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The augmented transition network (ATN) is a formalism for writing parsing grammars 
that has been much used in Artificial Intelligence and Computational Linguistics. A few 
researchers have also used ATNs for writing grammars for generating sentences. Previous- 
ly, however, either generation ATNs did not have the same semantics as parsing ATNs, or 
they required an auxiliary mechanism to determine the syntactic structure of the sentence 
to be generated. This paper reports a generalization of the ATN formalism that allows 
ATN grammars to be written to parse labelled directed graphs. Specifically, an ATN 
grammar can be written to parse a semantic network and generate a surface string as its 
analysis. An example is given of  a combined parsing-generating grammar that parses 
surface sentences, builds and queries a semantic network knowledge representation, and 
generates surface sentences in response. 

1. Introduction 

Augmented  t ransi t ion ne twork  (ATN)  g rammars  
have, since their development  by Woods 1970,1973, 
become  the most  used method of describing grammars  
for  natural  language unders tanding  and quest ion an- 
swering systems. The advantages  of the A T N  notat ion 
have been summarized as "1)  perspicuity, 2) genera-  
tive power ,  3) eff ic iency of representa t ion ,  4) the 
ability to capture  linguistic regularit ies and general i -  
ties, and 5) efficiency of opera t ion"  [Bates 1978, p. 
191]. 

The usual method of utilizing an A T N  grammar  in 
a natural  language system is to provide an interpreter  
that  can take any A T N  grammar ,  a lexicon, and a 
sentence-as  data, and produce either a parse of a sen- 
tence or a message that  the sentence does not conform 
to the grammar.  The input sentence is assumed to be 
a linear sequence of symbols,  while the parse is usually 
a tree (of ten represented by a LISP S-expression) or 
some "knowledge  represen ta t ion"  such as a semantic  
network.  Compilers  have been writ ten [Burton 1976; 
Burton and Woods  1976] that  take an A T N  grammar  

1 This paper is a revised and expanded version of one given 
at the 17th Annual Meeting of the Association for Computational  
Linguistics. The work reported here was supported in part by the 
National Science Foundat ion  under Grants  MCS78-02274 and 
MCS80-06314. 

as input and produce  a special ized parser  for  that  
grammar ,  but in this paper  we assume that  an inter-  
preter  is being used. 

Several methods  have been  descr ibed for  using 
A T N  grammars  for  sentence generat ion.  One method  
[Bates 1978, p. 235] is to replace the usual interpreter  
by a genera t ion  in te rpre ter  that  can take an A T N  
g rammar  wri t ten for  pars ing and use it to p roduce  
random sentences conforming to the grammar.  This is 
useful for testing and debugging the grammar.  

Simmons 1973 uses a s tandard A T N  interpreter  to 
generate  sentences f rom a semantic  network.  In this 
method,  an A T N  register is initialized to hold a node 
of the semantic  ne twork and the input to the g rammar  
is a linear string of symbols providing a pa t te rn  of  the 
sentence  to be generated.  For  example ,  the input 
string might be ( C A 1 - L O C U S  V A C T  T H E M E ) ,  
where  C A 1 - L O C U S  and T H E M E  are labels of  arcs 
emanat ing f rom the semantic  node,  and V A C T  stands 
for  "ac t ive  ve rb . "  This pa t t e rn  means  that  the sen- 
tence to be genera ted is to begin with a string denot-  
ing the C A 1 - L O C U S ,  then have the active fo rm of the 
verb,  and end with a string denot ing  the T H E M E .  
The method  also assumes that  semant ic  nodes  have 
such syntactic informat ion stored with them as number  
and definiteness of nominals,  and tense, aspect,  mood,  
and voice of proposit ions.  
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Shapiro 1979 also generates  sentences f rom a se- 
mantic network.  In this method,  input to the g rammar  
is the semantic ne twork itself (starting at some node).  
That  is, instead of successive symbols of a linear sen- 
tence pat tern  being scanned as the ATN grammar  is 
t raversed  by the in terpreter ,  d i f ferent  nodes  of the 
semantic  network are scanned. The grammar  controls 
the syntax of the generated sentence,  but bases specif- 
ic decisions on the structural propert ies  of the seman-  
tic network and on the information contained therein. 

The original goal in Shapiro 1975 was that a single 
ATN interpreter  could be used both  for s tandard A T N  
parsing and for generation. However ,  a special inter- 
pre ter  was wri t ten for genera t ion grammars ;  indeed, 
the semantics  of the A T N  formal ism given in that  
paper,  though based on the s tandard ATN formalism, 
were inconsistent enough with the s tandard notat ion 
that a single interpreter  could not be used. For  exam- 
ple, s tandard ATNs use a register named " * "  to hold 
the input symbol  (word) currently being scanned. Un-  
like other registers, whose values are set explicitly by 
actions on the ATN arcs, the * register is manipulated 
directly by the ATN interpreter.  In Shapiro 1975 the * 
register was used to hold the string being generated 
rather  than the input symbol  being scanned. The in- 
te rpre ter  wri t ten for Shapiro 1975 also manipula ted  
the * register directly, but in a manne r  inconsis tent  
with standard A T N  interpreters.  

This paper  reports  the results of work carried out 
to remove  the inconsistencies ment ioned  above.  A 
general izat ion of the A T N  formal ism has now been  
derived that  supplies consis tent  semant ics  (and so 
allows a single interpreter  to be used) for both  parsing 
and generating grammars.  In fact,  one grammar  can 
include both parsing and generating sub-networks  that  
can call each other. For  example,  an A T N  grammar  
can be constructed so that  the " p a r s e "  of a natural  
language quest ion is the natural  language s ta tement  
that  answers  it, in teract ion with represen ta t ion  and 
inference routines being done on arcs along the way. 
The new formal ism is a strict general izat ion in the 
sense that it interprets  all old A T N  grammars  as hav-  
ing the same semantics (carrying out the same actions 
and producing the same parses)  as before.  

