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A b s t r a c t  

A semantic network is defined with its arcs and nodes 
separated into various sets. Arcs are part i t ioned into 
descending, ascending, and auxil iary arcs. Nodes are part i t ioned 
into base, variable, assertion, pattern and auxil iary nodes. Nodes 
can be temporary or permanent. 

Some pattern and assertion nodes, called rule nodes, 
represent  proposit ional functions of the nodes they dominate. 
Rule nodes may bind the variables they dominate with any one of 
a set of binding relations representing quantifiers. A rule node 
which dominates variables all of which are bound is a constant 
deduction rule. 

Deduction rules may be viewed as pat tern- invoked 
procedures. The type of propositional function determines the 
procedure, the variables bound by the rule are the local 
variables, and the quantif ier determines the type of binding. 

A binding is defined as a list of variables associated with the 
nodes they are bound to. A binding can be used like a 
substitut ion, except it is seldom actually applied. Instead, a 
pat tern node and a binding for it are used as a pair. 

A match routine is defined which is given a source node and 
a.binding and finds target nodes, target bindings and more ful ly 
specified source bindings. Target nodes that are par'terns 
provide entrees into relevant rules. 

1. Introduction 
The first logically adequate proposal for represent ing 

quanti f ied deduction rules in semantic networks was made by the 
author in 1971 [11, 12]. A somewhat different representat ion, 
though der ived from the sarne project, was presented by Kay in 
1973 [7]. These, and a close variant, were discussed by Woods 
in 1975 [15]. In 1974-1976, Schubert [8, 9, 10] presented 
another close variant, apparently developed independently, since 
he did not compare his work with the others. In 1975, Hendrix 
[4, 5]  presented a representation that adds the notion of network 

I. The work reported herein was done, for the most part, whi le 
the author was at the Computer Science Department, Indiana 
University, Bloomington, Indiana 47401. 
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part i t ions in a fundamental way and compared his representat ion 
with the previous ones [5, pp. 222-4, 266-72]. 

Sections 2 and 3 of this paper present a more recent syntax 
for semantic networks, discussed tess completely but with more 
examples elsewhere [13], and another representat ion for 
deduction rules, adapted from the earl ier one, but designed to 
accommodate non-standard logics [1, 2, 14] and some of the 
criticisms of Hendrix. Section 4 discusses how deduction rules 
may be viewed as pattern- invoked procedures. Sections 5 and 6 
present for the first time the matching algorithms used to 
re t r ieve information from the semantic network and for 
ident i fy ing relevant rules. 

This paper is not concerned with the particular arc relat ions 
used in any particular domain of information nor those to be used 
in a general model of understanding natural language, except as 
they relate to the representation of deduction rules. 

2. Basic Representation 
A semantic network is a directed graph with labeled nodes 

and arcs in which nodes represent concepts and arcs represent 
non-conceptual binary relations between concepts. The same 
concept is always represented by tile same node and whenever  
an arc representing a relation, R, points from node n to node m, 
there is an arc representing the converse relation of R, R c, from 
m to n. The labels of nodes and arcs are meaningless symbols, 
but may be chosen to be mnemonics suggesting the concepts or 
relat ions represented. 

In SNAPS semantic networks i13], we distinguish three kinds 
of arcs: descendinE, ascendinE and auxiliary. For each relat ion 
represented by ascending arcs, there is a converse relat ion 
represented by ascending arcs and vice versa. Together, 
descending and ascending arcs are the regular semantic network  
arcs re fer red to above. Auxil iary arcs are used for hanging non- 
nodal information on nodes and for typing the nodes as discussed 
below. If a descending arc goes from node n to node mr we say 
that n imrnecliatel~ dominates m. If there is a path of descending 
arcs from node n to node m, we say that n dominates m. If R is 
an arc label and n is a node, we will use the notation R(n) for the 
set of nodes into which arcs labeled R go from n. In what 
follows, we will often use the phrase "the relation R" when we 
mean "an arc labeled R". 

