
Case S tud ies of S N e P S
S t u a r t C. Shap i ro

D e p a r t m e n t of C o m p u t e r Science
and Cen te r for Cogni t ive Science

S t a t e Univers i ty of New York a t Buffalo
226 Bell Hal l

Buffalo, NY 14260
shapiro~cs.buffalo.edu

A b s t r a c t

SNePS, the Semantic Network Processing System,
has been designed to be a system for represent-
ing the beliefs of a natural-language-using intel-
ligent system (a "cognitive agent"). This paper
expands on this motivation, discusses some of the
system features tha t derived from this motivation,
and presents four case studies of interactions with
SNePS demonstrat ing some of these features. The
features demonstra ted in the case studies are: non-
s tandard connectives; the use of recursive rules; the
Unique Variable Binding Rule, that says tha t two
variables in a rule cannot be ins tant ia ted to the
same term; and discussing sentences and proposi-
tions in natural language.

1 S y s t e m D e s c r i p t i o n

SNePS, the Semantic Network Processing System [9, 15, 17],
has been designed to be a system for representing the beliefs
of a natural-language-using intelligent system (a "cognitive
agent"). It has always been the intention that a SNePS-
based "knowledge base" would ul t imately be built, not by a
programmer or knowledge engineer entering representations
of knowledge in some formal language or da ta entry system,
but by a human informing it using a natural language (NL)
(generally supposed to be English), or by the system reading
books or articles tha t had been prepared for human readers.
Because of this motivation, the cri teria for the development of
SNePS have included: i t should be able to represent anything
and everything expressible in NL; it should be able to repre-
sent generic, as well as specific information; i t should be able
to use the generic and the specific information to reason and
infer information implied by what it has been told; it cannot
count on any part icular order among the pieces of informa-
tion it is given; it must continue to act reasonably even if the
information it is given includes circular definitions, recursive
rules, and inconsistent information.

More concretely, SNePS is a propositional semantic network
Knowledge Representat ion/Reasoning (KRR) System. Like
other semantic networks, the SNePS formalism consists of
nodes and labelled, directed arcs. Unlike other semantic
networks, propositions are exclusively represented by nodes.
Nodes with no arcs emanat ing from them are called base
nodes, and are taken to represent distinct entities. Nodes
with arcs emanat ing from them are called molecular nodes,
and are structurally defined by the network structure reach-
able by following arcs in the forward directions. No two nodes
have identical such structures. The semantics of a node (what
it represents) is s t ructural ly determined by the structure de-
scending from it, and is assertionally determined by the net-
work structure it is connected with by arcs that point into it.
I t is noteworthy that the s t ructural information associated
with a node cannot change, but that the assertional informa-
tion associated with it can change. Nodes represent all the

entit ies the cognitive agent being modelled (constructed) can
think about, including individuals, classes, properties, events,
actions, propositions, rules, etc. All nodes are also terms of
the SNePS formalism. This means that they can be in "ar-
gument" positions relative to other nodes. Le., SNePS can
represent propositions about propositions, and rules about
rules without limit.

We have developed SNePS notat ions for a generalization
of Predicate Logic. Some nodes are distinguished as vari-
ables, and there are structures for non-standard, network-
oriented propositional connectives and quantifiers. Variables
can range over all nodes. Thus, the language is first-order if
you remember that all nodes are terms of the formalism, but
looks higher order (in fact, naive), if you concentrate on the
fact that nodes are used to represent propositions. SNIP, the
SNePS Inference Package, can interpret rules, and forms the
"inference engine" of the SNePS KRR system.

SNePS 2.1, the current version of SNePS, contains SNeBR,
the SNePS Belief Revision System [2], as par t of it. Thus,
when using SNePS, one is always working in a "Current Con-
text" (CC), a set of hypothesis-propositions, and in a "Cur-
rent Belief Space," the set of believed propositions derived
from subsets of the CC. All s tandard network structure is
definitional, in the sense that if a node n is constructed in
the network so as to represent the proposit ion P , that does
not, in itself, make P "believed by" the system. This s tatus is
determined by a relationship between a proposition and the
assumptions under which it was derived (its origin set). If
the origin set of a proposition node is a subset of the CC, then
the proposition represented by the node is currently believed
by the system.

Other aspects of SNePS will be discussed as they arise in the
case studies below.

