
In Proceedings, Commonsense 2011 1

The Jobs Puzzle
A Challenge for Logical Expressibility

and Automated Reasoning
Stuart C. Shapiro

Department of Computer Science and Engineering and Center for Cognitive Science
The State University of New York at Buffalo

Buffalo, NY 14260-2000
shapiro@buffalo.edu

Abstract

The Jobs Puzzle, introduced in a book about automated
reasoning, is a logic puzzle solvable by some “intelli-
gent sixth graders,” but the formalization of the puzzle
by the authors was, according to them, “sometimes dif-
ficult and sometimes tedious.” The puzzle thus presents
a triple challenge: 1) formalize it in a non-difficult, non-
tedious way; 2) formalize it in a way that adheres closely
to the English statement of the puzzle; 3) have an auto-
mated general-purpose commonsense reasoner that can
accept that formalization and solve the puzzle quickly.
In this paper, I present and discuss three formalizations
that are less difficult and less tedious than the original.
However, none satisfy all three requirements as well as
might be desired, and there are a significant number of
automated reasoners that cannot solve the puzzle using
any of the formalizations. So the Jobs Puzzle remains an
interesting challenge.

1. Introduction
The Jobs Puzzle was introduced by Wos et al. (1984,
pp. 44–78)1 as [p. 44, numbering added]

“1. There are four people: Roberta, Thelma, Steve,
and Pete.
2. Among them, they hold eight different jobs.
3. Each holds exactly two jobs.
4. The jobs are: chef, guard, nurse, telephone op-
erator, police officer (gender not implied), teacher,
actor, and boxer.
5. The job of nurse is held by a male.
6. The husband of the chef is the telephone opera-
tor.
7. Roberta is not a boxer.
8. Pete has no education past the ninth grade.
9. Roberta, the chef, and the police officer went
golfing together.

Question: Who holds which jobs?”

Copyright c© 2011, Stuart C. Shapiro. All rights reserved.
1In the remainder of this paper, every citation to sections

or pages that omits mention of a work is a citation to (Wos et
al. 1984).

In the next sections, Wos et al. discuss “The Solu-
tion by Person or Persons Unknown” [§3.2.1] and “The
Solution by Program or Programs Known” [§3.2.2].
The “Program or Programs Known” was a resolution
refutation theorem prover such as Otter (Kalman 2001;
McCune and Wos 1997) was to become. In the discus-
sion of “The Solution by Person or Persons Unknown,”
Wos et al. mention some immediate inferences that may
be made in addition to those in the puzzle statement
“based on common usage of everyday language” [p.
56], such as that Roberta is female and that the actor is
male (because it’s “actor,” not “actress.”) They suggest
that the way people would solve the puzzle is by mak-
ing a table whose rows are labeled with jobs and whose
columns are labeled with people. As the solver rea-
sons through the puzzle and decides which people hold
which jobs and which couldn’t possibly hold which
jobs, she would write “yes” or “no” in the entries of the
table. In the discussion of “The Solution by Program
or Programs Known,” Wos et al. represent the domain
rules of the puzzle and the additional immediate infer-
ences as clauses. In addition, “Clauses can be written to
simulate the use of [the] table. Some simulate the table
(and its labels). Others enable the program to cross off
possibilities and to, in effect, fill in the squares” [p. 62].
They note that “some tedious but necessary items must
be translated ” [p. 60], and “Make no mistake, the rep-
resentation of the problem to an automated reasoning
program is sometimes difficult and sometimes tedious”
[p.63].2

The challenge posed in this paper is to represent the
Jobs Puzzle to an automated reasoning program, suit-
able for general-purpose commonsense reasoning, in a
non-difficult, non-tedious way, by a series of logical for-
mulae that adhere closely to the English statements of
the puzzle and the allowed immediate inferences, and
have that automated reasoning program solve the puz-

2A statement of the puzzle, with “clerk” replacing “tele-
phone operator”, the correct answer, and the clauses suitable
for input to OTTER are at http://www.mcs.anl.gov/
˜wos/mathproblems/jobs.html.

In Proceedings, Commonsense 2011 2

zle quickly.
In the remainder of this paper, I show and discuss

three formalizations that more or less satisfy these re-
quirements.

