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A b s t r a c t  

SNePS, the Semantic Network Processing System, 
has been designed to be a system for represent- 
ing the beliefs of a natural-language-using intel- 
ligent system (a "cognitive agent").  This paper  
expands on this motivation,  discusses some of the 
system features tha t  derived from this motivation, 
and presents four case studies of interactions with 
SNePS demonstrat ing some of these features. The 
features demonstra ted in the case studies are: non- 
s tandard  connectives; the use of recursive rules; the 
Unique Variable Binding Rule, that  says tha t  two 
variables in a rule cannot be ins tant ia ted to the 
same term; and discussing sentences and proposi- 
tions in natural  language. 

1 S y s t e m  D e s c r i p t i o n  

SNePS, the Semantic Network Processing System [9, 15, 17], 
has been designed to be a system for representing the beliefs 
of a natural-language-using intelligent system (a "cognitive 
agent").  It has always been the intention that  a SNePS- 
based "knowledge base" would ul t imately be built, not by a 
programmer or knowledge engineer entering representations 
of knowledge in some formal language or da ta  entry system, 
but  by a human informing it using a natural  language (NL) 
(generally supposed to be English), or by the system reading 
books or articles tha t  had been prepared for human readers. 
Because of this motivation, the cri teria for the development of 
SNePS have included: i t  should be able to represent anything 
and everything expressible in NL; it should be able to repre- 
sent generic, as well as specific information; i t  should be able 
to use the generic and the specific information to reason and 
infer information implied by what  it has been told; it cannot 
count on any part icular  order among the pieces of informa- 
tion it is given; it  must  continue to act reasonably even if the 
information it is given includes circular definitions, recursive 
rules, and inconsistent information. 

More concretely, SNePS is a propositional semantic network 
Knowledge Representat ion/Reasoning (KRR) System. Like 
other semantic networks, the SNePS formalism consists of 
nodes and labelled, directed arcs. Unlike other semantic 
networks, propositions are exclusively represented by nodes. 
Nodes with no arcs emanat ing from them are called base 
nodes, and are taken to represent distinct entities. Nodes 
with arcs emanat ing from them are called molecular nodes, 
and are structurally defined by the network structure reach- 
able by following arcs in the forward directions. No two nodes 
have identical such structures.  The semantics of a node (what 
it  represents) is s t ructural ly  determined by the structure de- 
scending from it, and is assertionally determined by the net- 
work structure it is connected with by arcs that  point into it. 
I t  is noteworthy that  the s t ructural  information associated 
with a node cannot change, but that  the assertional informa- 
tion associated with it can change. Nodes represent all the 

entit ies the cognitive agent being modelled (constructed) can 
think about,  including individuals, classes, properties,  events, 
actions, propositions, rules, etc. All nodes are also terms of 
the SNePS formalism. This means that  they can be in "ar- 
gument" positions relative to other nodes. Le., SNePS can 
represent propositions about  propositions, and rules about 
rules without limit. 

We have developed SNePS notat ions for a generalization 
of Predicate Logic. Some nodes are distinguished as vari- 
ables, and there are structures for non-standard,  network- 
oriented propositional connectives and quantifiers. Variables 
can range over all nodes. Thus, the language is first-order if 
you remember that  all nodes are terms of the formalism, but  
looks higher order (in fact, naive), if you concentrate on the 
fact that  nodes are used to represent propositions. SNIP, the 
SNePS Inference Package, can interpret  rules, and forms the 
"inference engine" of the SNePS KRR system. 

SNePS 2.1, the current version of SNePS, contains SNeBR, 
the SNePS Belief Revision System [2], as par t  of it. Thus, 
when using SNePS, one is always working in a "Current Con- 
text" (CC), a set of hypothesis-propositions,  and in a "Cur- 
rent Belief Space," the set of believed propositions derived 
from subsets of the CC. All s tandard  network structure is 
definitional, in the sense that  if a node n is constructed in 
the network so as to represent the proposit ion P ,  that  does 
not, in itself, make P "believed by" the system. This s tatus is 
determined by a relationship between a proposition and the 
assumptions under which it was derived (its origin set). If 
the origin set of a proposition node is a subset of the CC, then 
the proposition represented by the node is currently believed 
by the system. 