The general ized A T N  formal ism can be used to 
write g rammars  for  parsing labelled directed graphs.  
In this paper,  however,  we only discuss its use in pars-  
ing two particular kinds of labelled di-graphs. One is 
the kind that is generally called a semantic  network.  
We consider parsing a semant ic  ne twork ,  as viewed 
from some node, into a particular linear symbol  struc- 
ture that  consti tutes a surface string of English. The 
other kind of labelled di-graph is a linear graph all of 
whose arcs have the same label and whose nodes are 
successive words in a surface sentence. This kind of 
di-graph is so special that  a subset  of the generalized 

A T N  formalism,  namely  the original formalism,  has 
built-in facilities for traversing its arcs. 

Since many  people  have implemented  their  own 
A T N  interpreters,  this paper  is writ ten to describe the 
extension to be made to any A T N  interpreter  to allow 
it to interpret  generat ion grammars  as well as parsing 
grammars.  A key ingredient in such an extension is a 
sys temat ic  t r ea tmen t  of  the input buf fer  and the * 
register. This is explained in Section 4, which is essen- 
tially a description of a set of p rogram assertions for 
A T N  interpreters.  

2. G e n e r a t i o n  f rom a S e m a n t i c  N e t w o r k  - Br ief  Over -  
v i e w  

In our view, each node of a semantic  ne twork rep-  
resents a concept.  The goal of the generator  is, given 
a node,  to express  the concept  represen ted  by that  
node in a natural  language surface string. The syntac-  
tic category of the surface string is determined by the 
grammar,  which can analyze the structure of the se- 
mantic  ne twork  connected to the node. In order  to 
express the concept,  it is of ten necessary to include in 
the string substrings that  express the concepts  repre-  
sented by  adjacent  nodes.  For  example ,  if a node 
represents  a propos i t ion  to be expressed as a s ta te-  
ment ,  par t  of the s t a tement  may  be a noun phrase  
expressing the concept  represented  by the node con- 
nected to the original node by an A G E N T  case arc. 
This can be done by a recursive call to a section of the 
g rammar  in charge of building noun phrases.  This 
sect ion will be passed the adjacent  node.  When  it 
finishes, the original s ta tement  section of the g rammar  
will continue adding additional substrings to the grow- 
ing s tatement .  

In A T N  grammars  writ ten for parsing, a recursive 
push does not change the input symbol  being exam- 
ined, but  when the original level continues,  parsing 
normally continues at a different  symbol.  In the gen- 
era t ion approach  we use, a recursive push normal ly  
involves a change in the semantic  node being exam- 
ined, and the original level continues with the original 
node. This difference is a major  motivat ion of some 
of the generalizations to the A T N  formalism discussed 
below. The other  major  mot ivat ion is that,  in parsing 
a string of symbols,  the " n e x t "  symbol  is defined by 
the system, but in "pars ing"  a network,  " n e x t "  must  
be specified in the grammar.  

3. T h e  Genera l i za t ion  

The following sub-sect ions  show the general ized 
syntax of the A T N  formalism, and assume a knowl- 
edge of the s tandard formalism (Bates 1978 is an ex- 
cellent in t roduct ion) .  Syntact ic  s t ructures  already 
familiar to A T N  users but not  discussed here remain 
unchanged.  Parentheses  and terms in upper  case let- 
ters are terminal  symbols.  Lower  case terms in angle 
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brackets are non-terminals. Terms enclosed in square 
brackets are optional. Terms followed by ". . ."  may 
occur zero or more times in succession. 

3.1 Termina l  Ac t ions  

Successful traversal of an ATN arc might or might 
not consume an input symbol. When parsing, such 
consumption normally occurs; when generating it nor- 
mally does not, but if it does, the next symbol 
(semantic node) must be specified. To allow for these 
choices, we have returned to the technique of Woods 
1970 of having two terminal actions, TO and JUMP, 
and have added an optional second argument to TO. 
The syntax is: 

(TO <state> [<form>]) 

(JUMP <state>) 

Both cause the parser to enter the given state. JUMP 
never consumes the input symbol; TO always does. If 
the < f o r m >  is absent in the TO action, the next sym- 
bol to be scanned will be the next one in the input 
buffer. If < f o r m >  is present, its value will be the 
next symbol to be scanned. All traditional ATN arcs 
except JUMP and POP end with a terminal action. 

The explanation given in Burton 1976 for the re- 
placement of the JUMP terminal action by the JUMP 
arc was that, "since POP, PUSH and VIR arcs never 
advance the input, to decide whether  or not an arc 
advanced the input required knowledge of both the arc 
type and termination action. The introduction of the 
JUMP arc ... means that the input advancement  is a 
function of the arc type alone." That our reintroduc- 
tion of the JUMP terminal action does not bring back 
the confusion is explained in Section 4. 

3.2 Arcs 

We retain a JUMP arc as well as a JUMP terminal 
action. The JUMP arc provides a place to make an 
arbitrary test and perform some actions without con- 
suming an input symbol. For symmetry,  we introduce 
a TO arc: 

(TO (<state> [<form>]) <test> 

<action>... ) 

If < t e s t >  is successful, the < a c t i o n > s  are performed 
and transfer is made to <s t a t e> .  The input symbol is 
consumed. The next symbol to be scanned is the val- 
ue of < f o r m >  if it is present, or the next symbol in 
the input buffer if < f o r m >  is missing. 

