QA/Theorem Proving - Minker

Answering. Journal of Computers and Information Science
3, 1974, 225-243.

22 Robinson, JA. A machine oriented logic based on the
resolution principle. Journal of the ACM 12, 1965, 25-41.

23 Roussel, P. PROLOG manuel de reference et d’utilisation.
Groupe D’Intelligence Artificielle, Universite d’Aux-Marseille
11, 1975.

24 Tarnlund, S.A. Logic information processing. The Royal
Institute of Technology and the University of Sweden,
Department of Information Processing Computer Science,
Report TRITA-IBADB-1034, 1975.

25 Wilson, G. A description and analysis of the PAR technique -
an approach for paraliel inference and parallel search to
problem solving systems. Ph.D. Thesis, Department of
Computer Science, University of Maryland, 1976. Also,
Computer Science TR-464, 1976.

26 Wilson, G.A. and Minker, J. Resolution, refinements, and
search strategies: A comparative study. IEEE Trans. on
Computers, C-25 9, 1976, 782-800.

Deductive Inference: Knowledge Representation

Representing and Locating Deduction Rules in a Semantic Network
Stuart C. Shapiro1

Department of Computer Science

State University of New York at Buffalo Amherst, NY 14226

Abstract

A semantic network is defined with its arcs and nodes
separated into various sets. Arcs are partitioned into
descending, ascending, and auxiliary arcs. Nodes are partitioned
into base, variable, assertion, pattern and auxitiary nodes. Nodes
can be temporary or permanent.

Some pattern and assertion nodes, called rule nodes,
represent propositional functions of the nodes they dominate.
Rule nodes may bind the variables they dominate with any one of
a set of binding relations representing quantifiers. A rule node
which dominates variables all of which are bound is a constant
deduction rule.

Deduction rules may be viewed as pattern-invoked
procedures. The type of propositional function determines the
procedure, the variables bound by the rule are the local
variables, and the quantifier determines the type of binding.

A binding is defined as a list of variables associated with the
nodes they are bound to. A binding can be used like a
substitution, except it is seldom actually applied. Instead, a
pattern node and a binding for it are used as a pair.

A match routine is defined which is given a source node and
a.binding and finds target nodes, target bindings and more fully
specified source bindings. Target nodes that are patterns
provide entrees into reievant rules.

1. Introduction

The first logically adequate proposal for representing
quantified deduction rules in semantic networks was made by the
author in 1971 [11, 12]. A somewhat different representation,
though derived from the same project, was presented by Kay in
1973 {7]. These, and a close variant, were discussed by Woods
in 1975 [15). In 1974-1976, Schubert [8, 9, 10] presented
another ciose variant, apparently developed independently, since
he did not compare his work with the others. In 1975, Hendrix
[8, B] presented a representation that adds the notion of network

1. The work reported herein was done, for the most part, while
the author was at the Computer Science Department, Indiana
University, Bloomington, Indiana 47401.

Page 14

Knowledge Representation - Shapiro

partitions in a fundamental way and compared his representation
with the previous ones {5, pp. 222-4, 266-72].

Sections 2 and 3 of this paper present a more recent syntax
for semantic networks, discussed less completely but with more
examples elsewhere [13], and another representation for
deduction rules, adapted from the earlier one, but designed to
accommodate non-standard logics [1, 2, 14] and some of the
criticisms of Hendrix. Section 4 discusses how deduction rules
may be viewed as pattern-invoked procedures. Sections 5 and 6
present for the first time the matching algorithms used to
retrieve information from the semantic network and for
identifying relevant rules.

This paper is not concerned with the particular arc relations
used in any particilar domain of information nor those to be used
in a general model of understanding natural language, except as
they relate to the representation of deduction rules.

2. Basic Representation

A semantic network is a directed graph with labeled nodes
and arcs in which nodes represent concepts and arcs represent
non-conceptual binary relations between concepts. The same
concept is always represented by the same node and whenever
an arc representing a relation, R, points from node n to node m,
there is an arc representing the converse relation of R, RS, from
m to n. The labels of nodes and arcs are meaningless symbols,
but may be chosen to be mnemonics suggesting the concepts or
relations represented. .