Other aspects of SNePS will be discussed as they arise in the 
case studies below. 

2 C a s e  S t u d i e s  

2 .1  N o n - S t a n d a r d  C o n n e c t i v e s  

Since SNePS is a network formalism, my students  and I in- 
vented a set of non-standard proposi t ional  connectives that  
take sets of arguments,  and are generalizations of the stan- 
dard proposit ional connectives and quantifiers [8, 10, 17]. 
The usefulness of these connectives is shown in the following 
interaction, which shows SNIP solving a logic puzzle taken 
from [18, pp. 55-58]. SNePSUL, the SNePS User's Language 
[17] is used for input, and each input  is glossed in the com- 
ment before it with an English version. The SNePS prompt  
is "*'. CPU time is reported in seconds. This transcript ,  
and all t ranscripts  in this paper,  have been edited to fit on 
the short lines specified by the format of this paper.  

In part icular,  this interaction contains two uses of the nu- 
merical quantifier and several uses of the andor connective. 
The numerical quantifier k3~(x)R(x) : P (x)  means that  of 
the k individuals that  satisfy R, at least i and at most 
j also satisfy P.  It is represented by a node built with 
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the schema (build pevb z emin i emax j etot k &ant R 
cq P). The andor, ~{Pi ..... P,} means that at least i 
and at most ] of the n propositions are true. It is repre- 
sented by a node built with the schema (build rain i max ] 
arg (Pl ..... Pn)). 

* ;; Declare the arc labels to be used. 
(define member class employee job) 
(MEMBER CLASS EMPLOYEE JOB) 
CPU time : 0.06 

* ;; Roberta, Thelma, Steve, and Pete are people. 
(describe 
(assert member (Roberta Thelma Steve Pete) 

class person)) 
(MI! (CLASS PERSON) 

(MEMBER PETE ROBERTA STEVE THELMA)) 
(Mi~) 
CPU time : 0.22 

* ;; Chef, guard, nurse, telephone operator, 
;; police officer, teacher, actor, and boxer 
;; are jobs. 

(describe 
(assert 
member (chef guard nurse telephone\ operator 

police\ officer teacher actor boxer) 
class job)) 
(M2! (CLASS JOB) 

(MEMBER ACTOR BOXER CHEF GUARD NURSE 
POLICE OFFICER TEACHER 
TELEPHONE OPERATOR)) 

(M2!) 
CPU time : 0.44 

* ;; Every person has two jobs 
;; Uses the numerical quantifier: 
;; Of 8 jobs exactly 2 are held by *person 

(describe 
(assert 
forall Sperson 
ant (build member *person class person) 
cq (build pevb Sjob emin 2 emax 2 etot 8 

&ant (build member *job class job) 
cq (build employee *person job *job)))) 

(M3! (FORALL VI) 
(ANT (PI (CLASS PERSON) (MEMBER VI))) 
(CQ (P4 (PEVB V2) (EMIN 2) (EMAX 2) (ETOT 8) 

(&ANT (P2 (CLASS JOB) (MEMBER V2)) )  
(CO (P3 (EMPLOYEE VI) (JOB V2)))))) 

(M3!) 
CPU time : 0.33 

* ; ;  Every j o b  i s  held by exactly one person. 
(describe 
(assert 
forall *job 
ant (build member *job class job) 
cq (build pevb *person emin I emax 1 etot 4 

&ant (build member *person class person) 
cq (build employee *person job *job)))) 

(M4! (FORALL V2) 
(ANT (P2 (CLASS JOB) (MEMBER V2))) 
(CQ (P5 (PEVB VI) (EMIN I) (EMAX I) (ETOT 4) 

(&ANT (Pl (CLASS PERSON) (MEMBER Vl))) 
(CQ (P3 (EMPLOYEE V1) (JOB V2)))))) 

