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Abstract
Logical inference is one approach to implementing the reasoning component of a cognitive sys-
tem. Inference graphs are a method for natural deduction inference which, uniquely in logic-based
cognitive systems, use concurrency to reason about multiple possible ways to solve a problem
simultaneously, and cancel no-longer-necessary inference operations. We outline extensions to in-
ference graphs which increase their usefulness in cognitive systems, including: the use of a more
expressive logic; a method for “wh- question” answering; and a way to focus reasoning on problems
which cannot immediately be answered due to incomplete information, so when more information
becomes available the inference can proceed. We discuss how these three improvements increase
the usefulness of inference graphs in cognitive systems.

1. Introduction

Logical inference is one method of implementing the reasoning component of a cognitive system.
Examples include GLAIR (Shapiro & Bona, 2010) and MGLAIR (Bona, 2013), which use the
SNePS 2 KRR system (Shapiro & The SNePS Implementation Group, 2010) as their knowledge
layer. SNePS 2 uses a first order logic, and can perform natural deduction inference using forward,
backward, bi-directional (Shapiro, Martins, & McKay, 1982), and a limited form of focused rea-
soning. Another example is NARS (Wang, 2006), which reasons using deductive, inductive, and
abductive reasoning on terms which have degrees of truth based on evidence.

The latest member of the SNePS family – CSNePS – uses a new graph-based natural deduction
reasoning system known as Inference Graphs (Schlegel & Shapiro, 2013a). Inference graphs are
designed to support forward, backward, bi-directional, and focused reasoning. Thus far, inference
graphs have been implemented for propositional logic using concurrent processing techniques – a
unique feature in logic-based cognitive systems. Concurrency allows inference graphs to reason
about multiple possible ways to solve a problem simultaneously, and notice (and cancel) reasoning
operations which are no longer necessary due to derivations which have already taken place.

Propositional logic is insufficient for complex conceptual reasoning because it is unable to rep-
resent generic concepts, for example, “all Dobermans”, (as opposed to specific concepts, for exam-
ple, “Fido”) which humans deal with every day. We propose the use of a first order logic known
as LA (Shapiro, 2004) – the logic of arbitrary and indefinite objects. An advantage of LA is that it
makes reasoning about generic concepts easy. LA also makes some types of subsumption reasoning
natural.
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In this paper, we will discuss extensions to inference graphs which will make them a more
powerful tool for inference, allowing them to solve more problems, and thus increasing their use-
fulness in modeling human cognition. While much of the work discussed is not yet implemented
in CSNePS, we will motivate the work by discussing the advantages such additions will provide
towards the goal of human-level AI, and justify our choices as compared to competing approaches.

In Section 3 we provide an introduction to the current implementation of inference graphs for
propositional logic and the relevant parts of CSNePS. Sections 4–6 discuss the extensions to infer-
ence graphs we propose, including the use of a more expressive logic (Section 4), question answer-
ing (Section 5), and focused reasoning (Section 6). We conclude with a discussion of the expected
capabilities of the completed system in Section 7.

2. KRR Requirements for Cognitive Systems

There are many systems of logic. What they have in common are: having a syntax, a formal
grammar specifying the well-formed expressions; a semantics, a formal means of assigning meaning
to the well-formed expressions; and a proof theory, specifying a mechanism for deriving from a set
of well-formed expressions additional well-formed expressions preserving some property of the
original set, often called “truth.” To the extent that a cognitive agent has a set of beliefs, that we
can represent these beliefs in a “language of thought” with a well-defined syntax and semantics,
and that the agent’s reasoning consists of deriving new beliefs from its old beliefs preserving some
notion of rationality, we can view an agent’s beliefs and reasoning system to be some logic, though
not necessarily standard, classical logic.

Many logic-based reasoning systems have been developed, varying along the dimensions of
expressiveness and reasoning style. Along the dimension of expressiveness, families of logical
languages that have been used include: Propositional Logic; Finite-Domain Predicate Logic; First-
Order Predicate Logic (FOPL); Description Logic; and Horn-Clause Logic. Among these, FOPL is
the most expressive. The others have reduced expressiveness, often motivated by issues of tractabil-
ity (Brachman & Levesque, 1987). Our belief is that cognitive agents that possess human-level
intelligence, and that can interact with humans in natural language, must be able to represent their
beliefs in a formal language at least as expressive as FOPL (see (Iwańska & Shapiro, 2000)).