2. The Solution by TPTP Participants
One non-difficult and relatively non-tedious formaliza-
tion of the Jobs Puzzle is given as problem PUZ019-
1 in the TPTP (Thousands of Problems for Theorem
Provers)3 version 5.1.0 web site4. The formalization is
given as a sequence of clauses, but for clarity, I will use
a more standard FOL syntax. There are 64 clauses, four
of which are non-Horn clauses. Rather than using “=”
and paramodulation, two special-purpose equality pred-
icates are used: equal people and equal jobs . First are
four clauses stating the reflexivity and symmetry of the
equality predicates:
∀(x)(equal people(x , x) ∧ equal jobs(x , x))

(Note that this implies that jobs are equal to themselves
as people, and people are equal to themselves as jobs.)
∀(x , y)(equal people(x , y)⇒ equal people(y , x)
∀(x , y)(equal jobs(x , y)⇒ equal jobs(y , x)

Then, rather than making a unique-names assumption,
34 special-purpose nonequality axioms are given, such
as

¬equal people(roberta, thelma)
¬equal jobs(chef , guard).

Finally, 25 clauses come from the statement of the puz-
zle, and one clause from the query. The formal ax-
ioms as presented below are preceded by English state-
ments labeled “jp” for sentences coming directly from
the statement of the Jobs Puzzle or “inf ” for immediate
inferences allowed by (Wos et al. 1984).
1. jp: There are four people: Roberta, Thelma, Steve,
and Pete.
∀x (has job(roberta, x) ∨ has job(thelma, x)
∨has job(pete, x) ∨ has job(steve, x))

inf: “if the four names did not clearly imply the sex of
the people, [the puzzle] would be impossible to solve.”
[p. 56]
∀x ((male(x) ∨ female(x)) ∧ ¬(male(x) ∧ female(x)))

(Note that this also implies that each job is male or fe-
male.)
male(steve) ∧male(pete)
∧ female(roberta) ∧ female(thelma)

2. jp: Among [the people], they hold eight different
jobs.
4. jp: The jobs are: chef, guard, nurse, telephone oper-
ator, police officer (gender not implied), teacher, actor,
and boxer.

3http://www.tptp.org/
4http://tinyurl.com/jobsPuzzle

∀x (has job(x , chef) ∨ has job(x , guard)
∨has job(x ,nurse) ∨ has job(x , operator)
∨has job(x , police) ∨ has job(x , teacher)
∨has job(x , actor) ∨ has job(x , boxer))

3. jp: Each holds exactly two jobs.

∀(x , y , z , u)(has job(z , y) ∧has job(z , x)
∧has job(z , u)

⇒ equal jobs(x , y) ∨equal jobs(u, y)
∨equal jobs(u, x))

inf: “No job is held by more than one person.” [p. 56]

∀(x , y , z)(has job(x , z) ∧ has job(y , z)
⇒ equal people(x , y))

5. jp: The job of nurse is held by a male.

∀x (has job(x ,nurse)⇒ male(x))

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]

∀x (has job(x , actor)⇒ male(x))

6. jp: The husband of the chef is the telephone operator.

∀x (has job(x , chef)
⇒ ∀y(husband(x , y)⇔ has job(y , operator)))

inf: “the implicit fact that husbands are male” [p. 57]

∀(x , y)(husband(x , y)⇒ female(x) ∧male(y))

inf: since the chef has a husband, she must be female.
[p. 57]

∀x (has job(x , chef)⇒ female(x))

7. jp: Roberta is not a boxer.

¬has job(roberta, boxer)

8. jp: Pete has no education past the ninth grade.

¬educated(pete)
inf: “the jobs of nurse, police officer, and teacher each
require more than a ninth-grade education.” [p. 57]

∀x (has job(x ,nurse) ∨has job(x , police)
∨has job(x , teacher)

⇒ educated(x))

9. jp: Roberta, the chef, and the police officer went
golfing together.
inf: “Thus, we know that Roberta is neither the chef nor
the police officer.” [p. 57]

¬(has job(roberta, chef) ∨ has job(roberta, police))

inf: “Since they went golfing together, the chef and the
police officer are not the same person.” [p. 57]

∀x¬(has job(x , chef) ∧ has job(x , police))

In Proceedings, Commonsense 2011 3

jp: Question: Who holds which jobs?

∃(x1 ,x2 , x3 , x4 , x5 , x6 , x7 , x8)(has job(x1 , chef)
∧ has job(x2 , guard) ∧ has job(x3 ,nurse)
∧ has job(x4 , operator) ∧ has job(x5 , police)
∧ has job(x6 , teacher) ∧ has job(x7 , actor)
∧ has job(x8 , boxer))

Of 29 systems that tried this formulation of the
Jobs Puzzle, 20 were successful.5 For example,
SNARK (Stickel, Waldinger, and Chaudhri undated;
Stickel 2010) solved this formulation of the Jobs Puz-
zle using unit-resulting-resolution and hyperresolution
in September of 2010, after having previously failed to
prove it without using unit-resulting-resolution [Mark
Stickel, personal communication].

