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The list set generator is defined and algorithms for its use are 
given. The list set generator is a construct which may be added 
to a list processing system or any system that handles sets. It 
efficiently generates the set which results from any expression 
involving sets and set operators. The efficiency derives from 
evaluating the expression as a whole and in parallel, rather 
than evaluating subexpressions and then using those sets to ar- 
rive at the final result. 
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In designing and implementing an associational net 
structure to be used as the data structure for a natural 
language question answering system [4], it became ob- 
vious that  the operations of intersecting and unioning 
arbitrary numbers of sets would be performed frequently. 
I t  was, therefore, necessary to discover a very efficient 
method for doing this. This paper describes a generaliza- 
tion of the method which was found, which generalization 
allows for the very efficient evaluation of set expressions of 
arbitrary length and complexity. The techniques described 
below would be useful in language systems that  have a set 
data  type and in systems for manipulating ordered files 
as well as in associative data systems. Various versions of 
these algorithms have been programmed in Extended Algol 
for Burroughs B5500 and in P L / I  for IBM's  System/360. 

Unordered sets may be represented as lists which do not 
contain duplicate elements. The set operations will be 
performed more efficiently if the lists are ordered on some 
internal code (see, for example [2]). The  set operations 
difference (relative complement), union and intersection, 
which could be performed only very inefficiently on un- 
ordered lists representing sets can be done efficiently on 
these ordered lists. For example to intersect two unordered 
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lists takes an amount of time proportional to the product of 
their lengths while to intersect two ordered lists takes an 
amount of time proportional to the sum of lengths. When 
intersecting more than two lists, even more time could be 
saved by reading all the lists in parallel rather than inter- 
secting them by pairs. If three lists were to be intersected 
of lengths m, n, and r and the first two had s elements in 
common, intersecting them two at a time as unordered 
lists would take an amount  of time proportional to mn + sr; 
the time to intersect them as ordered lists two at a time 
would be proportional to m + n + s + r; but  the time to 
intersect them by comparing all three at once would be 
proportional to m -~- n + r. The same results would hold 
for the other set operations. 

In this paper, we define a generalization of the list 
reader (see Weizenbaum's reader [5] and Knowlton 's  
"bug" [3]) which, as it is incremented, produces the new 
set determined by set operations on given sets. The al- 
gorithms for incrementing the generalized reader embody 
the efficient parallel methods for performing the set opera- 
tions on ordered lists. 

We first introduce some basic terminology. 

D1. A list set is an ordered, finite list no two of whose 
elements are equal. 

The ordering relation used in list sets is immaterial. In 
fact, different orderings may be used on different lists and 
any equivalence relation may be used for equating ele- 
ments of different 'lists. The restriction is that  if two ele- 
ments are equivalent, then no element that  appears after 
one of them on some list set shall be equivalent to any 
element that  appears on any list set before the other. This 
restriction, of course, induces a common ordering relation 
on all elements of all lists in any operation, but  this might 
not be one that  is easily applied directly to some of the 
sets in question. 

In any implementation of these algorithms, it would be 
possible to represent ordered sets by having the user 
provide a function which, given two elements, returns one 
of three codes depending on whether the first element is 
greater than, equivalent to, or less than the second and 
using this function whenever two elements are to be com- 
pared. I t  would also be possible to use these algorithms on 
ordered attribute-value lists (or any list where the ordering 
is on every nth element with the (n + 1)-th through the 
(2n - 1)-th elements always following the nth). For the 
purposes of this discussion, we will assume that  all lists 
are ordered on an internal numeric code, smallest number 
first, and we will use identity as the equivalence relation. 

Since, in the algorithms given below, a list is often 
searched for the smallest element equal to or greater than 
a given element, even more speed can be achieved if the 
lists are organized so that  binary and/or  bucket searches 
may be used. There would be no changes required in the 
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algorithms given below since the only changes needed 
would be in the design of the reader and the routine to 
manipulate the reader. 

A reader, as used in this discussion, may contain only a 
pointer to a list element or additional information as well. 
The  essential requirements are tha t  the reader be able to 
identify a unique element of some list (which we will refer 
to as the element currently pointed at by the reader) and 
that  it be possible to retrieve the datum of that  element, 
to increment the reader so that  it points to the next ele- 
ment in the list, and to recognize when the element it is 
pointing at is the last in the list set. 

We can consider a reader as a generator of the set 
represented by the list it reads. We will define three other 
list set generators. A difference list set generator is used to 
generate a set which is the difference between the sets 
generated by two list set generators. A union list set 
generator is used to generate a set which is the union of 
the sets generated by a number of list set generators. An 
intersect list set generator is used to generate a set which 
is the intersection of the sets generated by a number of 
list set generators. Figures 1-4 demonstrate the use of 
these generators. The algorithms used are given below. 

