
QA/Theorem Proving - Minker

Answering. Journal of Computers and Information Science
.3, 1974, 225-243.

22 Robinson, J.A. A machine oriented logic based on the
resolution principle. Journal of the ACM 12, 1965, 25-41.

23 Roussel, P. PROLOC manuel de reference et d'util isation.
Groupe D'Intelligence Artificielle, Universite d'Aux-Marsei l le
II, 1975.

24 Tarnlund, S.A. Logic information processing. The Royal
Institute of Technology and the University of Sweden,
Department of Information Processing Computer Science,
Report TRITA-IBADB-1034, 1975.

25 Wilson, G. A description and analysis of the PAR technique -
an approach for parallel inference and parallel search to
problem solving systems. Ph.D. Thesis, Department of
Computer Science, University of Maryland, 1976. Also,
Computer Science TR-464, 1976.

26 Wilson, G.A. and Minker, J. Resolution, refinements, and
search strategies: A comparative study. IEEE Trans. on
Computers, C-25 9, 1976, 782-800.

Deduc t i ve In fe rence: Know ledge Rep resen ta t i on

Representing and Locating Deduction Rules in a Semantic Network
Stuart C. Shapiro 1

Department of Computer Science
State University of New York at Buffalo Amherst, NY 14226

A b s t r a c t

A semantic network is defined with its arcs and nodes
separated into various sets. Arcs are part i t ioned into
descending, ascending, and auxil iary arcs. Nodes are part i t ioned
into base, variable, assertion, pattern and auxil iary nodes. Nodes
can be temporary or permanent.

Some pattern and assertion nodes, called rule nodes,
represent proposit ional functions of the nodes they dominate.
Rule nodes may bind the variables they dominate with any one of
a set of binding relations representing quantifiers. A rule node
which dominates variables all of which are bound is a constant
deduction rule.

Deduction rules may be viewed as pat tern- invoked
procedures. The type of propositional function determines the
procedure, the variables bound by the rule are the local
variables, and the quantif ier determines the type of binding.

A binding is defined as a list of variables associated with the
nodes they are bound to. A binding can be used like a
substitut ion, except it is seldom actually applied. Instead, a
pat tern node and a binding for it are used as a pair.

A match routine is defined which is given a source node and
a.binding and finds target nodes, target bindings and more ful ly
specified source bindings. Target nodes that are par'terns
provide entrees into relevant rules.

1. Introduction
The first logically adequate proposal for represent ing

quanti f ied deduction rules in semantic networks was made by the
author in 1971 [11, 12]. A somewhat different representat ion,
though der ived from the sarne project, was presented by Kay in
1973 [7]. These, and a close variant, were discussed by Woods
in 1975 [15]. In 1974-1976, Schubert [8, 9, 10] presented
another close variant, apparently developed independently, since
he did not compare his work with the others. In 1975, Hendrix
[4, 5] presented a representation that adds the notion of network

I. The work reported herein was done, for the most part, whi le
the author was at the Computer Science Department, Indiana
University, Bloomington, Indiana 47401.

Knowledge Representation - Shapiro

part i t ions in a fundamental way and compared his representat ion
with the previous ones [5, pp. 222-4, 266-72].

Sections 2 and 3 of this paper present a more recent syntax
for semantic networks, discussed tess completely but with more
examples elsewhere [13], and another representat ion for
deduction rules, adapted from the earl ier one, but designed to
accommodate non-standard logics [1, 2, 14] and some of the
criticisms of Hendrix. Section 4 discusses how deduction rules
may be viewed as pattern- invoked procedures. Sections 5 and 6
present for the first time the matching algorithms used to
re t r ieve information from the semantic network and for
ident i fy ing relevant rules.

This paper is not concerned with the particular arc relat ions
used in any particular domain of information nor those to be used
in a general model of understanding natural language, except as
they relate to the representation of deduction rules.