Neither the JUMP arc nor the TO arc are really 
required if the TST arc is retained (Bates 1978, how- 
ever, does not mention it), since they are equivalent to 
the TST arc with the JUMP or TO terminal action, 
respectively. However,  they require less typing and 
provide clearer documentation.  They are used in the 
example in Section 6. 

The PUSH arc makes two assumptions: 1) the first 
symbol to be scanned in the subnetwork is the current 
contents of the * register; 2) the current input symbol 
will be consumed by the subnetwork, so the contents 
of * can be replaced by the value returned by the sub- 
network. We need an arc that causes a recursive call 
to a subnetwork, but makes neither of these two as- 
sumptions, so we introduce the C A L L  arc: 

(CALL <state> <form> <test> 

<preaction or action>... 

<register> <action>... 

<terminal action> ) 

where <preac t ion  or ac t ion> is < p r e a c t i o n >  or 
< a c t i o n > .  If the < t e s t >  is successful, all the 
< a c t i o n > s  of <preac t ion  or ac t ion>  are per formed 
and a recursive push is made to the state < s t a t e >  
where the next symbol to be scanned is the value of 
< f o r m >  and registers are initialized by the 
<preac t ion>s .  If the subnetwork succeeds, its value is 
placed into <reg i s t e r>  and the < a c t i o n > s  and 
<terminal  ac t ion> are performed. 

Just as the normal TO terminal action is the gener- 
alized TO terminal action without the optional form, 
the PUSH arc (which we retain) is equivalent to the 
following C A L L  arc: 

(CALL <state> * <test> <preaction>... 

• <action>... <terminal action> ) 

3.3 Forms 

The generalized TO terminal action, the generalized 
TO arc, and the C A L L  arc all include a form whose 
value is to be the next symbol to be scanned. If this 
next symbol is a semantic network node, the primary 
way of identifying it is as the node at the end of a 
directed arc with a given label from a given node. This 
identification mechanism requires a new form: 

(GETA <arc> [<node form>]) 

where <node  fo rm> is a form that evaluates to a se- 
mantic node. If absent, <node  fo rm> defaults to * 
The value of G E T A  is the node at the end of the arc 
labelled < a r c >  from the specified node, or a list of 
such nodes if there are more than one. 

3.4 Tests ,  Preact ions,  and Ac t ions  

The generalization of the ATN formalism to one 
that allows for writing grammars which generate sur- 
face strings from semantic networks, yet can be inter- 
preted by the same interpreter which handles parsing 
grammars,  requires no changes other  than the ones 
described above. Specifically, no new tests, preac- 
tions, or actions are required. Of course each imple- 
mentation of an ATN interpreter contains slight differ- 
ences in the set of tests and actions implemented be- 
yond the basic ones. 
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4. The Input Buffer 

Input to the ATN parser can be thought of as being 
the contents of a stack, called the input buffer. If the 
input is a string of words, the first word will be at the 
top of the input buffer and successive words will be in 
successively deeper positions of the input buffer. If 
the input is a graph, the input buffer might contain 
only a single node of the graph. 

Adequate treatment of the * register is crucial for 
the correct  operat ion of a grammar interpreter that 
does both parsing and generation. This is dealt with in 
the present section. 

On entering an arc, the * register is set to the top 
element of the input buffer, which must not be empty. 
The only exceptions to this are the CAT, VIR, and 
POP arcs. On a CAT arc, * is the root form of the 
top element of the input buffer. (Since the CAT arc is 
treated as a "bundle"  of arcs, one for each sense of 
the word being scanned, and is the only arc so treated, 
it is the only arc on which (GETF <fea tu re>  *) is 
guaranteed to be well-defined.) VIR sets * to an ele- 
ment of the H O L D  register. POP leaves * undefined 
since * is always the element to be accounted for by 
the current arc, and a POP arc is not trying to account 
for any element. The input buffer is not changed be- 
tween the time a PUSH arc is entered and the time an 
arc emanating from the state pushed to is entered, so 
the contents of * on the latter arc will be the same as 
on the former. A C A L L  arc is allowed to specify the 
contents of * on the arcs of the called state. This is 
accomplished by replacing the top element of the input 
buffer by that value before transfer to the called state. 
If the value is a list of elements, we push each element 
individually onto the input buffer. This makes it par- 
ticularly easy to loop through a set of nodes, each of 
which will contribute the same syntactic form to the 
growing sentence (such as a string of adjectives). 

While on an arc (except for POP),  i.e. during eval- 
uation of the test and the acts, the contents of * and 
the top element of the input buffer remain the same. 
This requires special processing for VIR, PUSH, and 
C A L L  arcs. Since a VIR arc gets the value of * from 
HOLD,  rather than from the input buffer, after setting 
• the VIR arc pushes the contents of * onto the input 
buffer. The net effect is to replace the held constitu- 
ent in a new position in the string. When a PUSH arc 
resumes, and the lower level has successfully returned 
a value, the value is placed into * and also pushed 
onto the input buffer. The net effect of this is to re- 
place a sub-string by its analysis. When a C A L L  re- 
sumes, and the lower level has successfully returned a 
value, the value is placed into the specified register, 
and the contents of * is pushed onto the input buffer. 
(Recall that it was replaced before the transfer. See 
the previous paragraph.) The specified register might 

or might not be *. In either case the contents of * and 
the top of the input buffer are the same. 

There are two possible terminal acts, JUMP and 
TO. JUMP does not affect the input buffer, so the 
contents of * will be the same on the successor arcs 
(except for POP and VIR) as at the end of the current 
arc. TO pops the input buffer, but if provided with an 
optional form, also pushes the value of that form onto 
the input buffer. 