(M4~) 
CPU time : 0.28 

* ;; Roberta and Thelma are female. 
(describe (assert member (Roberta Thelma) 

class female)) 
(M5! (CLASS FEMALE) (MEMBER ROBERTA THELMA)) 
(M5~) 
CPU t i m e  : 0 .11  

* ;; Steve and Pete are male. 
(describe (assert member (Steve Pete) class male)) 

(M6! (CLASS MALE) (MEMBER PETE STEVE)) 
(M6~) 
CPU time : 0.12 

* ;; No woman is a nurse, actor, 
;; or telephone operator. 
;; Uses ANDOR to express NOR. 
; ;  (At least O, and at most 0 
;; of the arguments are true.) 

(describe 
(assert 
forall Swoman 
ant (build member *woman class female) 
cq (build min 0 max 0 

arg ((build employee *woman job nurse) 
(build employee *woman job actor) 
(build employee *woman 

job telephone\ operator))))) 
(MT! (FORALL V3) 

(ANT (P6 (CLASS FEMALE) (MEMBER V3))) 
(CQ (PIO (MIN O) (MAX O) 

(ARG (P7 (EMPLOYEE V3) (JOB NURSE)) 
(P8 (EMPLOYEE V3) (JOB ACTOR)) 
(P9 (EMPLOYEE V3) 

(JOB TELEPHONE OPERATOR)))))) 
(NZ~) 

CPU time : 0.35 

* ; ;  No male i s  a chef. 
(describe 
(assert feral1 Sman 

ant (build member *man class male) 
cq (build min 0 max 0 

arg (build employee *man job chef)))) 
(M8! (FORALL V4) 

(ANT (PII (CLASS MALE) (MEMBER V4))) 
(CO (P13 (MIN O) (MAX O) 

(ARO (P12 (EMPLOYEE V4) (JOB CHEF)))))) 
(MB~) 
CPU time : 0.25 

* ;; Roberta is not a boxer. 
(describe 
(assert min 0 max 0 

arg (build employee Roberta job boxer))) 
(MIO~ (MIN O) (MAX O) 

(ARO (M9 (EMPLOYEE ROBERTA) (JOB BOXER)))) 
(MIO!) 
CPU time : 0.16 

* ; ;  P e t e  i s  n e i t h e r  t h e  n u r s e ,  t h e  p o l i c e  o f f i c e r ,  
;; nor the teacher. 

(describe 
(assert min 0 max 0 

arg ((build employee Pete job nurse) 
(build employee Pete 

job police\ officer) 
(build employee Pete job teacher)))) 
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(M14! (MIN O) (MAX O) 
(ARG (MII (EMPLOYEE PETE) (JOB NURSE)) 

(M12 (EMPLOYEE PETE) 
(JOB POLICE OFFICER)) 

(M13 (EMPLOYEE PETE) (JOB TEACHER)))) 
(M14!) 
CPU time : 0.27 

* ;; Roberta is neither the chef, 
;; nor the police officer. 

(describe 
(assert min 0 max 0 

arg ((build employee Roberta job chef) 
(build employee Roberta 

job police\ officer)))) 
(M17! (MIN O) (MAX O) 

(ARG (M15 (EMPLOYEE ROBERTA) (JOB CHEF)) 
(M16 (EMPLOYEE ROBERTA) 

(JOB POLICE OFFICER)))) 
(Mi7!) 
CPU time : 0.23 

* ;; No one is both the chef and the police officer 
;; (because they were seen together.) 
;; Uses ANDOR to express NAND. 