2. Basic Representation
A semantic network is a directed graph with labeled nodes

and arcs in which nodes represent concepts and arcs represent
non-conceptual binary relations between concepts. The same
concept is always represented by tile same node and whenever
an arc representing a relation, R, points from node n to node m,
there is an arc representing the converse relation of R, R c, from
m to n. The labels of nodes and arcs are meaningless symbols,
but may be chosen to be mnemonics suggesting the concepts or
relat ions represented.

In SNAPS semantic networks i13], we distinguish three kinds
of arcs: descendinE, ascendinE and auxiliary. For each relat ion
represented by ascending arcs, there is a converse relat ion
represented by ascending arcs and vice versa. Together,
descending and ascending arcs are the regular semantic network
arcs re fer red to above. Auxil iary arcs are used for hanging non-
nodal information on nodes and for typing the nodes as discussed
below. If a descending arc goes from node n to node mr we say
that n imrnecliatel~ dominates m. If there is a path of descending
arcs from node n to node m, we say that n dominates m. If R is
an arc label and n is a node, we will use the notation R(n) for the
set of nodes into which arcs labeled R go from n. In what
follows, we will often use the phrase "the relation R" when we
mean "an arc labeled R".

There are three kinds of nodes: constant, non-constant, and
au%iLiary. Auxi l iary nodes are connected to each other and to
other nodes only by auxiliary arcs. Constant nodes represent
unique semantic concepts. Nodes which dominate no other node
are called atomic nodes. Atomic constants are called 6ase nodes
and atomic non-constants are called uariagle nodes or uaria6les.
Variables are distinguished by being in the auxil iary relat ion :VAR
to the auxi l iary node T. Non-atomic nodes are called molecular
nodes. There is a set of descending relations called 6indinE
relations. A molecular node that immediately dominates one or
more variable may have at most one binding relat ion to an
a rb i t ra ry number of those variables, which are referred to as
boundgy that molecular node. The remaining dominated variables
are referred to as free in the molecular node, which has an
auxi l iary arc labeled :SVAR to each of them. If a node m
immediately dominates a set of variable nodes {Vl, vt} and a
set of non-var iable nodes {nt, nk} and V ~ {v t v l U
:SVAR<n I) u . . . u :SVAR(n k) is non-empty, m may have at most one
binding relation, say Q, to one or more variables in V. These are
re fer red to as bound by m. The remainder, V - O(m), are free in
m and have the arc :SVAR to each of them from m. It should be
the case that no variable bound by a node m is free in any node
not dominated by m, and we will assume that this restr ict ion
holds. A node n such that :SVAR(n) is non-empty is a non-
constant molecular node and is called a pattern node. A
molecular node n for which :SVAR(n) is empty is a molecular
constant or assertion node.

Page 14 SIGART Newsletter No. 63 June 1977

Knowledge Representat ion - Shapiro

Tempora ry molecular and var iable nodes can be created.
Tempora ry molecular nodes have no ascending arcs coming into
them from the nodes they dominate. Temporary nodes are not
placed on any permanent system list and are garbage-co l lec ted
when no longer re fer red to. They are invisible to all the
semantic ne twork ret r ieval operat ions. We will re fer to non-
t empo ra ry nodes as permatzetzt nodes.

In f igures in this paper, we show auxi l iary arcs as labeled
dashed ar rows and descending arcs as labeled solid arrows. We
do not show ascending arcs. Auxi l iary and tempora ry nodes are
shown as labels only, other nodes as labeled circles. In Figure 1,
MEMBER and CLASS are. descending relations, :VAR and :SVAR are
aux i l ia ry relat ions, MOBY-DICK and WHALE are base nodes, M 1 is
an assert ion node, T2 is a temporary var iable, T3 is a t empora ry
pa t te rn node and T is an auxi l iary node.