2 C a s e S t u d i e s

2 .1 N o n - S t a n d a r d C o n n e c t i v e s

Since SNePS is a network formalism, my students and I in-
vented a set of non-standard proposi t ional connectives that
take sets of arguments, and are generalizations of the stan-
dard proposit ional connectives and quantifiers [8, 10, 17].
The usefulness of these connectives is shown in the following
interaction, which shows SNIP solving a logic puzzle taken
from [18, pp. 55-58]. SNePSUL, the SNePS User's Language
[17] is used for input, and each input is glossed in the com-
ment before it with an English version. The SNePS prompt
is "*'. CPU time is reported in seconds. This transcript ,
and all t ranscripts in this paper, have been edited to fit on
the short lines specified by the format of this paper.

In part icular, this interaction contains two uses of the nu-
merical quantifier and several uses of the andor connective.
The numerical quantifier k3~(x)R(x) : P (x) means that of
the k individuals that satisfy R, at least i and at most
j also satisfy P. It is represented by a node built with

S I G A R T Bul le t in Vol. 2, No. 3 128

the schema (build pevb z emin i emax j etot k &ant R
cq P). The andor, ~{Pi P,} means that at least i
and at most] of the n propositions are true. It is repre-
sented by a node built with the schema (build rain i max]
arg (Pl Pn)).

* ;; Declare the arc labels to be used.
(define member class employee job)
(MEMBER CLASS EMPLOYEE JOB)
CPU time : 0.06

* ;; Roberta, Thelma, Steve, and Pete are people.
(describe
(assert member (Roberta Thelma Steve Pete)

class person))
(MI! (CLASS PERSON)

(MEMBER PETE ROBERTA STEVE THELMA))
(Mi~)
CPU time : 0.22

* ;; Chef, guard, nurse, telephone operator,
;; police officer, teacher, actor, and boxer
;; are jobs.

(describe
(assert
member (chef guard nurse telephone\ operator

police\ officer teacher actor boxer)
class job))
(M2! (CLASS JOB)

(MEMBER ACTOR BOXER CHEF GUARD NURSE
POLICE OFFICER TEACHER
TELEPHONE OPERATOR))

(M2!)
CPU time : 0.44

* ;; Every person has two jobs
;; Uses the numerical quantifier:
;; Of 8 jobs exactly 2 are held by *person

(describe
(assert
forall Sperson
ant (build member *person class person)
cq (build pevb Sjob emin 2 emax 2 etot 8

&ant (build member *job class job)
cq (build employee *person job *job))))

(M3! (FORALL VI)
(ANT (PI (CLASS PERSON) (MEMBER VI)))
(CQ (P4 (PEVB V2) (EMIN 2) (EMAX 2) (ETOT 8)

(&ANT (P2 (CLASS JOB) (MEMBER V2)))
(CO (P3 (EMPLOYEE VI) (JOB V2))))))

(M3!)
CPU time : 0.33

* ; ; Every j o b i s held by exactly one person.
(describe
(assert
forall *job
ant (build member *job class job)
cq (build pevb *person emin I emax 1 etot 4

&ant (build member *person class person)
cq (build employee *person job *job))))

(M4! (FORALL V2)
(ANT (P2 (CLASS JOB) (MEMBER V2)))
(CQ (P5 (PEVB VI) (EMIN I) (EMAX I) (ETOT 4)

(&ANT (Pl (CLASS PERSON) (MEMBER Vl)))
(CQ (P3 (EMPLOYEE V1) (JOB V2))))))

(M4~)
CPU time : 0.28

* ;; Roberta and Thelma are female.
(describe (assert member (Roberta Thelma)

class female))
(M5! (CLASS FEMALE) (MEMBER ROBERTA THELMA))
(M5~)
CPU t i m e : 0 .11

* ;; Steve and Pete are male.
(describe (assert member (Steve Pete) class male))

(M6! (CLASS MALE) (MEMBER PETE STEVE))
(M6~)
CPU time : 0.12

* ;; No woman is a nurse, actor,
;; or telephone operator.
;; Uses ANDOR to express NOR.
; ; (At least O, and at most 0
;; of the arguments are true.)