(describe 
(assert 
forall *person 
ant (build member *person class person) 
cq (build min 0 max 1 

arg ((build employee *person job chef) 
(build employee *person 

job police\ officer))))) 
(MI8! (FORALL VI) 

(ANT (P1 (CLASS PERSON) (MEMBER V l ) ) )  
(CQ (P16 (MIN O) (MAX 1) 

(ARG (P14 (EMPLOYEE Vl) 
(JOB CHEF)) 

(P15 (EMPLOYEE V1) 
(JOB POLICE OFFICER))))))  

(MI8!) 
CPU time : 0.27 

* ;; Infer at least the 8 jobs 
(describe (deduce (8 O) employee *person job *job)) 
(MiO! (MIN O) (MAX O) 

(AHG (M9 (EMPLOYEE ROBERTA) (JOB BOXER)))) 
(MIO0! (EMPLOYEE PETE) (JOB ACTOR)) 
(MIOI! (EMPLOYEE PETE) (JOB TELEPHONE OPERATOR)) 
(Mig! (MIN O) (MAX O) 

(ARG (M15 (EMPLOYEE ROBERTA) (JOB CHEF)))) 
(M20! (MIN O) (MAX O) 

(ARG (M16 (EMPLOYEE ROBERTA) 
(JOB POLICE OFFICER)))) 

(M21! (MIN O) (MAX O) 
(ARG (Mll (EMPLOYEE PETE) (JOB NURSE)))) 

(M22! (MIN O) (MAX O) 
(ARG (MI2 (EMPLOYEE PETE) 

(JOB POLICE OFFICER)))) 
(M23! (MIN O) (MAX O) 

(ARG (Mi3 (EMPLOYEE PETE) (JOB TEACHER)))) 
(M50! (EMPLOYEE THELMA) (JOB CHEF)) 
(M55! (EMPLOYEE STEVE) (JOB POLICE OFFICER)) 
(M67! (MIN 0) (MAX 0) 

(ARG (M59 (EMPLOYEE ROBERTA) (JOB NURSE)))) 
(M68! (MIN O) (MAX O) 

(ARG (M60 (EMPLOYEE ROBERTA) (JOB ACTOR)))) 

(M69! (MIN O) (MAX O) 
(ARG (M61 (EMPLOYEE ROBERTA) 

(JOB TELEPHONE OPERATOR)))) 
(M7ot (MIN 0) (MAX o) 

(ARG (M63 (EMPLOYEE THELMA) (JOB NURSE)))) 
(MTI! (MIN O) (MAX O) 

(ARO (M64 (EMPLOYEE THELMA) (JOB ACTOR)))) 
(M72! (MIN O) (MAX O) 

(ARG (M65 (EMPLOYEE THELMA) 
(JOB TELEPHONE OPERATOR)))) 

(M731 (EMPLOYEE ROBERTA) (JOB GUARD)) 
(M74! (EMPLOYEE ROBERTA) (JOB TEACHER)) 
(M75! (EMPLOYEE STEVE) (JOB NURSE)) 
(M77! (MIN O) (MAX O) 

(ARG (M76 (EMPLOYEE PETE) (JOB GUARD)))) 
(M79! (MIN O) (MAX O) 

(ARG (M78 (EMPLOYEE THELMA) (JOB GUARD)))) 
(MS1! (MIN O) (MAX O) 

(ARG (M80 (EMPLOYEE STEVE) (JOB GUARD)))) 
(M83! (MIN O) (MAX O) 

(ARG (M82 (EMPLOYEE THELMA) (JOB TEACHER)))) 
(ME5~ (KIN o) (MAX 0) 

(ARG (MR4 (EMPLOYEE STEVE) (JOB TEACHER)))) 
(M88! (MIN O) (MAX O) 

(ARG (M48 (EMPLOYEE PETE) (JOB CHEF)))) 
(M89! (MIN O) (MAX O) 

(ARG (M54 (EMPLOYEE STEVE) (JOB CHEF)))) 
(M90! (MIN O) (MAX O) 

(ARG (MS1 (EMPLOYEE THELMA) 
(JOB POLICE OFFICER)))) 

(M92! (MIN 0) (MAX 0) 
(ARG (M91 (EMPLOYEE STEVE) (JOB ACTOR)))) 

(M94! (MIN O) (MAX O) 
(ARG (M93 (EMPLOYEE STEVE) 

(JOB TELEPHONE OPERATOR)))) 
(M95! (EMPLOYEE THELMA) (JOB BOXER)) 
(M97! (MIN O) (MAX O) 

(ARG (M96 (EMPLOYEE PETE) (JOB BOXER)))) 
(M99! (MIN 0) (MAX 0) 

(ARG (M98 (EMPLOYEE STEVE) (JOB BOXER)))) 
(MIO! MIO0! MIOI! MI9! M20! M21! M22! M23! M50! 