There are three kinds of nodes: constant, non-constant, and 
au%iLiary. Auxi l iary nodes are connected to each other and to 
other nodes only by auxiliary arcs. Constant nodes represent  
unique semantic concepts. Nodes which dominate no other node 
are called atomic nodes. Atomic constants are called 6ase nodes 
and atomic non-constants are called uariagle nodes or uaria6les. 
Variables are distinguished by being in the auxil iary relat ion :VAR 
to the auxi l iary node T. Non-atomic nodes are called molecular 
nodes. There is a set of descending relations called 6indinE 
relations. A molecular node that immediately dominates one or 
more variable may have at most one binding relat ion to an 
a rb i t ra ry  number of those variables, which are referred to as 
boundgy that molecular node. The remaining dominated variables 
are referred to as free in the molecular node, which has an 
auxi l iary arc labeled :SVAR to each of them. If a node m 
immediately dominates a set of variable nodes {Vl, . . . . .  vt} and a 
set of non-var iable nodes {nt,  . . . .  nk} and V ~ {v t . . . . .  v l U 
:SVAR<n I)  u . . . u  :SVAR(n k) is non-empty, m may have at most one 
binding relation, say Q, to one or more variables in V. These are 
re fer red to as bound by m. The remainder, V - O(m), are free in 
m and have the arc :SVAR to each of them from m. It should be 
the case that no variable bound by a node m is free in any node 
not dominated by m, and we will assume that this restr ict ion 
holds. A node n such that :SVAR(n) is non-empty is a non- 
constant molecular node and is called a pattern node. A 
molecular node n for which :SVAR(n) is empty is a molecular 
constant or assertion node. 
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Tempora ry  molecular and var iable nodes can be created. 
Tempora ry  molecular nodes have no ascending arcs coming into 
them from the nodes they dominate. Temporary  nodes are not 
placed on any permanent system list and are garbage-co l lec ted 
when no longer re fer red to. They are invisible to all the 
semantic ne twork  ret r ieval  operat ions. We will re fer  to non-  
t empo ra ry  nodes as permatzetzt nodes. 

In f igures in this paper, we show auxi l iary arcs as labeled 
dashed ar rows and descending arcs as labeled solid arrows. We 
do not show ascending arcs. Auxi l iary and tempora ry  nodes are 
shown as labels only,  other  nodes as labeled circles. In Figure 1, 
MEMBER and CLASS are. descending relations, :VAR and :SVAR are 
aux i l ia ry  relat ions, MOBY-DICK and WHALE are base nodes, M 1 is 
an assert ion node, T2 is a temporary  var iable,  T3 is a t empora ry  
pa t te rn  node and T is an auxi l iary node. 

MI T5 

\ 7 

y Xo/ '* , .J ~. ,,T2 
MOBY- DICK WHALE A~> 

Y 
T 

Figure i. An example of various kinds of 
nodes and edges 

3. Representation o f  Deduetiott RuLes 
To represent  deduct ion rules in SNePS, we dist inguish a set 

of molecular nodes called rtzLe nodes. Each rule node represents  
a propos i t iona l  formula of molecular nodes that are arguments to 
a par t icu lar  proposi t ional  connective. Three kinds of connect ives 
are cur ren t l y  used: entai lment, AND-OR, and THRESH. An 
enta i lment  rule has time descending relat ion ANT (antecedent)  to a 
set of molecular nodes and the descending re lat ion CQ 
(consequent)  to a set of molecular nodes. The in te rpre ta ion  of an 
enta i lment  rule n is that each molecule in ANT(n) entai ls each 
molecule in CQ(n). Figure 2 shows the ne twork  representa t ion  of 
the entai lment rule wr i t ten  l inearly as (A t . . . . .  A k) ~ (C 1, . . . ,  CL). 

