NUMERICAL QUANTIFIERS AND THEIR USE IN

REASONING WITH NEGATIVE

INFORMATION

Stuart C. Shapiro

Department

of Computer
State University of New York at

Science
Buffalo

4226 Ridge Lea Road

Amherst,

New York

14226

Numerical quantifiers provide simple means of formalizing such statements as, "at least three
people are in that room", "at most fifteen people are in the elevator", and "everybody has
exactly two parents”. Although numerical quantifiers generalize the existential quantifier,
they have different uses in reasoning. The existential quantifier is most useful for supply-
ing referents for designating phrases with no previously explicitly mentioned referent. Numer-
ical quantifiers are most useful for reasoning by the process of elimination. Numerical

quantifiers would, therefore, be a useful

deductive question-answering system.

Processing System, to further enhance its
1. INTRODUCTION
Logic based reasoning programs, that is reason-

ing programs based on operators (connectives,
quantifiers, modals) which have been studied as

part of formal logical systems benefit from the
fact that the inferential properties of their
operators are clear and well known. They need
not be restricted, however, to a minimal set of
operators. Minimal sets of operators are useful
for proving properties of logical systems such

as consistency and completeness, but using a
logical system for carrying out inferences s
simplified (for people) by enlarging the set of
basic operators. This is one reason that natu-
ral deduction systems like those of [I] , [4]
and [11], with reasonable sets of connectives
and two rules of inference for each one, are
easier to use than axiomatic systems with
minimal sets of connectives, rules and axioms.
This paper is motivated by an interest in pro-
grams that represent knowledge, including the
knowledge of rules of reasoning, and that use
those rules to perform reasoning. | believe
that such programs are enhanced by the availa-
bility of a large set of operators that typify
and formally model as many of the modes of

human reasoning as possible. This paper dis-
cusses a set of operators, the numerical quan-
tifiers, which can be implemented in reasoning

*This material is based on work supported
in part by a Faculty Research Fellowship from
the Research Foundation of State University of
New York, and in part by the National Science
Foundation under Grant No. MCS78-02274.

791

addition to the operators of a reasoning program or
They have been added to SNePS,
inference capabilities.

the Semantic Network

programs as a single parameterized operator,
and which model an important mode of human
reasoning.

Numerical quantifiers, discussed briefly in [10,
Pp. 63—64], are generalizations of the existen-
tial quantifier. They can be used to formalize
such statements as:
There are at least two numbers z, such that
2+2<6.
ere are exactly two numbers x, such that
x“+4=b4x,
There are at most two numbers y, such that
y+5<11-2y.
(all from [10, pp. 64, 67].)

One numerical quantifier is the more commonly
encountered unique existential, expressed as
U xA(¥) in the noticion of @, p. 199]. We will
use the notation gyxA(x) for "there exists at
least i and at most j x such that A(x)'". The
usual existential quantifier, AxA(x), can then
be considered an abbreviation of :'fl'xA(x) (al-
though later we will make a distinction), and
the unique_existential becomes I1xA(x). In
general, sgmu) are the '"numerically definite
quantifiers' mentioned in D, pp. 165, 6].

We have found the numerical quantifiers particu-
larly useful for the mode of reasoming by the
process of elimination: if the maximal number
of positive cases are found, the rest must be
negative; 1f the maximal number of negative
cases are found, the rest must be positive.
Numerical quantifiers thus can introduce ex-
plicit negative information into a data base,
and can make use of negative information to

derive positive information. To set the stage
for this discussion, we will first discuss the
role of the simple existential quantifier in
deductive question-answering.

2. THE EXISTENTIAL QUANTIFIER

Let us consider statements which:

1) include an existential quantifier;

2) are to be stored in the data base of a de-
ductive question-answering system (QAS);

3) are to be used by the system to answer
questions.

We will consider what contribution such state-
ments (we call these, as well as other general
statements, deduction rules) can make to the
question-answering process.

Existential quantifiers can either be outside
or inside the scope of universal quantifiers.
If outside the scope of any universal quanti-
fier, for example '"There is a man who owns a
dog" or mx(Man(x)&ay(Dog(y)&wns(x,y))), there
is no need to retain the quantifier in the data
base, one can simply create new individual con-
stants (Skolem constants) and substitute them
for the quantified variables, storing, in this
example, the three facts Man(ml), Dog(dl), and
Owns(ml,dl).