3. The Solution by Constraint Lingo
Constraint Lingo (Finkel, Marek, and Truszczyński
2002; 2004) is a high-level language for specifying a
single relation via requirements and constraints. The
specified relation is conceived of as a table whose ith
column contains entries from a specified ith domain,
and each of whose rows is one n-tuple in the relation.
(One table entry may contain a set of elements from the
appropriate domain.) The Constraint Lingo specifica-
tion is translated into one of several back-end reasoners.
The solution is then translated back into a table. Notice
that this table does not have the same rows and columns
as the table discussed in (Wos et al. 1984, §3.2.1).

A Constraint Lingo solution to the Jobs Puzzle, using
lparse/smodels (Syrjänen 1998; 2000; Niemelä and Si-
mons 2000) as the back-end, was provided to the author
by Raphael Finkel [personal communication], but has
been omitted from this paper due to space constraints,
and because a solution directly in lparse/smodels is
given below in §5. The Constraint Lingo solution is
available from the author.6

4. The Solution by SNePS
SNePS (Shapiro and Rapaport 1992; Shapiro 2000) was
designed for commonsense reasoning and natural lan-
guage competence, rather than to be a high-powered
theorem prover. An important design criterion was to
have a formal logical language that captured the ex-
pressibility of English statements. Thus, the Jobs Puz-
zle is a natural example problem for SNePS, and has
been distributed with SNePS7 as a standard demonstra-
tion for a number of years. The formalization shown
here uses the SNePSLOG front-end (Shapiro and The
SNePS Implementation Group 2010, Chap. 6) and is for
the latest version of SNePS, SNePS 2.7.1 (Shapiro and

5http://tinyurl.com/TPTPpuzSolns
6It is included in the Appendix to this version of this paper.
7http://tinyurl.com/SNePSDownloads

The SNePS Implementation Group 2010), which in-
cludes all the connectives discussed in (Shapiro 2010).

SNePS does not use clauses and resolution, but rep-
resents the axioms in the way they are entered and uses
natural deduction. We have felt that there is heuris-
tic information in the way that the user formalizes the
information that would be lost in a canonicalization
into clause form. For instance, modus ponens is im-
plemented in SNePS, but modus tollens is not,8 so p
=> q is treated differently from∼q => ∼p, though a
user who wanted both modus ponens and modus tollens
could enter or{∼p, q} instead. Because modus tol-
lens is not implemented, the Jobs Puzzle is formulated
with hasJob predicates only in consequent position.

SNePS has the unique names assumption built
in, which obviates the need for inequality ax-
ioms. In particular, the unique names assumption
is used by the numerical quantifier (Shapiro 1979):
nexists(i, j, k)(x)(P(x): Q(x)) means that k
individuals satisfy P(x), and, of them, at least i and at
most j also satisfy Q(x). The unique names assump-
tion is used when making these counts.

Other unique features of SNePS will be explained as
they are used in the following formalization.

1. jp: There are four people: Roberta, Thelma, Steve,
and Pete.

Person({Roberta, Thelma,
Steve, Pete}).

If α is a set of terms and a is a term in α, then P(α)
` P(a). This is called “reduction inference” (Shapiro
and The SNePS Implementation Group 2010, p. 65). So
this axiom is a concise way to say that Roberta, Thelma,
Steve, and Pete are all people.
inf: “if the four names did not clearly imply the sex of
the people, [the puzzle] would be impossible to solve.”
[p. 56]

Female({Roberta, Thelma}).
Male({Steve, Pete}).

2. jp: Among [the people], they hold eight different
jobs.
3. jp: Each holds exactly two jobs.

all(p)(Person(p)
=> nexists(2,2,8)(j)(Job(j):

hasJob(p,j))).

inf: “No job is held by more than one person.” [p. 56]

all(j)(Job(j)
=> nexists(1,1,4)(p)(Person(p):

hasJob(p,j))).

4. jp: The jobs are: chef, guard, nurse, telephone oper-
ator, police officer (gender not implied), teacher, actor,
and boxer.

8For a full list of implemented rules of inference, see
(Shapiro and The SNePS Implementation Group 2010, §6.4).

In Proceedings, Commonsense 2011 4

Job({chef, guard, nurse, operator,
police, teacher, actor,
boxer}).

