representations are learned they make for faster processing
and reactive potential. Representations are direct; there is no need to convert
from an object-centered model to agent-centered specifications. This makes
the computations at this level more like table lookup than like traditional
kinematics computations, which can be quite involved. Learning new repre-
sentations for new objects is also much simpler; it is almost as easy as trying
to grasp or manipulate an object, and merely recording one’s efforts in one’s
own terms. The same holds, mutatis mutandis, for perceptual representations.

There are a number of behaviors that originate at this level: some are
performed in service of other levels (particularly deliberative behaviors), some
are performed in service of other behaviors at this level, a few are ongoing,
and some others yet are in direct response to external stimuli. An agent may
consciously decide to perform perceptuo-motor actions such as looking, as in
look for all red objects, or to perform a motor action, such as grasp a cup.
These actions originate at the Knowledge level and are propagated to this
level for realization [33, 34, 36]. An agent has to perform special perceptual
tasks to serve other behaviors, such as to find the grasp point of ¢ cup in
order to grasp a cup. These perceptual tasks may originate at this or another
level.

At the Perceptuo-Motor level, an agent has a close coupling between its
behaviors, i.e., responses, and stimuli, i.e., significant world states. We ob-
serve that, for a typical agent, there are a finite (manageably small) number
of primitive (“innate”) behaviors available. As the agent interacts with its
environment, it may learn sophisticated ways of combining its behaviors and
add these to its repertoire of primitive behaviors. We will consider only an
agent’s primitive abilities for now. We further assume that the agent starts
out with a finite number of ways of connecting world states to behaviors,
i.e., reflex/reactive rules. Following these observations, we suggest that at
this level, the agent’s behavior-generating mechanism is much like a finite
state automaton. As we noted earlier, learning will change this automaton.
The agent starts with an automaton with limited acuity, and uses its con-
scious level to deal with world states not recognizable at the Perceptuo-Motor
level. For instance, the Perceptuo-Motor level of a person beginning to learn
how to drive, is not sophisticated enough to respond to driving conditions
automatically. As the agent becomes a better driver, the conscious level is
freed to attend to other things while driving. This is called eutomaticity in
psychology. We discuss an implementation mechanism for these automated
behaviors later in this paper.

The Sensori-Actuator Level. The Sensori-Actuator level is the level of
primitive motor and sensory actions, for instance “move from (z,y,z) to
(2,9, 2') or “look at (z,y,z)”. At this level, there are no object represen-
tations as there are at the Knowledge level and the Perceptuo-Motor level.



There are no explicit declarative representations of any kind, only procedural
representations (on the actuator side) and sensor data (on the sensory side).
Primitive motor actions may typically be implemented in a robot control
language like VAL, and some elementary data processing routines may be
implemented in a sensory sub-system, like dedicated vision hardware. At this
level, we also situate reflezes, which we consider to be low-level loops from
sensors to actuators, controlled by simple thresholding devices, operating in-
dependently of higher-level mechanisms, and able to pre-empt the latter. We
see reflexes as primitive mechanisms whose main purpose is prevention of
damage to the hardware, or to put it in anthropomorphic terms, survival of
the organism. As such they take precedence over any other behavior. When
reflexes are triggered, the higher levels are made “aware” of this by the prop-
agation of a signal, but they have no control over the reflex’s execution, which
is brief and simple (like a withdrawal reflex seen in people when they unin-
tentionally stick their hand into a fire).!* 1° After the completion of a reflex,
the higher levels regain control and must decide on how to continue or dis-
continue the activity that was interrupted by the reflex. Reflex-like processes
may also be used to shift the focus of attention of the Knowledge level.

2.3 Symbol Grounding: A Non-Tarskian Semantics

Tarskian Semantics has nothing to say about how descriptions of
objects in plans relate to the objects in the world [47, p. 13].