POPping from the top level is only legal if the in- 
put buffer is empty. POPping from any level should 
mean that a constituent has been accounted for. Ac-  
counting for a consti tuent  should entail removing it 
from the input buffer. From this we conclude that 
every path within a level from an initial state to a POP 
arc must contain at least one TO transfer, and in most 
cases, it is proper to transfer TO rather than to JUMP 
to a state that has a POP arc emanating from it. TO 
will be the terminal act for most VIR and PUSH arcs. 

In any ATN interpreter having the operat ional  
characteristics given in this section, advancement  of 
the input is a function of the terminal action alone, in 
the sense that, at any state JUMPed to, the top of the 
input buffer will be the last value of *, and, at any 
state jumped TO, it will not be. 

5. The Lexicon 

Parsing and generating require a lexicon - a file of 
words giving their syntactic categories and lexical fea- 
tures, as well as the inflectional forms of irregularly 
inflected words. Parsing and generating require differ- 
ent information, yet we wish to avoid duplication as 
much as possible. This section discusses how a lexicon 
might be organized when it is to be used both for 
parsing and for generation. Figure 1 shows the lexi- 
con used for the example in Section 6. 

During parsing, morphological  analysis is per- 
formed. The analyzer is given an inflected form and 
must segment it, find the root  in the lexicon, and mod- 
ify the lexical entry of the root according to its analy- 
sis of the original form. Irregularly inflected forms, 
such as "seen"  in Figure 1, must have their own en- 
tries in the lexicon. An entry in the lexicon may be 
lexically ambiguous, such as " s a w "  in Figure 1, so 
each entry must be associated with a list of one or 
more lexical feature lists. Each such list, whether  
stored in the lexicon or constructed by the morpholog- 
ical analyzer, must include a syntactic category and a 
root, as well as other features needed by the grammar. 
The lexical routines we use supply certain default fea- 
tures if they are not supplied explicitly. These are as 
follows: the root  is the lexeme itself; nouns have 
( N U M .  SING);  verbs have (TENSE . PRES).  In 
Figure 1, BE and D O G  get default features, while the 
entries for SAW override several of them. 

American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982 15 



Stuar t  C. Shapiro Generalized Augmented Transition Network Grammars 

(A 

(BE 

(DOG 

(IS 
LUCY 
SAW 

SAWI 

SEE 

SEEN 

SWEET 

(WAS 
(YOUNG 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

CTGY 

DET 

v)) 
N)) 
v) 
NPR 

N) 
V) 
N) 
V) 
V) 
imJ 

v) 
ADJ 

)) 

ROOT . BE) 

)) 

ROOT . SAWI)) 

ROOT . SEE) (TENSE . PAST) 

ROOT . SAW))) 

PAST . SAW) (PASTP . SEEN) 

ROOT . SEE) (TENSE . PASTP 

)) 

ROOT . BE) 

)) 

(NUM. SING) (TENSE . PRES))) 

) 

) 

(PPRT . T))) 

(NUM. SING) (TENSE . PAST))) 

Figure 1. Example Lexicon. 

In the semantic network,  some nodes are associated 
with lexical entries.  In Figure 3, nodes  SWEET,  
Y O U N G ,  LUCY,  BE, SEE, and SAWl  are. During 
generat ion,  these entries, along with other  informat ion 
f rom the semantic  network,  are used by a morphologi-  
cal synthesizer  to construct  an inflected word. We 
assume that  all such entries are unambiguous  roots ,  
and so contain only a single lexical feature  list. This 
fea ture  list must  contain  any irregularly inf lected 
forms. For  example,  the feature list for  " s e e "  in Fig- 
ure 1 lists " s a w "  as its past  tense and " s e e n "  as its 
past  participle. SAW1 represents  the unambiguous  
sense of " s a w "  as a noun. It  is used in that  way in 
Figure 3. In Figure 1, SAW1 is given as the R O O T  of 
the noun sense of SAW, but for purposes of morpho-  
logical synthesis,  the R O O T  of SAW1 is given as 
SAW. 

In summary,  a single lexicon may be used for both  
parsing and generating under the following conditions. 
The entry  of an unambiguous  root  can be used for  
both  parsing and generat ing if its one lexical feature 
list contains features required for both  operat ions.  An 
ambiguous lexical entry (such as SAW) will only be 
used during parsing. Each of its lexical feature lists 
must contain a unique but arbi trary " r o o t "  (SEE and 
SAW1) for connect ion to the semantic  ne twork and 
for holding the lexical information required for genera-  
tion. Eve ry  lexical fea ture  list used for  generat ing 
must contain the proper  natural  language spelling of its 
root  (SAW for SAW1) as well as any irregularly in- 
flected forms. Lexical entries for irregularly inflected 
forms will only be used during parsing. In the lexicon 
of Figure 1, the entries for  A, D O G ,  LUCY,  SEE, 
SWEET,  and Y O U N G  are used during both  parsing 
and generation. Those for BE, IS, SAW, SEEN, and 
WAS are only used during parsing. The ent ry  for  
SAW1 is only used during generation.  Our morpho-  
logical synthesizer  recognizes " b e "  as a special case, 

and computes  its inflected forms without  referr ing to 
the lexicon. 

For  the purposes  of this paper,  it should be irrele- 
vant  whether  the " r o o t "  connec ted  to the semant ic  
ne twork is an actual surface word like "g ive" ,  a deep-  
er sememe such as that  under lying bo th  " g i v e "  and 
" t a k e " ,  or a primitive such as " A T R A N S " .  