At Ak C t C~ 
Figure 2. Network representation of 

(A 1 . . . . .  A k) ÷ (C 1 . . . . .  C~) 

An AND-OR rule has auxi l iary relat ions MIN, MAX and TOT to 
in tegers i, j and n respect ive ly  and the descending re lat ion ARG 
to a set of n molecular nodes. The in terpre ta t ion of an AND-OR 
rule m is that at least i and at most j of the n molecules in 
ARG(m) are true. Figure 3 shows the .ne twork  representa t ion  of 
the AND-OR rule wr i t ten  l inearly as nCeJi(Pl,. . . ,  Pn ). 
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. .Zor 

et Pn 

Figure 3. Network representation of n=~(Pl , .--, Pn ) 

A THRESH I~as auxi l iary relat ions THRESH and TOT to 
in tegers i and n respect ive ly  and the descending re lat ion ARG to 
a set of n molecular nodes. The in terpre ta t ion of a THRESH rule 
is that if at least i of the molecules are true, then all n are t rue.  
Figure 4 shows the network  representat ion of the THRESH rule 
w r i t t e n  l inear ly  as nat(P1 . . . .  ,Pn ). 

. ..t0_.T_ _ T H iE  i 

PI P. 
Figure 4: Network representation of 

n0i(P I, ..., Pn ) 

One could consider AND-OR rules wi th d i f ferent  <MIN, MAX, 
TOT> t r ip les to be d i f ferent  types of proposi t ional  formulas, and 
l ikewise THRESH rules with di f ferent <THRESH, TOT> tuptes. For 
example,  AND-ORs of the type n~n l  represent  the dis junct ion of 
the n molecules, AND-ORs of the type 1800 represent  negat ion 
and THRESHs of the type n6 l  represent  the mutual equiva lence 
of t i le n molecules. More complete discussions of the logic of 
these rules may be found e lsewhere [1, 2, 14]. As an example,  
Figure 5 shows a possible representat ion of "John is e i ther  at 
home, at the airport ,  or at the office". 

Rule nodes are the only molecular nodes al lowed to have 
binding relat ions. At the current time, AVB is used for universal  
quant i f icat ion,  EVB for existent ial  quantif ication, OVB for  unique 
ex is tent ia l ,  LVB for "almost all" (almost-al l(x) (P(x)eQ(x)) means 
that  if a is such that P(a) holds and such that Q(a) cannot be 
shown,  deduce that Q(a) holds), and NVB for "none" 
(None(x)(P(x)-~Q(x)) means that if P(a) holds, Q(a) doesn't).  A rule 
node, R, for which :SVAR(R) is empty is a constant deduct ion rule. 
Figure 6 shows a representat ion for "Whales l ive in wa te r  and 
each has a blowhole".  

4. Deduction Rules as Pattern-Itzuoked Procedures 
The general  form of a deduct ion rule is Q(x 1 . . . . .  xn)F(P 1, 

. . . .  Pk ) where  Q is a quanti f ier,  x 1 . . . . .  x n are var iables bound 
by  the rule node, F is the proposit ional function represen ted  by 
the rule node, and PI,  " ' "  Pk are the molecular node 
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3-q- TOT ..~M~ ..vl 

M2 M3 1 

~/ ~. ~ AIRPORT 'I 
rf \" 

JOHI 

OFFICE 1 

Figure 5. "John is either at home, at the airport, 
or at the office" 

G 

WHALE 

R3 

"V x2 
~-"~x...2 

BLOWHOLE 

Figure 6. "Whales live in water and each 
has a blowhole" 

propos i t ions  imrnediately dominated by the rule node. ] h e  
funct ion F may be v iewed as a procedure type that determines 
how the Pi are to be processed to der ive new informat ion. For 
example,  i f '  F is ~, the Pj are par t i t ioned into antecedents and 
consequents and any consequent may be deduced if any 
antecedent  is shown Io hold; if F is n;~i then any i of the Pj that 
are founcl to hold are considered to be antecedents and are 
adequate  grounds for deducing any of the remaining m-i as 
consequents.  Actual ly, when we say, "if the antecedents are 
shown then a consequent may be deduced", we should say, "if 
the antecedents are shown in a given binding of the var iab les x l ,  
. . . ,  Xn, then a consequent may be deduced in that b ind ing" ,  for  
the var iab les x 1 . . . .  , x n act as local var iables in the ru le -  
procedure.  The quant i f ier  determines how the var iab le  binding is 
managed. For example, if Q is  AVB any bindin 8 is al lowed. If Q is 
LVl3, once the antecedent(s) is shown to hold in a g iven binding, 
tha i  binding is tested in the negation of the consequent. If that  
is not found 1o hold, the consequent is deduced in that binding. 
If Q is EVB, the var iables must be bound to new base nodes 
(Skolem functions). A binding of lhe var iables is similar to, but 
not qui te the same as a subst i tut ion to be appl ied to F(P]., . . . .  
Pn ) in resolut ion terminology (see [3]). This point wi l l  be 
c lar i f ied in the fo l lowin 8 section. 