Let’s digress for a moment to some esoteric matters of semantics and ref-
erence. One problem an agent has to solve is how to find and maintain a
correspondence between a referent in the world and a symbol in an agent’s
world model. As noted above, the referent in the world is (by necessity) only
indirectly considered via its embodied Perceptuo-Motor level representation,
hence the problem becomes one of aligning the Knowledge level representa-
tions with the Perceptuo-Motor level representations. From the perspective of
cognitive science, the problem has been labeled the symbol grounding problem
[19]. The question is how to make the semantics of a robot’s systematically
interpretable Knowledge level symbols cohere equally systematically with the
robot’s interactions with the world, such that the symbols refer to the world
on their own, rather than merely because of an external interpretation we

1% An appropriate reflex for a robot (arm) might be to withdraw or stop when it
meets too much mechanical resistance to its movement, as evidenced for instance
by a sharp rise in motor current draw. Such a reflex could supplant the more
primitive fuse protection of motors, and make an appropriate response by the
system possible. Needless to say, a robot that can detect and correct problems is
much more useful than one that merely blows a fuse and stops working altogether.
The fact that the withdrawal reflex may not be as strong, or not present at all,
when doing this intentionally may point to the need for top-down inhibition as
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place on them. This requires that the robot be able to discriminate, identify,
and manipulate the objects, events, and states of affairs that its symbols refer
o [20]. Grounding is accomplished in our architecture in part through the
alignment of the Knowledge and Perceptuo-Motor levels. If we think of the
Perceptuo-Motor level as implementing categorial perception (and perhaps
“categorial action”), then the elementary symbols of the Knowledge level are
the names attached to the categories. In other words, the alignment of the
Knowledge and Perceptuo-Motor level constitutes an internal referential se-
mantic model of elementary symbols. Note that, like McDermott, we do not
take the Tarskian stance which requires the referents of symbols to be in the
world; rather, they are system-internal, similar to what Hausser proposes [21],
or what Harnad calls iconic representations: “proximal sensory projections of
distal objects, events, and states of affairs in the world” [19]. The Knowl-
edge level is the only level that is accessible for conscious reasoning, and also
the only level that is accessible for inter-agent communication. Access to the
Perceptuo-Motor level and the Sensori-Actuator level would not be useful for
communication, as the representations and processing at these levels are too
agent-centered and too agent-specific to be informative to other agents.
Since the Perceptuo-Motor level representations serving as the ground-
ing for symbols of the Knowledge level are embodied (Sect. 2.4), equivalent
symbols may have somewhat different semantics for different agents having
different bodies. We don’t see that as a problem, as long as the differences
are not too large.'® Indeed, we believe that this is quite realistic in human
terms as well; no two persons are likely to have ezactly the same semantics for
their concepts, which nevertheless does not prevent them from understand-
ing each other, grosso modo at least (cf. [51]). The problems of translation
and communication in general consist at least in part of establishing a cor-
respondence between concepts (and symbols) used by the participants. It is
helpful to be able to use referents in the external world as landmarks in the
semantic landscape, but one consequence of embodied semantics is that even
if it is possible to establish these common external referents for symbols,
there is still no guarantee that the symbols will actually mean exactly the
same thing, because in effect the same referent in the world is not the same
thing to different agents. If we accept this view, it is clear that approaches to
semantics based on traditional logical model theory are doomed to fail, be-
cause they presuppose “identity of referents” and an unambiguous mapping
from symbols to referents, the same one for all agents. Another problem is
of course the presupposition that all objects are uniquely identifiable. The
use of deictic representations does not impose such a condition; as far as our
agents are concerned, if it looks and feels the same, it is the same.'” Nothing
hinges on whether or not the objects in the agent’s surroundings are really ex-

® It is never a problem as long as agents need not communicate with the outside
world (other agents), of course, cf. [63].
1T This is of course the “duck test”, made famous by a former US president.



tensionally the same as the identical-looking ones that were there a moment
ago or will be there a moment later.

In Sect. 3.1 we present an implementation of our architecture that illus-
trates our ideas on symbol grounding, in the domain of color perception and
color naming.

2.4 Embodied Representation

In Sect. 2.2 we already mentioned the use of embodied representations at the
Perceptuo-Motor level. We now look at the principle of embodiment from a
more abstract point of view.

One of the most general motivations behind our work is the desire to be
able to “program” a robotic autonomous agent by requesting it to do some-
thing and have it “understand”, rather than telling it how to do something
in terms of primitive motions with little or no “understanding”. For instance,
we want to tell it to go find a red pen, pick it up, and bring it to us, and not
have to program it at a low level to do these things.'® One might say that
we want to communicate with the robot at the speech act level. To do this,
the agent needs a set of general-purpose perceptual and motor capabilities
along with an “understanding” of these capabilities. The agent also needs a
set of concepts which are similar enough to ours to enable easy communica-
tion. The best way to accomplish this is to endow the agent with embodied
concepts, grounded in perception and action.