D2. A list set generator (LSG) is defined recursively as: 

1. (a) A primitive LSG (PLSG) is a reader. 
(b) A PLSG is an LSG. 

2. (a) A difference LBG (DLSG) is an ordered pair of LSGs. 
(b) A DLSG is an LSG. 

3. (a) A union LSG (ULSG) is an ordered, finite list oI LSGs, no 
two of which have equal data (see below). ']'he list is 
ordered so that if L1 and L2 are on the list and have data 
dl and d2 respectively, then di < d2 if and only if Ll is 
before L~ in the list. 

(b) A ULSG is an LSG. 

4. (a) An intersect LSG (ILSG) is an arbitrarily ordered, 1 finite 
list of LSGs. 

(b) An ILSG is an LSG. 

5. The only LSGs are those defined by 1-4. 

For various purposes, an LSG at any given time will 
be considered to be identifying a unique datum. 

D3. The datum of an LSG is defined recursively as follows: 

1. The datum of a PLSG is the datum of the list set element cur- 
rently pointed at by the reader. 

2. The datum of a DLSG, ULSG, or ILSG is the datum of the 
first LSG of which it is composed. 

The  d a t u m  of a D L S G  or an  I L S G  may  or m a y  no t  be 
an  e lement  of the list set the LSG is generat ing.  I t  will be, 
if the last  opera t ion performed on  the LSG was initializing, 

incrementing, incrementing to or past a datum, or increment- 

ing past a datum as these operat ions  are described below. 
I t  may  not  be, if the last  opera t ion was checki~.7 a datum 

against the LSG or some operat ion not  defined here. The  

1 If the ILSG is ordered on the size of the sets to be generated by 
the component LSGs, smallest first, all operations on the ILSG 
will be significantly faster than otherwise. 

Step 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

L1 = {0, 1, 2, 5, 
5 1  --  5 2  

6, 8, 9} L~ = {0, 1 ,2 ,3 ,7 ,9}  
DLSG Generated set 

(D 1:0") 
(n 1:0, 2:0) 
(D 1:1, 2:0) 
(D 1:1, 2:1) 
(V 1:2, 2:1) 
(D 1:2, 2:2) 
(D 1:5, 2:2) 
(D 1:5, 2:7) 
(V 1:6, 2:7) 
(D 1:8, 2:7) 
(D 1:8, 2:9) 

15} 
15, 6} 
15, 6} 
15, 6, 8} 
15, 6, 8} (D 1:9, 2:9) 

the PLSG for L, finishes 

* A P L S G  will be represented as a list  set identifier followed by " : "  followed 
b y  the d a t u m  of the P L S G .  

FIG. 1. Example of a DLSG being used to generate a set which is 
the difference between two sets 

L1 U L2 U L3 U L4 
L~ = {0, 1 , 2 , 5 , 6 , 8 , 9 }  L s =  {2 ,3 ,6 ,8 ,9}  
L 2 =  {0 ,2 ,3 ,4 ,5}  L4=  {0, 1, 2 ,3 ,7 ,9}  

Step ULSG Generated set 

1 (v 1:0) { } 
2 (v 1:0, 2:2) { } 
3 (v 1:0, 2:2, 3:3) { } 
4 (u 1:0, 4:1, 2:2, 3:3) {0} 
5 (~ 4:1, 2:2, 3:3, 1:5) {0, 1} 
6 (v 2:2, 3:3, 1:5, 4:7) {0, 1, 2} 
7 (v 3:3, 2:4, 1:5, 4:7) {0, 1, 2, 3} 
8 (v 2:4, 1:5, 3:6, 4:7) {0, 1, 2, 3, 4} 
9 (u 1:5, 3:6, 4:7) {0, 1, 2, 3, 4, 5} 

10 (v 3:6, 4:7, 1:8) {0, 1, 2, 3, 4, 5, 6} 
11 (v 4:7, 1:8, 3:9) {0, 1, 2, 3, 4, 5, 6, 7} 
12 (v 1:8, 3:9) {0, 1, 2, 3, 4, 5, 6, 7, 8} 
13 (v 3:9) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
14 finishes 

FIG. 2. Example of a ULSG being used to generate a set which is 
the union of four sets 

datum of a PLSG or a ULSG will always be an element of 
the list set being generated. 