6. Example 

In this section, we discuss an example of natural  
language interact ion (in a small f ragment  of  English) 
using an A T N  pars ing-generat ing g rammar  and SNePS, 
the Semant ic  Ne twork  Process ing System [Shapiro 
1979]. The purpose of the example is to demons t ra te  
the use of the general ized A T N  formal ism for  writing 
a pars ing-generat ing g rammar  for  which the " p a r s e "  of 
an input sentence  is a genera ted  sentence  response ,  
using a knowledge representa t ion  and reasoning sys- 
tem as the sentence is processed. Both the f ragment  
of  English and the semant ic  ne twork  represen ta t ion  
technique have been  kept  simple to avoid obscur ing 
the use of the general ized A T N  formalism. 

Figure 2 shows an example interact ion using SNeP- 
SUL, the SNePS User  Language.  The numbers  in the 
left  margin  are for  re ference  in this section. The 
string " * * "  is the SNePSUL prompt .  The rest of each 
line so marked  is the user 's  input. The following line 
is the result re turned by SNePSUL.  The last line of 
each interact ion is the CPU time in milliseconds taken 
by the interaction. (The system is running as compiled 
LISP on a CDC C Y B E R  170/730 .  The A T N  gram- 
mar  is interpreted.)  Figure 3 shows the semantic  net-  
work built as a result of the sentences in Figure 2. 

The first in terac t ion  crea tes  a new semant ic  net-  
work node, shown as B1 in Figure 3, to represent  the 
instant  of t ime " n o w " .  The symbol  " # "  represents  a 
SNePSUL funct ion to create this node and make it the 
value of the variable NOW. From then on, the ex- 
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(1) 

(2) 

(3) 

(4) 

** #NOW 

(BI) 

4 MSECS 

** (: YOUNG LUCY SAW A SAW) 

(I UNDERSTAND THAT YOUNG LUCY SAW A SAW) 

2481MSECS 

** (: WHO SAW A SAW) 

(YOUNG LUCY SAW A SAW) 

875 MSECS 

** (: LUCY IS SWEET) 

(I UNDERSTAND THAT YOUNG LUCY IS SWEET) 

397 MSECS 

** (: WHAT WAS SEEN BY LUCY) 

(A SAW WAS SEEN BY SWEET YOUNG LUCY) 

862 MSECS 

Figure 2. Example interaction. 

BEFORE 

ETM 
I 

BEFORE 

NOW 
I 
14 

x 

Figure 3. The semantic network built by the example interaction. 

press ion  * N O W  evaluates  to B1. W e  wil l  see  * N O W  

used on some  arcs of  the grammar. 
The  rest o f  the user inputs  are calls to the  S NeP-  

SU L  funct ion  ":". This  func t ion  passes  its argument  

list to the parser as the input buffer.  The  parser starts 

in state S. The  form popped  b y  the  t o p  leve l  A T N  
grammar is returned as the  va lue  of  the  cal l  to  :, and is 

t hen  printed as m e n t i o n e d  above .  Thus ,  the  l ine fo l -  
lowing  the  cal l  to  : m a y  be  v i e w e d  as the  " p a r s e "  of  

the  sen tence  passed to :. 
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We will trace the first example sentence through 
the ATN grammar, referring to the other example 
sentences at various points. The parse starts in state S 
(Figure 4) with the input buffer  being ( Y O U N G  
L U C Y  SAW A SAW). The one arc out of state S 
pushes to state SP, which is the beginning of a net- 
work that parses a sentence. The first arc out of state 
SP recognizes that inputs (2) and (4) are questions. 
In these cases the register TYPE is set to Q both on 
this level (by the SETR action) and on the top level 
(by the L IFTR action). The register SUBJ is also set 
to %X,  which is a free variable in SNePSUL. In the 
cases of sentences (1) and (3), however, the second 
arc from SP is taken. This is a PUSH to the network 
beginning at state NPP, which will parse a noun 
phrase. Register TYPE is initialized to D (for 
"declarat ive")  at the lower level by SENDR. When 
the noun phrase is parsed, the TYPE register is set to 
D at this and the top level, and the SUBJ register is 
set to the parse of the noun phrase. 

At state NPP (Figure 5) the JUMP arc is followed 
since the * register is Y O U N G  rather than A. At state 
NPDET,  the CAT ADJ arc is followed and a semantic 
node representing the concept  of Y O U N G  is put in 
the H O L D  register for later use. The SNePSUL form 
( F I N D O R B U I L D  LEX ( ^ ( G E T R  *))) finds in the 
network a node with a LEX arc to Y O U N G  (the con- 
tents of the * register) or builds such a node if one 
does  not exist, and returns that node as the value of 
the form. In this case, node M1 of Figure 3 is built 
and placed in HOLD.  The parser then loops TO 
N P D E T  with the input buffer being (LUCY SAW A 
SAW). This time, the * register contains LUCY,  so 
the fourth arc is followed. This time the SNePSUL 
form builds nodes M2, M3, and M4 of Figure 3, and 
places M4 in the register NH. Node M4 represents 
someone named LUCY. Node M3 represents the prop- 
osition that this person is named LUCY. Node M2 
represents the name LUCY. (When this arc is taken 
while parsing LUCY in sentences (3) and (4), these 
semantic nodes will be found.) The parser then trans- 
fers TO state NPA at which the modifying properties 
are removed from the H O L D  register and asserted to 

hold of the concept  stored in NH. In this case, there 
is only one property,  and node M5 is built. Node M4, 
representing someone who is named L U C Y  and is 
Y O U N G  is popped to the PUSH arc emanating from 
state SP, and is placed in the SUBJ register as men- 
tioned earlier. The parser then transfers TO state V 
with an input buffer of (SAW A SAW). 