Along the dimension of reasoning style, basic approaches include: model finding; refutation
resolution; refutation semantic tableaux; and proof-theoretic derivation. The approach of model
finding is: given a set of beliefs taken to be true, find truth-value assignments of the atomic beliefs
that satisfy the given set. The approach of the refutation methods is: given a set of beliefs and
a conjecture, show that the set logically entails the conjecture by showing that there is no model
that simultaneously satisfies both the given set and the negation of the conjecture. The approach
of proof-theoretic derivation is: given a set of beliefs, and using a set of rules of inference from
the proof theory, either derive new beliefs from the given ones (forward reasoning) or determine
whether a conjecture can be derived from the given set (backward reasoning). We favor proof-
theoretic derivation, because it is the only one of these approaches in which an agent derives new
beliefs that can be added to its initial set of beliefs, which humans do when they reason.
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Several cognitive systems are based on production systems. Production system rules, being
pattern-action rules, have more the flavor of programming language statements than beliefs with
declarative semantics, and are not typically included in the set of the agent’s beliefs. For this reason,
we prefer a more logic-based approach.

We recognize the importance of graded levels of truth (or belief), such as provided by credibility
or probability theory, to cognitive agents. It is just a matter of research agenda that we do not (yet)
take this into account in our cognitive system.

3. Background

3.1 CSNePS

CSNePS is a knowledge representation and reasoning system which is currently being implemented
according to the specification of SNePS 3 (Shapiro, 2000). At its core is a knowledge representation
scheme which can be seen as simultaneously logic-based, frame-based, and graph-based (Schlegel
& Shapiro, 2012). The graph-based representation, with which we are most concerned here, is
called a propositional graph.

In the tradition of the SNePS family (Shapiro & Rapaport, 1992), propositional graphs are
graphs in which every well-formed expression in the knowledge base, including individual con-
stants, functional terms, atomic formulas, or non-atomic formulas (which we will refer to as “rules”),
is represented by a node in the graph. A rule is represented in the graph as a node for the rule itself
(henceforth, a rule node), nodes for the argument formulas, and arcs emanating from the rule node,
terminating at the argument nodes. Arcs are labeled with an indication of the role (e.g., antecedent
or consequent) the argument plays in the rule, itself. Every node is labeled with an identifier. Nodes
representing individual constants, proposition symbols, function symbols, or relation symbols are
labeled with the symbol itself. Nodes representing functional terms or non-atomic formulas are
labeled wfti, for some integer, i. Every SNePS expression is a term, denoting a mental entity,
hence wft instead of wff. An exclamation mark, “!”, is appended to the label if the proposition
is asserted in the KB. No two nodes represent syntactically identical expressions; rather, if there are
multiple occurrences of one subexpression in one or more other expressions, the same node is used
in all cases. Propositional graphs are built incrementally as terms are added to the knowledge base,
which can happen at any time.

Each term in the knowledge base has a semantic type, itself existing within an ontology of
semantic types which the user can add to (see Figure 1). Parent types are inherited by instances of
child types, and sibling types are mutually disjoint, but not exhaustive of their parent. All terms are
descendants of the type Entity. Objects in the domain should be an instance of Thing. The types
Act, Policy, and Action are not yet used, but will be part of the CSNePS acting system once it has
been developed, and allow integration with the MGLAIR cognitive architecture. Terms with the
type Propositional are those used to express Propositions and “wh-” style queries (WhQuestion, see
Section 5). Only Propositions may be asserted (taken to be true) in the knowledge base.
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Entity
Act
Policy
Propositional

Proposition
WhQuestion

Thing
Action
Category

Figure 1: The default CSNePS Semantic Type ontology.

3.2 Inference Graphs for Propositional Logic1

An inference graph is a propositional graph in which certain arcs and certain reverse arcs are aug-
mented with channels through which information can flow – meaning the inference graph is both a
representation of knowledge and the method for performing inference upon it. Channels come in
two forms. The first type, i-channels, are added to the reverse antecedent arcs – named as such since
they carry messages reporting that “I am true” or “I am negated” from the antecedent node to the
rule node. Channels are also added to the consequent arcs, called u-channels, since they carry mes-
sages to the consequents which report that “you are true” or “you are negated.” Rules are connected
by shared subexpressions. Channels are added as described whenever a rule is added to the graph.

Each channel contains a valve. Valves allow or prevent the flow of messages forward through
the graph’s channels. When a valve is closed, any new messages which arrive at it are added to a
waiting set. When a valve opens, messages waiting behind it are sent through.