M55! M67! M68! M69! M70! M71! M72! M73! M74! 
M75! M77! M79! M81! M83! M85! M88! M89! M90! 
M92! M94! M95! M97! M99!) 

CPU t ime : 71.48 

* ; ;  L i s t  t h e  8 j o b - h o l d i n g  p r o p o s i t i o n s .  
( d e s c r i b e  ( f i n d a s s e r t  employee ?p j o b  ? j ) )  
(MiO0! (EMPLOYEE PETE) (JOB ACTOR)) 
(MIOi! (EMPLOYEE PETE) (JOB TELEPHONE OPERATOR)) 
(M50! (EMPLOYEE THELMA) (JOB CHEF)) 
(M55! (EMPLOYEE STEVE) (JOB POLICE OFFICER)) 
(M73! (EMPLOYEE ROBERTA) (JOB GUARD)) 
(M74! (EMPLOYEE ROBERTA) (JOB TEACHER)) 
(M75! (EMPLOYEE STEVE) (JOB NURSE)) 
(M95! (EMPLOYEE THELMA) (JOB BOXER)) 
(MlO0! MlOl! MS0! M55! M73! M74! M75! M95!) 
CPU time : 0.45 

2 .2  R e c u r s i v e  R u l e s  

If information comes from human informants,  and from writ- 
ten material  intended for human consumption, we cannot 
guarantee that  rules will not be expressed in recursive, or 
even circular ways. The initial design of SNIP took into ac- 
count being able to operate  in the presence of recursive rules 
[5, 13]. 
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The following interaction shows the use of a recursive 
rule. The interaction is carried out in SNePSLOG, a logic- 
programming-like interface to SNePS [3, 4, 14]. User input 
is on the lines beginning with " : ' ,  which is the SNePSLOG 
prompt. System output  is on the other lines. 

Notice that the first input  is expressed as a second-order rule. 
This is a natural  way to express many rules, and SNePS 
and SNePSLOG encourage it. Predicates, however, are rep- 
resented as SNePS nodes, which are terms of the SNePS 
formalism. This rule also uses the SNePS connective and. 
entailment. {A1 . . . . .  A , }  ~ {C1 . . . . .  Cm} means that the 
conjunction of the antecedents implies the conjunction of the 
consequents. 

: all(r) (transitive(r) 
ffi> all(x, y, z) ((r(x,y), r(y,z)} 

~=> {r(x,z)})). 
ali(R)(TRANSITIVE(R) 

-> (ali(X,Y,Z)({R(X,Y),R(Y,Z)} 
~=> {R(X,Z)}))) 

CPU time : 0.23 

: transitive(bigger). 
TRANSITIVE(BIGGER) 

CPU time : 0.06 

: b i g g e r ( e l e p h a n t ,  ho r s e ) .  
BIGGER(ELEPHANT,HORSE) 

CPU time : 0.07 

: bigger(horse, sheep). 
BIGGER(HORSE,SHEEP) 

CPU time : 0.06 

: bigger(sheep, dog). 
BIGGER(SHEEP,DOG) 

CPU time : 0.07 

: bigger(dog, cat). 
BIGGER(DOG,CAT) 

CPU time : 0.05 

: b i g g e r ( c a t ,  mouse). 
BIGGER(CAT,MOUSE) 

CPU time : 0.06 

: b igger(mouse,  s p i d e r ) .  
BIGGER(MOUSE,SPIDER) 

CPU time : 0.06 

: b i g g e r ( s p i d e r ,  f l y ) .  
BIGGER(SPIDER,FLY) 

CPU t i m e  : 0.06 

In most system, a recursive rule will lead to an infinite loop 
for some query. Usually, this depends on whether the rule 
is left- or right-recursive, and on where the open variables 
are in the query. Our rule above, of course, is both left- and 
right-recursive, and below we demonstrate queries that have 
all possible combinations of constants and variables. 