In SNePS semantic networks [13], we distinguish three kinds
of arcs: descending, ascending and auziliary. For each relation
represented by ascending arcs, there is a converse relation
represented by ascending arcs and vice versa. Together,
descending and ascending arcs are the regufar semantic network
arcs referred to above. Auxiliary arcs are used for hanging non-
nodal information on nodes and for typing the nodes as discussed
below. If a descending arc goes from node n to node m, we say
that n immediately dominates m. If there is a path of descending
arcs from node n to node m, we say that n dominates m. If R is
an arc label and n is a node, we will use the notation R(n) for the
set of nodes into which arcs labeled R go from n. In what
foliows, we will often use the phrase "the retation R" when we
mean "an arc labeled R".

There are three kinds of nodes: constant, non-constant, and
auzxiliary. Auxiliary nodes are connected to each other and to
other nodes only by auxiliary arcs. Constant nodes represent
unique semantic concepts. Nodes which dominate no other node.
are called atomic nodes. Atomic constants are called base nodes
and atomic non-constants are called variable nodes or weriables.
Variables are distinguished by being in the auxiliary relation :VAR
to the auxiliary node T. Non-atomic nodes are called molecular
nodes. There is a set of descending relations called binding
relations. A molecular node that immediately dominates one or
more variable may have at most one binding relation to an
arbitrary number of those variables, which are referred to as
bound by that molecular node. The remaining dominated variables
are referred to as free in the molecular node, which has an
auxiliary arc labeled :SVAR to each of them. If a node m
immediately dominates a set of variable nodes {v1,~. - Vt} and a
set of non-variable nodes {n|, ..., ng} and V = {v{, .., vy U
:SVAR(n) U. . .U :SVAR(ny) is non-empty, m may have at most one
binding relation, say Q, to one or more variables in V. These are
referred to as bound by m. The remainder, V - Q(m), are free in
m and have the arc :SVAR to each of them from m. It should be
the case that no variable bound by a node m is free in any node
not dominated by m, and we will assume that this restriction
holds. A node n such that :SVAR(n) is non-empty is a non-
constant molecular node and is called a pattern node. A
molecular node n for which :SVAR(n) is empty is a molecular
constant or assertion node.

SIGART Newsletter No. 63 June 1977

Knowledge Representation - Shapiro

Temporary molecular and variable nodes can be created.
Temporary molecular nodes have no ascending arcs coming into
them from the nodes they dominate. Temporary nodes are not
placed on any permanent system list and are garbage-collected
when no longer referred to. They are invisible to all the
semantic network retrieval operations. We will refer to non-
temporary nodes as permanent nodes.

In figures in this paper, we show auxiliary arcs as labeled
dashed arrows and descending arcs as labeled solid arrows. We
do not show ascending arcs. Auxiliary and temporary nodes are
shown as labels only, other nodes as labeled circles. In Figure 1,
MEMBER and CLASS are descending relations, :VAR and :SVAR are
auxiliary relations, MOBY-DICK and WHALE are base nodes, M is
an assertion node, T2 is a temporary variable, T3 is a temporary
pattern node and T is an auxiliary node.

MOBY-DICK

WHALE \@ITZ

Figure 1. An example of various kinds of
nodes and edges

3. Representation of Deduction Rules

To represent deduction rules in SNePS, we distinguish a set
of molecular nodes called rule nodes. Each rule node represents
a propositional formula of molecular nodes that are arguments to
a particular propositional connective. Three kinds of connectives
are currently used: entailment, AND-OR, and THRESH. An
entailment rule has the descending relation ANT (antecedent) to a
set of molecular nodes and the descending relation CQ
(consequent) to a set of molecular nodes. The interpretaion of an
entailment rule n is that each molecule in ANT(n) entails each
molecule in CQ(n). Figure 2 shows the network representation of
the entailment rule written linearly as (A, .., A= (Cyp,.n sy Cp.