(describe
(assert
forall Swoman
ant (build member *woman class female)
cq (build min 0 max 0

arg ((build employee *woman job nurse)
(build employee *woman job actor)
(build employee *woman

job telephone\ operator)))))
(MT! (FORALL V3)

(ANT (P6 (CLASS FEMALE) (MEMBER V3)))
(CQ (PIO (MIN O) (MAX O)

(ARG (P7 (EMPLOYEE V3) (JOB NURSE))
(P8 (EMPLOYEE V3) (JOB ACTOR))
(P9 (EMPLOYEE V3)

(JOB TELEPHONE OPERATOR))))))
(NZ~)

CPU time : 0.35

* ; ; No male i s a chef.
(describe
(assert feral1 Sman

ant (build member *man class male)
cq (build min 0 max 0

arg (build employee *man job chef))))
(M8! (FORALL V4)

(ANT (PII (CLASS MALE) (MEMBER V4)))
(CO (P13 (MIN O) (MAX O)

(ARO (P12 (EMPLOYEE V4) (JOB CHEF))))))
(MB~)
CPU time : 0.25

* ;; Roberta is not a boxer.
(describe
(assert min 0 max 0

arg (build employee Roberta job boxer)))
(MIO~ (MIN O) (MAX O)

(ARO (M9 (EMPLOYEE ROBERTA) (JOB BOXER))))
(MIO!)
CPU time : 0.16

* ; ; P e t e i s n e i t h e r t h e n u r s e , t h e p o l i c e o f f i c e r ,
;; nor the teacher.

(describe
(assert min 0 max 0

arg ((build employee Pete job nurse)
(build employee Pete

job police\ officer)
(build employee Pete job teacher))))

129 S I G A R T B u l l e t i n Vol. ?, No . 3

(M14! (MIN O) (MAX O)
(ARG (MII (EMPLOYEE PETE) (JOB NURSE))

(M12 (EMPLOYEE PETE)
(JOB POLICE OFFICER))

(M13 (EMPLOYEE PETE) (JOB TEACHER))))
(M14!)
CPU time : 0.27

* ;; Roberta is neither the chef,
;; nor the police officer.

(describe
(assert min 0 max 0

arg ((build employee Roberta job chef)
(build employee Roberta

job police\ officer))))
(M17! (MIN O) (MAX O)

(ARG (M15 (EMPLOYEE ROBERTA) (JOB CHEF))
(M16 (EMPLOYEE ROBERTA)

(JOB POLICE OFFICER))))
(Mi7!)
CPU time : 0.23

* ;; No one is both the chef and the police officer
;; (because they were seen together.)
;; Uses ANDOR to express NAND.

(describe
(assert
forall *person
ant (build member *person class person)
cq (build min 0 max 1

arg ((build employee *person job chef)
(build employee *person

job police\ officer)))))
(MI8! (FORALL VI)

(ANT (P1 (CLASS PERSON) (MEMBER V l)))
(CQ (P16 (MIN O) (MAX 1)

(ARG (P14 (EMPLOYEE Vl)
(JOB CHEF))

(P15 (EMPLOYEE V1)
(JOB POLICE OFFICER))))))

(MI8!)
CPU time : 0.27

* ;; Infer at least the 8 jobs
(describe (deduce (8 O) employee *person job *job))
(MiO! (MIN O) (MAX O)

(AHG (M9 (EMPLOYEE ROBERTA) (JOB BOXER))))
(MIO0! (EMPLOYEE PETE) (JOB ACTOR))
(MIOI! (EMPLOYEE PETE) (JOB TELEPHONE OPERATOR))
(Mig! (MIN O) (MAX O)

(ARG (M15 (EMPLOYEE ROBERTA) (JOB CHEF))))
(M20! (MIN O) (MAX O)

(ARG (M16 (EMPLOYEE ROBERTA)
(JOB POLICE OFFICER))))

(M21! (MIN O) (MAX O)
(ARG (Mll (EMPLOYEE PETE) (JOB NURSE))))

(M22! (MIN O) (MAX O)
(ARG (MI2 (EMPLOYEE PETE)

(JOB POLICE OFFICER))))
(M23! (MIN O) (MAX O)

(ARG (Mi3 (EMPLOYEE PETE) (JOB TEACHER))))
(M50! (EMPLOYEE THELMA) (JOB CHEF))
(M55! (EMPLOYEE STEVE) (JOB POLICE OFFICER))
(M67! (MIN 0) (MAX 0)