The  operations described below, except initialization, 
may be performed repeatedly on an LSG in order to 
consider successive elements in a list set. The  elements 
will be generated in the order used for ordering the list 
sets, and once passed, an element will not again be the 
datum of the LSG. Thus, eventually, an LSG will have 
been moved past all the elements of the list set it generates. 
When this occurs, we say the LSG is finished. An LSG 
may finish during any of the operations described below, 
in which case the operation concludes, returning an appro- 
priate flag. Instead of giving the finishing conditions in 
every algorithm below, we give them here once since they 
are the same for all. 

D4. Finishing conditions are defined as follows: 

1. A PLSG finishes when an attempt is made to increment it 
when it already points at the last element of its list set. 
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L, N L~ N L8 N L4 
L, = {0, 1, 2, 5, 6, 8, 9} L3 = {2, 3, 6, 8, 9} 
L2 = {0,2 ,3 ,4 ,5} L , =  {0, 1 ,2 ,3 ,7 ,9}  

Step IILSG Generated sel 

1 (x 1:0) { } 
2 (z 2:0, 1:0) { } 
3 (x 3:2, 2:0, 1:0) { } 
4 (z 4:2, 3:2, 2:0, 1:0) { } 
5 (x 4:2, 3:2, 2:2, I:0) { } 
6 (z 4:2, 3:2, 2:2, 1:2) {2} 
7 (z 4:3, 3:2, 2:2, 1:2) {2} 
8 (I 4:3, 3:3, 2:2, 1:2) {2} 
9 (r 4:3, 3:3, 2:3, 1:2) {2} 

10 (x 4:3, 3:3, 2:3, 1:5) {2} 
11 (x 4:7, 3:3, 2:3, 1:5) {2} 
12 (I 4:7, 3:8, 2:3, 1:5) {2} 
13 (x 4:9, 3:8, 2:3, 1:5) {2} 
14 (x 4:9, 3:9, 2:3, 1:5) {2} 
15 the PLSG for L2 finishes 

FIG. 3. Example of an ILSG being used to generate a set which is 
the intersection of four sets 

Step 

1 (D(U 1:2)) 
2 (n(v 2:0 
3 (D(v 2:0 
4 (o(v 2:0 
5 (o(u 2:1 
6 (o(v 2:1 
7 (D(U 1:2 
8 (D(V 1:2 
9 (D(U 2:3 

10 (D(V 2:3 
11 (O(V 2:3 
12 (D(V 1:6 
13 (D(V 1:6 
14 (O(V 2:7 
15 (b(v 1:8 
16 (~(v 1:8 
17 (D 2:9 (x 
18 2:9 
19 

(L1 U L2)- (L3 N LD 
L, -- {2, 3, 6, 8, 9} L3 = {0, i, 2, 5, 6, 8, 9} 
L2 = {0,1,2,3,7,9} L4 = {0,2,3,4,5,8} 

LSG Generated set 

1:2)) 
1:2) (r 3:0)) 
1:2) (i 4:0 3:0)) 
1:2) (14:0 3:0)) 
1:2) (x4:2 3:0)) 
2:3) (z 4:2 3:0)) 
2:3) (z4:2 3:2)) 
1:6) (i 4:2 3:2)) 
1:6) (x4:3 3:2)) 
1:6) (x 4:3 3:5)) 
2:7) (x4:3 3:5)) 
2:7) (z 4:8 3:5)) 
1:8) (I 4:8 3:5)) 
2:9) (x4:8 3:5)) 
2:9) (I 4:8 3:8)) 

4:8, 3:8)) 

{} 
{} 
{} 
{} 
{} 
{1} 
{i} 
{1} 
{1} 
{I} 
{i, 3} 
{1, 3} 
{I, 3, 6} 
{1, 3, 6, 7} 
{1, 3, 6, 7} 
{1, 3, 6, 7} 
{1, 3, 6, 7} 
{I, 3, 6, 7, 9} 

finishes {1, 3, 6, 7, 9} 

FIG. 4. An example using all three LSGs 

2. A DLSG finishes when its first LSG finishes. 

3. A ULSGfinishes when it is composed of one LSG and that LSG 
finishes. 

4. An ILSGfinishes when any of its LSGs finishes. 

I n  two cases an  LSG may  be discarded in  favor of a 
component  LSG:  (1) if the second LSG of a D L S G  
finishes, the first LSG replaces the  D L S G ;  (2) when  a 

U L S G  is composed of only  one LSG, t h a t  LSG is used in  
place of the ULSG.  These cases may  arise dur ing  the algo- 
r i thms described below, bu t  we do not  men t ion  t h e m  again. 