Messages of several types are transmitted through the inference graph’s channels, serving two
purposes: relaying newly derived information, and controlling the inference process. A message
can be sent to relay the information that its origin has been asserted or negated (an i-infer
message), that its destination should now be asserted or negated (u-infer), or that its origin has
either just become unasserted or is no longer sufficiently supported (unassert). These messages
flow forward through the graph. Other messages flow backward, controlling inference by affecting
the valves: backward-infer messages open them, and cancel-infer messages close them.
The use of messages to control valves allows inference graphs to perform forward, backward, bi-
directional, and focused inference.

Inference operations take place in the rule nodes. When a message arrives at a rule node the
message is translated into Rule Use Information, or RUI (Choi & Shapiro, 1992). RUIs contain
information about how many (and specifically which) antecedents of a rule are known to be true or
false, along with a set of support. All RUIs created at a node are cached. When a new one is made,
it is combined with any already existing ones. The output of the combination process is a set of

1. The material in this section is mostly taken from (Schlegel & Shapiro, 2013a; Schlegel & Shapiro, 2013b).
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new RUIs created since the message arrived at the node. By examining the number of known true
or false antecedents, this set is used to determine if the rule node’s inference rules can be applied.
RUIs prevent re-derivations and cut cycles of message-flow in the graph by ignoring arriving RUIs
already in the cache. The disadvantage of using natural deduction is that some rules are difficult to
implement such as negation introduction and proof by cases. For us, the advantages in capability and
in human users’ ability to understand the derivations outweigh the difficulties of implementation.

Once a term is derived or a rule fires, inference operations in additional rules still attempting
to derive the term, or cause the rule to fire may no longer be necessary. When this is recognized,
cancel-infer messages can be sent recursively backward through the graph to halt unnecessary
inference, allowing for “eager-beaver” inference, where multiple inference paths are tried simulta-
neously, and after one succeeds, the others are canceled. All messages are prioritized so inference
operations are performed efficiently.

To illustrate these inference mechanisms, Figure 2 shows the process of deriving f for the
assertions that if a, b, and c are true, then d is true, and if d or e are true, then f is true. In this
example we use two different, but related connectives – and-entailment and or-entailment. And-
entailment requires all of its antecedents to be true, while or-entailment requires only one to be true.
In the graph, we prefix the antecedent arcs (labeled ant) with ∧ or ∨ to make it clear which is in use.
Shown as dashed lines are i-channels, while u-channels are shown as dotted lines. In this example,
we assume backward inference has been initiated, opening all the valves in the graph. First, in
Figure 2a, messages about the truth of a, b, and c flow through i-channels to wft1. Since wft1
is and-entailment, each of its antecedents must be true for it to fire. Since they are, in Figure 2b
the message that d is true flows through wft1’s u-channel. d becomes asserted and reports its new
status through its i-channel (Figure 2c). In Figure 2d, wft2 receives this information, and since it
is an or-entailment rule and requires only a single antecedent to be true for it to fire, it reports to its
consequents that they are now true, and cancels inference in e. Finally, in Figure 2e, f is asserted,
and inference is complete.

4. Reasoning with LA
The logic of arbitrary and indefinite objects was designed for use as the logic of a KR system for
natural language understanding, and for commonsense reasoning (Shapiro, 2004) – goals shared by
CSNePS. Several features of LA promote these goals, including ease of translation to the logic from
natural language by maintaining the locality of natural language phrases, through sharing struc-
ture which occurs multiply throughout a text, through a uniform syntax for differently quantified
statements, and supporting subsumption inference.

The major functional difference between LA and classic FOPL is that LA deals with arbitrary
and indefinite terms (collectively, quantified terms) instead of universally and existentially quan-
tified variables. That is, instead of reasoning about all members of a class, LA reasons about a
single arbitrary member of a class. For indefinite members, it need not be known which member is
being reasoned about, the indefinite member itself can be reasoned about. Indefinite individuals are
essentially Skolem functions, replacing FOPL’s existential quantifier. One of the effects of using
arbitrary and indefinite terms is that quantified terms may be the result of inference. For example, in
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Figure 2: a) Messages are passed from a, b, and c to wft1. b) wft1 combines the messages from
a, b, and c to find that it has 3 positive antecedents, of a total of 3. The and-entailment can fire, so
it sends a message through its u-channel informing its consequent, d, that it has been derived. c) d
receives the message that it is asserted and sends messages through its i-channel. d) wft2 receives
the message that d is asserted. Only one true antecedent is necessary for or-entailment elimination,
so it sends a message through its u-channels that its consequent, f, is now derived. It also cancels
any inference in its other antecedents by sending a cancel-infer message to e. e) f is derived.
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wft1arb1 Cat

wft2! Friendly

member class

property

object

restriction

wft1ind1 Cat

wft2! Friendly

member class

property

object

restriction

wft1!Isis Cat

wft2! Friendly

member class

property

object

a b c

(hasProperty (every x (Isa x Cat)) Friendly) (hasProperty (some x() (Isa x Cat)) Friendly) (Isa Isis Cat)
(hasProperty Isis Friendly)