The CAT arc from state V (Figure 6) wants a word 
of category V. The first word in the input buffer is 
SAW, which is two-ways  lexically ambiguous (see 
Figure 1), so we can think of the CAT arc as being 
two arcs, on one of which * contains the singular of 
the Noun SAW1, and on the other of which * contains 
the past tense of the Verb SEE. The second of these 
arcs can be followed, setting the register VB to node 
M6, and the register TNS to PAST. The parser than 
goes TO state C O M P L  with input buffer (A SAW). 
At COMPL,  neither CAT arc can be followed, so the 
parser JUMPs to state SV. The first CAT arc is fol- 
lowed in sentence 4, while the second CAT arc is fol- 
lowed in sentence 3. 

At state SV (Figure 7), a semantic network tempo- 
ral structure is built for events. Each event is given a 
starting time and an ending time. Present  tense is 
interpreted to mean that the present time, the value of 
• NOW, is after the starting time and before the ending 
time. Past tense is interpreted to mean that the ending 
time is before *NOW. In this case, the tense is past, 
so the third arc is taken and builds nodes M7 and M8. 
M7 is made the SNePSUL value of *ETM, and M8 is 
placed in the ATN register STM. For  simplicity in this 
example, the first arc ignores the tense of questions. 
Control  then passes to state O. 

The first arc of state O (Figure 8) recognizes the 
beginning of a " b y "  prepositional phrase in a passive 
sentence. This arc will be followed in the case of 
sentence 4 to the state PAG where the object of BY 
will replace the previous contents of the SUBJ register. 
In the case of sentence (1), the second arc will be 
taken, which is a PUSH to state NPP with input buff- 
er, (A SAW). 

(S ; Parse a sentence and generate a response. 

(PUSH SP T (JUMP RESPOND))) 

(SP ; Parse a sentence. 

(WRD (WHO WHAT) 

; If it starts with "Who" or "What", it's a question. 

T (SETR TYPE 'Q) (LIFTR TYPE) (SETR SUBJ ZX) (TO V)) 

(PUSH NPP ; A statement starts with a Noun Phrase -- its subject. 

T (SENDR TYPE 'm)(SETR TYPE 'D) (LIFTR TYPE) (SETR SUBJ *) 

(TO V))) 

Figure 4. A T N  G r a m m a r .  
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At state NPP (Figure 5), the first arc is taken, set- 
ting register INDEF to T, and transferring TO state 
N P D E T  with input buffer (SAW). The second arc is 
taken from NPDET interpreting SAW as a noun, the 
singular form of SAW1. A semantic node is found or 
built (in this case M9 is built) to represent the class of 

S A W l s ,  M l l  is built to represent a new SAW1, and 
M10 is built to assert that M l l  is a SAW1. In the case 
of a question, such as sentence (2),  the third arc finds 
all known S A W l s  using the SNePSUL function DE-  
D U C E ,  so that whatever can be inferred to be a 
SAW1 is found. In either case the S A W I ( s )  are 

(NPP ; Parse a noun phrase. 

(WRD A T (SETR INDEF T) 

(JUMP NPDET T)) 

(TO NPDET 

(NPDET ; Parse a NP after the determiner. 

(CAT ADJ T ; Hold adjectives for later. 

(HOLD 'ADJ (FINDORBUILD LEX (A(GETR *)))) (TO NPDET)) 

(CAT N (AND (GETR INDEF) (EQ (GETR TYPE) 'D)) 

; "a N" means some member of the class Noun, 

(SETR NH ; but not necessarily any one already known. 

(BUILD MEMBER- 

(BUILD CLASS (FINDORBUILD LEX (A(GETR *)))))) 

(TO mPi)) 

(CAT m (AND (GETR INDEE) (EQ (GETR TYPE) 'Q)) 

; "a N" in a question refers to an already known Noun. 

(SETR NH 

(FIND MEMBER- 

(DEDUCE MEMBER ZY CLASS (TBUILD LEX (A(GETR *)))))) 

(TO NPA)) 

(CAT NPR T ; A proper noun is someone's name. 

(SETR NH (FINDORBUILD NAMED- 

(FINDORBUILD NAME (FINDORBUILD LEX (A(GETR *)))))) 

(TO NPA)) 

(NPA ; Remove all held adjectives and build WHICH-ADJ propositions. 

(VIR ADJ T 

(FINDORBUILD WHICH (A (GETR NH)) ADJ (A (GETR *))) 

(TO mmi)) 

(POP NH T)) 

Figure 5. ATN Grammar (continued). 

(V (CAT V T ; The next word must be a verb. 

(SETR VB (FINDORBUILD LEX (A(GETR *)))) 

(TO COMPL))) 

(SETR TNS (GETF TENSE)) 

(COMPL ; Consider the word after the verb. 

(CAT V (AND (GETF PPRT) (OVERLAP (GETR VB) (GETA LEX- 'BE))) 

; It must be a passive sentence. 

(SETR OBJ (GETR SUBJ)) (SETR SUBJ NIL) (SETR VC 'PASS) 

(SETR VB (FINDORBUILD LEX (A(GETR *)))) (TO SV)) 

(CAT ADJ (OVERLAP (GETR VB) (GETA LEX- 'BE)) 

; a predicate adjective. 