Existential quantifiers within the scope of
universal quantifiers can be eliminated by re-
placing them with Skolem functions. So,
(1) FEvery person has a mother
can be represented by yx(Person(x)3gy(Person(y)
&Mother (y,x))) or by yx(Person(x)3(Person(f(x))
&Mother(f(x),x))), where £ is a new function.
This rule could be used to answer the question,
"Does John have a mother?', but the point of the
Skolem function is that for each person a new
person must be postulated to be his or her
mother. So, knowing just (1), and that John is
a person, if we asked "Who is John's mother?”,
the answer would be some individual about whom
we know nothing except that she is a person
and is John's mother.

It may seem strange that asking a question can
cause the creation of a new individual, but
consider definite descriptions that refer to
individuals which have not been explicitly
introduced, as in the statement ''John's mother
owns a dog'. Normally, we would look in the
data base for John's mother and assert that she
owns a dog, but in this case there is no record
of John's mother in the data base. However,
rule (1) justifies creating a mew individual to
be John's mother. "John's mother owns a dog'
presupposes that John has a mother. With neither
an explicit mother, nor the rule, the sentence

792

has a failed presupposition and should not be
accepted.

If the data base contained both rule (1) and
"Jane is John's mother', and we input, "John's
mother owns a dog," rule (1) is at best useless,
and at worst, harmful. If the rule were acti-
vated, it would have to produce a new mother,

and the phrase "John's mother' would be ambigu-
ous. If rule (1) were not activated, ''Jane owns
a dog" would be stored. This is technically
wrong (consider replacing 'mother'" with "parent),
but probably what the speaker intended.

In summary, existential quantifiers need be
stored in the data base of a QAS only when with-
in the scope of a universal quantifier, and they
are most useful for supplying referents for
designating phrases with no previously explicit-
ly mentioned referent.

3. MAXIMAL NUMERICAL QUANTIFIERS

Consider the data base containing ''Jane is
John’s mother" and the question, "Is Mary John's
mother?" In order to get the correct answer,
"No'', we need the rule

(2) Every person has at most one mother.

(We will ignore, in this paper, the problem of
identity or extensional equivalence. That is,
the even more correct answer, "Only if Mary is
the same person as Jane'. See [7] for a solu-
tion to this problem using a combination of
path tracing and deductio? rules.) Let us call
quantifiers of the form 3F'xA(x), read 'there
exists at most j x such that A of x', maximal
numerical quantifiers. In this notation, (2)
becomes

(2') Vx(Person(x)oaly(Person(y)&ﬂother(y,x)))

Unlike the simple existential quantifier, the
maximal numerical quantifiers do not justify
the introduction of new individuals. However,
we can derive negative statements from them
once the maximal number of individuals satisfy-
ing the quantified statement are known. In our
example, rule (2) justifies the answer, 'No,
Mary is not John's mother'.

If a data base consisted of rules (1) and (2)
only, and we asked, "Is Jane John's mother?",
it might seem that rule (1) would create a new
Skolem constant to be John's mother, and then
by rule (2) the answer would be '"No'. However,
rule (1) must not be invoked in this case, be-
cause it is illegal to instantiate an existen-
tially quantified variable to a constant we
already know something about. Since John's
mother is not known explicitly, Jane is not
ruled out and the correct answer in this case
is "I don't know'.

The formula aij(x) is therefore useful when we
already know j different individuals satisfying
A and are asked if a (j+l)st individual, t, also
satisfies A. The formula ~A(t) is then deriv-
able.

4. MINIMAL NUMERICAL QUANTIFIERS

Now consider formulas of the form, d;*A(X),
read "There exists at least i x such that A of
of x". We will call quantifiers of this form,
minimal numerical quantifiers. What useful in-
formation does this provide that is not provided
by 3xA(x)? 1If the universe under discussion
contains n individuals, and we already know of
n-i incdividuals y such that ~A(y), we can de-
duce about any (n-itl)st individual, t, that
A(t). Consider five professors, three of whom
are in a meeting. If I know who the five people
are, and I've seen two in the hall, I can de-
duce who is in the mecting.

