
Programming Techniques R. MORRIS, Editor

The List Set Generator:
A Construct for Evaluating
Set Expressions

STUART C. SHAPIRO
University of Wisconsin,* Madison, Wisconsin

The list set generator is defined and algorithms for its use are
given. The list set generator is a construct which may be added
to a list processing system or any system that handles sets. It
efficiently generates the set which results from any expression
involving sets and set operators. The efficiency derives from
evaluating the expression as a whole and in parallel, rather
than evaluating subexpressions and then using those sets to ar-
rive at the final result.

KEY WORDS AND PHRASES: set manipulating, list processing, set generation,
sets, lists, file processing
CR CATEGORIES: 3.73, 3.74, 4.22

In designing and implementing an associational net
structure to be used as the data structure for a natural
language question answering system [4], it became ob-
vious that the operations of intersecting and unioning
arbitrary numbers of sets would be performed frequently.
I t was, therefore, necessary to discover a very efficient
method for doing this. This paper describes a generaliza-
tion of the method which was found, which generalization
allows for the very efficient evaluation of set expressions of
arbitrary length and complexity. The techniques described
below would be useful in language systems that have a set
data type and in systems for manipulating ordered files
as well as in associative data systems. Various versions of
these algorithms have been programmed in Extended Algol
for Burroughs B5500 and in P L / I for IBM's System/360.

Unordered sets may be represented as lists which do not
contain duplicate elements. The set operations will be
performed more efficiently if the lists are ordered on some
internal code (see, for example [2]). The set operations
difference (relative complement), union and intersection,
which could be performed only very inefficiently on un-
ordered lists representing sets can be done efficiently on
these ordered lists. For example to intersect two unordered

* Computer Sciences Department. This paper is a version of a
section of the author's Ph.D. thesis [4]. The research reported
herein was partially supported by a grant from the National
Science Foundation (GP-7069) and partially by USAF Proj.
RAND (project $1116). Use of the University Computing Center
was made possible through support, in part, from the National
Science Foundation and the Wisconsin Alumni Research Founda-
tion (WARF) through the University of Wisconsin Research
Committee.

V o l u m e 13 / Number 12 / December, 1970

lists takes an amount of time proportional to the product of
their lengths while to intersect two ordered lists takes an
amount of time proportional to the sum of lengths. When
intersecting more than two lists, even more time could be
saved by reading all the lists in parallel rather than inter-
secting them by pairs. If three lists were to be intersected
of lengths m, n, and r and the first two had s elements in
common, intersecting them two at a time as unordered
lists would take an amount of time proportional to mn + sr;
the time to intersect them as ordered lists two at a time
would be proportional to m + n + s + r; but the time to
intersect them by comparing all three at once would be
proportional to m -~- n + r. The same results would hold
for the other set operations.

In this paper, we define a generalization of the list
reader (see Weizenbaum's reader [5] and Knowlton 's
"bug" [3]) which, as it is incremented, produces the new
set determined by set operations on given sets. The al-
gorithms for incrementing the generalized reader embody
the efficient parallel methods for performing the set opera-
tions on ordered lists.

We first introduce some basic terminology.

D1. A list set is an ordered, finite list no two of whose
elements are equal.

The ordering relation used in list sets is immaterial. In
fact, different orderings may be used on different lists and
any equivalence relation may be used for equating ele-
ments of different 'lists. The restriction is that if two ele-
ments are equivalent, then no element that appears after
one of them on some list set shall be equivalent to any
element that appears on any list set before the other. This
restriction, of course, induces a common ordering relation
on all elements of all lists in any operation, but this might
not be one that is easily applied directly to some of the
sets in question.

In any implementation of these algorithms, it would be
possible to represent ordered sets by having the user
provide a function which, given two elements, returns one
of three codes depending on whether the first element is
greater than, equivalent to, or less than the second and
using this function whenever two elements are to be com-
pared. I t would also be possible to use these algorithms on
ordered attribute-value lists (or any list where the ordering
is on every nth element with the (n + 1)-th through the
(2n - 1)-th elements always following the nth). For the
purposes of this discussion, we will assume that all lists
are ordered on an internal numeric code, smallest number
first, and we will use identity as the equivalence relation.

Since, in the algorithms given below, a list is often
searched for the smallest element equal to or greater than
a given element, even more speed can be achieved if the
lists are organized so that binary and/or bucket searches
may be used. There would be no changes required in the

C o m m u n i c a t i o n s o f t h e ACM 741

algorithms given below since the only changes needed
would be in the design of the reader and the routine to
manipulate the reader.