Any  rule may be used ei ther in the fo rward  direct ion,  l ike a 
PLANNER [6 ]  antecedent theorem, or in the backward d i rect ion,  
l ike a PLANNER consequent theorem. In the backward di rect ion,  
if a subst i tu t ion instance of a consequent is to be deduced, an 
a t tempt  is made to deduce all the antecedents in the same 
subst i tu t ion.  As soon as the appropr ia te  number of them are 
found (1 in the case. of ~, i in the case of nat , n-i to be false in 
the case of neiJ), the consequent is deduced. In the fo rward  
d i rect ion,  when an antecedent of an entai lment is asserted, the 
consequents may be asserted. When an antecedent of AND-OR or 
THRESH is asserted, the appropr ia te  number of o ther  arguments 
must be deduced. Then the remainder of the arguments may be 
asser ted as consequents. 

A potent ia l ly  useful rule is d iscovered when e i ther  a 
molecular  node to be used to dr ive a fo rward  in ference or  a 
t e m p o r a r y  molecular node represent ing a propos i t ion to be 
deduced matches a molecular node dominated by the rule. The 
path  of arcs be tween the rule node and the matched node must 
be appropr ia te  to the intended use, i.e. fo rward  vs. backward  
inferencing.  Matching is done f irst and only appropr ia te  paths of 
ascending arcs are fo l lowed to find the potent ia l ly  useful rules. 
Such a rule is on ly  potent ia l ly  useful since not enough 
antecedents  may hold for it to be t ru ly  useful. 

The appropr ia te  path for backward inferencing is one of 
CQ c or ARG c arcs. The appropr ia te  path for fo rward  in ferenc ing 
is one containing ANT c, ARGc or CQ c, as long as at least one 
ANT c or  ARGc occurs. To see this, note that in the rule (A~B) 
(C~D), the assert ion of B or of C might al low something new to 
be deduced. (The assert ion of a node matching B might a l low 
A~B to be proved,  and if C were t rue, D would then be 
der ivab le) .  The proper  bindings are found by the matching 
opera t ion ,  and may be f i l led in as inferencing proceeds. Bindings 
and the matching opera t ion  are discussed more comple te ly  in the 
next  two sections. 

5. Bindings 
We wr i te  a binding as a list of pairs in square brackets,  

[ v j / t l , . . . ,  v k / t k ]  , where  the v i are var iable nodes and the t i are 
nodes. This is the reverse order  from the usual nota t ion for 
subst i tu t ions,  but the normal order  for association or binding 
lists. We call each v i / t  i a pair  and say that v i is the ¥@riable o f  
the pai r  and t i is the term o f  the pair. We wil l  say that a 
variable, v, is in  a bindi.n~. /~(or v (~ )  if v is the var iab le  of some 
pai r  in ~. So v l  ( [ v l / v 2 ] ,  but v 2 ~ . [ v l / v 2 ] .  If t is the term of 
some pair  in a binding ~, we will say that t is a term o f  ~. Two 
d i f fe rences be tween bindings and subst i tut ions are that the pair  
v / v  is a l lowed in a binding, and if p is a pat tern  node With :SVAR 
to v ]  the binding Iv /p ,  v l / t ]  is used to mean that v is bound to 
an instance of p in which v l  is bound to t. In fact, wheneve r  a 
pa t te rn ,  p, is a term of a binding, ~, all var iables in :SVAR(p) wi l l  
also be in ~. This al lows for the use of the tuple <N,/~> instead 
of actual ly  creat ing a subst i tut ion instance of the n e t w o r k  
s t ruc tu re  dominated by  N. In what fol lows, we wil l  w r i t e  N~ 
instead of <N,~>. 