Figure 3: Three graphs with their logical representations illustrating the structural similarities be-
tween arbitrary (a), indefinite (b), and ground terms (c).

deriving all dogs known to the system, one answer might be the arbitrary Doberman. This arbitrary
term stands for any single Doberman, and may itself have properties shared by all Dobermans.

To our knowledge, the only implemented system which uses a form of arbitrary term is ANA-
LOG (Ali & Shapiro, 1993), though arbitrary objects themselves were first conceived of by Frege,
and most famously defended by Fine (Fine, 1983). The logic of LA is based on those developed by
Ali and Fine (Fine, 1985a; Fine, 1985b), but is different – notably it is more expressive than ANA-
LOG, and designed with computation in mind, unlike Fine’s work which omits key algorithms.

A term which contains open occurrences of quantified terms is called a generic term. Generic
terms and ground terms can be reasoned about similarly. A direct result of the uniform syntax for
differently quantified terms used in LA is that the graph view of those terms in the KB are also
similar. In Figure 3 three different graphs along with their logical equivalents are presented. In
Figure 3a, the assertion states that every member of the class Cat has the property of being Friendly.
In the graph, an arbitrary term, arb1, stands for the arbitrary Cat (because of the restriction arc).
Additionally, this arbitrary term has the property of being Friendly. You’ll notice in Figure 3b,
which is meant to mean that some member of the class Cat is Friendly, that the graph is nearly
identical. The only change is that an indefinite term, ind1, has replaced arb1. The third graph, in
Figure 3c, is again very similar to the first two. This is meant to represent the ground assertions that
Isis is a member of the class Cat, and that Isis is Friendly.

In modifying the inference graphs to support LA, we concern ourselves mostly with the deduc-
tive inference components, as they are the ones the inference graph is designed to assist with. That
said, it is difficult to ignore subsumption inference in LA. For this reason, we discuss a simplified
form of structural subsumption (Woods, 1991) – specifically between quantified terms where no
inference is necessary to test subsumption. Related to this, we also discuss simple instantiation of
quantified terms where no inference is necessary.2

Changes to the inference graph to support inference using quantified terms are concentrated in
two areas: the channels, and the rule node inference process. As we’ve already discussed, channels
are pathways for communicating between nodes within a rule using messages. We must now add
additional channels between nodes for unifiable propositions. These channels must ensure compat-
ibility of terms and adjust variable contexts (see Section 4.1). The rule node inference process must

2. We are still considering which kinds of subsumption and instantiation to support and intend that for future work,
though it seems that discussed here is the minimal case.
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be adapted to check received substitutions for compatibility with each other and combine them when
possible (see Section 4.2). Not discussed here are changes to the concurrent processing techniques
(Schlegel & Shapiro, 2013a), because none are needed – the techniques are sufficiently general to
extend to inferences graphs with quantified terms without modification.

4.1 Channels

Channels are meant to connect all terms which may need to communicate with each other during
inference. Within a rule, this includes channels from antecedents to the rule node, and from the
rule node to consequents. Since rules now contain quantified terms, we perform unification on all
new terms, and add i-channels from rule consequents to unifiable antecedents. This allows rule
consequents to communicate their results to appropriate antecedents of other rules for chaining
inference. In addition, i-channels are added from propositions to unifiable rule antecedents, and
from rule consequents to propositions which might be derived. With these additions, you can think
of i-channels carrying messages along the lines of “I have a new instance of me you might be
interested in.”

In addition to providing a communication pathway, channels are responsible for ensuring that
only messages with substitutions appropriate to the destination pass through, and that they pass
through in a form consumable by the destination node (that is, substitutions must be in terms of the
proper quantified terms). As in the Active Connection Graph (ACG) (McKay & Shapiro, 1981) –
one of the main influences of inference graphs – we augment channels with filters and switches.
Filters serve to stop messages with irrelevant substitutions from flowing through the channel, and
switches change the substitution’s context to that of the destination term. Both of these are based
on bindings which are discovered during the unification process.