A reader, as used in this discussion, may contain only a
pointer to a list element or additional information as well.
The essential requirements are tha t the reader be able to
identify a unique element of some list (which we will refer
to as the element currently pointed at by the reader) and
that it be possible to retrieve the datum of that element,
to increment the reader so that it points to the next ele-
ment in the list, and to recognize when the element it is
pointing at is the last in the list set.

We can consider a reader as a generator of the set
represented by the list it reads. We will define three other
list set generators. A difference list set generator is used to
generate a set which is the difference between the sets
generated by two list set generators. A union list set
generator is used to generate a set which is the union of
the sets generated by a number of list set generators. An
intersect list set generator is used to generate a set which
is the intersection of the sets generated by a number of
list set generators. Figures 1-4 demonstrate the use of
these generators. The algorithms used are given below.

D2. A list set generator (LSG) is defined recursively as:

1. (a) A primitive LSG (PLSG) is a reader.
(b) A PLSG is an LSG.

2. (a) A difference LBG (DLSG) is an ordered pair of LSGs.
(b) A DLSG is an LSG.

3. (a) A union LSG (ULSG) is an ordered, finite list oI LSGs, no
two of which have equal data (see below). ']'he list is
ordered so that if L1 and L2 are on the list and have data
dl and d2 respectively, then di < d2 if and only if Ll is
before L~ in the list.

(b) A ULSG is an LSG.

4. (a) An intersect LSG (ILSG) is an arbitrarily ordered, 1 finite
list of LSGs.

(b) An ILSG is an LSG.

5. The only LSGs are those defined by 1-4.

For various purposes, an LSG at any given time will
be considered to be identifying a unique datum.

D3. The datum of an LSG is defined recursively as follows:

1. The datum of a PLSG is the datum of the list set element cur-
rently pointed at by the reader.

2. The datum of a DLSG, ULSG, or ILSG is the datum of the
first LSG of which it is composed.

The d a t u m of a D L S G or an I L S G may or m a y no t be
an e lement of the list set the LSG is generat ing. I t will be,
if the last opera t ion performed on the LSG was initializing,

incrementing, incrementing to or past a datum, or increment-

ing past a datum as these operat ions are described below.
I t may not be, if the last opera t ion was checki~.7 a datum

against the LSG or some operat ion not defined here. The

1 If the ILSG is ordered on the size of the sets to be generated by
the component LSGs, smallest first, all operations on the ILSG
will be significantly faster than otherwise.

Step

1

2
3
4
5
6
7
8
9

10
11
12
13

L1 = {0, 1, 2, 5,
5 1 -- 5 2

6, 8, 9} L~ = {0, 1 ,2 ,3 ,7 ,9}
DLSG Generated set

(D 1:0")
(n 1:0, 2:0)
(D 1:1, 2:0)
(D 1:1, 2:1)
(V 1:2, 2:1)
(D 1:2, 2:2)
(D 1:5, 2:2)
(D 1:5, 2:7)
(V 1:6, 2:7)
(D 1:8, 2:7)
(D 1:8, 2:9)

15}
15, 6}
15, 6}
15, 6, 8}
15, 6, 8} (D 1:9, 2:9)

the PLSG for L, finishes

* A P L S G will be represented as a list set identifier followed by " : " followed
b y the d a t u m of the P L S G .

FIG. 1. Example of a DLSG being used to generate a set which is
the difference between two sets

L1 U L2 U L3 U L4
L~ = {0, 1 , 2 , 5 , 6 , 8 , 9 } L s = {2 ,3 ,6 ,8 ,9}
L 2 = {0 ,2 ,3 ,4 ,5} L4= {0, 1, 2 ,3 ,7 ,9}

Step ULSG Generated set

1 (v 1:0) { }
2 (v 1:0, 2:2) { }
3 (v 1:0, 2:2, 3:3) { }
4 (u 1:0, 4:1, 2:2, 3:3) {0}
5 (~ 4:1, 2:2, 3:3, 1:5) {0, 1}
6 (v 2:2, 3:3, 1:5, 4:7) {0, 1, 2}
7 (v 3:3, 2:4, 1:5, 4:7) {0, 1, 2, 3}
8 (v 2:4, 1:5, 3:6, 4:7) {0, 1, 2, 3, 4}
9 (u 1:5, 3:6, 4:7) {0, 1, 2, 3, 4, 5}

10 (v 3:6, 4:7, 1:8) {0, 1, 2, 3, 4, 5, 6}
11 (v 4:7, 1:8, 3:9) {0, 1, 2, 3, 4, 5, 6, 7}
12 (v 1:8, 3:9) {0, 1, 2, 3, 4, 5, 6, 7, 8}
13 (v 3:9) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
14 finishes

FIG. 2. Example of a ULSG being used to generate a set which is
the union of four sets

datum of a PLSG or a ULSG will always be an element of
the list set being generated.