To apply a binding ~ to a nocle N means the fo l lowing:  
! )  If N is the var iab le  of a pair N/v  in ~ and v is a var iab le ,  

re tu rn  v. 
2) Else if N is the var iable of a pair N/I  in ~, re tu rn  the 

appl icat ion of ~ to t. 
3) Else if N is an atomic node, re turn N. 
4) Else re turn  a node N' such that for eve ry  descending 

re la t ion R and for eve ry  node M (R(N) ,  N' has R to the 
appl icat ion of ~ to M. According to a parameter  of the 
app ly  function, N" may be a temporary  or permanent  
node. If permanent,  and a node sat isfy ing the descr ip t ion 
a l ready exists, it wil l  be used, o therwise a new node wil l  
be created. 

i t  should be remembered that this opera t ion  is seldom carr ied 
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out,  and when it is, nodes created in step 4) may be t empora ry  
nodes ra ther  than permanent nodes. 

To apply a binding # to the terms of another binding 
(wr i t t en  ~ . . \ # )  does not involve the above operat ion,  but on ly  
means replacing eacll pair v l / v 2  in ~: such that there is a pair  
v 2 / t  in # by the pair v l / t .  

We def ine the ~nion of two bindings, ~ u ~ ,  as the binding 
contain ing all the pairs in ~ plus eve ry  pair in ~ whose var iab le  
is not in #. For example, [ v l / v 2 ,  v 3 / t l ]  u [ v2 / t2 ,  v 3 / t 3 ]  = 
[ v l / v 2 ,  v2 / t 2 ,  v 3 / t l ] .  Note that this union is not commutat ive.  

The composition of two bindings can now be def ined as 
# ~ ~ = ( # \ ~ . )  u ~.  It can be seen that binding composi t ion is 
associat ive, and that if N is a node and # and ~.. are bindings, 
(N~ )~  is "equivalent"  to N(# ~ ,~:) but not necessari ly identical,  
since if the two applications are carr ied out, d i f ferent  nodes may 
be created in step .q) of the "apply a binding to a node" rout ine.  

I wil l  stand for the ident i ty binding over  appl icat ion and 
union (and there fo re  composition). If p is a pat tern node, l(p) is 
def ined as the binding consisting of pairs v / v  for e v e r y  
v ( :SVAR(p) .  This is a r ight - ident i ty  over  application. If n is a 
node wi th  no :SVAR arcs, we define ](n) to be I. 

6. Match 
In this section, V stands for the set of permanent var iab le  

nodes, C for the set of permanent constant nodes, and P for the 
set of permanent  pat tern nodes. 

The arguments of match(S, ~) are a node S, which could be 
e i ther  tempora ry  or permanent, and a binding #. Match re turns a 
set of tuples, {<T,~,~>}, such that for some bindings #1,  /32' 
<r= (#  \ ~1 ) o #2,  and such that for eve ry  descending re la t ion R, 
e v e r y  atomic node in R(So-) is also in R(T~ and for e v e r y  
molecular node in R(SO) there is an equivalent node in R(Tc). T is 
r e fe r red  to as the tarEet node;~ as the tarEet binding ands-as the 
source bindin E. Match (S, #)  is def ined recurs ive ly  as fo l lows: 

1) If S is a base node, 
match(S,#) = {<S, 1, #>} u {<v, Iv /S] ,  ~> I v { V} 

2) If S is a var iable node and S# = S, 
match(S,#) = {<c, I, #orS/c]> I c ( C} 

u {<v, Iv/S],  #o[S/v]> I v < v} 
u {<p, [(p), # , IS/p]> I p < P} 

3) if S is a var iable node and S,,~ is a var iable o ther  than S, 
match(S,#) = 