We define embodiment as the notion that the representation and extension
of high level concepts is in part determined by the physiology (the bodily
functions) of an agent, and in part by the interaction of the agent with the
world. For instance, the extension of color concepts is in part determined by
the physiology of our color perception mechanism, and in part by the visual
stimuli we look at. The result is the establishment of a mapping between color
concepts and certain properties of both the color perception mechanism and
objects in the world. Another example is the extension of concepts of action:
it is partly determined by the physiology of the agent’s motor mechanisms,
and partly by the interaction with objects in the world. The result is the
establishment of a mapping between concepts of action and certain properties
of both the motor mechanisms and objects in the world (what we might call
“the shapes of acts”).

At an abstract level, the way to provide an autonomous agent with human-
like embodied concepts is to intersect the set of human physiological capabili-
ties with the set of the agent’s potential physiological capabilities, and endow
the agent with what is in this intersection. To determine an agent’s potential
physiological capabilities, we consider it to be made up of a set of primi-
tive actuators and sensors, combined with a general purpose computational

18 Retrieving “canned” parameterized routines is still a low-level programming style
that we want to avoid.



mechanism. The physical limitations of the sensors, actuators, and computa-
tional mechanism bound the set of potential capabilities. For instance with
respect to color perception, if the agent uses a CCD color camera (whose spec-
tral sensitivity is usually wider than that of the human eye), combined with
a powerful computational mechanism, we consider its potential capabilities
wider than the human ones, and thus restrict the implemented capabilities
to the human ones. We endow the agent with a color perception mechanism
whose functional properties reflect the physiology of human color perception.
That results in color concepts that are similar to human color concepts. With
respect to the manipulation of objects, most robot manipulators are inferior
to human arms and hands in terms of dexterity, hence we restrict the imple-
mented capabilities to the ones that are allowed by the robot’s physiology.
The robot’s motor mechanism then reflects the properties of its own phys-
iology, rather than those of the human physiology. This results in a set of
motor concepts that is a subset of the human one. Embodiment also calls
for body-centered and body-measured representations, relative to the agent’s
own physiology. We provide more details on embodiment in GLAIR in [26].

2.5 Alignment

When a GLAIR-agent notices something in its environment, it registers that
it has come to know of an object. Regardless of whether the agent recognizes
the type of the object, we want it to explicitly represent the existence of the
object in the Knowledge level while processing sensory information about the
object at the Perceptuo-Motor level. Similarly, when properties of objects
or relationships among objects are sensed by the GLAIR-agent, we want it
to explicitly represent these properties and relationships, even if no more is
known about them than the fact that they exist. We use unnamed intensional
concepts for this purpose [57].

Having sensed an object, an assertion is made about the object being
sensed at the GLAIR Knowledge level. Once the object is no longer in the
“field of perception”, the assertion about its being sensed is removed. This
is tantamount to disconnecting the relationship between the symbolic repre-
sentation and the world. If at the Perceptuo-Motor level a previously sensed
object is again being sensed, we reassert the fact that the object, the same one
represented before at the Knowledge level, is being sensed. An example of this
type of (unconscious) perception is when we look at an object, look away, and
then look back at the same object. The unconscious level can provide a short
term sensory memory in which memories of objects are stored, and when we
see them from time to time, the conscious layer is alerted to that fact. We
can think of this phenomenon as a type of continuity in perception at the
unconscious level. We believe that if we assume this continuity, we should re-
use previously constructed representations to represent again-sensed objects.
In order for a GLAIR-agent to re-use its previously established representa-
tions about objects for again-sensed objects, we either have to assume that



the agent has a continuity of perception at the unconscious layer or that a
conscious matching of existing representations to sensed objects is performed.