MI T5

\ 7

y Xo/ '* , .J ~. ,,T2
MOBY- DICK WHALE A~>

Y
T

Figure i. An example of various kinds of
nodes and edges

3. Representation o f Deduetiott RuLes
To represent deduct ion rules in SNePS, we dist inguish a set

of molecular nodes called rtzLe nodes. Each rule node represents
a propos i t iona l formula of molecular nodes that are arguments to
a par t icu lar proposi t ional connective. Three kinds of connect ives
are cur ren t l y used: entai lment, AND-OR, and THRESH. An
enta i lment rule has time descending relat ion ANT (antecedent) to a
set of molecular nodes and the descending re lat ion CQ
(consequent) to a set of molecular nodes. The in te rpre ta ion of an
enta i lment rule n is that each molecule in ANT(n) entai ls each
molecule in CQ(n). Figure 2 shows the ne twork representa t ion of
the entai lment rule wr i t ten l inearly as (A t A k) ~ (C 1, . . . , CL).

At Ak C t C~
Figure 2. Network representation of

(A 1 A k) ÷ (C 1 C~)

An AND-OR rule has auxi l iary relat ions MIN, MAX and TOT to
in tegers i, j and n respect ive ly and the descending re lat ion ARG
to a set of n molecular nodes. The in terpre ta t ion of an AND-OR
rule m is that at least i and at most j of the n molecules in
ARG(m) are true. Figure 3 shows the .ne twork representa t ion of
the AND-OR rule wr i t ten l inearly as nCeJi(Pl,. . . , Pn).

knowledge Representat ion - Shapiro

. .Zor

et Pn

Figure 3. Network representation of n=~(Pl , .--, Pn)

A THRESH I~as auxi l iary relat ions THRESH and TOT to
in tegers i and n respect ive ly and the descending re lat ion ARG to
a set of n molecular nodes. The in terpre ta t ion of a THRESH rule
is that if at least i of the molecules are true, then all n are t rue.
Figure 4 shows the network representat ion of the THRESH rule
w r i t t e n l inear ly as nat(P1 ,Pn).

. ..t0_.T_ _ T H iE i

PI P.
Figure 4: Network representation of

n0i(P I, ..., Pn)

One could consider AND-OR rules wi th d i f ferent <MIN, MAX,
TOT> t r ip les to be d i f ferent types of proposi t ional formulas, and
l ikewise THRESH rules with di f ferent <THRESH, TOT> tuptes. For
example, AND-ORs of the type n~n l represent the dis junct ion of
the n molecules, AND-ORs of the type 1800 represent negat ion
and THRESHs of the type n6 l represent the mutual equiva lence
of t i le n molecules. More complete discussions of the logic of
these rules may be found e lsewhere [1, 2, 14]. As an example,
Figure 5 shows a possible representat ion of "John is e i ther at
home, at the airport , or at the office".

Rule nodes are the only molecular nodes al lowed to have
binding relat ions. At the current time, AVB is used for universal
quant i f icat ion, EVB for existent ial quantif ication, OVB for unique
ex is tent ia l , LVB for "almost all" (almost-al l(x) (P(x)eQ(x)) means
that if a is such that P(a) holds and such that Q(a) cannot be
shown, deduce that Q(a) holds), and NVB for "none"
(None(x)(P(x)-~Q(x)) means that if P(a) holds, Q(a) doesn't). A rule
node, R, for which :SVAR(R) is empty is a constant deduct ion rule.
Figure 6 shows a representat ion for "Whales l ive in wa te r and
each has a blowhole".