{<T,~\ [S#/S] ,  #,a-> I <T,C,0 "> ( matchF~t, I)} 
4) If S is a var iable node and S~ is not, 

match(S,#) = {<T,¢, #~,1I "> I <T,q-,o"> ( match(S/3,~))} 
5) If S is a molecular node, then let S 1 . . . .  , S k be the set of 

nodes immediately dominated by S and Ri, l<_i~k, be the 
descending relat ion from S to S i. The set of potent ia l  
match sets, M 1 . . . .  , Mk, is built as fol lows. 

a) For each <T,~,G > in match(S, /:1) and for each N in 
RCl(T) , put <N,'~',~"> in M 1. 

b) For each <N,~,0 "> in Mi_ 1 and for each <T, ~i,(:~> in 
match(St, #)  such that N (RCi(T) do set~" ~'I[' and¢ '  <-o- 

and FLAG to T 
for each v i i  inZ" i 

if v 1~", add v / t  t a r  t 
else if v ~ '  (~' and t # t '  and t is a var iab le  not 
in :SVAR(t') 
apply [ t / t ' ]  to the terms o f~ '  a n d ~  i 
apply [ v / t ' ]  to the terms of 0"' anda"~ 

else if v / t '  (~" and t # t '  and t ' is a var iab le  not 
in :SVAR(T) 
apply I t ' / t ]  to the terms o fT '  and 2" i 
apply I v / t ]  to the terms o f~ '  and,~ i 

else if t ~ t" set FLAG to F 
for each v / t  i n k  

if v ~0", add v l l  lo~"  
else if v / t "  ( "U and t # t '  and t is a var iab le  not 
in :SVAR(T') 
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apply [ t / t ' ]  to |he terms o ld"  and,~ T 
apply [ v / t ' ]  to the terms of 'c '  

else if v / t '  (~ '  and t # t" and t '  is a var iab le  not 
in :SVAR(t) 
apply I t ' / t ]  to t i le terms ofa"  and 
apply I v / t ]  to the terms o f# '  

else if t # t '  set FLAG to F 
if FLAG = T acld <N,T',¢'> to M i 

match(S, #)  = M k 
When S# is a question (a proposi t ion to be deduced), each 

T~ such that <T,~,~'-> ( match(S, /~) wil l e i ther  be an assert ion 
which prov ides the answer or an entree to a potent ia l ly  useful 
rule.  In the lat ter  case, if the rule works,  the answer wil l  be S~, 
which is possibly more specific and detai led than the or ig inal  
quest ion,  S~. 

The way  match is current ly  defined, the target  node may 
immediate ly  dominate more nodes than the source node. This 
seems appropr ia te  when looking for rules to apply  in a 
consequent  fashion, but inappropr ia te when looking for rules to 
app ly  in an antecedent fashion. As we have not ye t  implemented 
the lat ter ,  we wil l  not discuss this issue in detail. Step (5b) of 
match could be modif ied to al low target nodes wi th  f ewe r  
immediate ly  dominated nodes by al lowing into M i those <N,T,~> in 
M;_ 1 for which there is no <T,'~, 6"> in match(S i, ~) for which N ( 
R~i(T) and by putt ing into M i tr iples of the form <N, 2 " ) ~ >  
w h e n e v e r  <T,'Z',#'> ( match(St, #), N ~ RCi(T) and there is no t r ip le  
<N,~' ,Y'> a l ready in Mi_~,  

7. Implementation Status 
The semantic ne twork  system, match routines, a mul t i -  

processing system for executing the rules and processes for 
doing backward inferencing with entai lment, THRESH and 
universal  quant i f icat ion have been implemented in LISP1.6 on a 
DEC Sys tem- t0 .  Deductions have been carr ied out on severa l  
small domains. At the time of wri t ing, fur ther  deve lopment  is in 
progress  and the system is also being brought up in U.T. LISPI.5 
on a CYBER 173. 
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Semantic Network Representations in Rule-Based Inference Systems 
Richard O. Duda, Peter E. Hart, Ntis J. Nilsson, and Georgia L. 
Sutherland 

Stanford Research Institute Menlo Park, CA 94025 
Rule-based inference systems allow judgmental knowledge 

about a specific problem domain to be represented as a collection 
of discrete rules. Each rule states that if certain premises are 
known, then certain conclusions can be inferred. An important 
design issue concerns lhe representational form for the premises 
and conclusions of the rules. We describe a rule-based system 
that uses a partit ioned semantic network representation for the 
premises and conclusions. 