The operations described below, except initialization,
may be performed repeatedly on an LSG in order to
consider successive elements in a list set. The elements
will be generated in the order used for ordering the list
sets, and once passed, an element will not again be the
datum of the LSG. Thus, eventually, an LSG will have
been moved past all the elements of the list set it generates.
When this occurs, we say the LSG is finished. An LSG
may finish during any of the operations described below,
in which case the operation concludes, returning an appro-
priate flag. Instead of giving the finishing conditions in
every algorithm below, we give them here once since they
are the same for all.

D4. Finishing conditions are defined as follows:

1. A PLSG finishes when an attempt is made to increment it
when it already points at the last element of its list set.

742 Communicat ions of the ACM Volume 13 / Number 12 / December, 1970

L, N L~ N L8 N L4
L, = {0, 1, 2, 5, 6, 8, 9} L3 = {2, 3, 6, 8, 9}
L2 = {0,2 ,3 ,4 ,5} L , = {0, 1 ,2 ,3 ,7 ,9}

Step IILSG Generated sel

1 (x 1:0) { }
2 (z 2:0, 1:0) { }
3 (x 3:2, 2:0, 1:0) { }
4 (z 4:2, 3:2, 2:0, 1:0) { }
5 (x 4:2, 3:2, 2:2, I:0) { }
6 (z 4:2, 3:2, 2:2, 1:2) {2}
7 (z 4:3, 3:2, 2:2, 1:2) {2}
8 (I 4:3, 3:3, 2:2, 1:2) {2}
9 (r 4:3, 3:3, 2:3, 1:2) {2}

10 (x 4:3, 3:3, 2:3, 1:5) {2}
11 (x 4:7, 3:3, 2:3, 1:5) {2}
12 (I 4:7, 3:8, 2:3, 1:5) {2}
13 (x 4:9, 3:8, 2:3, 1:5) {2}
14 (x 4:9, 3:9, 2:3, 1:5) {2}
15 the PLSG for L2 finishes

FIG. 3. Example of an ILSG being used to generate a set which is
the intersection of four sets

Step

1 (D(U 1:2))
2 (n(v 2:0
3 (D(v 2:0
4 (o(v 2:0
5 (o(u 2:1
6 (o(v 2:1
7 (D(U 1:2
8 (D(V 1:2
9 (D(U 2:3

10 (D(V 2:3
11 (O(V 2:3
12 (D(V 1:6
13 (D(V 1:6
14 (O(V 2:7
15 (b(v 1:8
16 (~(v 1:8
17 (D 2:9 (x
18 2:9
19

(L1 U L2)- (L3 N LD
L, -- {2, 3, 6, 8, 9} L3 = {0, i, 2, 5, 6, 8, 9}
L2 = {0,1,2,3,7,9} L4 = {0,2,3,4,5,8}

LSG Generated set

1:2))
1:2) (r 3:0))
1:2) (i 4:0 3:0))
1:2) (14:0 3:0))
1:2) (x4:2 3:0))
2:3) (z 4:2 3:0))
2:3) (z4:2 3:2))
1:6) (i 4:2 3:2))
1:6) (x4:3 3:2))
1:6) (x 4:3 3:5))
2:7) (x4:3 3:5))
2:7) (z 4:8 3:5))
1:8) (I 4:8 3:5))
2:9) (x4:8 3:5))
2:9) (I 4:8 3:8))

4:8, 3:8))

{}
{}
{}
{}
{}
{1}
{i}
{1}
{1}
{I}
{i, 3}
{1, 3}
{I, 3, 6}
{1, 3, 6, 7}
{1, 3, 6, 7}
{1, 3, 6, 7}
{1, 3, 6, 7}
{I, 3, 6, 7, 9}

finishes {1, 3, 6, 7, 9}

FIG. 4. An example using all three LSGs

2. A DLSG finishes when its first LSG finishes.

3. A ULSGfinishes when it is composed of one LSG and that LSG
finishes.

4. An ILSGfinishes when any of its LSGs finishes.

I n two cases an LSG may be discarded in favor of a
component LSG: (1) if the second LSG of a D L S G
finishes, the first LSG replaces the D L S G ; (2) when a

U L S G is composed of only one LSG, t h a t LSG is used in
place of the ULSG. These cases may arise dur ing the algo-
r i thms described below, bu t we do not men t ion t h e m again.