4. Deduction Rules as Pattern-Itzuoked Procedures
The general form of a deduct ion rule is Q(x 1 xn)F(P 1,

. . . . Pk) where Q is a quanti f ier, x 1 x n are var iables bound
by the rule node, F is the proposit ional function represen ted by
the rule node, and PI, " ' " Pk are the molecular node

SIGART Newslet ter No. 63 June 1977 Page 15

Knowledge Representat ion - Shapiro Knowledge Representat ion - Shapiro

3-q- TOT ..~M~ ..vl

M2 M3 1

~/ ~. ~ AIRPORT 'I
rf \"

JOHI

OFFICE 1

Figure 5. "John is either at home, at the airport,
or at the office"

G

WHALE

R3

"V x2
~-"~x...2

BLOWHOLE

Figure 6. "Whales live in water and each
has a blowhole"

propos i t ions imrnediately dominated by the rule node.] h e
funct ion F may be v iewed as a procedure type that determines
how the Pi are to be processed to der ive new informat ion. For
example, i f ' F is ~, the Pj are par t i t ioned into antecedents and
consequents and any consequent may be deduced if any
antecedent is shown Io hold; if F is n;~i then any i of the Pj that
are founcl to hold are considered to be antecedents and are
adequate grounds for deducing any of the remaining m-i as
consequents. Actual ly, when we say, "if the antecedents are
shown then a consequent may be deduced", we should say, "if
the antecedents are shown in a given binding of the var iab les x l ,
. . . , Xn, then a consequent may be deduced in that b ind ing" , for
the var iab les x 1 , x n act as local var iables in the ru le -
procedure. The quant i f ier determines how the var iab le binding is
managed. For example, if Q is AVB any bindin 8 is al lowed. If Q is
LVl3, once the antecedent(s) is shown to hold in a g iven binding,
tha i binding is tested in the negation of the consequent. If that
is not found 1o hold, the consequent is deduced in that binding.
If Q is EVB, the var iables must be bound to new base nodes
(Skolem functions). A binding of lhe var iables is similar to, but
not qui te the same as a subst i tut ion to be appl ied to F(P].,
Pn) in resolut ion terminology (see [3]). This point wi l l be
c lar i f ied in the fo l lowin 8 section.

Any rule may be used ei ther in the fo rward direct ion, l ike a
PLANNER [6] antecedent theorem, or in the backward d i rect ion,
l ike a PLANNER consequent theorem. In the backward di rect ion,
if a subst i tu t ion instance of a consequent is to be deduced, an
a t tempt is made to deduce all the antecedents in the same
subst i tu t ion. As soon as the appropr ia te number of them are
found (1 in the case. of ~, i in the case of nat , n-i to be false in
the case of neiJ), the consequent is deduced. In the fo rward
d i rect ion, when an antecedent of an entai lment is asserted, the
consequents may be asserted. When an antecedent of AND-OR or
THRESH is asserted, the appropr ia te number of o ther arguments
must be deduced. Then the remainder of the arguments may be
asser ted as consequents.

A potent ia l ly useful rule is d iscovered when e i ther a
molecular node to be used to dr ive a fo rward in ference or a
t e m p o r a r y molecular node represent ing a propos i t ion to be
deduced matches a molecular node dominated by the rule. The
path of arcs be tween the rule node and the matched node must
be appropr ia te to the intended use, i.e. fo rward vs. backward
inferencing. Matching is done f irst and only appropr ia te paths of
ascending arcs are fo l lowed to find the potent ia l ly useful rules.
Such a rule is on ly potent ia l ly useful since not enough
antecedents may hold for it to be t ru ly useful.

The appropr ia te path for backward inferencing is one of
CQ c or ARG c arcs. The appropr ia te path for fo rward in ferenc ing
is one containing ANT c, ARGc or CQ c, as long as at least one
ANT c or ARGc occurs. To see this, note that in the rule (A~B)
(C~D), the assert ion of B or of C might al low something new to
be deduced. (The assert ion of a node matching B might a l low
A~B to be proved, and if C were t rue, D would then be
der ivab le) . The proper bindings are found by the matching
opera t ion , and may be f i l led in as inferencing proceeds. Bindings
and the matching opera t ion are discussed more comple te ly in the
next two sections.