2.6 Engaged and Disengaged Reasoning

Our architecture allows us to elegantly model two different modes of reason-
ing and planning, which we call engaged reasoning and disengaged reasoning.
Engaged reasoning takes place when all the elementary symbols at the Knowl-
edge level that are involved in the current reasoning activity are immediately
aligned with representations at the Perceptuo-Motor level. In practical terms,
this means that the agent is reasoning about objects within its field of per-
ception. This may require active perception to keep track of objects, or to
shift attention to new objects as the reasoning progresses. For the purpose of
object tracking and attention shifting, Knowledge level sensory actions are
defined and can be reasoned about like ordinary actions [36]. Engaged rea-
soning can be done while the actions being reasoned about are actually being
carried out, in a kind of plan-as-you-go mode with continuous monitoring of
progress being made, or in a more hypothetical mode with no actions being
carried out, but potentially affected objects being gauged while the plan is
being developed.

Disengaged reasoning occurs when there is no immediate alignment be-
tween the Knowledge level symbols involved in the current reasoning activity
and Perceptuo-Motor level representations, e.g., when developing a plan for
another place and/or another time, in a purely hypothetical fashion. This is
the mode that traditional planners used to operate in all the time, by neces-
sity. Intermediate forms of reasoning, between engaged and disengaged, are
possible as well.

2.7 Consciousness

As we pointed out above, we identify the Knowledge level with consciously
accessible data and processing; the Perceptuo-Motor level with “hard-wired”,
not consciously accessible processing and data involved with motor control
and perceptual processing; and the Sensori-Actuator level with the lowest-
level muscular and sensor control, also not consciously accessible. The dis-
tinction of conscious (Knowledge) levels vs. unconscious (Perceptuo-Motor
and Sensori-Actuator) levels is convenient as an anthropomorphic metaphor,
as it allows us to separate explicitly represented and reasoned about knowl-
edge from implicitly represented and processed knowledge. This corresponds
grosso modo to consciously accessible and not consciously accessible knowl-
edge for people.'® Although we are aware of the pitfalls of introspection, this
provides us with a rule of thumb for assigning knowledge (and skills, be-
haviors, etc.) to the various levels of the architecture. We believe that our

'® The term “knowledge” should be taken in a very broad sense here.



organization is to some extent psychologically relevant, although we have
not yet undertaken any experimental investigations in this respect. The real
test for our architecture is its usefulness in applications to physical (robotic)
autonomous agents (Section 3).

Knowledge in GLAIR can migrate from conscious to unconscious levels.
In [24] we show how a video-game playing agent learns how to dynamically
“compile” a game playing strategy that is initially formulated as explicit
reasoning rules at the Knowledge level into an implicit form of knowledge at
the Perceptuo-Motor level, a Perceptuo-Motor Automaton (PMA).

There are also clear computational advantages to our architectural or-
ganization. A Knowledge Representation and Reasoning system as used for
the conscious Knowledge level is by its very nature slow and requires lots of
computational resources.?? The implementation mechanisms we use for the
unconscious levels, such as PMAs, are much faster and require much less
resources. Since the three levels of our architecture are semi-independent,
they can be implemented in a (coarse-grained) parallel distributed fashion;
at least each level may be implemented on distinct hardware, and even sepa-
rate mechanisms within the levels (such as individual reflex behaviors) may

be.

3 Applications

Our architecture as described in Sect. 2 can be populated with components
that make up the machinery for mapping sensory inputs to response actions,
as does Russell in [54]. We now discuss some applications of GLAIR that we
have been developing.

Some important general features of GLAIR-agents are the following:

— Varieties of behaviors are integrated: We distinguish between delibera-
tive, reactive, and reflexive behaviors. At the unconscious level, behavior
is generated by mechanisms with the computational power of a finite
state machine (or less), whereas, at the conscious level, behavior is gen-
erated via reasoning (of Turing Machine capabilities). As we move down
the architectural levels, computational and representational power (and
generality) is traded off for better response time and simplicity of control.
Embodied representations aid in this respect (Sect. 2.4).

— We assume agents to possess a set of primitive motor capabilities. The mo-
tor capabilities are primitive in the sense that (a) they cannot be further
decomposed, (b) they are described in terms of the agent’s physiology,
and (c) no reference is made to external objects. The second property of

20 As we all know, many reasoning problems are NP-complete, meaning there are
no polynomial-time deterministic algorithms known for solving them, or in plain
English: they are very hard to solve in a reasonable amount of time (see e.g. [43]).
Elephants don’t even stand a chance in this respect.



motor capabilities is so that the success of performing an action should
depend only on the agent’s bodily functions and proprioceptive sensing.
For example, for a robot arm, we might have the following as its motor
abilities: calibrate, close-hand, raise-hand, lower-hand, move.