When unification is performed, instead of producing an mgu, a factorization is produced which
contains originator bindings, and destination bindings. We call this the match process. The result
of a match is a triple, < D, o, d > where D (for Destination) is the unifiable formula, and o and d
are the originator and destination bindings, respectively. While the exact method of calculation is
available in (McKay & Shapiro, 1981), the general idea is that the unification operation is performed
as usual, except instead of forming a single substitution, form two – o and d – such that all and only
quantified terms in O (the Originator, or expression being unified) are given bindings in o, and all
and only quantified terms in D are given bindings in d.

The structural subsumption operation for quantified terms co-occurs with unification as part of
the match process. A quantified term v subsumes another quantified term u if v’s set of restrictions
is a proper subset of u’s. The quantified term u will only match v if the restrictions are the same,
or v subsumes u. In addition, the operation to test instantiation of a quantified term, v by another
term, t, co-occurs with unification – if t is in every relation in v’s restriction set, it instantiates v.
Channels are built from subsumed terms or instances, to the more general term.

Once unification is complete between two terms, the filter and switch can be created. The filter
ensures that the incoming substitution is relevant to D by ensuring that for every substitution pair
ft/y ∈ d there is a substitution pair st/y ∈ s such that either ft = st or st is a specialization of ft,
determinable through one-way pattern matching. If a message does not pass the filter, it is discarded.
The switch applies the o substitution to the term of each pair in s. This adjusts the substitution to
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use quantified terms required by the destination. The updated substitution is stored in the passing
message.

4.2 Rule Node Inference

As discussed in Section 3.2, when a message reaches a rule node it is converted into a RUI. The
RUI is extended to also contain a substitution, which is transferred directly from the incoming mes-
sage during the RUI creation. Combining RUIs is now more difficult than it was in Section 3.2
because with quantified terms, multiple messages may arrive from each antecedent, each with dif-
ferent sets of bindings for quantified terms, and those bindings may be incompatible. We must
therefore ensure that RUIs are compatible before we attempt to combine them. Two RUIs are com-
patible if their substitutions are. We say that two substitutions, σ = {tσ1/vσ1 . . . tσn/vσn} and
τ = {tτ1/vτ1 . . . tτm/vτm}, are compatible if whenever vσi = vτj then either tσi = tτj or one of vσi
and tτj subsumes or instantiates the other.

To combine RUIs, several structures are available. Which structure is used depends on the
logical operation a specific rule node performs. The approaches include a tree-based approach
called a P-Tree (Choi & Shapiro, 1992), a hash-map based technique called an S-Index, and a
default, which is less efficient.

Rule nodes for logical connectives which are conjunctive in nature can use a structure called Pat-
tern Trees (or, P-Trees) to combine RUIs. A P-Tree is a binary tree generated from the antecedents
of the rule. The leaves of the tree are each individual conjunct, and the parent of any two nodes is
the conjunction of its children. The root of the tree is the entire conjunction. When a RUI is added
to the P-Tree, it enters at the appropriate leaf. The P-Tree algorithm then attempts to combine that
RUI with each one in its sibling node. A successful combination (using the compatibility check) is
promoted to the parent node, and the process recurs until no more combining can be done because
not enough information is present, or the root node is reached. This P-Tree concept is closely re-
lated to that of the beta network of a RETE net (Forgy, 1982), which is a binary tree for examining
compatibility of tokens used in production systems.

Non-conjunctive rule instances which use the same variables in each antecedent can use a RUI
structure called a Substitution Index, or S-Index.3 This index is a hash-map which uses as a key the
set of quantified term bindings, and maps to the appropriate RUI. Given that the same quantified
terms are used in each antecedent, each compatible instance will map to the same RUI, which can
then be updated and stored again, until enough positive and negative instances have been found.

This unfortunately leaves a large class of rule instances (those with non-conjunctive connectives
where the set of quantified terms used in each argument differs) stuck using the default RUI com-
bination, which is inefficient. The default approach to combining RUIs is to compare an incoming
RUI with every existing RUI and attempt to combine them. This can result in a combinatorial ex-
plosion in the number of RUIs, and should be avoided whenever possible. We consider it important
future work to solve this deficiency.