(ARG (M59 (EMPLOYEE ROBERTA) (JOB NURSE))))
(M68! (MIN O) (MAX O)

(ARG (M60 (EMPLOYEE ROBERTA) (JOB ACTOR))))

(M69! (MIN O) (MAX O)
(ARG (M61 (EMPLOYEE ROBERTA)

(JOB TELEPHONE OPERATOR))))
(M7ot (MIN 0) (MAX o)

(ARG (M63 (EMPLOYEE THELMA) (JOB NURSE))))
(MTI! (MIN O) (MAX O)

(ARO (M64 (EMPLOYEE THELMA) (JOB ACTOR))))
(M72! (MIN O) (MAX O)

(ARG (M65 (EMPLOYEE THELMA)
(JOB TELEPHONE OPERATOR))))

(M731 (EMPLOYEE ROBERTA) (JOB GUARD))
(M74! (EMPLOYEE ROBERTA) (JOB TEACHER))
(M75! (EMPLOYEE STEVE) (JOB NURSE))
(M77! (MIN O) (MAX O)

(ARG (M76 (EMPLOYEE PETE) (JOB GUARD))))
(M79! (MIN O) (MAX O)

(ARG (M78 (EMPLOYEE THELMA) (JOB GUARD))))
(MS1! (MIN O) (MAX O)

(ARG (M80 (EMPLOYEE STEVE) (JOB GUARD))))
(M83! (MIN O) (MAX O)

(ARG (M82 (EMPLOYEE THELMA) (JOB TEACHER))))
(ME5~ (KIN o) (MAX 0)

(ARG (MR4 (EMPLOYEE STEVE) (JOB TEACHER))))
(M88! (MIN O) (MAX O)

(ARG (M48 (EMPLOYEE PETE) (JOB CHEF))))
(M89! (MIN O) (MAX O)

(ARG (M54 (EMPLOYEE STEVE) (JOB CHEF))))
(M90! (MIN O) (MAX O)

(ARG (MS1 (EMPLOYEE THELMA)
(JOB POLICE OFFICER))))

(M92! (MIN 0) (MAX 0)
(ARG (M91 (EMPLOYEE STEVE) (JOB ACTOR))))

(M94! (MIN O) (MAX O)
(ARG (M93 (EMPLOYEE STEVE)

(JOB TELEPHONE OPERATOR))))
(M95! (EMPLOYEE THELMA) (JOB BOXER))
(M97! (MIN O) (MAX O)

(ARG (M96 (EMPLOYEE PETE) (JOB BOXER))))
(M99! (MIN 0) (MAX 0)

(ARG (M98 (EMPLOYEE STEVE) (JOB BOXER))))
(MIO! MIO0! MIOI! MI9! M20! M21! M22! M23! M50!

M55! M67! M68! M69! M70! M71! M72! M73! M74!
M75! M77! M79! M81! M83! M85! M88! M89! M90!
M92! M94! M95! M97! M99!)

CPU t ime : 71.48

* ; ; L i s t t h e 8 j o b - h o l d i n g p r o p o s i t i o n s .
(d e s c r i b e (f i n d a s s e r t employee ?p j o b ? j))
(MiO0! (EMPLOYEE PETE) (JOB ACTOR))
(MIOi! (EMPLOYEE PETE) (JOB TELEPHONE OPERATOR))
(M50! (EMPLOYEE THELMA) (JOB CHEF))
(M55! (EMPLOYEE STEVE) (JOB POLICE OFFICER))
(M73! (EMPLOYEE ROBERTA) (JOB GUARD))
(M74! (EMPLOYEE ROBERTA) (JOB TEACHER))
(M75! (EMPLOYEE STEVE) (JOB NURSE))
(M95! (EMPLOYEE THELMA) (JOB BOXER))
(MlO0! MlOl! MS0! M55! M73! M74! M75! M95!)
CPU time : 0.45

2 .2 R e c u r s i v e R u l e s

If information comes from human informants, and from writ-
ten material intended for human consumption, we cannot
guarantee that rules will not be expressed in recursive, or
even circular ways. The initial design of SNIP took into ac-
count being able to operate in the presence of recursive rules
[5, 13].