Since the usefulness of minimal numerical
quantifiers depends on some universe of objects,
it is convenient to introduce domain restricted
minimal numerical quantifiers. We will use the
notation 3ix(P(x):Q(x)), where P(x) and Q(x)
are arbitrary formulas with x free, to mean,
"of all objects x such that P(x), at least i
of them satisfy Q". In a data base without the
closed world assumption [5], we can seldom be
surc that the objects known to satisfy P are
the only ones that actually do. For example,
the following corpus, representing the example
above, is insufficient for deducing who is in
the meeting.

(3) a3x(Professor(x):In(x,meeting))

(4) vx(In(x,hall)?¥~In(x,meeting))

(5) Professor(Pat)

(6) Professor(Gabor)

(7) Professor(Nick)

(8) Professor(John)

(9) Professor(Stu)

(10) In(Pat,hall)

(11) In(Nick,hall)
However, it may be that whoever provided rule
(3) knows that there are only five professors.
To record such information, we will add another
parameter to the minimal numerical quantifiers
giving the schema, n3jx(P(x):Q(x)), where n is
the number of objects which satisfy P. Notice
that this amounts to a closed sub-world assump-
tion. If we replace (3) in the above corpus by

3" 533x(Professor(x):In(x,mceting))
stating that "Of the five professors, at least
three are in the meeting'', then we can derive
In(Gabor,meeting),In(John,meeting) and In(Stu,
meeting).

With minimal numerical quantifiers, negative
information can be used to deduce positive in-
formation. Given the rule ,3;x(P(x):Q(x)), and

793

n-i individuals y such that P(y)&~Q(y), we can
deduce for any other individual t such that
P(t) holds that Q(t) also holds.

5. NUMERICAL QUANTIFIERS

The minimal and maximal numerical quantifiers
can be combined into what we Shall simply call
the numerical quantifiers, n'Elix(P(x):Q(x)),
which are read, '"Of the n individuals x such
that P(x), at least i and at most j are such
that Q(x)", or simply, "Between i and j of the
n Ps are Qs'". The other quantifiers we have
discussed may be obtained by leaving out
appropriate parts of this schema.

I1f a data base contains a rule of the form
na%x(P(x):Q(x)) and j individuals are found
satisfying P(x)&Q(x), it may be deduced that
the remaining n-j individuals satisfying P(x)
satisfy ~Q(x). However, if n-i individuals are
found to satisfy P(x)& ~Q(x), it may be de-
duced that the remaining i individuals satisfy-
ing P(x) also satisfy Q(x).

The regular existential quantifier, IxA(x), is
the same as the numerical quantifier apxA(x).
It is now clear why it seldom helps us deter-
mine whether A(t) holds for a fixed individual,
t. HTxA(x) cannot derive ~A(t), since there
is no maximum -- all individuals might satisfy
A. It can seldom produce A(t), since that would
require knowing that all other individuals
satisfy ~A, and we rarely have a finite list
of all the individuals in the domain. Because of
this, the implementor of a deductive QAS may
wish to distinguish the existential quantifier
from the numerical quantifiers, and continue to
prohibit invocation of a rule that would bind
an existentially quantified variable to a con-
stant.

6. NUMERICAL QUANTIFIERS IN SNePS

Numerical quantifiers have recently been added
to SNePS, the Semantic Network Processing System
@; 8], which already included universal and
existential quantifiers as well as a set of
non-standard connectives. SNePS accepts numeri-
cally oyantified formulas of the form

(12) q#HE(P(H), ..., P(F): QX))

(13) n&X(P1(X),. ., P (X): (X))

(14) BWR(PI(R), ..., B():0(X))

where k20 and X represents a sequence of
variables KXpyeo oy K> each of which is free

in at least one of Pl(i),...,Pk(i),Q(i). The
meaning of (12) is that there are n sequences of
individuals, <ty,...,t,> such that (P1(®)&, ..
&Py (%)) [tl/xl,...,tm/xm_l is true and that at
least 1 and at most j of these n sequences

also satisfy Q(X). The meanings of (13) and
(14) are the appropriate simplifications of this.