3. Note S-Indexes do not support the compatibility check above, only equality – correcting this is a topic for future
work.
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4.3 Example

To attempt to illustrate some of the above concepts, consider a KB meant to contain the assertions
shown in Figure 4, expressed three different ways: in their English form, in the logical form of LA
used by CSNePS (on the left side of the figure), and, on the right side, as the individual wfts used
in the inference graph (Figure 5a). For example, in the graph, wft5 represents the conditional in
item 1 of Figure 4, while wft1 and wft4 represent the first and second antecedents of that same
item, with the consequent being wft6. The two arbitrary individuals arb1 and arb24 are the
first and second people referred to in the English description of the KB, respectively. Item 3 is
represented by wft7 which uses a new arbitrary individual, arb3 to represent the arbitrary Person
with a listed phone number.

There are three i-channels5 in Figure 5a between wft nodes which are not part of the same
complex term (from wft7 to wft1, from wft11 to wft1, and from wft12 to wft4). Under
each of the dotted lines drawn on the graph for these channels are three items: v, f , and s, standing
for the status of the valve, the filter substitution, and the switch substitution. All of the valves are
currently closed, so each v entry has a “c” after it.

In Figure 5b the system wonders whether Stu and Jim communicate (wft15). wft15 is unified
with wft6, and an i-channel is added from wft6 to wft15, since wft6 is a consequent, and will
be able to report to wft15 its substitutions. Since the communicates relation takes a set of
communicators, two filter substitutions are produced: either Stu and Jim can substitute for arb1
and arb2, respectively, or Jim and Stu can substitute for arb1 and arb2, respectively.

Now the system begins trying to infer whether wft15 should be asserted. It back-chains re-
cursively from wft15 backward along all u- and i-channels it reaches, opening valves as it goes.
Notice in Figure 5c that the valves all say “v = o”, since the valves are now open. Substitutions flow
from wft7, wft11, and wft12 to the antecedents of wft5 along the red i-channels, and then to
wft5 via the purple i-channels. wft5 has now received four different substitutions from its two
antecedents (wft12 has two), and must combine them. Since the antecedents of wft5 are taken in
conjunction, a P-Tree is used to perform the combination (see Figure 5d).

The P-Tree, as described in Section 4.2, has a leaf node for each antecedent, and the parent of
those (in this case, the root) is the conjunction of them. The incoming substitutions are displayed
below the leaf. Each incoming substitution is checked for compatibility with those if its sibling.
Since {Stu/arb2, Dan/arb1} exists in both leaves, it is promoted to the root, and is a satis-
fier of the rule. A second pair of substitutions, {Jim/arb1, arb3/arb2} and {Stu/arb2,
Jim/arb1} are a bit harder. Part of the compatibility check the P-Tree performs is to determine
if a quantified term and a ground term are structurally similar.6 In this case, Stu has all the correct
arcs to be an instance of arb3, so the substitution {Stu/arb2, Jim/arb1} is promoted to the
root of the tree, and is another satisfier of the rule.

4. arb1 and arb2 are different arbitrary Persons because of the special notSame restriction. This restriction is
enforced outside of the inference graph, and is therefore not represented as a normal restriction in the graph.

5. We have omitted some additional channels which aren’t needed for the example to not over-complicate the graph.
6. We are investigating ways to perform this process outside of substitution combination in a more efficient way, includ-

ing taking cues from Description Logic.
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(if 
  (setof
    (calls 
      (every x (Isa x Person)) 
      (every y (Isa y Person) (notSame x y)))
    (answers y x))
  (communicates (setof x y)))

(Isa Jim Person)

(calls 
  Jim 
  (every x (Isa x Person) 
           (hasListedNumber x)))

(Isa (setof Dan Stu) Person)

(hasListedNumber Stu)

(calls Dan Stu)

(answers Stu (setof Dan Jim))

1. If a person calls another person, and the second person answers the call from the �rst person, those two people 
    can communicate.

arb1: (every arb1 (Isa arb1 Person)) 
arb2: (every arb2 (Isa arb2 Person) 
                  (notSame arb1 arb2))
wft2: (Isa arb1 Person)
wft3: (Isa arb2 Person)
wft1: (calls arb1 arb2)
wft4: (answers arb2 arb1)
wft6: (communicates (setof arb1 arb2))
wft5!: (if (setof wft1 wft4) wft6)

wft8!: (Isa Jim Person)

arb3: (every arb3 (Isa arb3 Person) 
                  (hasListedNumber arb3))
wft9: (Isa arb3 Person)
wft10: (hasListedNumber arb3)
wft7!: (calls Jim arb3)

wft14!: (Isa (setof Dan Stu) Person)

wft13!: (hasListedNumber Stu)

wft11!: (calls Dan Stu)

wft12!: (answers Stu (setof Dan Jim))

2. Jim is a Person.

3. Jim calls everyone who has a listed number.

4. Dan and Stu are Persons.

5. Stu has a listed number.

6. Dan calls Stu.

7. Stu answers both Dan and Jim.

Figure 4: An example illustrating concepts from Sections 4.1 and 4.2. The knowledge base is shown
in three forms: in English, in the logical form of LA (left side of the figure), and, on the right, as the
individual wfts used in the graph (Figure 5a).