5. Bindings
We wr i te a binding as a list of pairs in square brackets,

[v j / t l , . . . , v k / t k] , where the v i are var iable nodes and the t i are
nodes. This is the reverse order from the usual nota t ion for
subst i tu t ions, but the normal order for association or binding
lists. We call each v i / t i a pair and say that v i is the ¥@riable o f
the pai r and t i is the term o f the pair. We wil l say that a
variable, v, is in a bindi.n~. /~(or v (~) if v is the var iab le of some
pai r in ~. So v l ([v l / v 2] , but v 2 ~ . [v l / v 2] . If t is the term of
some pair in a binding ~, we will say that t is a term o f ~. Two
d i f fe rences be tween bindings and subst i tut ions are that the pair
v / v is a l lowed in a binding, and if p is a pat tern node With :SVAR
to v] the binding Iv /p , v l / t] is used to mean that v is bound to
an instance of p in which v l is bound to t. In fact, wheneve r a
pa t te rn , p, is a term of a binding, ~, all var iables in :SVAR(p) wi l l
also be in ~. This al lows for the use of the tuple <N,/~> instead
of actual ly creat ing a subst i tut ion instance of the n e t w o r k
s t ruc tu re dominated by N. In what fol lows, we wil l w r i t e N~
instead of <N,~>.

To apply a binding ~ to a nocle N means the fo l lowing:
!) If N is the var iab le of a pair N/v in ~ and v is a var iab le ,

re tu rn v.
2) Else if N is the var iable of a pair N/I in ~, re tu rn the

appl icat ion of ~ to t.
3) Else if N is an atomic node, re turn N.
4) Else re turn a node N' such that for eve ry descending

re la t ion R and for eve ry node M (R(N) , N' has R to the
appl icat ion of ~ to M. According to a parameter of the
app ly function, N" may be a temporary or permanent
node. If permanent, and a node sat isfy ing the descr ip t ion
a l ready exists, it wil l be used, o therwise a new node wil l
be created.

i t should be remembered that this opera t ion is seldom carr ied

Page 16 SIGART Newslet ter No. 63 June 1977

Knowledge Representat ion - Shapiro

out, and when it is, nodes created in step 4) may be t empora ry
nodes ra ther than permanent nodes.

To apply a binding # to the terms of another binding
(wr i t t en ~ . . \ #) does not involve the above operat ion, but on ly
means replacing eacll pair v l / v 2 in ~: such that there is a pair
v 2 / t in # by the pair v l / t .

We def ine the ~nion of two bindings, ~ u ~ , as the binding
contain ing all the pairs in ~ plus eve ry pair in ~ whose var iab le
is not in #. For example, [v l / v 2 , v 3 / t l] u [v2 / t2 , v 3 / t 3] =
[v l / v 2 , v2 / t 2 , v 3 / t l] . Note that this union is not commutat ive.

The composition of two bindings can now be def ined as
~ ~ = (# \ ~ .) u ~. It can be seen that binding composi t ion is
associat ive, and that if N is a node and # and ~.. are bindings,
(N~)~ is "equivalent" to N(# ~ ,~:) but not necessari ly identical,
since if the two applications are carr ied out, d i f ferent nodes may
be created in step .q) of the "apply a binding to a node" rout ine.

I wil l stand for the ident i ty binding over appl icat ion and
union (and there fo re composition). If p is a pat tern node, l(p) is
def ined as the binding consisting of pairs v / v for e v e r y
v (:SVAR(p) . This is a r ight - ident i ty over application. If n is a
node wi th no :SVAR arcs, we define](n) to be I.

6. Match
In this section, V stands for the set of permanent var iab le

nodes, C for the set of permanent constant nodes, and P for the
set of permanent pat tern nodes.