: bigger(dog, mouse)? 
BIGGER(DOG,MOUSE) 

CPU time : 40.90 

: b igge r ( ?x ,  sheep)? 
BIGGER(ELEPHANT,SHEEP) 
BIGGER(HORSE,SHEEP) 

CPU time : 14.13 

: bigger(mouse, ?x)? 
BIGGER(MOUSE,FLY) 
BIGGER(MOUSE,SPIDER) 

CPU time : 14.72 

b i g g e r ( ? x ,  ?y)?  
BIGGER(DOG,MOUSE) 
BIGGER(DOG,SPIDER) 
BIGGER(DOG,FLY) 
BIGGER(SHEEP,MOUSE) 
BIGGER(HORSE,MOUSE) 
BIGGER(ELEPHANT,MOUSE) 
BIGGER(MOUSE,FLY) 
BIGGER(SHEEP,SPIDER) 
BIGGER(HORSE,DOG) 
BIGGER(ELEPHANT,SHEEP) 
BIGGER(SHEEP,CAT) 
BIGGER(SHEEP,FLY) 
BIGGER(CAT,SPIDER) 
BIGGER(ELEPHANT,SPIDER) 
BIGGER(HORSE,SPIDER) 
BIGGER(ELEPHANT,CAT) 
BIGGER(ELEPHANT,FLY) 
BIGGER(CAT,FLY) 
BIGGER(HORSE,FLY) 
BIGGER(ELEPHANT,HORSE) 
BIGGER(ELEPHANT,DOG) 
BIGGER(HORSE,CAT) 
BIGGER(HORSE,SHEEP) 
BIGGER(SHEEP,DOG) 
BIGGER(DOG,CAT) 
BIGGER(CAT,MOUSE) 
BIGGER(MOUSE,SPIDER) 
BIGGER(SPIDER,FLY) 

CPU time : 7.61 

2.3  T h e  U n i q u e  V a r i a b l e  B i n d i n g  R u l e  

An AND gate has two input  ports and one output port. If 
the input ports are high and the output  port is low, then 
the AND gate is faulty. A straightforward translation of the 
latter rule into FOPC might be 

V(g, x, y, z)[AN DGATE(g)  A I N PO RT(x,  g) 
A INPORT(y ,  g) A OUTPORT(z ,  g) 
=~ [HIGH(x) A HIGH(y)  A LOW(z)  

=~ FAULTY(g)]] 

However, this rule omits the antecedent literal z # y, and so 
could be fired by an AND gate with a high and a low input 
and a low output. 

I argued in [11] that this situation is so common in naturally 
expressed rules that we must conclude that in naturally ex- 
pressed rules there is an assumption that different variables 
must bind to different terms. (The paper cited is actually 
more involved than this, but space precludes a more exten- 
sive discussion in this paper.) I therefore implemented what 
I call the "Unique Variable Binding Rule" (UVBR) in the 
current version of SNIP. The interaction below demonstrates 
the working of the UVBR on the AND gate example. There 
are three other example interactions in the cited paper. 
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: all(g, x, y, z) 
({ANDGATE(g), INPORT(x, g), 

INPORT(y, g), OUTPORT(z, g)} 
~-> {{HIGH(x), HIGH(y), LOW(z)} 

&-> {FAULTY(g)}}). 
ali(G,X,Y,Z) 

({ANDGATE(G),INPORT(X,G),INPORT(Y,G), 
OUTPORT(Z,G)} 

~=> {{HIGH(X),HIGH(Y),LOW(Z)} 
&=> {FAULTY(G)}}) 

CPU time : 0.37 

The gate Ol is not faulty, but would be 
inferred to be faulty without UVBR. 