— Our architecture provides a natural framework for modeling four distinct
types of behavior, which we call reflexive, reactive, situated, and delib-
erative. Reflexive and reactive behaviors are predominantly unconscious
behaviors, whereas situated and deliberative actions are conscious behav-
iors.

Reflezive behavior?! occurs when sensed data produces a response, with

little or no processing of the data. A reflex is immediate. The agent has no
expectations about the outcome of its reflex. The reflexive response is not gen-
erated based on a history of prior events or projections of changing events,
e.g., a gradual temperature rise. Instead, reflexive responses are generated
based on spontaneous changes in the environment of the agent, e.g. a sudden
sharp rise in temperature. In anthropomorphic terms, this is innate behavior
that serves directly to protect the organism from damage in situations where
there is no time for conscious thought and decision making, e.g., the with-
drawal reflex when inadvertently touching something hot. Reflexive behavior
does not require conscious reasoning or detailed sensory processing, so our
lowest level, the Sensori-Actuator level, is charged with producing these be-
haviors. Our initial mechanism for modeling reflexive behavior is to design
processes of the form T — A, where T is a trigger and A is an action. A
trigger can be a simple temporal-thresholding gate. The action A is limited
to what can be expressed at the Sensori-Actuator level, and is simple and
fast.

Reactive behavior requires some processing of data and results in situated
action [62]. However, its generation is subconscious. Situated aciion refers
to an action that is appropriate in the environment of the agent. In anthro-
pomorphic terms, this is learned behavior. An example would be gripping
harder when one feels an object is slipping from one’s fingers, or driving a
car and tracking the road. We use the term tracking to refer to an action
that requires continual adjustments, like steering while driving. Examples of
this type of reactive behavior are given in [48, 5]. Situated behavior requires
assessment of the state the system finds itself in (in some state space) and
acting on the basis of that. It might be modeled by the workings of a finite
state automaton, for example, the Micronesian behavior described in [62].
Situated action is used in reactive planning[2, 16, 55].

Deliberative behavior requires considerable processing of data and rea-
soning which results in action. In anthropomorphic terms, this is learned
behavior that requires reasoning that can be modeled by a Turing Machine
(or first order logic), for example explicit planning and action.

2l E.g., visual reflexes in [52]: Here responses are generated to certain visual stimuli
that do not require detailed spatial analysis.



We have developed an implementation mechanism for the Perceptuo-
Motor-level which we call Perceptuo-Motor-Automata [28]. A PMA is a finite
state machine in which each state is associated with an act and arcs are as-
sociated with perceptions. In each PMA, a distinguished state is used to
correspond to the no-op act. Each state also contains an auxiliary part we
call Internal State (IS). An IS is used in arbitrating among competing arcs.
Arcs in a PMA are situations that the agent perceives in the environment.
When a PMA arc emanating from a state becomes active, it behaves like an
asynchronous interrupt to the act in execution in the state. This causes the
PMA to stop executing the act in the state and to start executing the act at
the next state at the end of the arc connecting the two states. This means
that in our model the agent is never idle, and it is always executing an act.
The primary mode of acquiring PMAs in GLAIR is by converting plans in
the Knowledge level into PMAs through a process described in [28]. A PMA
may become active as the result of an intention to execute an action at the
Knowledge level [35]. Once a PMA becomes active, sensory perception will be
used by the PMA to move along the arcs. The sensory perceptions that form
the situations on the arcs as well as subsequent actions on the PMA may
be monitored at the Knowledge level. In general, the sensory information is
filtered into separate streams for PMAs and for the Knowledge level.

3.1 A Physical Instance: the Color Labeling Agent

We now present an instance of an agent conforming to our architecture, the
Color Labeling Agent (CLA). It has a set of grounded or embodied concepts
represented as terms at its Knowledge Level, a “sub-conscious” color space at
its Perceptuo-Motor Level, and a color camera at its Sensory-Actuator Level,
as well as a color monitor which it uses as a primitive actuator to point to
things in its field of view (Fig. 2).

Using a normalized Gaussian function of perceptual color space coordi-
nates as the basic category model, the CLA is able to

1. Name real colors in response to real visual stimuli (camera images), and
provide a confidence or “goodness of example” or (fuzzy) membership
value.