5. jp: The job of nurse is held by a male.
all(w)(Female(w)

=> ˜hasJob(w, nurse)).

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]
all(w)(Female(w)

=> ˜hasJob(w, actor)).

6. jp: The husband of the chef is the telephone oper-
ator.
inf: “the implicit fact that husbands are male” [p. 57]
all(w)(Female(w)

=> ˜hasJob(w, operator)).

inf: since the chef has a husband, she must be female.
[p. 57]
all(m)(Male(m) => ˜hasJob(m, chef)).

7. jp: Roberta is not a boxer.
˜hasJob(Roberta, boxer).

8. jp: Pete has no education past the ninth grade.
˜educated(Pete).

inf: “the jobs of nurse, police officer, and teacher each
require more than a ninth-grade education.” [p. 57]
all(x)(˜educated(x)

=> nor{hasJob(x, nurse),
hasJob(x, police),
hasJob(x, teacher)}).

9. jp: Roberta, the chef, and the police officer went
golfing together.
inf: “Thus, we know that Roberta is neither the chef nor
the police officer.” [p. 57]
nor{hasJob(Roberta, chef),

hasJob(Roberta, police)}.

inf: “Since they went golfing together, the chef and the
police officer are not the same person.” [p. 57]
all(p)(Person(p)

=> nand{hasJob(p, chef),
hasJob(p, police)}).

jp: Question: Who holds which jobs?
ask hasJob(?p, ?j)?

The SNePSLOG ask command triggers backward in-
ference on its argument wff and prints all instances that
are inferred. When run, what is printed is:
wff111!: hasJob(Thelma,boxer)
wff101!: hasJob(Pete,operator)
wff99!: hasJob(Pete,actor)
wff87!: hasJob(Steve,nurse)
wff85!: hasJob(Roberta,guard)

wff83!: hasJob(Roberta,teacher)
wff28!: hasJob(Thelma,chef)
wff24!: hasJob(Steve,police)

It took 0.16 seconds to infer and print these answers on
a Dell Optiplex 780 minitower computer with 2 Intel(R)
Core(TM)2 Duo CPU, clocked at 3.16 GHz, and with 4
GB of available system memory.”

5. The Solution by Lparse/Smodels
Smodels (Niemelä and Simons 2000) is an implemen-
tation of the stable model semantics for logic programs.
Essentially, it finds satisfying models of a set of ground
clauses. Lparse (Syrjänen 1998; 2000) is a front-end to
smodels that allows the clauses to be written in an ex-
tended logic programming syntax. The following so-
lution is written in the language accepted by lparse.
Nonobvious expressions are explained when first used.
1. jp: There are four people: Roberta, Thelma, Steve,
and Pete.

person(roberta;thelma;steve;pete).

p(t1;...;tn) is treated as the con-
junction of p(t1), and . . . , and p(tn),
making this equivalent to the SNePSLOG
person({roberta,thelma,steve,pete}).
2. jp: Among [the people], they hold eight different
jobs.
3. jp: Each holds exactly two jobs.

2 {hasJob(X,Y): job(Y)} 2
:- person(X).

This means that, for each person, there must be exactly
two instances of hasJob(X,Y), where Y is some job,
making this equivalent to the SNePSLOG

all(x)(person(x)
=> nexists(2,2,8)(y)(job(y):

hasJob(x,y)))

except that the 8 is not specified, since negative in-
stances are not inferred anyway.
inf: “No job is held by more than one person.” [p. 56]

1 {hasJob(X,Y): person(X)} 1
:- job(Y).

4. jp: The jobs are: chef, guard, nurse, telephone oper-
ator, police officer (gender not implied), teacher, actor,
and boxer.

job(chef; guard; nurse; operator;
police; teacher; actor; boxer).

inf: “if the four names did not clearly imply the sex of
the people, [the puzzle] would be impossible to solve.”
[p. 56]

female(roberta; thelma).
male(steve; pete).

No person is both male and female

In Proceedings, Commonsense 2011 5

:- person(X), male(X), female(X).

A headless body indicates that a common instance of all
body atoms is not to appear in any satisfying model.
5. jp: The job of nurse is held by a male.

male(X) :- person(X),
hasJob(X,nurse).

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]

male(X) :- person(X),
hasJob(X,actor).