: ANDGATE(GI). 
ANDGATE(GI) 

ePu time : 0.07 

: INPORT(GII1, Ol). 
INPOHT(GII1,GI) 

CPU time : 0.06 

: INPORT(GII2, Ol). 
INPORT(GII2,OI) 

CPU time : 0.06 

: 0UTPORT(G10, Ol). 
OUTPORT(GIO,GI) 

CPU time : 0.05 

: HIGH(GIII). 
HIGH(GII1) 

CPU time : 0.06 

: LOW(OlI2). 
LOW(GII2) 

OPU time : 0.05 

: LOW(GIO). 
LOW(GIO) 

CPU time : 0.06 

Gate G2 is faulty. 

: ANDGATE(G2) 
ANDGATE(G2) 

CPU time : 0.07 

: INPORT(G2II, O2). 
INPORT(G2II,G2) 

CPU time : 0.08 

: INPORT(G212, O2). 
INPORT(G212,G2) 

CPU time : 0.06 

: OUTPORT(G20, O2). 
OUTPORT(G20,G2) 

CPU time : 0.07 

: HIGH(G2II). 
HIGH(G2II) 

CPU time : 0.06 

: HIGH(G212). 
HIGH(G212) 

CPU time : 0.07 

: LOW(G20). 
LOW(G20) 

CPU time : 0.06 

With UVBR, when we ask for faulty gates, 
only gate G2 is found. 

: FAULTY(?G)? 
FAULTY(G2) 

CPU time : 3.84 

Although UVBR seems to be correct for modelling human 
reasoning, it makes SNePSLOG confusing as a Logic Pro- 
gramming language. For example, the Logic Programmers' 
favorite example of append does not work: 

: a l l ( l l ) ( L i s t ( l l )  => A p p e n d ( I n i l l ,  11, 11) ) .  
a l l (L t ) (LIST(L1)  => APPEND(nil,Lt,L1)) 

CPU time : 0.14 

: a l l ( x ,  11, 12, 13) 
( { 0 b j e c t ( x ) ,  Append( l l ,  12, 13)} 
k=> {Append(Cons(x, 11),  12, Cons(x, 13))}). 

ali(X,L1,L2,L3) 
({OBJECT(X),APPEND(L1,L2,L3)} 
~=> {APPEND(CONS(X,LI),L2,CONS(X,L3))}) 

CPU time : 0.26 

: Object(Inill). 
OBJECT(nil) 

CPU time : 0.04 

: Object(a). 
OBJECT(A) 

CPU time : 0.14 

: 0 b j e c t ( b ) .  
OBJECT(B) 

CPU time : 0.07 

: L i s t (Cons (a ,  I n i l l ) ) .  
LIST(CONS(A,nil)) 

CPU time : 0.07 

: L i s t (Cons (b ,  I n i l l ) ) .  
LIST(CONS(B,nil)) 

CPU time : 0.09 

: A p p e n d ( l n i l l ,  Cons(b, I n i l l ) ,  ?1)?  

CPU time : 0.27 

: Append(Cons(a, I n i l l ) ,  Cons(b, I n i l l ) ,  ?1)?  

CPU time : 0.65 

Neither of those two queries worked, because they required 
Cons(b, n i l )  and a variable to be bound to the same vari- 
able, 11, in the first rule. However, if we ask this question as 
a True/False question, it can be answered: 

: A p p e n d ( [ n i l l ,  Cons(b, I n i l l ) ,  Cons(b, I n i l l ) ) ?  
APPEND(nii,CONS(B,nil),CONS(B,nil)) 

CPU time : 0.34 

Also, if we add a rule that explicitly allows the second and 
third argument of Append to be the same, the recursive ques- 
tion can be answered: 
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: a l l ( x ,  11, 12) 
( { 0 b j e c t ( x ) ,  A p p e n d ( l l ,  12, 12)} 
&-> {Append(Cons(x, ii), 12, Cons(x, 12))}). 