2. Pownt out examples of named colors in real images and provide a confi-
dence rating, and as a derivative of this capability, pick the best ezample
of a named color from a set of color samples, or from an image in general.

The model is at present constrained to the eleven so-called basic color cate-
gories and their corresponding names in English, as defined first in the work
of [8]. The CLA’s performance on these tasks has been quantitatively shown
to be reasonably consistent with human performance [41]. In particular, this
means that

1. The model places the foci of the basic color categories in the same regions
of the color space as human subjects do.
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Fig. 2. The various parts of the Color Labeling Agent, relative to the levels of our
architecture.

2. The model places the boundaries of the basic color categories in the same
regions of the color space as human subjects do.

As such, the color categorization application can be seen as a (partly) embod-
ied [39, 32, 26] or grounded [19] system, or as an instance of situated cognition
[62].

The current implementation of the CLA consists of two separate parts,
one concerned with selection and display of samples from images, and the
other concerned with the actual color perception and categorization model
(Fig. 3).

The display program runs under X windows, and allows one to display
a 24-bit RGB image. It also lets one select samples of a certain pre-defined
size (currently 12 x 16 pixels) from the image using the mouse, which will
be passed to the categorization program. It can subsample the entire image
using the same blob size, and pass the result to the categorization program.
Finally, it can draw boxes around blobs, whose center coordinates it gets from
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Fig. 3. Outline of the color naming/pointing-out/selecting application, consisting
of a display and select part (left), implemented as an X windows client, and a
transformation and categorization part (right), implemented in Mathematica code.
The two parts communicate asynchronously via a simple file protocol.

the categorization program.

The categorization program is a collection of Mathematica functions that
can (1) Name the color of a blob pointed to on the image, and provide a
membership value, (2) Point out examples of a named color category on the
image, and provide a membership value, and (3) Select one from a number
of samples whose color best fits a named category. The names returned can
be simple or complex, and the best n candidates can be returned. The cat-
egory membership threshold 8 may be specified, as well as the underlying
color space to use. The names specified for the pointing-out function can be
simple or complex as well, and the threshold 8 can be specified, as well as
the color space to use. The function can either return any n examples (the
first exceeding the threshold) or the best n examples. The select function
always points to the best example of the specified category within the set of
samples provided, using a specifiable underlying color space. It will ask the
user to provide it with a set of samples from the image first, to get around
the absence of any image segmentation or object recognition algorithms.

For a detailed quantitative and qualitative analysis of the performance of
the Color Labeling Agent we refer to [41] and [40]. Suffice it here to say that
the performance is reasonably consistent with human performance on the
same tasks, which means to us that we have succeeded in grounding a small
set of elementary symbols in perception and action — although the active side
of the agent is relatively primitive.

3.2 A Simulation Study: Air Battle

We are interested in modeling behavior generation by agents that function
in dynamic environments. We make the following assumptions for the agent:

— The environment demands continual and rapid acting, e.g., playing a
video-game.



The impact of the agent’s actions depends on the situations under which
actions are applied and on other agents’ actions.

— Other agents’ actions are nondeterministic.

The agent does not know about the long term consequences (i.e., beyond
the current situation) of its actions.

— The agent is computationally resource bounded. We assume that the
agent needs time to think about the best action and in general there is
not enough time.

To cope in dynamic environments, an agent which is resource bound
needs to rely on different types of behaviors, for instance, reflexive, reac-
tive, situated, and deliberative behaviors. Reflexive and reactive behaviors
are predominantly “unconscious” behaviors, situated action may be either
“unconscious” or “conscious”, and deliberative actions are predominantly
“conscious” behaviors. We assume that in general “conscious” behavior gen-
eration takes more time than “unconscious” behavior generation.

We have written a program, Air Battle Simulation (ABS), that simulates
World War I style airplane dog-fights. ABS is an interactive video-game where
a human player plays against a computer driven agent. The game starts
up by displaying a game window and a control panel window (Fig. 4). The
human player’s plane is always displayed in the center of the screen. The
aerial two-dimensional position of the enemy plane is displayed on the screen
with the direction of flight relative to the human player’s plane. The human
player uses the control panel to choose a move, which is a combination of
changing altitude, speed, and direction. When (s)he presses the go button, the
computer agent also selects a move. The game simulator then considers both
moves to determine the outcome, and updates the screen and the accumulated
damage to planes. ABS simulates simultaneous moves this way. If a player’s
plane is close in altitude and position to the enemy plane, and the enemy is in
frontal sight, the latter is fired on automatically (i.e., firing is not a separate
action). The levels of damage are recorded in a side panel, and the game ends
when one or both of the player’s planes are destroyed.