S I G A R T Bul le t in Vol. 2, No. 3 130

The following interaction shows the use of a recursive
rule. The interaction is carried out in SNePSLOG, a logic-
programming-like interface to SNePS [3, 4, 14]. User input
is on the lines beginning with " : ' , which is the SNePSLOG
prompt. System output is on the other lines.

Notice that the first input is expressed as a second-order rule.
This is a natural way to express many rules, and SNePS
and SNePSLOG encourage it. Predicates, however, are rep-
resented as SNePS nodes, which are terms of the SNePS
formalism. This rule also uses the SNePS connective and.
entailment. {A1 A , } ~ {C1 Cm} means that the
conjunction of the antecedents implies the conjunction of the
consequents.

: all(r) (transitive(r)
ffi> all(x, y, z) ((r(x,y), r(y,z)}

~=> {r(x,z)})).
ali(R)(TRANSITIVE(R)

-> (ali(X,Y,Z)({R(X,Y),R(Y,Z)}
~=> {R(X,Z)})))

CPU time : 0.23

: transitive(bigger).
TRANSITIVE(BIGGER)

CPU time : 0.06

: b i g g e r (e l e p h a n t , ho r s e) .
BIGGER(ELEPHANT,HORSE)

CPU time : 0.07

: bigger(horse, sheep).
BIGGER(HORSE,SHEEP)

CPU time : 0.06

: bigger(sheep, dog).
BIGGER(SHEEP,DOG)

CPU time : 0.07

: bigger(dog, cat).
BIGGER(DOG,CAT)

CPU time : 0.05

: b i g g e r (c a t , mouse).
BIGGER(CAT,MOUSE)

CPU time : 0.06

: b igger(mouse, s p i d e r) .
BIGGER(MOUSE,SPIDER)

CPU time : 0.06

: b i g g e r (s p i d e r , f l y) .
BIGGER(SPIDER,FLY)

CPU t i m e : 0.06

In most system, a recursive rule will lead to an infinite loop
for some query. Usually, this depends on whether the rule
is left- or right-recursive, and on where the open variables
are in the query. Our rule above, of course, is both left- and
right-recursive, and below we demonstrate queries that have
all possible combinations of constants and variables.

: bigger(dog, mouse)?
BIGGER(DOG,MOUSE)

CPU time : 40.90

: b igge r (?x , sheep)?
BIGGER(ELEPHANT,SHEEP)
BIGGER(HORSE,SHEEP)

CPU time : 14.13

: bigger(mouse, ?x)?
BIGGER(MOUSE,FLY)
BIGGER(MOUSE,SPIDER)

CPU time : 14.72

b i g g e r (? x , ?y)?
BIGGER(DOG,MOUSE)
BIGGER(DOG,SPIDER)
BIGGER(DOG,FLY)
BIGGER(SHEEP,MOUSE)
BIGGER(HORSE,MOUSE)
BIGGER(ELEPHANT,MOUSE)
BIGGER(MOUSE,FLY)
BIGGER(SHEEP,SPIDER)
BIGGER(HORSE,DOG)
BIGGER(ELEPHANT,SHEEP)
BIGGER(SHEEP,CAT)
BIGGER(SHEEP,FLY)
BIGGER(CAT,SPIDER)
BIGGER(ELEPHANT,SPIDER)
BIGGER(HORSE,SPIDER)
BIGGER(ELEPHANT,CAT)
BIGGER(ELEPHANT,FLY)
BIGGER(CAT,FLY)
BIGGER(HORSE,FLY)
BIGGER(ELEPHANT,HORSE)
BIGGER(ELEPHANT,DOG)
BIGGER(HORSE,CAT)
BIGGER(HORSE,SHEEP)
BIGGER(SHEEP,DOG)
BIGGER(DOG,CAT)
BIGGER(CAT,MOUSE)
BIGGER(MOUSE,SPIDER)
BIGGER(SPIDER,FLY)

CPU time : 7.61

2.3 T h e U n i q u e V a r i a b l e B i n d i n g R u l e

An AND gate has two input ports and one output port. If
the input ports are high and the output port is low, then
the AND gate is faulty. A straightforward translation of the
latter rule into FOPC might be

V(g, x, y, z)[AN DGATE(g) A I N PO RT(x, g)
A INPORT(y , g) A OUTPORT(z , g)
=~ [HIGH(x) A HIGH(y) A LOW(z)

=~ FAULTY(g)]]

However, this rule omits the antecedent literal z # y, and so
could be fired by an AND gate with a high and a low input
and a low output.