The  first a lgor i thm to be described is initializing an 
LSG. W h e n  an  LSG is initialized, its d a t u m  will be the 

first e lement  of the list set the LSG generates.  I f  t ha t  list 
set is null ,  the LSG will finish dur ing  the ini t ia l izat ion 
process. 

A1. Initializing an LSG 
1. PLSG: Initialize the reader so that it points at the first ele- 

ment of its list. 

2. DLSG (see Figure 1 steps 1-8): 
(a) Initialize the first LSG. 
(b) Initialize the second LSG at or past the datum of the 

first (i.e. its datum will be equal to or larger than the 
datum of the first LSG). 

(c) If the data of the two LSGs are equal, increment the 
DLSG. 

3. ULSG (see Figure 2 steps 1-4) : 
Initialize each LSG in turn, placing them in the ULSG in the 
proper order (but not placing one that finishes). If an LSG is 
initialized with a datum equal to the datum of an LSG already 
in the ULSG, increment it until it has a datum not already 
represented. Then place it in the ULSG in the proper order. 

4. ILSG (see Figure 3 steps 1-6): 
(a) Initialize one LSG and place it in the ILSG. 
(b) Initialize each successive LSG (in any order) at or past 

the datum of the previous LSG and place it as the first 
LSG of the ILSG. 

(c) When all LSGs have been initialized and inserted, if their 
data are not all equal, increment the ILSG to or past the 
datum of its first LSG. 

Once an  LSG is init ialized, i t  can be repeatedly incre- 
mented, and  after  each step its d a t u m  will be the  next  
greatest  e lement  of the list set it  generates (see Figures 
1-3). I f  some operat ion was performed on  an  LSG so 
t h a t  its d a t u m  is no t  an  e lement  of the set it  generates, and  
the  LSG is t hen  incremented ,  its d a t u m  after being incre- 
mented  will be the  smallest  e lement  of the  set i t  generates 
which is larger t h a n  the  d a t u m  of the LSG before it  was 
incremented.  

A2. Incrementing an LSG 
1. PLSG: 

The reader is incremented so that it points at the next ele- 
ment in its list. 

2. DLSG: 
(a) Increment the first LSG. 
(b) Check the current datum of the first LSG against the 

second LSG. If the check fails, the increment is done. 
If the check succeeds, go back to step (a). 

3. ULSG: 
(a) Remove the first LSG from the ULSG. 
(b) Increment the LSG removed in step (a). If it finishes, the 

increment is done. 
(c) If the datum of the LSG incremented in step (b) is equal 

to the datum of any other LSG in the ULSG, go to step 
(b). 

(d) Return the LSG to the ULSG in its proper order accord- 
ing to its current datum. 

4. ILSG: 
(a) Increment the first LSG of the ILSG. 
(b) Let D be the datum of the first LSG and i be 1. 
(c) Let i = i --I- 1. 
(d) If there is no ith LSG the increment is done. 
(e) Increment the ith LSG to or past D. 
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(f) If the datum of the i th LSG equals D, go to step (c). 
(g) Let D be the datum of the i th LSG and i be 0. 
(h) Go to step (c). 

T h e r e  are  t imes  when  we are  no t  in te res ted  in the  nex t  
e lement  to  be genera ted  b y  an  L S G  b u t  in t he  nex t  ele- 
m e n t  equal  to  or  g rea te r  t h a n  a g iven  one (e.g. A2.4(e))  
or  t he  next  e lement  s t r ic t ly  g rea te r  t h a n  a g iven one. S u c h  
an  e lement  could be found  b y  r epea t ed ly  inc rement ing  the  
LSG,  b u t  i t  wou ld  be more  efficient to  m a k e  full u~se of the  
i n fo rma t ion  of w h a t  d a t u m  we wish to  equal  or  exceed 
and  i nc r emen t  t he  L S G  to or  pa s t  (or j u s t  pas t )  the  d a t u m  
in one opera t ion .  

A3. Incrementing an LSG (to or) past a datum, D 
1. PLSG: 

Increment the reader (zero or more times) until it  points to 
an element whose datum is (equal to or) greater than D. 

2. DLSG: 
(a) Increment the first LSG (to or) past D. 
(b) Check the datum of the first LSG against the second LSG. 

If the check is successful increment the DLSG. If the 
check is not successful, the increment is done. 

3. ULSG: 
(a) Remove the first LSG from the list. 
(b) Increment the LSG removed in step (a) (to or) past D. 

If it  is finished, go to step (e). 
(c) If the datum of the LSG incremented in step (b) is 

equal to the datum of any other LSG in the ULSG, incre- 
ment it. If this finishes the LSG, go to (e). 