As an example of (12), consider the many-many
relationship of dog ownership. Several people
may jointly own one dog, and several dogs may be
ed by the same person. The formula

53%,y(Person(x),Dog(y),0wns(x,y):Spoils(x,y))
says that of the five dog ownership relations
(e.g. <John,Rover>, <John,Spot>,<Jane,Spot>,<Mary,
Lassic>, and <Jim,lLassie>), between two and four
involve spoiling the dog.

Rules of the form of (12) are represented in the
SNePS network by a node with: an auxiliary arc
labeled EMIN to i; an auxiliary arc labeled

EMAX to j; an auxiliary arc labeled ETOT to n;
descending arcs labeled PEVB to the nodes
representing the variables in X; descending arcs
labeled &ANT to the nodes representing the
formulas Py(X),...,P(x); a descending arc
labeled CQ to the node representing Q(X).In
SNePS, auxiliary arcs may connect semantic net-
work nodes to arbitrary data structures, in-
cluding numbers. A descending arc goes from a
network node to another network node and has a
paired ascending arc in the reverse direction.

7. EXAMPLES

In this section, we will show SNePS runs of the
three major numerical quantifier examples from
above. Lines beginning with "%*" or "*'" were
typed by the user. The character ";'" indicates
that the rest of the line is a comment. Input
is in SNePSUL, the SNePS User Language, [8).
Each input and each deduced fact is commented
by its English translation. Each rule is also
commented by its translation into the logical
syntax used previously in this paper. The runs
were transcribed to make them easier to read,
and edited only to add the comments and to re-
move some trace printing. SNePS is written in
Lisp and runs interactively on a CYBER 173. A
compiled version was used for these examples.

7.1 Example 1

We assert that Jane is John's mother and that
cveryone has at most one mother. Then we ask
if Mary is John's mother, and SNecPS responds
that she is not.

*%,Jane is a person.

*(BUILD MEM JANE CLASS PERSON)

(M13) ;The SNePS node representing the assertion.
8 MSECS

**;John is a person.

*(BUILD MEM JOHN CLASS PERSON)

(M14)

8 MSECS

**:Jane is John's mother.

#(BUILD A JANE R MOTHEK 0 JOHN)

(M15)

12 MSECS

**;Every person has at most one mother.

794

*;vx [Person(x)-> Aly(Person(y) : Mother(y,x))]
*(BUILD AVB $X

* ANT (BUILD MEM *X CLASS PERSON)

* CQ (BUILD EMAX 1 PEVB $Y

* SANT (BUILD MEM *Y CLASS PERSON)
* CQ (BUILD A *Y R MOTHER 0 *X)))
(M21)

65 MSECS

%% ;Mary is a person.
%(BUILD MEM MARY CLASS PERSON)
(M22)
7 MSECS
%%;Is Mary John's mother?
* (DESCRIBE (DEDUCE A MARY R MOTHER O JOHN))
(M24 (MIN(O)) (MAX(O)) (ARG(M23)))
; It is not the case that
(M23 (A(MARY)) (R(MOTHER)) (O(JOHN)))
; Mary is the mother of John.
(DUMPED)
1120 MSECS

7.2 Example 2

At least three of the five professors are in the
meeting. We sce Pat and Nick in the hall. When
we ask who is in the meeting, SNePS deduces that
Pat and Nick are not, but Gabor, John, and Stu
are.

**%:At least 3 of 5 professors are in a meeting.
*; 5 @3x [Professor(x)->In(x,meeting)]

*(BUILD ETOT 5 EMIN 3 PEVB $X

* SANT (BUILD MEM *X CLASS PROFESSOR)

* CQ (BUILD A *X R IN O MEETING))

(M4)

44 MSECS

*%:Whoever is in the hall is not in the mecting.
*;Vk[in(x,hall)tb~{n(x,mecting)]

*(BUILD AVB $X

% ANT (BUILD A *X R IN O HALL)

* CQ (BUILD MIN 0 MAX O

* ARG (BUILD A *X R IN O MEETING)))
(M8)
50 MSECS

*%;Pat is a professor.

*(BUILD MEM PAT CLASS PROFESSOR)
M9)

10 MSECS

% Gabor is a professor.

*(BUILD MEM GABOR CLASS PROFESSOR)
(M10)

8 MSECS

*%:Nick is a professor.