(SETR ADJ (FINDORBUILD LEX (A (GETR *)))) (TO SVC)) 

(JUMP SV T)) 

Figure 6. ATN Grammar (continued). 
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placed in register NH,  and the parser transfers TO 
state N P A  with an empty input buffer, and the value 
of  N H  is popped back to the P U S H  arc from state O 
or PAG where it becomes  the value of  the * register 
and the first (and only)  item on the input buffer. Af-  
ter setting the SUBJ or OBJ register, these P U S H  arcs 
LIFTR the proper voice  to the VC register on  the top 
A T N  level and transfer TO state SVO (Figure 9). 

When dealing with sentence  (1),  the first POP arc 
at state SVO builds node  M12  and pops it to the top 
level. The second POP arc finds M12  for both sen- 
tences  (2) and (4).  In the case of  sentence  (3),  the 
CAT ADJ arc is fo l lowed from state C O M P L  to state 
SVC,  on  the first arc of  which node  M15 is built. The 
second arc from SVC is not used in these examples.  

The pop from state SVO or SVC returns to the 
P U S H  arc from state S which JUMPs to the state RE-  
S P O N D  with the input buffer conta in ing  either the 
node built to represent an input s tatement  or the node  
that represents the answer to an input question.  In 
our example,  this is node  M 1 2  for inputs (1) ,  (2) ,  and 
(4) ,  and node  M15 for input (3) .  R e m e m b e r  that 
nodes  M 1 4  and M15 do not  exist until sentence  (3) is 
analyzed.  

The state R E S P O N D  (Figure 10) is the initial state 
of  the generat ion network.  In this network the regis- 
ter S T R I N G  is used to col lect  the surface sentence  
being built. The only difference b e t w e e n  the two  arcs 
in state R E S P O N D  is that the first, responding to 
input statements ,  starts the output sentence  with the 

(SV ; Start building the temporal structure. 

JUMP O (EQ (GETR TYPE) 'Q)) ; Ignore the tense of a question. 

JUMP O (EQ (GETR TNS) 'PRES) 

; Present means starting before and ending after now. 

(SETR STM (BUILD BEFORE *NOW BEFORE (BUILD AFTER *NOW) : ETM))) 

JUMP O (EQ (GETR TNS) 'PAST) 

; Past means starting and ending before now. 

(SETR STM (BUILD BEFORE (BUILD BEFORE *NOW) = ETM)))) 

Figure 7. ATN Grammar (continued). 

(O ; Parse what follows the verb group. 

(WRD BY (EQ (GETR VC) 'PASS) ; Passive sentences have 

(TO PAG)) 

(PUSH NPP T ; A<tive sentences have an object NP. 

(SENDR TYPE) (SETR OBJ *) (LIFTR VC) (TO SVO))) 

"by NP". 

(PAG (PUSH NPP T ; Parse the subject NP of a passive sentence. 

(SENDR TYPE) (SETR SUBJ *) (LIFTR VC) (TO SVO))) 

Figure 8. ATN Grammar (continued). 

(SVO ; Return a semantic node. 

(POP (BUILD AGENT (^(GETR SUBJ)) VERB (A(GETR VB)) 

OBJECT (^(GETR OBJ)) STIME (A(GETR STM)) ETIME *ETM) 

(EQ (GETR TYPE) 'D)) ; An Agent-Verb-Object statement. 

(POP (DEDUCE AGENT (A(GETR SUBJ)) VERB (^(GETR VB)) 

OBJECT (^(GETR OBJ))) 

(EQ (GETR TYPE) 'Q))) ; An Agent-Verb-Object question. 

(SVC (POP (EVAL (BUILDQ (FINDORBUILD WHICH + ADJ +) SUBJ ADJ)) 

(EQ (GETR TYPE) 'D)) ; A Noun-be-Adj statement. 

(POP (DEDUCE WHICH (A(GETR SUBJ)) ADJ (A(GETR ADJ))) 

(EQ (GETR TYPE) 'Q))) ; A Noun-be-Adj question. 

Figure 9. ATN Grammar (continued). 
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(RESPOND 

; Generate the response represented by the semantic node in * .  

(JUMP G (EQ (GETR TYPE) 'D) 

; The input was a statement represented by *. 

(SETR STRING ' (I UNDERSTAND THAT))) 

(JUMP G (EQ (GETR TYPE) 'Q))) 

; The input was a question answered by *. 

Figure 10. ATN Grammar (continued). 

phrase I U N D E R S T A N D  THAT.  Then both arcs 
JUMP to state G. We follow the generation process 
assuming that the input buffer is now (M12). 

In state G (Figure 11), the node representing the 
statement to be generated is analyzed to decide what 
kind of sentence will be produced. The first arc, for a 
passive version of M12, sets the SUBJ register to M11 
(the saw), the OBJ register to M4 (Lucy),  and the 
PREP register to the word BY. (Note the use of 
GETA,  defined in Section 3.3.) The second arc, for 
an active version of M12, sets SUBJ to M4, OBJ to 
M l l ,  and leaves PREP empty. It also makes sure VC 
is set to ACT, since active voice is the default if VC is 
empty. The third arc is for generating sentences for 
nodes such as M15. In that case it sets SUBJ to M4, 
OBJ to M14 (the property SWEET),  VC to ACT,  and 
leaves PREP empty. All three arcs then JUMP to 
state GS. 

The C A L L  arc at state GS (Figure 12) sets the 
NUMBR register to SING or PL to determine whether 
the subject and verb of the sentence will be singular or 
plural, respectively. It does this by CALLing  the net- 
work beginning at state NUMBR, sending it the con- 
tents of the SUBJ register, and placing the form re- 
turned by the lower network into the NUMBR regis- 
ter. Let us assume we are generating an active version 
of M12. In that case when state NUMBR (Figure 12) 
is reached, the input buffer will be (M4), and when 

the parser returns to the C A L L  arc the input buffer 
will again be (M12). 