Referring again to Figure 5c, both of the produced substitutions are sent along the blue u-channel
to wft6. Finally they are both sent along the brown i-channel to wft15 where only {Stu/arb2,
Jim/arb1} passes the filter condition, and wft15 is asserted.

5. “Wh- Question” Answering

When a user is interacting with an agent, or a KR system in general, she often would like to ask a
question which has more than a single answer. These questions are generally what we might call
in English “wh- questions”. In contrast to a question such as “Is Lassie a dog?” which might be
answered as we discussed in Section 4.3, we’re interested in questions such as “Who are the dogs
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Figure 5: A KB meant to contain the information that: If a person calls another person, and the
second person answers the call from the first person, those two people can communicate, Jim calls
everyone who has a listed number, Dan calls Stu, Stu answers Dan and Jim, and Stu has a listed
number (a). The question is posed whether Stu communicated with Jim (wft15, b). Inference is
performed (c,d) by retrieving and combining substitutions from related terms, finally inferring that
wft15, the term representing communication between Stu and Jim, is asserted.
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you know about?” In addition, an agent might wish to reason about the questions it has been asked,
for example, discussing the questions a certain person asked.

Most all logic-based systems have some method for answering “wh- questions”. Perhaps most
similar to our own approach is that of ANALOG, which represents questions in the KB, and can
answer questions using arbitrary terms – “Since the structure of the question will mirror the structure
of the rule [arbitrary term], any rule that is subsumed by a question is an answer to that question”
(Ali, 1994). ANALOG is less expressive than LA, and does not clearly differentiate questions from
propositions semantically, which we have found necessary to later reason about questions asked of
the system.

In the logical syntax we use to interact with the system, we use question-mark prefixed variable
names (such as ?x), along with a (possibly empty) set of restrictions, to designate a argument which
the user is querying over. For example, a user might query the system with (Isa ?x Dog) to
retrieve all the dogs in the KB. When a question is asked of the system, the question is added to
the knowledge base. In order to add a question to the knowledge base, we have created a new kind
of quantified term which is used only in “wh- questions”. The new quantified term type is called a
question variable (henceforth qvar).

While the query expression or graph may on the surface look like a Proposition, it is clearly
not, as it cannot be believed. Groenendijk and Stokhof call the semantic content of interrogative
expressions “Questions” (Groenendijk & Stokhof, 2008). Since our question variables are used
only in “wh- questions”, we call the semantic type for terms containing them WhQuestion. The
similarity between the WhQuestion and the Proposition is not lost on us though, both are direct
descendants of the semantic type Propositional (as seen in Section 3.1).

As with inference not involving qvars, the result of a query may be an arbitrary or indefinite
term. For example, consider a KB which contains:

(Isa Glacier Cat), and
(Isa (every x (Isa x Tabby)) Cat),

meant to mean that Glacier is a Cat, and every Tabby is a Cat. If a user then asked (Isa ?x
Cat), the system would respond both that Glacier is a Cat, and that the arbitrary entity who is a
member of the class Tabby is a Cat.

6. Focused Reasoning

Humans often consider problems they may not yet have answers for, and push the problem to the
“back of their mind.” In this state, a human is still looking for a solution to the problem, but is doing
so somewhat passively – allowing the environment and new information to influence the problem
solving process, and hopefully eventually reaching some conclusion. That is, the examination of
the problem persists beyond the time when it is actively being worked on.7

7. Understanding this type of problem solving in humans is still active research, what we have discussed is only an
intuitive explanation.
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This cognitive process is imitated to a limited extent in the ACG which can “activate” a path
of nodes. Later assertions meant to use this path must be asserted with forward inference, and that
forward inference process will use activated paths exclusively whenever they are available (Shapiro,
Martins, & McKay, 1982). The ACG was unable to later deactivate the path of nodes, so the confla-
tion of the specialized forward inference using activated paths with full-forward inference resulted
in the need to occasionally throw the graph away as it could interfere with future inference tasks.
In addition, activated paths were not extended backward when new rules were added whose con-
sequent unified with antecedents in an activated path. More recent work to achieve a similar result
exists in the realm of probabilistic graph reasoning, where methods for a form of focused reasoning
where, for example, computation is focused on areas of a model likely to be most important to a
query (Chechetka & Guestrin, 2010) are currently being developed.