Figure 2, Network representation of
(Al ooy A > (Cs ens Cp)

An AND-OR rule has auxiliary relations MIN, MAX and TOT to
integers i, j and n respectively and the descending relation ARG
to a set of n molecular nodes. The interpretation of an AND-OR
rule m is that at least i and at most j of the n molecules in
ARG(m) are true. Figure 3 shows the network representation of
the AND-OR rule written linearly as n@Ji(Pl, oo PRl

SIGART Newsletter No. 63 June 1977

knowledge Representation - Shapiro

p
1 P

. 3
Figure 3. Network representation of nxi(Pl’ cery Pn)

A THRESH has auxiliary relations THRESH and TOT to
integers i and n respectively and the descending relation ARG to
a set of n molecular nodes. The interpretation of a THRESH rule
is that if at least i of the molecules are true, then all n are true.
Figure 4 shows the network representation of the THRESH rule
written linearly as 3Py, . .,Pp).

n-J0T_ T."_‘.F.{EQ‘:\-»i

i R

Figure 4: Network representation of

nei(Pl’ ey Pn)

One could consider AND-OR rules with different <MIN, MAX,
TOT> triples to be different types of propositional formulas, and
likewise THRESH rules with different <THRESH, TOT> tuples. For
example, AND-ORs of the type n®n1 represent the disjunction of
the n molecules, ANB-ORs of the type (€7 represent negation
and THRESHs of the type nal represent the mutual equivalence
of the n molecules. More complete discussions of the logic of
these rules may be found elsewhere [1, 2, 14]. As an example,
Figure 5 shows a possible representation of "John is either at
home, at the airport, or at the office”.

Rule nodes are the only molecular nodes allowed to have
binding relations. At the current time, AVB is used for universal
quantification, EVB for existential quantification, OVB for unique
existential, LVB for "almost all" (almost-ali(x) (P(x)»Q(x)) means
that if a is such that P(a) holds and such that Q(a) cannot be
shown, deduce that Q(a) holids), and NVB for "none"
(None(x)(P(x)=Q(x)) means that if P(a) holds, Q(a) doesn’t). A rule
node, R, for which :SVAR(R) is empty is a constant deduction ruie.
Figure 6 shows a representation for "Whales live in water and
each has a blowhole".

4. Deduction Rules as Pattern-Invoked Procedures

The general form of a deduction rule is Q(xl, . xn)F(Pl,
.« Py) where Q is a quantifier, x|, ..., X, are variables bound
by the rule node, F is the propositional function represented by
the rule node, and Py, ..., P, are the molecular node

Page 15

Knowledge Representation - Shapiro

WAL -1
3T~~~y

_____’_1

AIRPORT 1

O
OFFICE 1

Y
JOHN

Figure 5. "John is either at home, at the airport,
or at the office"

O
HAS-AS-PART

Figure 6. "Whales live in water and each

has a blowhole"

propositions immediately dominated by the rule node. The
function F may be viewed as a procedure type that determines
how the P, are to be processed to derive new information. For
example, if’ F is -, the Pj are partitioned into antecedents and
consequents and any consequent may be deduced if any
antecedent is shown to hold; if F is & then any i of the P, that
are found to hold are considered to be antecedents and are
adequate grounds for deducing any of the remaining m-i as
consequents. Actually, when we say, "if the antecedents are
shown then a consequent may be deduced”, we should say, "if
the antecedents are shown in a given binding of the variables x,
- X then a consequent may be deduced in that binding", for
the variables X|y v Xp act as local variables in the rule-
procedure. The quantifier determines how the variable binding is
managed. For example, if Q is AVB any binding is allowed. If Q is
LVB, once the anteccdent(s) is shown to hold in a given binding,
that binding is tested in the negation of the consequent. If that
is not found to hold, the consequent is deduced in that hinding.
If Q is EVB, the variables must be bound to new base nodes
(Skolem functions). A binding of the variables is similar to, but
not quite the same as a substitution to be applied to F(P, ...,
P} in resolution terminology (see [3]). This point will be
clarified in the following section.