alI(L2,X,LI)({OBJECT(X),APPEND(LI,L2,L2)} 
&-> {APPEND(CONS(X,LI),L2,CONS(X,L2))}) 

CPU time : 0.26 

: Append(Cons(a,  I n i l l ) ,  Cons(b,  I n i l l ) ,  ?1)?  
APPEND(CONS(A,nil),CONS(B,nil), 

CONS(A,CONS(B,nil))) 
CPU t ime : 1.93 

2 .4  D i s c u s s i n g  S e n t e n c e s  a n d  P r o p o s i t i o n s  

The interaction below shows SNePS with a part icular  chioce 
of arc labels, and a part icular  parsing/generat ion grammar 
for modelling a cognitive agent, CASSIE (see [12, 15]), dis- 
cussing a sentence and a proposition. This makes crucial use 
of the abil i ty of SNePS nodes to represent propositions and 
any other enti t ies about  which we can have beliefs. Here, we 
also use a SNePS node to represent a sentence. This also 
shows that  i t  is impor tan t  to retain a distinction between 
propositions and sentences. Soon Ae Chun and Nalcong Li 
wrote the sections of the CASSIE grammar  i l lustrated in 
this conversation, (extracted from [12], which contains sev- 
eral other CASSIE case studies). 

In this interaction, sentences are labelled before the prompt  
for reference in the discussion that  follows. 

I: Bill is Lucy's brother. 
I understand that Bill is Lucy's brother 

2: He is a professor. 
I understand that Bill is a professor 

3: Mary is his favorite student. 
I understand that Mary is Bill's favorite student 

4: Her dog is named Rover. 
I understand that Rover is Mary's dog 

5: John dislikes her dog. 
I understand that John dislikes Rover 

6: He said "her dog is ugly". 
I understand that John said " her dog is ugly ", 
meaning Rover is ugly 

7: That John is narrovminded 
is Bill's favorite proposition. 

I understand that that John is narrowminded 
is Bill's favorite proposition 

8: Mary believes Bill's favorite proposition. 
I understand that Mary believes of John 
that he is narrowminded 

Sentences (1)-(5) introduce the characters Bill, Mary, Rover, 
and John. In input  (6), CASSIE is informed that  John 
uttered a part icular  sentence, namely "her  dog i s  ugly."  
Just as people do, CASSIE recognizes the occurrence of a 
sentence being mentioned by the surrounding quote marks. 
The sentence is represented in SNePS as a sequential (cons- 
cell-like) s tructure of word nodes, as was described in [6, 7]. 
A sentence for CASSIE is just  another kind of entity, so there 
is nothing peculiar about believing that  it is the object of an 
act (i.e., John said it). However, CASSIE does more with 
sentences. After representing the sentence and the proposi- 

tion that  John said it, CASSIE analyzes the sentence as if 
it  had just  been ut tered to her. The main proposition that  
CASSIE understands the sentence to be expressing is also 
stored in SNePS, along with the proposition that  the sen- 
tence expresses that  proposition. All this is then output ,  as 
i l lustrated in output  (6). 

Of course, i t  is incorrect, in general, to analyze a mentioned 
sentence as if it had just  been used. I t  should be analyzed in 
the context in which it was actually used, if i t  was used at all. 
This requires further work. We have constructed CASSIE 
to do this in order to point out a direction for further re- 
search, and to i l lustrate the difference between beliefs about 
sentences and beliefs about  propositions. 

Inputs  (7) and (8) s ta te  beliefs about a proposition, namely 
that  John is narrowminded. Sentence (7) gives a property of 
the p ropos i t ion- - tha t  i t  is Bill's favorite proposition. Sen- 
tence (8) asserts tha t  Mary believes it, but  refers to the 
proposition indirectly, by the proper ty  it was given in sen- 
tence (7). It was claimed in [1] that  the interaction pair (7), 
(8) could not be carried out in SNePS in a semantically con- 
sistent way; however, this interaction shows that  it  can (Cf. 
[16]). 
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