The arguments of match(S, ~) are a node S, which could be
e i ther tempora ry or permanent, and a binding #. Match re turns a
set of tuples, {<T,~,~>}, such that for some bindings #1, /32'
<r= (# \ ~1) o #2, and such that for eve ry descending re la t ion R,
e v e r y atomic node in R(So-) is also in R(T~ and for e v e r y
molecular node in R(SO) there is an equivalent node in R(Tc). T is
r e fe r red to as the tarEet node;~ as the tarEet binding ands-as the
source bindin E. Match (S, #) is def ined recurs ive ly as fo l lows:

1) If S is a base node,
match(S,#) = {<S, 1, #>} u {<v, Iv /S] , ~> I v { V}

2) If S is a var iable node and S# = S,
match(S,#) = {<c, I, #orS/c]> I c (C}

u {<v, Iv/S], #o[S/v]> I v < v}
u {<p, [(p), # , IS/p]> I p < P}

3) if S is a var iable node and S,,~ is a var iable o ther than S,
match(S,#) =

{<T,~\ [S#/S] , #,a-> I <T,C,0 "> (matchF~t, I)}
4) If S is a var iable node and S~ is not,

match(S,#) = {<T,¢, #~,1I "> I <T,q-,o"> (match(S/3,~))}
5) If S is a molecular node, then let S 1 , S k be the set of

nodes immediately dominated by S and Ri, l<_i~k, be the
descending relat ion from S to S i. The set of potent ia l
match sets, M 1 , Mk, is built as fol lows.

a) For each <T,~,G > in match(S, /:1) and for each N in
RCl(T) , put <N,'~',~"> in M 1.

b) For each <N,~,0 "> in Mi_ 1 and for each <T, ~i,(:~> in
match(St, #) such that N (RCi(T) do set~" ~'I[' and¢ ' <-o-

and FLAG to T
for each v i i inZ" i

if v 1~", add v / t t a r t
else if v ~ ' (~' and t # t ' and t is a var iab le not
in :SVAR(t')
apply [t / t '] to the terms o f~ ' a n d ~ i
apply [v / t '] to the terms of 0"' anda"~

else if v / t ' (~" and t # t ' and t ' is a var iab le not
in :SVAR(T)
apply I t ' / t] to the terms o fT ' and 2" i
apply I v / t] to the terms o f~ ' and,~ i

else if t ~ t" set FLAG to F
for each v / t i n k

if v ~0", add v l l lo~"
else if v / t " ("U and t # t ' and t is a var iab le not
in :SVAR(T')

Knowledge Representat ion - Shapi ro

apply [t / t '] to |he terms o ld" and,~ T
apply [v / t '] to the terms of 'c '

else if v / t ' (~ ' and t # t" and t ' is a var iab le not
in :SVAR(t)
apply I t ' / t] to t i le terms ofa" and
apply I v / t] to the terms o f# '

else if t # t ' set FLAG to F
if FLAG = T acld <N,T',¢'> to M i

match(S, #) = M k
When S# is a question (a proposi t ion to be deduced), each

T~ such that <T,~,~'-> (match(S, /~) wil l e i ther be an assert ion
which prov ides the answer or an entree to a potent ia l ly useful
rule. In the lat ter case, if the rule works, the answer wil l be S~,
which is possibly more specific and detai led than the or ig inal
quest ion, S~.

The way match is current ly defined, the target node may
immediate ly dominate more nodes than the source node. This
seems appropr ia te when looking for rules to apply in a
consequent fashion, but inappropr ia te when looking for rules to
app ly in an antecedent fashion. As we have not ye t implemented
the lat ter , we wil l not discuss this issue in detail. Step (5b) of
match could be modif ied to al low target nodes wi th f ewe r
immediate ly dominated nodes by al lowing into M i those <N,T,~> in
M;_ 1 for which there is no <T,'~, 6"> in match(S i, ~) for which N (
R~i(T) and by putt ing into M i tr iples of the form <N, 2 ") ~ >
w h e n e v e r <T,'Z',#'> (match(St, #), N ~ RCi(T) and there is no t r ip le
<N,~' ,Y'> a l ready in Mi_~,

7. Implementation Status
The semantic ne twork system, match routines, a mul t i -

processing system for executing the rules and processes for
doing backward inferencing with entai lment, THRESH and
universal quant i f icat ion have been implemented in LISP1.6 on a
DEC Sys tem- t0 . Deductions have been carr ied out on severa l
small domains. At the time of wri t ing, fur ther deve lopment is in
progress and the system is also being brought up in U.T. LISPI.5
on a CYBER 173.