6. jp: The husband of the chef is the telephone operator.

hasJob(X,operator) :- person(X;Y),
hasJob(Y,chef), hasHusband(Y,X).

hasHusband(Y,X) :- person(X;Y),
hasJob(Y,chef),hasJob(X,operator).

inf: “the implicit fact that husbands are male” [p. 57]
inf: since the chef has a husband, she must be female.
[p. 57]

2 {female(X), male(Y)} 2
:- person(X;Y), hasHusband(X,Y).

That is, for each instance of hasHusband(X,Y),
where X and Y are people, that instance of both
female(X) and male(Y) is to be included in each
satisfying model.
7. jp: Roberta is not a boxer.

:- hasJob(roberta, boxer).

8. jp: Pete has no education past the ninth grade.

:- educated(pete).

inf: “the jobs of nurse, police officer, and teacher each
require more than a ninth-grade education.” [p. 57]

educated(X) :-
1 {hasJob(X,nurse),

hasJob(X,police),
hasJob(X,teacher)} 2,

person(X).

The cardinality-constrained body group of atoms is a
way of putting a disjunction in the body. The “2” is
specified because it is known that no more than two
common instances of these atoms could appear in any
satisfying model.
9. jp: Roberta, the chef, and the police officer went
golfing together.
inf: “Thus, we know that Roberta is neither the chef nor
the police officer.” [p. 57]

0 {hasJob(roberta, chef),
hasJob(roberta, police)} 0.

inf: “Since they went golfing together, the chef and the
police officer are not the same person.” [p. 57]

0{hasJob(X,chef), hasJob(X,police)}1
:- person(X).

jp: Question: Who holds which jobs?

#hide.
#show hasJob(X,Y).

Together, these declarations indicate that only the in-
stances of hasJob(X,Y) should be shown for each
model.

After asking Smodels to show all the models, it re-
ported only the correct one, and reported the computa-
tion time as “0.000”.

6. Discussion
6.1 Discussion of the TPTP Solution
The remaining “tedious” aspect of the TPTP formaliza-
tion of the Jobs Puzzle is the set of 38 clauses for the
special-purpose equality and inequality axioms. These
could be eliminated by making the unique names as-
sumption and by using paramodulation. The remain-
ing 25 clauses are quite straight-forward translations of
the puzzle, although the formalizations of “Each per-
son holds at most two jobs” and “Each job is held by at
most one person” might be considered more clever than
straight-forward.

The formulation does not include a person or job
predicate, and has unintended implications, such as

equal people(chef , chef),
equal jobs(roberta, roberta),

and

(male(nurse) ∨ female(nurse))
∧¬(male(nurse) ∧ female(nurse)).

There are four non-Horn clauses:

1. Everyone has at least one of the eight jobs.

2. Each job is held by one of the four people.

3. If someone seems to have three jobs, two of those
jobs are the same.

4. Everyone is male or female.

Therefore, no reasoner limited to Horn clauses can
solve this formulation of the puzzle. Of the 29 attempts
to solve the puzzle using this formulation, 9 failed and
20 succeeded. Some of the successes were due to care-
ful choices of strategies. For example, SNARK suc-
ceeded using unit-resulting-resolution, but before that
was tried, SNARK failed [Mark Stickel, personal com-
munication].

6.2 Discussion of the SNePS Solution
The SNePS formalization relies on several features
specifically designed into SNePS to make SNePSLOG
formulas closer to English statements than would oth-
erwise be possible. Use of set arguments and re-
duction inference reduces the tedium of listing the
four people, eight jobs, and the sexes of the people

In Proceedings, Commonsense 2011 6

in separate atomic formulas. The numerical quanti-
fier, nexists(i, j, k)(x)(P(x): Q(x)), is a di-
rect encoding of several kinds of generalized quan-
tifiers (Barwise and Cooper 1981) and of predicate
minimalization—once j P s are found to beQs, all other
P s are inferred to not beQs, and once k−i P s are found
not to be Qs, all other P s are inferred to be Qs. The use
of nor and nand (Shapiro 2010) makes a small reduc-
tion in the length and nesting of several axioms.

Leaving the formulas as stated, rather than translating
them into some canonical form such as clauses, using
natural deduction, and the omission of modus tollens
(as well as several other apparently natural rules of in-
ference), allows SNePS to focus its work on answering
the given question, a focussing produced in resolution
systems by careful choice of strategies. However, this
requires some rewriting of some statements of the prob-
lem. For example, instead of formalizing “The chef is
female” as
all(x)(hasJob(x,chef) => Female(x))

it is formalized as
all(x)(Male(x) => ˜hasJob(x,chef))

This is the place where the SNePS formulas are least
like the English statements they translate. However, this
formalization also eliminates the need to say that ev-
ery person is either male or female, but not both. The
unique names assumption is made in the implementa-
tion of the numerical quantifier, and the two axioms that
use it are the only two places where judgments of equal-
ity and inequality are required.