Page 16

Knowledge Representation - Shapiro

Any rule may be used either in the forward direction, like a
PLANNER [6] antecedent theorem, or in the backward direction,
like a PLANNER consequent theorem. In the backward direction,
if a substitution instance of a consequent is to be deduced, an
attempt is made to deduce all the antecedents in the same
substitution. As soon as the appropriate number of them are
found (1 in the case of =, i in the case of nai, n-i to be faise in
the case of n®i1), the consequent is deduced. In the forward
direction, when an antecedent of an entailment is asserted, the
consequents may be asserted. When an antecedent of AND-OR or
THRESH is asserted, the appropriate number of other arguments
must be deduced. Then the remainder of the arguments may be
asserted as consequents.

A potentially useful rule is discovered when either a
molecular node to be used to drive a forward inference or a
temporary molecuiar node representing a proposition to be
deduced matches a molecular node dominated by the rule. The
path of arcs between the rule node and the matched node must
be appropriate to the intended use, i.e. forward vs. backward
inferencing. Matching is done first and only appropriate paths of
ascending arcs are followed to find the potentially useful rules.
Such a rule is only potentially useful since not enough
antecedents may hold for it to be truly useful.

The appropriate path for backward inferencing is one of
CQ° or ARGE arcs. The appropriate path for forward inferencing
is one containing ANTS, ARG® or CQS, as long as at least one
ANTC or ARGC occurs. To see this, note that in the rule (A-B) »
(C-D), the assertion of B or of C might allow something new to
be deduced. (The assertion of a node matching B might allow
A-B to be proved, and if C were true, D would then be
derivable). The proper bindings are found by the matching
operation, and may be filled in as inferencing proceeds. Bindings
and the matching operation are discussed more completely in the
next two sections.

5. Bindings

We write a binding as a list of pairs in square brackets,
vifty oo vi /[t) where the v; are variable nodes and the t; are
nodes. This is the reverse order from the usual notation for
substitutions, but the normal order for association or binding
lists. We call each v /tj a pair and say that v, is the variable of
the pair and Y is the term of the pair. We will say that a
variable, v, is in o binding [(or v¢Q) if v is the variable of some
pair in A So vl ¢ [vifv2], but v2 ¢ [vi/v2] If t is the term of
some pair in a binding 4, we will say that t is a term of 8. Two
differences between bindings and substitutions are that the pair
v/v is allowed in a binding, and if p is a pattern node with :SVAR
to v1 the binding [v/p, v1/t] is used to mean that v is bound.to
an instance of p in which vl is bound to t. In fact, whenever a
pattern, p, is a term of a binding, 3, all variables in :SVAR(p) will
also be in B. This allows for the use of the tuple <N,8> instead
of actually creating a substitution instance of the network
structure dominated by N. In what follows, we will write NA&
instead of <N,4>.

To apply a binding & to a node N means the following:

1)} If Nis the variable of a pair N/v in 8 and v is a variable,
return v.

2) Eise if N is the variable of a pair N/t in 4, return the
application of R to t.

3) Else if Nis an atomic node, return N.

4) Else return a node N such that for every descending
relation R and for every node M ¢ R(N), N’ has R to the
application of 2 to M. According to a parameter of the
apply function, N° may be a temporary or permanent
node. If permanent, and a node satisfying the description
already exists, it will be used, otherwise a new node will
be created. :

It should be remembered that this operation is seldom carried

SIGART Newsletter No. 63 June 1977

Knowledge Representation - Shapiro

out, and when it is, nodes created in step 4) may be temporary
nodes rather than permanent nodes.

To apply a binding £ to the terms of another binding <<
(written o\) does not involve the above operation, but only
means replacing each pair v1/v2 in o« such that there is a pair
v2/t in R by the pair vift.