The first a lgor i thm to be described is initializing an
LSG. W h e n an LSG is initialized, its d a t u m will be the

first e lement of the list set the LSG generates. I f t ha t list
set is null , the LSG will finish dur ing the ini t ia l izat ion
process.

A1. Initializing an LSG
1. PLSG: Initialize the reader so that it points at the first ele-

ment of its list.

2. DLSG (see Figure 1 steps 1-8):
(a) Initialize the first LSG.
(b) Initialize the second LSG at or past the datum of the

first (i.e. its datum will be equal to or larger than the
datum of the first LSG).

(c) If the data of the two LSGs are equal, increment the
DLSG.

3. ULSG (see Figure 2 steps 1-4) :
Initialize each LSG in turn, placing them in the ULSG in the
proper order (but not placing one that finishes). If an LSG is
initialized with a datum equal to the datum of an LSG already
in the ULSG, increment it until it has a datum not already
represented. Then place it in the ULSG in the proper order.

4. ILSG (see Figure 3 steps 1-6):
(a) Initialize one LSG and place it in the ILSG.
(b) Initialize each successive LSG (in any order) at or past

the datum of the previous LSG and place it as the first
LSG of the ILSG.

(c) When all LSGs have been initialized and inserted, if their
data are not all equal, increment the ILSG to or past the
datum of its first LSG.

Once an LSG is init ialized, i t can be repeatedly incre-
mented, and after each step its d a t u m will be the next
greatest e lement of the list set it generates (see Figures
1-3). I f some operat ion was performed on an LSG so
t h a t its d a t u m is no t an e lement of the set it generates, and
the LSG is t hen incremented , its d a t u m after being incre-
mented will be the smallest e lement of the set i t generates
which is larger t h a n the d a t u m of the LSG before it was
incremented.

A2. Incrementing an LSG
1. PLSG:

The reader is incremented so that it points at the next ele-
ment in its list.

2. DLSG:
(a) Increment the first LSG.
(b) Check the current datum of the first LSG against the

second LSG. If the check fails, the increment is done.
If the check succeeds, go back to step (a).

3. ULSG:
(a) Remove the first LSG from the ULSG.
(b) Increment the LSG removed in step (a). If it finishes, the

increment is done.
(c) If the datum of the LSG incremented in step (b) is equal

to the datum of any other LSG in the ULSG, go to step
(b).

(d) Return the LSG to the ULSG in its proper order accord-
ing to its current datum.

4. ILSG:
(a) Increment the first LSG of the ILSG.
(b) Let D be the datum of the first LSG and i be 1.
(c) Let i = i --I- 1.
(d) If there is no ith LSG the increment is done.
(e) Increment the ith LSG to or past D.

Volume 13 / Number 12 / December, 1970 Communicat ions of the ACM 743

(f) If the datum of the i th LSG equals D, go to step (c).
(g) Let D be the datum of the i th LSG and i be 0.
(h) Go to step (c).

T h e r e are t imes when we are no t in te res ted in the nex t
e lement to be genera ted b y an L S G b u t in t he nex t ele-
m e n t equal to or g rea te r t h a n a g iven one (e.g. A2.4(e))
or t he next e lement s t r ic t ly g rea te r t h a n a g iven one. S u c h
an e lement could be found b y r epea t ed ly inc rement ing the
LSG, b u t i t wou ld be more efficient to m a k e full u~se of the
i n fo rma t ion of w h a t d a t u m we wish to equal or exceed
and i nc r emen t t he L S G to or pa s t (or j u s t pas t) the d a t u m
in one opera t ion .

A3. Incrementing an LSG (to or) past a datum, D
1. PLSG:

Increment the reader (zero or more times) until it points to
an element whose datum is (equal to or) greater than D.

2. DLSG:
(a) Increment the first LSG (to or) past D.
(b) Check the datum of the first LSG against the second LSG.

If the check is successful increment the DLSG. If the
check is not successful, the increment is done.

3. ULSG:
(a) Remove the first LSG from the list.
(b) Increment the LSG removed in step (a) (to or) past D.

If it is finished, go to step (e).
(c) If the datum of the LSG incremented in step (b) is

equal to the datum of any other LSG in the ULSG, incre-
ment it. If this finishes the LSG, go to (e).

(d) Return the LSG to its proper place in the ULSG accord-
ing to its current datum.

(e) If the datum of the LSG which is now first in the ULSG is
not (equal to or) larger than D, go to step (a); otherwise
the increment is done.

4. ILSG:
This is exactly the same as incrementing an ILSG (A2.4),
except that in step (a), the first LSG is incremented (to or)
past D.