I argued in [11] that this situation is so common in naturally
expressed rules that we must conclude that in naturally ex-
pressed rules there is an assumption that different variables
must bind to different terms. (The paper cited is actually
more involved than this, but space precludes a more exten-
sive discussion in this paper.) I therefore implemented what
I call the "Unique Variable Binding Rule" (UVBR) in the
current version of SNIP. The interaction below demonstrates
the working of the UVBR on the AND gate example. There
are three other example interactions in the cited paper.

131 S I G A R T Bul le t in Vol. 2, No. 3

: all(g, x, y, z)
({ANDGATE(g), INPORT(x, g),

INPORT(y, g), OUTPORT(z, g)}
~-> {{HIGH(x), HIGH(y), LOW(z)}

&-> {FAULTY(g)}}).
ali(G,X,Y,Z)

({ANDGATE(G),INPORT(X,G),INPORT(Y,G),
OUTPORT(Z,G)}

~=> {{HIGH(X),HIGH(Y),LOW(Z)}
&=> {FAULTY(G)}})

CPU time : 0.37

The gate Ol is not faulty, but would be
inferred to be faulty without UVBR.

: ANDGATE(GI).
ANDGATE(GI)

ePu time : 0.07

: INPORT(GII1, Ol).
INPOHT(GII1,GI)

CPU time : 0.06

: INPORT(GII2, Ol).
INPORT(GII2,OI)

CPU time : 0.06

: 0UTPORT(G10, Ol).
OUTPORT(GIO,GI)

CPU time : 0.05

: HIGH(GIII).
HIGH(GII1)

CPU time : 0.06

: LOW(OlI2).
LOW(GII2)

OPU time : 0.05

: LOW(GIO).
LOW(GIO)

CPU time : 0.06

Gate G2 is faulty.

: ANDGATE(G2)
ANDGATE(G2)

CPU time : 0.07

: INPORT(G2II, O2).
INPORT(G2II,G2)

CPU time : 0.08

: INPORT(G212, O2).
INPORT(G212,G2)

CPU time : 0.06

: OUTPORT(G20, O2).
OUTPORT(G20,G2)

CPU time : 0.07

: HIGH(G2II).
HIGH(G2II)

CPU time : 0.06

: HIGH(G212).
HIGH(G212)

CPU time : 0.07

: LOW(G20).
LOW(G20)

CPU time : 0.06

With UVBR, when we ask for faulty gates,
only gate G2 is found.

: FAULTY(?G)?
FAULTY(G2)

CPU time : 3.84

Although UVBR seems to be correct for modelling human
reasoning, it makes SNePSLOG confusing as a Logic Pro-
gramming language. For example, the Logic Programmers'
favorite example of append does not work:

: a l l (l l) (L i s t (l l) => A p p e n d (I n i l l , 11, 11)) .
a l l (L t) (LIST(L1) => APPEND(nil,Lt,L1))

CPU time : 0.14

: a l l (x , 11, 12, 13)
({ 0 b j e c t (x) , Append(l l , 12, 13)}
k=> {Append(Cons(x, 11), 12, Cons(x, 13))}).

ali(X,L1,L2,L3)
({OBJECT(X),APPEND(L1,L2,L3)}
~=> {APPEND(CONS(X,LI),L2,CONS(X,L3))})

CPU time : 0.26

: Object(Inill).
OBJECT(nil)

CPU time : 0.04

: Object(a).
OBJECT(A)

CPU time : 0.14

: 0 b j e c t (b) .
OBJECT(B)

CPU time : 0.07

: L i s t (Cons (a , I n i l l)) .
LIST(CONS(A,nil))

CPU time : 0.07

: L i s t (Cons (b , I n i l l)) .
LIST(CONS(B,nil))

CPU time : 0.09

: A p p e n d (l n i l l , Cons(b, I n i l l) , ?1)?

CPU time : 0.27

: Append(Cons(a, I n i l l) , Cons(b, I n i l l) , ?1)?