*(BUILD MEM NICK CLASS PROFESSOR)
(M11)

8 MSECS

%*%;John is a professor.

*(BUILD MEM JOHN CLASS PROFESSOR)
(M12)

8 MSECS

*%;Stu is a professor.
*(BUILD MEM STU CLASS PROFESSOR)

(M13)

9 MSECS

**Pat is in the hall.

*(BUILD A PAT R IN 0 HALL)

(M14)

11 MSECS

***Nick is in the hall.

*(BUILD A NICK R IN 0 HALL)

(M15)

10 MSECS

**>Who is in the meeting?
*(DESCRIBE (DEDUCE A %X R IN 0 MEETING))
(M17 (MIN(O)) (MAX(O)) (ARG(M16)))
(M16 (A(PAT)) (R(IN)) (O(MEETING)))

; Pat is not in the meeting.
(M19 (MIN(O)) (MAX(O)) (ARG(M18)))
(

(MI8 (A(NICK)) (R(IN)) (O(MEETING)))
; Nick is not in the meeting.

(M20 (A(GABOR)) (R(IN)) (O(MEETING)))
; Gabor is in the meeting.

(M21 (A(JOHN)) (R(IN)) (O0(MEETING)))
; John is in the meeting.

(M22 (A(STU)) (R(IN)) (O(MEETING)))
; Stu is in the meeting.

(DUMPED)

1427 MSECS

7 - .3 Example 2

We assert that between two and four dog owner
inp relations involve spoiling, and assert
four such spoiling relations. SNePS deduces
that Jim does not spoil Lassie.

**;O0f 5 dog ownership relations,

* ,between 2 and 4 involve spoiling.

, 532Xy member(x,person),Member(y,dog) ,
Oowns(x,y) Spoils(x,y)]

«* (BUILD ETOT 5 EMIN 2 EMAX 4 PEVB($X $Y)

* B6ANT ((BUILD MEM *X CLASS PERSON)

*

* (BUILD MEM *Y CLASS DOG)

* (BUILD A *X R OM\S 0 *Y))
CQ (BUILD A *X R SPOILS 0 *Y))

(M5)

81 MSECS

**:John is a person.

*(BUILD MEM JOHN CLASS PERSON)

(M6)

10 MSECS

**:Jane is a person.

*(BUILD MEM JANE CLASS PERSON)

(M7)

10 MSECS

**>Mary is a person.

*(BUILD MEM MARY CLASS PERSON)

(M8)

9 MSECS

**:Jim is a person.

*(BUILD MEM JIM CLASS PERSON)

(M9)

9 MSECS

**;Rover is a dog.

795

*(BUILD MEM ROVER CLASS DOG
(M10)

9 MSECS

**;Spot is a dog.

*(BUILD MEM SPOT CLASS DOG)
(M11)

12 MSECS

**;Lassie is a dog

*(BUILD MEM LASSIE CLASS DOG)
(M12)

10 MSECS

**.John owns Rover.

*(BUILD A JOHN R OMNS 0 ROVER)
(M13)

11 MSECS

**;John owns Spot.

*(BUILD A JOHN R OMNS 0 SPOT)
(M14)

11 MSECS

**:Mary owns Lassie.

*(BUILD A MARY R OMNS 0 LASSIE)
(M15)

13 MSECS

**:Jane owns Spot.

*(BUILD A JANE R OMNS 0 SPOT)
(M16)

11 MSECS

**.Jim owns Lassie.

*(BUILD A JIM R OMNS 0 LASSIE)
(M17)

12 MSECS

**;John spoils Rover.

*(BUILD A JOHN R SPOILS 0 ROVER)
(M18)

10 MSECS

**>John spoils Spot.

*(BUILD A JOHN R SPOILS 0 SPOT)
(M19)

12 MSECS

**;jane spoils Spot.

*(BUILD A JANE R SPOILS 0 SPOT)
(M20)

12 MSECS

**:Mary spoils Lassie.

*(BUILD A MARY R SPOILS 0 LASSIE)

(M21)

11 MSECS

**>Who spoils whom?

*(DESCRIBE (DEDUCE A %X R SPOILS 0 %Y))

(M18 VvA(JOHN)) (R(SPOILS)) (0(ROVERY)))
;John spoils Rover.