We define the union of two bindings, B U o, as the binding
containing all the pairs in 2 plus every pair in o« whose variable
is not in B For example, [vl/v2, v3/t1] v [v2/t2, v3/t3] =
[vl/v2, v2/t2, v3/t1] Note that this union is not commutative.

The composition of two bindings can now be defined as
A9 o =(A\ot) Uct It can be seen that binding composition is
associative, and that if N is a node and 8 and o are bindings,
(NR)er is “equivalent” to N(B o ¢} but not necessarily identical,
since if the two applications are carried out, different nodes may
be created in step 4) of the "apply a binding to a node” routine.

1 will stand for the identity binding over application and
union (and therefore composition). If p is a pattern node, I(p) is
defined as the binding consisting of pairs v/v for every
v € :SVAR(p). This is a right-identity over application. If n is a
node with no :SVAR arcs, we define I(n) to be L.

6. Match

In this section, V stands for the set of permanent variable
nodes, C for the set of permanent constant nodes, and P for the
set of permanent pattern nodes.

The arguments of match(S, B) are a node S, which could be
either temporary or permanent, and a binding 4. Match returns a
set of tuples, {<T,7,6>}, such that for some bindings By, Bo,
o= (A \ 1) e By, and such that for every descending relation R,
every atomic node in R(Se} is also in R(TY and for every
molecular node in R(Se) there is an equivalent node in R(Te). T is
referred to as the target node as the target binding andsas the
source binding. Match (S,) is defined recursively as follows:

1) If Sis a base node,

match(S,R) = {<S, [, B>} u {<v, [v/S], B> | v € V}

2) If Sis a variable node and SR =S,

match(S,8) = {<¢, I, fo[S/c]> | ¢ € C}
v {<v, [v/S], Be[S/v]> | v € V}
u {<p, Ip), Be[S/pP | p ¢ P}
3) 1f Sis a variable node and S@ is a variable other than S,
match(S,4) =
{<T,\[SR/S], s> | <T,%,6> ¢ match§B, D}
4) If S is a variable node and S4 is not,
match(S,R) = {<T,%, Reg> | <T,1,6™> ¢ match(S43,9)}

5) If S is a molecular node, then let Sl’ ..o Si be the set of
nodes immediately dominated by S and R;, l<izk, be the
descending relation from S to Si' The set of potential
maltch sets, M, .. ., M, is built as follows.

a) For each <T,%,5> in match(S, A) and for each N in
RE{T), put <NZ,7> in My.
b) For each <N,z,0> in M;_; and for each <T, T, 6;> in
match(S;,) such that N ¢ Rci(T) do set¢’ « ¥ andg’ &
and FLAGto T
for each v/t in?
if v {7, add v/t to?
else if v/t* (2 and t # t* and t is a variable not
in :SVAR(t”)
apply [t/t’] to the terms of T and T;
apply [v/t’] to the terms of¢” andeoy
else if v/’ ¢ and t # ¥ and t’ is a variable not
in :SVAR(T)
apply [t°/t] to the terms of ¥” and ¥;
apply [v/t] to the terms of7” and 7
else if t # 1" set FLAG to F
for each v/t in6;
if v fa°, add v/t to&”
else if v/’ ¢ and t # {” and t is a variable not
in :SVAR(T")

SIGART Newsletter No. 63 June 1977

Knowledge Representation - Shapiro

apply [t/t’] to the terms ofe” and o7
apply [v/t’] to the terms of ¢’

else if v/’ (T and t # t” and t’ is a variable not
in :SVAR()
apply [t’/t] to the terms ofe” and 7]
apply [v/t] to the terms of &’

else if t #t" set FLAGto F

if FLAG = T add <N, 7,¢’> lo M
match(S, A) = M,

When SR& is a question {(a proposition to be deduced), each
T such that <T,7Z, 5> ¢ match(S, B) will either be an assertion
which provides the answer or an entree to a potentially useful
rule. in the latter case, if the rule works, the answer will be So;
which is possibly more specific and detailed than the original
question, SA.