CPU time : 0.65

Neither of those two queries worked, because they required
Cons(b, n i l) and a variable to be bound to the same vari-
able, 11, in the first rule. However, if we ask this question as
a True/False question, it can be answered:

: A p p e n d ([n i l l , Cons(b, I n i l l) , Cons(b, I n i l l)) ?
APPEND(nii,CONS(B,nil),CONS(B,nil))

CPU time : 0.34

Also, if we add a rule that explicitly allows the second and
third argument of Append to be the same, the recursive ques-
tion can be answered:

SIGART Bulletin Vol. 2, No. 3 132

: a l l (x , 11, 12)
({ 0 b j e c t (x) , A p p e n d (l l , 12, 12)}
&-> {Append(Cons(x, ii), 12, Cons(x, 12))}).

alI(L2,X,LI)({OBJECT(X),APPEND(LI,L2,L2)}
&-> {APPEND(CONS(X,LI),L2,CONS(X,L2))})

CPU time : 0.26

: Append(Cons(a, I n i l l) , Cons(b, I n i l l) , ?1)?
APPEND(CONS(A,nil),CONS(B,nil),

CONS(A,CONS(B,nil)))
CPU t ime : 1.93

2 .4 D i s c u s s i n g S e n t e n c e s a n d P r o p o s i t i o n s

The interaction below shows SNePS with a part icular chioce
of arc labels, and a part icular parsing/generat ion grammar
for modelling a cognitive agent, CASSIE (see [12, 15]), dis-
cussing a sentence and a proposition. This makes crucial use
of the abil i ty of SNePS nodes to represent propositions and
any other enti t ies about which we can have beliefs. Here, we
also use a SNePS node to represent a sentence. This also
shows that i t is impor tan t to retain a distinction between
propositions and sentences. Soon Ae Chun and Nalcong Li
wrote the sections of the CASSIE grammar i l lustrated in
this conversation, (extracted from [12], which contains sev-
eral other CASSIE case studies).

In this interaction, sentences are labelled before the prompt
for reference in the discussion that follows.

I: Bill is Lucy's brother.
I understand that Bill is Lucy's brother

2: He is a professor.
I understand that Bill is a professor

3: Mary is his favorite student.
I understand that Mary is Bill's favorite student

4: Her dog is named Rover.
I understand that Rover is Mary's dog

5: John dislikes her dog.
I understand that John dislikes Rover

6: He said "her dog is ugly".
I understand that John said " her dog is ugly ",
meaning Rover is ugly

7: That John is narrovminded
is Bill's favorite proposition.

I understand that that John is narrowminded
is Bill's favorite proposition

8: Mary believes Bill's favorite proposition.
I understand that Mary believes of John
that he is narrowminded

Sentences (1)-(5) introduce the characters Bill, Mary, Rover,
and John. In input (6), CASSIE is informed that John
uttered a part icular sentence, namely "her dog i s ugly."
Just as people do, CASSIE recognizes the occurrence of a
sentence being mentioned by the surrounding quote marks.
The sentence is represented in SNePS as a sequential (cons-
cell-like) s tructure of word nodes, as was described in [6, 7].
A sentence for CASSIE is just another kind of entity, so there
is nothing peculiar about believing that it is the object of an
act (i.e., John said it). However, CASSIE does more with
sentences. After representing the sentence and the proposi-

tion that John said it, CASSIE analyzes the sentence as if
it had just been ut tered to her. The main proposition that
CASSIE understands the sentence to be expressing is also
stored in SNePS, along with the proposition that the sen-
tence expresses that proposition. All this is then output , as
i l lustrated in output (6).

Of course, i t is incorrect, in general, to analyze a mentioned
sentence as if it had just been used. I t should be analyzed in
the context in which it was actually used, if i t was used at all.
This requires further work. We have constructed CASSIE
to do this in order to point out a direction for further re-
search, and to i l lustrate the difference between beliefs about
sentences and beliefs about propositions.

Inputs (7) and (8) s ta te beliefs about a proposition, namely
that John is narrowminded. Sentence (7) gives a property of
the p ropos i t ion- - tha t i t is Bill's favorite proposition. Sen-
tence (8) asserts tha t Mary believes it, but refers to the
proposition indirectly, by the proper ty it was given in sen-
tence (7). It was claimed in [1] that the interaction pair (7),
(8) could not be carried out in SNePS in a semantically con-
sistent way; however, this interaction shows that it can (Cf.
[16]).