7. Discussion of the Lparse/Smodels
Solution

Several noteworthy features of lparse/smodels are sim-
ilar to features of SNePS. The reduction in tedious-
ness achieved in SNePS by set arguments is achieved in
lparse by conjunctive arguments separated by “;”, and
some of what is conveyed in SNePS by the numerical
quantifier is conveyed in lparse/smodels by its cardinal-
ity constraints.

In formalizing “The husband of the chef
is the telephone operator”, not only was
the obvious rule,
hasJob(X,operator) :- person(X;Y),

hasJob(Y,chef), hasHusband(Y,X).

given, but also the less obvious
hasHusband(Y,X) :- person(X;Y),

hasJob(Y,chef),hasJob(X,operator).

Notice that the TPTP solution also had clauses from
both such rules. In fact, experimentation showed that
smodels needed the second rule, but not the first.

Other than the non-obvious operator-is-husband rule,
lparse/smodels satisfied the challenge well.

7.1 Some Failed Attempts
Kandefer and Shapiro (2008) attempted to represent
the Jobs Puzzle in the Topbraid Ontology Editing Tool
(Top Quadrant Inc. 2007) and solve it using the Pel-
let OWL Description Logic Reasoner (Clark & Parsia,
LLC 2007), but were unsuccessful because Pellet is un-
able to infer positive instances from negative ones, as
SNePS’s numerical quantifier does (Shapiro 1979). An
attempt to use SWRL (W3C 2004) was also unsuccess-
ful because SWRL rules lack negation.

8. Conclusions
The Jobs Puzzle has been solved by “intelligent sixth
graders” (Wos et al. 1984, p.55), but still presents a
challenge for automatic reasoners. The challenge is
three-fold:

1. Formalize the puzzle in a way that is neither difficult
nor tedious.

2. Formalize the puzzle as a series of logical formulas
that adhere closely to the English statement of the
puzzle. (This would entail part (1).)

3. Have a general-purpose commonsense reasoning pro-
gram that can accept that formalization, and solve the
puzzle without further human assistance.
The original formalization, by the original posers of

the puzzle, was, as admitted by them, “sometimes dif-
ficult and sometimes tedious.” The TPTP formaliza-
tion of the puzzle is less so, but some tedium remains,
and some of the formalizations of some of the state-
ments of the puzzle are more clever than they are direct
translations. Nine of 29 recorded attempts to have auto-
matic reasoners use this formalization to solve the puz-
zle failed, and no Horn-clause reasoner could possibly
succeed. A formalization in SNePSLOG, using its gen-
eralized quantifier and set arguments, came quite close
to a direct translation of the statements of the puzzle,
but some statements needed to be translated into their
contrapositives in order for SNePS to solve the puz-
zle. A formalization in lparse/smodels, using its con-
junctive arguments and cardinality constraints came ex-
tremely close to meeting the challenge, needing only
one “clever” rule. However, since smodels is a model-
finder using what is essentially propositional logic, it
might be argued that it is not a general-purpose com-
monsense reasoner. Attempts to solve the puzzle using
a Description Logic reasoner failed, as did an attempt to
formalize it using SWRL rules. Other attempts to meet
the challenge are welcomed.

Acknowledgments
I am grateful to Mark Stickel for pointing me to TPTP,
explaining the information contained there, and for dis-
cussions about SNARK. Inclusion of a Constraint Lingo
solution was recommended by an anonymous reviewer

In Proceedings, Commonsense 2011 7

of this paper. I thank Raphael Finkel for supplying
the solution and for discussions about Constraint Lingo,
and for motivating me to investigate lparse/smodels. I
apologize for having to omit that solution from the final
version of this paper. I thank William J. Rapaport and
Jonathan P. Bona for comments on earlier drafts of this
paper, and to Christian Miller for telling me how to de-
scribe the computer on which SNePS solved the puzzle.
I am grateful to present and past members of the Uni-
versity at Buffalo’s SNePS Research Group for aiding
in the implementation of SNePS, and for many years
of fruitful and enjoyable collaboration. This work has
been supported in part by a Multidisciplinary University
Research Initiative (MURI) grant (Number W911NF-
09-1-0392) for ”Unified Research on Network-based
Hard/Soft Information Fusion”, issued by the US Army
Research Office (ARO) under the program management
of Dr. John Lavery.