The way match is currently defined, the target node may
immediately dominate more nodes than the source node. This
seems appropriate when looking for rules to apply in a
consequent fashion, but inappropriate when looking for rules to
apply in an antecedent fashion. As we have not yet implemented
the latter, we will not discuss this issue in detail. Step (Sb) of
match could be modified to allow target nodes with fewer
immediately dominated nodes by allowing into M; those <N,T,4> in
M&—l for which there is no <T,2,> in match(S;, 4) for which N ¢
R°(T) and by putting into M, triples of the form <N, 7,5 >
whenever <T,7,9> ¢ match(S;, £), N ¢ Rci(T) and there is no triple
<N,2°,57> already in M;_4+

7. Implementation Status

The semantic network system, match routines, a multi-
processing system for executing the rules and processes for
doing backward inferencing with entailment, THRESH and
universal quantification have been implemented in LISP1.6 on a
DEC System-10. Deductions have been carried out on several
small domains, At the time of writing, further development is in
progress and the system is also being brought up in U.T. LISP1.5
on a CYBER 173.

8. Acknowledgements

The author wishes to thank Bob Bechtel, Nick Eastridge,
Steve Johnson, Don McKay, Jim McKew, and Ben Spigle for their
work on the theory and implementation of the deduction system.
Computer Services were provided by the IUPUI Computing
Facilities as part of the 1.U. Computing Network.

References

1 Bechtel, R.J. Logic for semantic networks. M.S. Thesis.
Technical Report No. 53, Computer Science Department,
Indiana University, 1976. '

2 Bechtel, R.J. and Shapiro, S.C. A logic for semantic networks.
Technical Report No. 47, Computer Science Department,
Indiana University, 1976.

3 Chang, CL. and Lee, RC.T. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York, 1973, Section
5.3.

4 Hendrix, G.G. Expanding the utility of semantic networks
through partitioning. Advance Papers of the Fourth
International Joint Conference on Artificial Intelligence,
1975, 115-121.

5 Hendrix, G.G. Partitioned networks for the mathematical
modeling of natural language semantics. Ph.D. Thesis.
Technical Report NL-28, Department of Computer Seciences,
The University of Texas at Austin, 1975.

6 Hewitt, C. Description and theoretical analysis (using
schemata) of PLANNER: a language for proving theorems
and manipulating models in a robot. AI-TR-258. MIT
Artificial Intelligence Laboratory, 1972.

Page 17

Knowledge Representation - Shapiro

7 Kay, M. The MIND System. In Natural Language Processing,
Austin, R. (Ed.). Algorithmics Press, New York, 1973, 165-
188.

8 Schubert, LK. Extending the expressive power of semantic
networks. TR 74-18, Depariment of Computer Science,
University of Alberta, 1974,

9 Schubert, L.K. Extending the expressive power of semantic
networks. Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence, 1975, 158-164,

10 Schubert, L.K. Extending the expressive power of semantic
networks. Artificial Intelligence 7, 1976, 163-198.

Il Shapiro, S.C. The MIND system: a data structure for
semantic information processing. R-837-PR, The Rand
Corporation, Santa Monica, 1971.

12 Shapiro S.C. A net structure for semantic information
storage, deduction and retrieval. Proceedings Second
International Joint Conference on Artificial Intelligence, The
British Computer Society, London, 1971, 512-523.

13 Shapiro, S.C. An introduction to SNePS (semantic net
processing system). Technical Report No. 31, Computer
Science Department, Indiana University, Bloomington,
Revised December, 1976.

14 Shapiro, S.C. and Bechtel, R.J. Non-standard connectives and
quantifiers for question-answering systems. In progress.

15 Woods, W.A. What’s in a link: foundations for semantic
networks. In Representation and Understanding, Bobrow,
D.G. and Collins, A. (Eds.). Academic Press, New York, 1975,
25-82.