8. Acknou:ledEements
The author wishes to thank Bob Bechtel, Nick Eastr idge,

Steve Johnson, Don McKay, Jim McKew, and Ben Spigle for the i r
w o r k on the theory and implementat ion of the deduct ion system.
Computer Services were prov ided by the IUPUI Comput ing
Facil i t ies as part of the I.U. Computing Network.

References
1 Bechtel, R.J. Logic for semantic networks. M,S. Thesis.

Technical Report No. 53, Computer Science Department ,
Indiana Univers i ty , 1976.

2 Bechtel, R.J. and Shapiro, S.C. A logic for semantic networks.
Technical Report No. 47, Cornputer Science Department ,
Indiana Universi ty, 1976.

3 Chang, C.L and Lee, R.C.T. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York, 1973, Section
.5.3.

4 Hendrix, G.G. Expanding the ut i l i ty of semantic ne tworks
th rough part i t ioning. Aduance Papers oj r the Fourth
International Joint Cortference on Artificial Intetligence ,
1975, 115-121.

5 Hendrix, G.G. Part i t ioned networks for the mathematical
model ing of natural language semantics. Ph.D. Thesis.
Technical Report NL-28, Department of Computer Sciences,
The Univers i ty of Texas at Austin, 1975.

6 Hewit t , C. Descript ion and theoret ical analysis (using
schemata) of PLANNER: a language for prov ing theorems
and manipulat ing models in a robot. A I -TR-258. MIT
Art i f ic ia l Intel l igence Laboratory, 1972.

SIGART Newslet ter No. 63 June 1977 Page 17

Knowledge Representation - Shapiro

7 Kay, M. The MIND System. In Natural Language Processing,
Austin, R. ted.). Algorithmics Press, New York, 1973, 155-
188.

8 Schubert, L.K. Extending time expressive power of semantic
networks. TR 74-18, Department of Computer Science,
University of Alberta, 1974.

9 Schubert, L.K. Extending the expressive power of semantic
networks. Aduance Papers of the Fottrth International .Joint
Conference on ,Artificial Intelligence, 1975, 158-164.

10 Schubert, L.K. Extending the expressive power of semantic
networks. Artificial Intelligence 7, 1976, 163-198.

11 Shapiro, S.C. The MIND system: a data structure for
semantic information processing. R-837-PR, The Rand
Corporation, Santa Monica, 1971.

12 Shapiro S.C. A net structure for semantic information
storage, deduction and retrieval. Proceeditzgs Second
International Joint Conference on Artificial Intelligence, The
British Computer Society, London, 1971, 512-523.

13 Shapiro, S.C. An introduction to SNePS (semantic net
processing system). Technical Report No. 31, Computer
Science Department, Indiana University, Bloomington,
Revised December, 1976.

14 Shapiro, S.C. and Bechtel, R.J. Non-standard connectives and
quanlifiers for question-answering systems. In progress.

15 Woods, W.A. What's in a link: foundations for semantic
networks. In Representation and Understanding, Bobrow,
D.G. and Collins, A. (Eds.). Academic Press, New York, 1975,
35-82.

Semantic Network Representations in Rule-Based Inference Systems
Richard O. Duda, Peter E. Hart, Ntis J. Nilsson, and Georgia L.
Sutherland

Stanford Research Institute Menlo Park, CA 94025
Rule-based inference systems allow judgmental knowledge

about a specific problem domain to be represented as a collection
of discrete rules. Each rule states that if certain premises are
known, then certain conclusions can be inferred. An important
design issue concerns lhe representational form for the premises
and conclusions of the rules. We describe a rule-based system
that uses a partit ioned semantic network representation for the
premises and conclusions.