Inference graphs provide an elegant technique for performing focused reasoning, not completely
unlike the intuitive explanation for what happens in humans described above. When a question is
asked which the inference graph cannot answer, it recognizes this, leaving the valves in the channels
trying to produce the answer open, and taking note of the need to open valves in any new channels
which terminate at nodes whose truth value must be known for inference to proceed. Other inference
tasks can proceed normally, and new knowledge can be added to the knowledge base. When a
new rule, r, is added to the knowledge base, if r has an i-channel from its consequent to a term’s
antecedent which has its channels open to solve the focused reasoning problem, then r’s channels
are opened, and backward inference recursively opens channels attempting to derive r’s antecedents.
When new knowledge is added to the KB which has an i-channel to the antecedent of a rule used
in focused reasoning, messages are allowed to flow forward through the graph, to attempt to derive
the answer. When a channel is added to the graph which terminates at a node whose truth value is
needed to continue inference, its valve is opened, and backward inference is performed recursively
from that channel backward.

Consider an agent which has observed an animal named Dumbo and learned that Dumbo has
the properties of being Alive, Grey, and Large. It also knows that Dumbo has a Trunk. The agent
then wonders if Dumbo is an Elephant (see Figure 6a). The agent currently has no way of judging
whether or not Dumbo is an Elephant because it doesn’t know what makes an Animal an Elephant.
Later on, the agent learns that an Animal is an Elephant if it has a Trunk, and is Alive, Grey,
and Large (see Figure 6b). Since the agent was still wondering about whether Dumbo was an
Elephant in the “back of its mind”, when the new i-channel is added from wft8 to wft4, backward
inference is initiated, and the appropriate valves are opened along the channels created by the new
rule. Messages then begin flowing forward through the network (see Figure 6c). Instances of
antecedents flow along the red i-channels to the newly asserted rule, then along purple i-channels
to the rule node itself. Since both antecedents are true, the rule “fires” and an instance is sent along
the blue u-channel to the consequent and finally wft4 is asserted via a message along the brown
i-channel. The agent has recognized using focused reasoning that Dumbo is in fact an Elephant.

Where a human probably has some limit to the number of these types of tasks they can perform,
we impose no such limits. An interesting future task may be to use this alongside an agent who has
a finite number of tasks they can work on, and is “forgetful.”
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Figure 6: A KB containing assertions that Dumbo has the properties of being Alive, Grey, and
Large (wft1); has as part of him a Trunk (wft3); and is a member of the class Animal (wft2).
The question (which cannot be answered yet) is asked if Dumbo is an Elephant (wft4, a). A
question mark, “?”, is appended to wft4 in the graph to show that it is the question being wondered
about, though it is a term just like any other in the knowledge base. A rule is added which says that
if an Animal (wft5) has the properties of being Alive, Grey, and Large (wft6), and has a Trunk
(wft7), then that Animal is an Elephant (wft8, b). Since the question about whether Dumbo is an
Elephant has already been asked, the valves in the channels for the newly added rule are opened,
and messages flow forward through the graph (c), first along red i-channels to the rule’s antecedents
(wft1 and wft7), then along purple i-channels to the rule itself (wft8). The rule is satisfied so the
consequent (wft8) is notified via the blue u-channel, and finally sends a message to the term which
says Dumbo is an Elephant (wft4) via the brown i-channel informing it that it is now asserted.
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7. Conclusions

The reasoning component of a cognitive system can be implemented as a logical inference system.
Inference graphs are one such reasoning component, which with the extensions described here are
useful modeling cognitive processes. LA, an expressive first order logic, allows for reasoning about
generic concepts which humans naturally reason about, using arbitrary and indefinite terms. These
generic concepts can be used in answering “wh- questions”, allowing an agent to tell a user what it
knows about not only concrete concepts, but also generic ones. As happens in human conversation
often, questions are not always answerable at the time they are posed, due to incomplete knowledge.
Inference graphs can consider new knowledge in a way that allows them to answer previously asked
questions which may have been unanswerable when they were asked. This might be used to satiate
a users, or an agent’s own curiosity, as we saw in Figure 6. Together, these can be used to model
many of the cognitive functions humans carry out every day, and therefore form the basis of an
extremely capable cognitive system.
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