Semantic Network Representations in Rule-Based Inference Systems
Richard O. Duda, Peter E. Hart, Nils J. Nilsson, and Georgia L.
Sutherland
Stanford Research Institute Menlo Park, CA 94025

Rule-based inference systems allow judgmental knowledge
about a specific problem domain to be represented as a collection
of discrete rules. Each rule states that if certain premises are
known, then certain conclusions can be inferred. An important
design issue concerns the representational form for the premises
and conclusions of the rules. We describe a rule-based system
that uses a partitioned semantic nelwork representation for the
premises and conclusions.

Knowledge-Directed Inference in BELIEVER
N. S. Sridharan and C. F. Schmidt
Department of Computer Science
Rutgers University 'New Brunswick, NJ 08903

The BELIEVER theory is an attempt to specify an information
processing system that constructs intentional interpretations of
an observed sequence of human actions. A frame-based system,
AIMDS, is used to define three domains: the physical world; the
plan domain, where interpretations are constructed using plan
structures composed from plan units; and the psychological
description of the actor, The system achieves a shift of
representation from propositions about physical events to
statements about beliefs and intentions of the actor by
hypothesizing and attributing a plan structure to the actor.

A paradigm for approaching a part of the interpretation
problem is described in this report. Understanding is viewed as a
process of assimilating incoming patterns with existing knowledge
and expectations. The essential process of "expectation
matching” is attended to in detail and a simple example is
presented to illustrate the paradigm and its possibie extensions.

Page 18

Knowledge Representation

A Knowledge Base Organization for Rules About Programming
David Barstow
Stanford University Stanford, CA 94305

Abstract

PECOS is a knowledge-based system for automatic program
synthesis. Programs are specified as abstract algorithms in a
high-level language for symbolic computation. Through the
successive application of programming rules, the specification is
gradually refined into a concrete implementation in the target
language. The existence of several rules for the same task
permits the construction of a variety of distinct programs from a
single initial specification. Internally, program descriptions are
represented as collections of nodes, each Ilabeled with a
programming concept and with other properties related to that
concept. The refinement process is guided by the selection and
application of rules about programming. These rules are stated
as condition-action pairs, but the identification of certain rule
types permits the use of various techniques for efficient rule
retrieval and testing, including the determination of retrieval
patterns and the automatic separation of the condition into an
applicability pattern and a binding pattern.

Introduction

PECOS is a knowledge-based system that constructs
concrete implementations of abstract algorithms {1]. For current
experiments the specification language centers around notions
from symbolic programming, including information structures such
as collections or correspondences, and operations such as testing
whether an item is in a coliection or computing the inverse of a
correspondence. Programs are synthesized by gradually refining
the original specification into a program in the target language.
Currently the target language is LISP (in particular, a subset of
INTERLISP [10]), but experimentation with SAIL (an ALGOL-like
language) is underway [8]. From a given specification, PECOS is
able to construct several different implementations, differing both
in representations for data structures and in algorithms for
abstract operations.

PECOS’s abilities are derived from a large knowledge base
of rules about programming. These rules have been carefully
desighed and constructed to deal explicitly with various aspects
of the programming process, including intermediate-level
constructs and certain designh decisions. In previous experiments,
such rules have been used to synthesize several simple sorting
programs [5,6] Detailed discussions of all of PECOS’s rules may
be found elsewhere [1]. The current discussion focuses on the
organization of the knowledge base and the techniques used to
retrieve and apply its rules.

Rules about Programming

The rules in PECOS’s knowledge base constitute an
explication of knowledge about writing programs in the domain of
symbolic computation. While many of the rules are relatively
specific to the task of writing simple symbolic programs, some
are generally applicable to programming in other domains as weli.
Most are independent of any particular programming language,
although some are quite specific to LISP. A representative
sample is given below. (The rules are presented in English for
ease of understanding; details of the internal representation are
discussed later.)

1. This research was supported by the Advanced Research
Projects Agency of the Department of Defense under Contract
MDA 903-76-C-0206. The views and conclusions contained in
this document are those of the author and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of Stanford University, ARPA, or
the U. S. Government,

SIGART Newsletter No. 63 June 1977