[1]

R e f e r e n c e s

J. A. Barnden. A viewpoint distinction in the rep-
resentation of propositional at t i tudes. In Proceedings
of the Fifth National Conference on Artificial Intelli-
gence, pages 411-415. Morgan Kaufmann, San Mates,
CA, 1986.

[2]

[3]

[4]

J. P. Martins and S. C. Shapiro. A model for belief
revision. Artificial Intelligence, 35:25-79, 1988.

P. A. Mates and J. P. Martins. S N e P S L O G - - a logic in-
terface to SNePS. Technical Report GIA 89/03, Grupo
de Inteligencia Artificial, Ins t i tu te Superior Tecnico, Lis-
bon, Portugal, 1989.

D. P. Mckay and J. Martins. SNePSLOG user's man-
ual. SNeRG Technical Note 4, Depar tment of Computer
Science, SUNY at Buffalo, 1981.

[5]

[6]

[7]

[s]

D. P. McKay and S. C. Shapiro. Using active connection
graphs for reasoning with recursive rules. In Proceedings
of the Seventh International Joint Conference on Artifi-
cial Intelligence, pages 368-374. Morgan Kaufmann, San
Mates, CA, 1981.

J. G. Neal and S. C. Shapiro. Knowledge-based parsing.
In L. Bolc, editor, Natural Language Parsing Systems,
pages 49-92. Springer-Verlag, Berlin, 1987.

J. G. Neal and S. C. Shapiro. Knowledge representation
for reasoning about language. The Role of Language in
Problem Solving ~, pages 27-46, 1987.

S. C. Shapiro. Numerical quantifiers and their use in rea-
soning with negative information. In Proceedings of the
Sixth International Joint Conference on Artificial Intel-
ligence, pages 791-796. Morgan Kaufmann, San Mates,
CA, 1979.

[9] S. C. Shapiro. The SNePS semantic network processing
system. In N. V. Findler, editor, Associative Networks:
The Representation and Use of Knowledge by Comput-
ers, pages 179-203. Academic Press, New York, 1979.

133 S I G A R T Bul l e t in Vol. 2, No. 3

[10] S. C. Shapiro. Using non-standard connectives and
quantifiers for representing deduction rules in a semantic
network, 1979. Invited paper presented at Current As-
pects of AI Research, a seminar held at the Electrotech-
nical Laboratory, Tokyo.

[11] S. C. Shapiro. Symmetric relations, intensional individ-
uals, and variable binding. Proceedings of the IEEE,
74(10):1354-1363, October 1986.

[12] S. C. Shapiro. The CASSIE projects: An approach to
natural language competence. In J. P. Martins and E. M.
Morgado, editors, EPIA 89: 4th Portugese Confer-
ence on Artificial Intelligence Proceedings, Lecture Notes
in Artificial Intelligence 890, pages 362-380. Springer-
Verlag, Berlin, 1989.

[13] S. C. Shapiro and D. P. McKay. Inference with recursive
rules. In Proceedings of the First Annual National Con-
ference on Artificial Intelligence, pages 151-153. Morgan
Kaufmann, San Mateo, CA, 1980.

[14] S. C. Shapiro, D. P. McKay, J. Martins, and E. Mor-
gado. SNePSLOG: A "higher order" logic program-
ming language. SNeRG Technical Note 8, Department
of Computer Science, SUNY at Buffalo, 1981. Presented
at the Workshop on Logic Programming for Intelligent
Systems, R.M.S. Queen Mary, Long Beach, CA, 1981.

[15] S. C. Shapiro and W. J. Rapaport. SNePS considered
as a fully intensional propositional semantic network. In
N. Cercone and G. McCalla, editors, The Knowledge
Frontier, pages 263-315. Springer-Verlag, New York,
1987.

[16] S. C. Shapiro and W. J. Rapaport. Models and minds:
Knowledge representation for natural-language compe-
tence. In R. Cummins and J. Pollock, editors, Philosoph-
ical AI: Computational Approaches to Reasoning. MIT
Press, Cambridge, MA, 1991.

[17] S. C. Shapiro and The SNePS Implementation Group.
SNePS-2.1 user's manual. SNeRG Technical Note 4, De-
partment of Computer Science, SUNY at Buffalo, Buf-
falo, NY, 1989.

[18] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated
Reasoning: Introduction and Applications. Prentice-
Hall, Englewood Cliffs, N J, 1984.

SIGART Bulletin Vol. 2, No. 3 134