Knowledge-Directed Inference in BELIEVER 
N. S. Sridharan and C. F. Schmidt 

Department of Computer Science 
Rutgers University New Brunswick, N J08903 

The BELIEVER theory is an attempt to specify an information 
processing systenn that constructs intentional interpretations of 
an observed sequence of human actions. A frame-based system, 
AIMDS, is used to define three domains: the physical world; the 
plan domain, where interpretations are constructed using plan 
structures composed from plan traits; and the psychological 
description of time actor. The system achieves a shift of 
representation from propositions about physical events to 
statements about beliefs and intentions of the actor by 
hypothesizing and attributing a.plan structure to the actor. 

A paradigm for approaching a part of the interpretat ion 
problem is described in this report. Understanding is viewed as a 
process of assimilating incoming patterns with existing knowledge 
and expectations. The essential process of "expectation 
matching" is attended .to in detail and a simple example is 
presented to illustrate the paradigm and its possible extensions. 

Knowledge Representation 

A Knowledge Base Organization for Rules About Programming 
David Barstow 1 

Stanford University Stanford, CA 94305 

Abstract 
PECOS is a knowledge-based system for automatic program 

synthesis. Programs are specified as abstract algorithms in a 
high-level language for symbolic computation. Through the 
successive application of programming rules, the specification is 
gradually refined into a concrete implementation in the target 
language. The existence of several rules for the same task 
peFmits the construction of a variety of distinct programs from a 
single initial specification. Internally, program descriptions are 
represented as collections of nodes, each labeled with a 
programming concept and with other properties related to that 
concept. The refinement process is guided by the selection and 
application of rules about programming. These rules are stated 
as condition-action pairs, but the identification of certain rule 
types permits the use of various techniques for efficient rule 
retr ieval and testing, including the determination, of retr ieval 
patterns and the automatic separation of the condition into an 
applicabil i ty pattern and a binding pattern. 

Introduction 
PECOS is a knowledge-based system that constructs 

concrete implementations of abstract algorithms [1]. For current 
experiments the specification language centers around notions 
from symbolic programming, including information structures such 
as collections or correspondences, and operations such as testing 
whether an item is in a collection or computing the inverse of a 
correspondence. Programs are synthesized by gradually refining 
the original specification into a program in the target language. 
Currently the target language is LISP (in particular, a subset of 
INTERLISP [10]), but experimentation with SAIL (an ALGOL-like 
language) is underway [8]. Frorn a given specification, PECOS is 
able to construct several different implementations, differing both 
in representations for data structures and in algorithms for 
abstract operations. 

PECOS's abilities are derived from a large knowledge base 
of rules about programming. These rules have been carefully 
designed and constructed to deal explicitly with various aspects 
of the programming process, including intermediate-level 
consh-ucts and certain design decisions. In previous experiments, 
such rules have been used to synthesize several simple sorting 
programs [5,6]. Detailed discussions of all of PECOS's rules may 
be found elsewhere [1]. The current discussion focuses on the 
organization of the knowledge base and the techniques used to 
retr ieve and apply its rules. 

Rules about ProErarnrnirt E 
The rules in PECOS's knowledge base constitute an 

explication of knowledge about writing programs in the domain of 
symbolic computation. While many of the rules are relat ively 
specific (o the task of writing simple symbolic programs, some 
are generally applicable to programming in other domains as well. 
Most are independent of any particular programming language, 
although some are quite specific to LISP. A representative 
sample is given below. (The rules are presented in English for 
ease of understanding; details of the internal representation are 
discussed later.) 
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