References
Barwise, J., and Cooper, R. 1981. Generalized quanti-
fiers and natural language. Linguistics and Philosophy
4(2):159–219. Reprinted in (Kulas, Fetzer, and Rankin
1988, 241–301).
Clark & Parsia, LLC. 2007. Pellet: The Open Source
OWL DL Reasoner. http://pellet.owldl.
com/.
Finkel, R.; Marek, V.; and Truszczyński, M. 2002.
Constraint lingo: A program for solving logic puzzles
and other tabular constraint problems. In Flesca, S.;
Greco, S.; Ianni, G.; and Leone, N., eds., Logics in
Artificial Intelligence, volume 2424 of Lecture Notes
in Computer Science. Berlin / Heidelberg: Springer.
513–516.
Finkel, R.; Marek, V.; and Truszczyński, M. 2004.
Constraint lingo: Towards high-level constraint pro-
gramming. Softward Practice and Experience
34(15):1481–1504.
Kalman, J. A. 2001. Automated Reasoning with Otter.
Princeton, NJ: Rinton Press.
Kandefer, M., and Shapiro, S. C. 2008. Compar-
ing SNePS with Topbraid/Pellet. SNeRG Technical
Note 42, Department of Computer Science and Engi-
neering, The State University of New York at Buffalo,
Buffalo, NY.
Kulas, J.; Fetzer, J. H.; and Rankin, T. L., eds.
1988. Philosophy, Language, and Artificial Intel-
ligence. Studies in Cognitive Systems. Dordrecht:
Kluwer.
Lehmann, F., ed. 1992. Semantic Networks in Artifi-
cial Intelligence. Oxford: Pergamon Press.
McCune, W., and Wos, L. 1997. Otter: The cade-13
competition incarnations. Journal of Automated Rea-
soning 18(211-220).

Niemelä, I., and Simons, P. 2000. Extending the smod-
els system with cardinality and weight constraints. In
Minker, J., ed., Logic-Based Artificial Intelligence.
Boston: Kluwer. 491–521.
Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS
family. Computers & Mathematics with Applications
23(2–5):243–275. Reprinted in (Lehmann 1992, pp.
243–275).
Shapiro, S. C., and The SNePS Implementation
Group. 2010. SNePS 2.7.1 User’s Manual.
Department of Computer Science and Engineer-
ing, University at Buffalo, The State Univer-
sity of New York, Buffalo, NY. Available as
http://www.cse.buffalo.edu/sneps/
Manuals/manual271.pdf.
Shapiro, S. C. 1979. Numerical quantifiers and their
use in reasoning with negative information. In Pro-
ceedings of the Sixth International Joint Conference
on Artificial Intelligence. San Mateo, CA: Morgan
Kaufmann. 791–796.
Shapiro, S. C. 2000. SNePS: A logic for natural
language understanding and commonsense reasoning.
In Iwańska, Ł. M., and Shapiro, S. C., eds., Natu-
ral Language Processing and Knowledge Represen-
tation: Language for Knowledge and Knowledge for
Language. Menlo Park, CA: AAAI Press/The MIT
Press. 175–195.
Shapiro, S. C. 2010. Set-oriented logical connec-
tives: Syntax and semantics. In Lin, F.; Sattler, U.;
and Truszczynski, M., eds., Proceedings of the Twelfth
International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR2010), 593–
595. Menlo Park, CA: AAAI Press.
Stickel, M. E.; Waldinger, R. J.; and Chaudhri,
V. K. undated. A guide to SNARK. http:
//www.ai.sri.com/snark/tutorial/
tutorial.html.
Stickel, M. E. 2010. SNARK - SRI’s new auto-
mated reasoning kit. http://www.ai.sri.com/
˜stickel/snark.html.
Syrjänen, T. 1998. Implementation of local ground-
ing for logic programs with stable model semantics.
Technical Report B18, Digital Systems Laboratory,
Helsinki University of Technology.
Syrjänen, T. 2000. Lparse 1.0 User’s Man-
ual. http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz.
Top Quadrant Inc. 2007. Topbraid Composer. http:
//www.topbraidcomposer.com/.
W3C. 2004. SWRL: A semantic web rule language.
http://www.w3.org/Submission/SWRL/.
Wos, L.; Overbeek, R.; Lusk, E.; and Boyle, J. 1984.
Automated Reasoning: Introduction and Applications.
Englewood Cliffs, NJ: Prentice-Hall.