Knowledge-Directed Inference in BELIEVER
N. S. Sridharan and C. F. Schmidt

Department of Computer Science
Rutgers University New Brunswick, N J08903

The BELIEVER theory is an attempt to specify an information
processing systenn that constructs intentional interpretations of
an observed sequence of human actions. A frame-based system,
AIMDS, is used to define three domains: the physical world; the
plan domain, where interpretations are constructed using plan
structures composed from plan traits; and the psychological
description of time actor. The system achieves a shift of
representation from propositions about physical events to
statements about beliefs and intentions of the actor by
hypothesizing and attributing a.plan structure to the actor.

A paradigm for approaching a part of the interpretat ion
problem is described in this report. Understanding is viewed as a
process of assimilating incoming patterns with existing knowledge
and expectations. The essential process of "expectation
matching" is attended .to in detail and a simple example is
presented to illustrate the paradigm and its possible extensions.

Knowledge Representation

A Knowledge Base Organization for Rules About Programming
David Barstow 1

Stanford University Stanford, CA 94305

Abstract
PECOS is a knowledge-based system for automatic program

synthesis. Programs are specified as abstract algorithms in a
high-level language for symbolic computation. Through the
successive application of programming rules, the specification is
gradually refined into a concrete implementation in the target
language. The existence of several rules for the same task
peFmits the construction of a variety of distinct programs from a
single initial specification. Internally, program descriptions are
represented as collections of nodes, each labeled with a
programming concept and with other properties related to that
concept. The refinement process is guided by the selection and
application of rules about programming. These rules are stated
as condition-action pairs, but the identification of certain rule
types permits the use of various techniques for efficient rule
retr ieval and testing, including the determination, of retr ieval
patterns and the automatic separation of the condition into an
applicabil i ty pattern and a binding pattern.

Introduction
PECOS is a knowledge-based system that constructs

concrete implementations of abstract algorithms [1]. For current
experiments the specification language centers around notions
from symbolic programming, including information structures such
as collections or correspondences, and operations such as testing
whether an item is in a collection or computing the inverse of a
correspondence. Programs are synthesized by gradually refining
the original specification into a program in the target language.
Currently the target language is LISP (in particular, a subset of
INTERLISP [10]), but experimentation with SAIL (an ALGOL-like
language) is underway [8]. Frorn a given specification, PECOS is
able to construct several different implementations, differing both
in representations for data structures and in algorithms for
abstract operations.

PECOS's abilities are derived from a large knowledge base
of rules about programming. These rules have been carefully
designed and constructed to deal explicitly with various aspects
of the programming process, including intermediate-level
consh-ucts and certain design decisions. In previous experiments,
such rules have been used to synthesize several simple sorting
programs [5,6]. Detailed discussions of all of PECOS's rules may
be found elsewhere [1]. The current discussion focuses on the
organization of the knowledge base and the techniques used to
retr ieve and apply its rules.

Rules about ProErarnrnirt E
The rules in PECOS's knowledge base constitute an

explication of knowledge about writing programs in the domain of
symbolic computation. While many of the rules are relat ively
specific (o the task of writing simple symbolic programs, some
are generally applicable to programming in other domains as well.
Most are independent of any particular programming language,
although some are quite specific to LISP. A representative
sample is given below. (The rules are presented in English for
ease of understanding; details of the internal representation are
discussed later.)

1. This research was supported by the Advanced Research
Projects Agency of the Department of Defense under Contract
MDA 903-76-C-0206. The views and conclusions contained in
this document are those of the author and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of Stanford University, ARPA, or
the U. S. Government.

Page 18 SIGART Newsletter No. 63 June 1977