The computer agent has been developed in accordance with the principles
of the GLAIR architecture. Figure 5 schematically represents its structure.
Initially, the agent does not have any PMAs available, and uses conscious
level reasoning to decide what move to make. Once situation transitions are
learned and cached in a PMA, the agent uses the PMA for deciding its next
move whenever possible. Hence, by adding learning strategies, a PMA can be
developed that caches moves decided at the Knowledge level for future use.
Learning can be used to mark PM A moves that prove unwise and to reinforce
moves that turn out to be successful. We are exploring these learning issues.
On trial runs, we started ABS with an empty PMA and as the game was
played, transitions of the PMA were learned. Also, when similar situations
occurred and there was an appropriate PMA response, the PMA executed
the corresponding action. As the game was played, we observed that the
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Fig. 4. Air Battle Simulation game window and control panel (see text).

agent became more reactive since the PMA was increasingly used to generate
behaviors instead of the Knowledge level.
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Fig. 5. Schematic representation of the Air Battle Simulation GLAIR-agent.

Improving “Unconscious” Behaviors. The rules of a PMA are situa-
tion/action pairs. As it turns out, a situation can be paired up with multiple
actions. The object of learning here is to learn which actions when associ-
ated with a situation yield a better result, i.e., the pilot ends up in a more

desirable situation.

Some situations in ABS are more desirable for the pilot than others, e.g.,
being right behind the enemy and within firing range. Let’s assume that



we can assign a goodness value G(s) to each situation s between —1 and 1.
As the pilot makes a move, he finds himself in a new situation. This new
situation is not known beforehand to the pilot since it also depends on the
other pilot’s move. Since the new situation is not uniquely determined by
the pilot’s move, his view of the game is not Markovian. Let Q(s,a) be the
evaluation of how appropriate action a is in situation s, and R(s,a) be the
goodness value of the state that the pilot finds himself in after performing
a in situation s. The R(s,a) values are determined as the game is played
and cannot be determined beforehand. This is called the immediate reward.
We let Q(s,a) = R(s,a) + v max;Q(s’,k) where situation s’ results after the
pilot performs a in s. 7 is a parameter between 0 and 1 that is known as
the discount factor in reinforcement based learning. At the start of game, all
Q(s,a) in the PMA are set to 1. As the game is played, Q is updated. As of
this writing we are experimenting with setting appropriate parameters for Q.

Observing Successful Patterns of Interaction in the World. We as-
sume that the agent does not know about the long term consequences of its
actions. Furthermore, the reinforcement based learning we have used assumes
a Markovian environment. That is, the agent believes the world changes only
due to its own actions. This makes it necessary to observe interactions with
the world in order to learn sequences of actions. Over a finite number of ac-
tions, when the agent observes a substantially improved situation, chances
are he has found a successful routine. We record such detected routines and
as they reoccur, we increase our confidence in them. When the confidence in
a Routine reaches a certain level, a concept is created at the Knowledge level
of GLAIR for the routine and from then on, this routine can be treated as
an atomic action at that level [23].

We plan to explore other learning techniques such as experimentation as
a form of learning [60]. We are also interested in developing experiments that
will help in psychological validation of GLAIR and the learning strategies
used in ABS. As of the time of writing ABS is fully operational, but several
issues are still being investigated, as noted above.

3.3 A Simulation Study: the Mobile Robot Lab

We now describe the Mobile Robot Lab (MRL), a simulation environment
we have developed for mobile robots that function as GLAIR-conformant au-
tonomous agents. The simulation is relatively simple, but nevertheless pro-
vides a rich and realistic enough environment to function as a testbed for
the development of physical GLAIR-agents. A complete setup using MRL
consists of a GLAIR-agent, a simulator with an incorporated description of
a physical environment, and a graphical interface (Fig. 6).