In Proceedings, Commonsense 2011 8

Appendix9

The Solution by Constraint Lingo
Constraint Lingo (Finkel, Marek, and Truszczyński
2002; 2004) is a high-level language for specifying a
relation via requirements and constraints. The speci-
fied relation is conceived of as a table whose ith column
contains entries from a specified ith domain, and each
of whose rows is one n-tuple in the relation. (However,
the specifications may allow one table entry to contain
a set of elements from the appropriate domain.) The
Constraint Lingo specification is translated into one of
several back-end reasoners. The solution is then trans-
lated back into a table. Notice that this table does not
have the same rows and columns as the table discussed
in (Wos et al. 1984, §3.2.1).

The Constraint Lingo solution10 to the Jobs Puzzle
uses person, gender, and jobs as the three do-
mains. The Constraint Lingo constructs used in this so-
lution and their meanings are:
CLASS name: member...
declares the name of a domain and its elements, each of
which must appear in one and only one row of the table.
PARTITION name: pmember...
declares the name of a domain and its elements. Some
elements may occur multiple times in the column, and
not all need appear.
POWERCLASS (i,j) name: member...
declares the name of a domain and its elements. Each
entry in the column must contain a set of at least i and
at most j of the elements, and no two such sets may be
the same.
AGREE pmember: domainmember...
Every row in which one of the listed domainmembers
appears must contain the given partition pmember in
its appropriate column.
USED member <= j
The given member must appear in at least 1 and at most
j rows of its column.
CONFLICT member...
No row may contain more than one of the listed
members.

The Constraint Lingo solution follows:
1. jp: There are four people: Roberta, Thelma, Steve,
and Pete.

CLASS person: roberta thelma steve
pete

inf: “if the four names did not clearly imply the sex of
the people, [the puzzle] would be impossible to solve.”
[p. 56]

9Not included in the published version due to space con-
straints.

10provided by Raphael Finkel [personal communication],
with some modifications suggested by me.

PARTITION gender: male female
AGREE male: steve pete
AGREE female: roberta thelma

2. jp: Among [the people], they hold eight different
jobs.
3. jp: Each holds exactly two jobs.
4. jp: The jobs are: chef, guard, nurse, telephone oper-
ator, police officer (gender not implied), teacher, actor,
and boxer.

POWERCLASS jobs(2,2): chef guard
nurse operator police teacher
actor boxer

inf: “No job is held by more than one person.” [p. 56]

USED chef <= 1
USED guard <= 1
USED nurse <= 1
USED operator <= 1
USED police <= 1
USED teacher <= 1
USED actor <= 1
USED boxer <= 1

5. jp: The job of nurse is held by a male.

AGREE male: nurse

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]

AGREE male: actor

6. jp: The husband of the chef is the telephone operator.
inf: “the implicit fact that husbands are male” [p. 57]
inf: since the chef has a husband, she must be female.
[p. 57]

AGREE female: chef
AGREE male: operator

7. jp: Roberta is not a boxer.

CONFLICT roberta boxer

8. jp: Pete has no education past the ninth grade.
inf: “the jobs of nurse, police officer, and teacher each
require more than a ninth-grade education.” [p. 57]

CONFLICT pete teacher
CONFLICT pete police
CONFLICT pete nurse

9. jp: Roberta, the chef, and the police officer went
golfing together.
inf: “Thus, we know that Roberta is neither the chef nor
the police officer.” [p. 57]
inf: “Since they went golfing together, the chef and the
police officer are not the same person.” [p. 57]

CONFLICT roberta chef police

jp: Question: Who holds which jobs?
The solution, derived in this case by Smodels (Niemelä
and Simons 2000), is

In Proceedings, Commonsense 2011 9

gender jobs person
====== ============== =======
male actor;operator pete
female guard;teacher roberta
male nurse;police steve
female chef;boxer thelma

Discussion of the Constraint Lingo Solution Con-
straint Lingo was designed for problems like the Jobs
Puzzle, so its solution is rather simple and straight-
forward. The most tedious aspect is the eight USED
declarations. The cleverness required to specify that
“Each person holds at most two jobs” and “Each job
is held by at most one person” in the TPTP solution
is avoided by use of the built-in cardinality constraints
of POWERCLASS and USED. The biggest problem with
the Constraint Lingo solution is that it does not adhere
very well to the English statements of the puzzle. Con-
straint Lingo was not designed to be a language for
formalizing commonsense reasoning in general, and so
the predicates used in the English statements are absent
from the Constraint Lingo declarations, instead, they all
specify the requirements and constraints of a single, un-
named, relation.