(M19 (A(JOHN)) (R(SPOILS)) (O(SPOT)))
;John spoils Spot.

(M20 (A(JANE)) (R(SPOILS)) (O(SPOT)))

;Jane spoils Spot.

(M21 (A(MARY)) (R(SPOILS))
;Mary spoils Lassie.

(M23 (MIN(O)) (MAX(O)) (ARG(M22)))
(M22 (A(JIM)) (R(SPOILS)) (O(LASSIE)))
;Jim does not spoil Lassie.
(DUMPED)
1341 MSECS

(O(LASSIE)))

8. SUMMARY
We have discussed the roles of existential and

numerical quantifiers in reasoning programs. The
roles are different and both are important. The
existential quantifier is most useful for supply-

ing referents for designating phrases with no
previously explicitly mentioned referent. Numeri-
cally quantified rules are concise representa-
tions of rules that govern reasoning by the
process of elimination and can introduce ex-
plicit negatives into a data base or can use
negative statements for deriving positive state-
ments. The most general schema for numerical
quantifiers that we have discussed is
n@IX(P(X),. .., P (X):Q(X)), which says that

at least i and at most j of the n sequences

of individuals that satisfy Pj(X)&...&P (%)
also satisfy Q(X). We showed how rules of this
form can be represented in SNePS, the Semantic
Network Processing System, and gave examples of
SNePS runs that used such rules for carrying out
inferences.

Two aspects of numerical quantifiers might

limit their immediate usefulness. One is the n
parameter, required whenever the minimal para-
meter is present. In formulating numerically

quantified statements, we have found specifying
n to be bothersome. The parameter could be
eliminated if the inference system had another
means of determining how many individuals
satisfy the restriction, for example if the
closed world assumption held. The other problem
is that inherent in any counting argument is the
assumption that any two individuals are, in
fact, distinct. If this assumption does not hold,
the use of numerical quantifiers depends on a
solution to the identity problem mentioned in
Sec. 3. Except for these two problems, numeri-
cal quantifiers seem to be useful additions to
the tool kit of representation and inference.

ACKNOWLEDGEMENTS

The author is grateful to Don McKay for help in
SNePS development and to him and Rich Fritzson
for SNePS and Lisp system support. He is also

grateful to Brian Funt and Don McKay for comments
on an earlier draft.

REFERENCES

[Fitch, F.B. Symbolic Logic:An Introduction,
Ronald Press Co., New York, 1952.

[2] Kleene, S.C. Introduction to Metamathe-
matics. D. Van Nostrand, Princeton, New Jersey,
1950.

[3] Lemmon, E.J. Beginning Logic. Hackett,
Indianapolis, 1978.

M Prawitz, D. Natural Deduction - A Proof-
Theoretical Study. Almqvist and Wiksell,
Stockholm, 1965.

796

[5] Reiter, R. On closed world data bases. In
H. Gallaire and J. Minker, eds. Logic and Data
Bases, Plenum Press, New York, 1978.

[6] Shapiro, S.C. Representing and locating
deduction rules in a semantic network. Proc.
Workshop on Pattern-Directed Inference Systems.
SIGART Newsletter, 63 (June, 1977), 14-18.

[7] Shapiro, S.C. Path-based and node-based
inference in semantic networks. In D. Waltz, ed.
TINIAP-2; Theoretical Issues in Natural Language
Processing-2. ACM, New York, 1978, 219-225.

[8] Shapiro, S.C. The SNePS semantic network
processing system. In N. Findler, ed. Associativa
Networks - The Representation and Use of Knowl-
edge by Computers, Academic Press, New York,
1979, 179-203.

[9] Shapiro, S.C. and McKay, D.P. The repre-
sentation and use of deduction rules in a seman-
tic network. Department of Computer Science,
SUNY/Buffalo, Amherst, New York, forthcoming.

[10] Tarski, A.
Methodology of Deductive Sciences.
University Press, New York, 1965.

[I1T Weyhrauch, RW. A users manual for FOL,
Memo AIM-235.1, Stanford Artificial Intelli-
gence Laboratory, Stanford, California, 1977.

Introduction to Logic and to th
Oxford