Emergent Behaviors. A major objective for this project is learning emer-
gent behaviors. Like Agre with his improvised actions [2] and Brooks with
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Fig. 6. Overview of a complete setup using MLR. It consists of a GLAIR-agent, a
simulator with an incorporated model of a physical environment, and a graphical
interface. Arrows represent direction of data flow among the components.

his subsumption architecture [9] we believe complex behaviors emerge from
interaction of the agent with its environment without planning. However, pre-
vious work in this area hard-coded a lot of primitive actions. Furthermore,
it did not attempt to learn the improvised behavior. In this simulation, we
plan to start with a minimal number of primitive actions and sensations.
Our basis for this minimality and the choice of primitive actions is physio-
logical. In other words, we will choose actions that are physically basic for
the agent’s body as primitive. We then instruct the agent to perform tasks
and in the midst of accomplishing this, we expect it to notice some types
of behaviors emerge. An example of an emergent behavior we will explore is
moving toward an object. We expect the agent to be learning to coordinate
its wheel motions, starting from nothing more than the primitive sensation
of contact with an external object, and the primitive actions of turning its
motors independently on or off.

The Physical Environment Description. The simulator uses a descrip-
tion of the physical environment that the simulated robot operates in. This
description is easily modifiable (without reprogramming). It includes the
physical characteristics of the mobile robot and the space in which it moves.
A 2D bird’s eye view of a typical room setup with a robot inside is show in
Fig. 7.
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Fig.7. The graphical interface of the mobile robot simulator. Upper left: color
perspective view of the environment, from the robot’s point of view. Upper right:
same, but in a “rexelated” view from the robot’s rectangular foveal camera (see
text). Lower left: floor plan of the environment. The robot’s current position and
orientation is indicated by the small triangle near the right edge, halfway from the
top. Middle: interface and simulator control panel, including camera and lighting
model, and movement controls. Courtesy of Amherst Systems Inc, Buffalo NY.

The room the robot moves in has a polygonal floor plan and vertical walls,
and contains a number of solid objects with convex polygonal bases and ver-
tical faces, each with an associated user-defined spectral power distribution
(SPD) specifying the surface spectral reflectance (color).

Any number of robots may inhabit the room. They have two indepen-
dently driven wheels on either side, a bumper bar front and back, with contact
and force sensors built in, and a color camera on top, parallel to the direction
of the driven wheels. The camera is fixed and mounted horizontally.

The Simulator. The simulator interfaces with the agent and with the graph-
ical interface. It takes care of any I/O with the agent that would otherwise
come from the sensors and go to the actuators of a real mobile robot. It
also takes care of any I/O with the graphical interface, needed to keep the
graphical display of the robot and its physical environment updated.



The simulator incorporates a simplified model of the physics of motion and
sensing for the mobile robot. It continually updates the position of the robot
depending on the rotation speed and direction of its wheels, and provides the
agent with appropriate sensory data about wheel rotation and contact with
objects. It also prevents the robot from going “through” walls or objects.
It provides simulated camera input to the agent. Camera input can be sim-
plified in different ways, e.g. using a space-variant downsampling to create
a “rexelated” image as used in Hierarchical Foveal Machine Vision [7, 45].
This simplified camera view is computed and passed to the simulator by the
graphical interface, on the basis of the 3D perspective views.

The simulator incorporates a simplified lighting model to determine the
appearance (color) of objects in the room. Light sources can either be point
sources or homogeneous diffuse sources. Each light source has its own SPD.
Each object has its own spectral reflectance function. All objects are assumed
to be Lambertian reflectors.

The Mobile Robot Lab has been used to study GLAIR-agent based gaze
control in the context of space exploration, in a man-machine cooperative
scenario [7], in addition to some other explorative work.

4 Concluding Remarks

We have presented a general architecture for autonomous embodied agents
that integrates behavior-based architectures with traditional architectures
for symbolic systems. The architecture specifies how an agent establishes
and maintains a conscious connection with its environment while mostly un-
consciously processing sensory data, and filtering information for conscious
processing as well as for reflexive and reactive acting. We ended our paper
by instantiating the architecture with a few (physical and simulated) agents
embedded in their environment, in various stages of implementation. Some
additional aspects of our work are discussed in [25], [27], and [29].

We believe our work can contribute towards integrating traditional un-
grounded symbol systems with the newer physically grounded systems. Com-
bining an elephant’s body with a man’s??
bination.

mind makes for an awesome com-
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