(d) Return the LSG to its proper place in the ULSG accord- 
ing to its current datum. 

(e) If the datum of the LSG which is now first in the ULSG is 
not (equal to or) larger than D, go to step (a); otherwise 
the increment is done. 

4. ILSG: 
This is exactly the same as incrementing an ILSG (A2.4), 
except that in step (a), the first LSG is incremented (to or) 
past D. 

I f  i t  is des i red  to  de t e rmine  if a g iven e lement  is a 
m e m b e r  of the  set  genera ted  b y  an  LSG,  th is  can,  in mos t  
cases, be done more  qu ick ly  t h a n  b y  inc remen t ing  the  
L S G  to or  pa s t  t he  e lement  and  t hen  looking a t  tlhe d a t u m  
of the  LSG,  if i t  is accep tab le  t h a t ,  when  the  check is 
finished, t he  d a t u m  of the  L S G  migh t  no t  be  a m e m b e r  
of t he  set  i t  generates .  To subsequen t ly  p roduce  an  un-  

k n o w n  m e m b e r  of t he  set gene ra t ed  b y  the  LSG:, i t  would  
be  necessary  to  pe r fo rm one of the  inc remen t ing  epe ra t i ons  
on it.  

A4. Checking a datum, D, against an LSG 

1. PLSG: 
Increment the reader to or past D. If the reader finishes or i t  
ends up with a datum which is larger than D, the check is 
unsuccessful. If the PLSG ends up with a datum equal to D, 
the check is successful. 

2. DLSG: 
(a) Check D against the first LSG. If this check is unsuc- 

cessful, the check against the DLSG is unsuccessful. 
(b) If the check against the first LSG was successful, check D 

against the second LSG. If this check is successful, the 
check against the DLSG is unsuccessful and vice versa. 

3. ULSG: 
(a) If the datum of any LSG in the ULSG equals D, the check 

is successful. 
(b) Remove the first LSG from the ULSG. 
(c) Increment the LSG removed in step (b) to or past D. If it  

finishes, go to step (f). 
(d) If the datum of the LSG incremented in step (c) is equal 

to the datum of any other LSG in the ULSG, increment it. 
If this finishes the LSG, go to step (f). 

(e) Return the LSG to its proper place in the ULSG accord- 
ing to its current datum. 

(f) If the datum of the LSG incremented in step (c) was equal 
to D after it  was incremented, the check is successful. 
Otherwise, if the datum of the LSG, which is now first in 
the ULSG, is larger than D, the check is unsuccessful. 
If neither of the above two cases holds, go to step (b). 

4. ILSG: 
Check D against each LSG that makes up the ILSG in turn. As 
soon as one is found for which the check is unsuccessful, the 
check against the ILSG is unsuccessful. If all checks are suc- 
cessful, the check against the ILSG is successful. 

I t  should  be  r e m e m b e r e d  t h a t  t he  l ist  sets  a re  o rde red  
and  the  L S G s  genera te  t h e m  in order .  T h e  on ly  w a y  to 
genera te  all  t he  me mbe r s  of a set  is b y  successive incre-  
men t ing  wi th  no o the r  ope ra t ions  in te rposed .  A n  L S G  
canno t  be " b a c k e d  u p "  to an e lement  i t  has  a l r e ady  passed.  
I f  severa l  e lements  are  to  be checked aga ins t  an  LSG,  
th is  m u s t  be  done in t he  p rope r  o rder  to avo id  the  necess i ty  
of in i t ia l iz ing severa l  LSGs.  

The  example  in F igure  4 shows how LSGs  are  used  to  
eva lua t e  a set  expression.  Because  of  the i r  genera l i ty ,  
LSGs  wou].d be ex t r eme ly  useful  as p a r t  of a l anguage  
sys t em al lowing sets as a d a t a  type .  Moreover ,  since a n y  
ordered ,  sequent ia l  file fits the  def ini t ion of l ist  set  g iven  
above ,  LSGs  m a y  be  used  for t r a d i t i o n a l  file hand l ing  and  
will  l ead  to  g rea t  efficiency when  a r b i t r a r y  number s  of 
files are  to  be h a n d l e d  s imul taneous ly .  F o r  these  purposes ,  
the  D L S G  is used  for pu rg ing  records  f rom a file, t he  U L S G  
is used  for merg ing  files 2 and  all  t he  LSGs  m a y  be  used  
for i n fo rma t ion  re t r ieval .  
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The ULSG merges in the manner described as "m-way merge with 
ranking sort" [1]. 
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