I f i t is des i red to de t e rmine if a g iven e lement is a
m e m b e r of the set genera ted b y an LSG, th is can, in mos t
cases, be done more qu ick ly t h a n b y inc remen t ing the
L S G to or pa s t t he e lement and t hen looking a t tlhe d a t u m
of the LSG, if i t is accep tab le t h a t , when the check is
finished, t he d a t u m of the L S G migh t no t be a m e m b e r
of t he set i t generates . To subsequen t ly p roduce an un-

k n o w n m e m b e r of t he set gene ra t ed b y the LSG:, i t would
be necessary to pe r fo rm one of the inc remen t ing epe ra t i ons
on it.

A4. Checking a datum, D, against an LSG

1. PLSG:
Increment the reader to or past D. If the reader finishes or i t
ends up with a datum which is larger than D, the check is
unsuccessful. If the PLSG ends up with a datum equal to D,
the check is successful.

2. DLSG:
(a) Check D against the first LSG. If this check is unsuc-

cessful, the check against the DLSG is unsuccessful.
(b) If the check against the first LSG was successful, check D

against the second LSG. If this check is successful, the
check against the DLSG is unsuccessful and vice versa.

3. ULSG:
(a) If the datum of any LSG in the ULSG equals D, the check

is successful.
(b) Remove the first LSG from the ULSG.
(c) Increment the LSG removed in step (b) to or past D. If it

finishes, go to step (f).
(d) If the datum of the LSG incremented in step (c) is equal

to the datum of any other LSG in the ULSG, increment it.
If this finishes the LSG, go to step (f).

(e) Return the LSG to its proper place in the ULSG accord-
ing to its current datum.

(f) If the datum of the LSG incremented in step (c) was equal
to D after it was incremented, the check is successful.
Otherwise, if the datum of the LSG, which is now first in
the ULSG, is larger than D, the check is unsuccessful.
If neither of the above two cases holds, go to step (b).

4. ILSG:
Check D against each LSG that makes up the ILSG in turn. As
soon as one is found for which the check is unsuccessful, the
check against the ILSG is unsuccessful. If all checks are suc-
cessful, the check against the ILSG is successful.

I t should be r e m e m b e r e d t h a t t he l ist sets a re o rde red
and the L S G s genera te t h e m in order . T h e on ly w a y to
genera te all t he me mbe r s of a set is b y successive incre-
men t ing wi th no o the r ope ra t ions in te rposed . A n L S G
canno t be " b a c k e d u p " to an e lement i t has a l r e ady passed.
I f severa l e lements are to be checked aga ins t an LSG,
th is m u s t be done in t he p rope r o rder to avo id the necess i ty
of in i t ia l iz ing severa l LSGs.

The example in F igure 4 shows how LSGs are used to
eva lua t e a set expression. Because of the i r genera l i ty ,
LSGs wou].d be ex t r eme ly useful as p a r t of a l anguage
sys t em al lowing sets as a d a t a type . Moreover , since a n y
ordered , sequent ia l file fits the def ini t ion of l ist set g iven
above , LSGs m a y be used for t r a d i t i o n a l file hand l ing and
will l ead to g rea t efficiency when a r b i t r a r y number s of
files are to be h a n d l e d s imul taneous ly . F o r these purposes ,
the D L S G is used for pu rg ing records f rom a file, t he U L S G
is used for merg ing files 2 and all t he LSGs m a y be used
for i n fo rma t ion re t r ieval .

Acknowledgment. T h e a u t h o r expresses his t h a n k s to
Professor L a r r y E. T r a v i s of t he C o m p u t e r Sciences De-
p a r t m e n t , U n i v e r s i t y of Wiscons in for his con t inu ing he lp
and guidance .

RECEIVED AUGUST, 1970

REFERENCES

1. BROOKS, F. P. JR., AND IVERSON, K . E . Automatic Data Pro-
cessing: System~360 Edition. Wiley, New York', 1969.

2. FELDMAN, J. A., AND ROVNER, P . D . An ALGOL-based asso-
ciative language. Comm. ACM 15, 8 (Aug. 1969), 439-449.

3. KNOWLTON, K . C . A programmer's description of L e Comm.
ACM 9, 8 (Aug. 1966), 616-625.

4. SHAPIRO, S. C. A data structure for semantic information
processing. Ph.D. Th., Comput. Sci. Dep., U. Wisconsin,
Madison, Wis., 1970 (in preparation).

5. WEIZENBAUM, J. Symmetric list processor. Comm. ACM 6, 9
(Sept. 1963), 524-544.

The ULSG merges in the manner described as "m-way merge with
ranking sort" [1].

744 Communica t i ons of t h e ACM Volume 13 / Number 12 / December , 1970