At state NUMBR, the semantic network attached 
to the node in the * register is examined to determine 
if it represents a (singular) individual or a (plural) 
class of individuals. The first arc decides on PL if the 
node has a SUB-, SUP-, or CLASS-  are emanating 
from it. These arcs are the converses of SUB, SUP, 
and CLASS arcs, respectively. The first would occur 
if the node represented the subset of some class. The 
second would occur if the node represented the super- 
set of some class. The third would occur if the node 
represented a class with at least one member. In our 
example, the only semantic node that would be recog- 
nized by this arc as representing a class would be M9. 
The second arc from state NUMBR decides on SING 
if none of the three mentioned arcs emanate from the 
node in *, and in our case this is the successful arc. 
The decision is made by placing SING or PL in the 
NUMBR register, and transferring TO state NUMBR1.  
There the input buffer is empty and the contents of 
NUMBR is popped to the C A L L  arc in the state GS 
as discussed above. The last thing the C A L L  arc in 
state GS does is set the D O N E  register to the node in 
• This register is used to remember the node being 
expressed in the main clause of the sentence so that it 
is not also used to form a subordinate clause or de- 
scription. For example, we would not want to gener- 
ate "Lucy,  who saw a saw, saw a saw." This is used 

(G ; Generate a sentence to express the semantic node in * .  

(JUMP GS (AND (GETA OBJECT) (OVERLAP (GETR VC) 'PASS)) 

; A passive sentence is "OBJECT VERB by AGENT". 

(SETR SUBJ (GETA OBJECT)) (SETR OBJ (GETA AGENT)) 

(SETR PREP 'BY)) 

(JUMP GS (AND (GETA AGENT) (DISJOINT (GETR VC) 'PASS)) 

; An active sentence is "AGENT VERB OBJECT". 

(SETR SUBJ (GETA AGENT)) (SETR OBJ (GETA OBJECT)) 

(SETR VC 'ACT)) 

(JUMP GS (GETA WHICH) (SETR SUBJ (GETA WHICH)) 

; A WHICH-ADJ sentence is "WHICH be ADJ". 

(SETR OBJ (GETA ADJ)) (SETR VC 'ACT))) 

Figure 1 h ATN Grammar (continued). 
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effectively in the response to statement 3 to prevent 
the response from being "I U N D E R S T A N D  T H A T  
SWEET Y O U N G  L U C Y  IS SWEET". We will see 
where D O N E  is used in the A T N  network shortly. 
The parser then JUMPs to state GS1, where NP is 
CALLed with input buffer (M4),  D O N E  set to M12,  
and N U M B R  set to SING. 

State NP (Figure 13) is the beginning of a network 
that generates a noun phrase to describe the concept 
represented by the semantic node in the * register (in 
this case, M4).  The first arc just uses the node at the 
end of the LEX arc if one exists, as it does for nodes 
M1, M2, etc. WRDIZE is a LISP function that does 

morphological synthesis for nouns. Its first argument 
must be SING or PL, and its second argument must be 
a non-ambiguous lexeme in the lexicon. Nouns  whose 
singular or plural forms are irregular must have them 
explicitly noted in the lexical feature list. The regular 
rule is to use the ROOT form as the singular, and to 
pluralize according to rules built into WRDIZE that 
operate on the ROOT form. For example, the singu- 
lar of SAW1 is its ROOT,  SAW, and its plural is 
SAWS. 

The second arc in the state NP uses a proper name 
to describe *, if it has one, and if the proposition that 
this name is *'s name is not the point of  the main 

(GS ; Set the NUMBR register to the number of the subject, 

; and the DONE register to the proposition of the main clause. 

(CALL NUMBR SUBJ T NUMBR (SETR DONE *) (JUMP GSl))) 

(GSI (CALL NP SUBJ T ; Generate a NP to express the subject. 

(SENDR DONE) (SENDR NUMBR) REG 

(ADDR STRING REG) (JUMP SVB))) 

(NUMBR 

; The proper number is PL for a class, SING for an individual. 

(TO (NUMBRI) (OR (GETA SUB-) (GETA SUP-) (GETA CLASS-)) 

(SETR NUMBR 'PL)) 

(TO (NUMBRI) (NOT (OR (GETA SUB-) (GETA SUP-) (GETA CLASS-))) 

(SETR NUMBR 'SING))) 

(NUMBRI (POP NUMBR T)) ; Return the number. 

Figure 12. ATN Grammar (Continued). 

(NP ; Generate a NP to express *. 

(TO (END) (GETA LEX) 

; Just use the word at the end of the LEX arc if present. 

(SETR STRING (WRDIZE (GETR NUMBR) (GETA LEX)))) 

(CALL ADJS (GETA WHICH-) ; If it has a name, 

(AND (GETA NAMED-) (DISJOINT (GETA NAMED-) DONE)) 

(SENDR DONE) REG 

(ADDR STRING REG) ; add an adjective string, 

(TO NPGA (GETA NAME (GETA NAMED-)))) ; and consider its name. 

(CALL ADJS (GETA WHICH-) ; If it has a class, 

(AND (GETA MEMBER-) (DISJOINT (GETA MEMBER-) DONE)) 

(SENDR DONE) REG ; add 'A and an adjective string, 

(ADDR STRING 'A REG) ; and consider its class. 

(TO NPGA (GETA CLASS (GETA MEMBER-))))) 

(NPGA ; Generate a noun phrase for the name or class. 

(PUSH NP T (SENDR DONE) (ADDR STRING *) (TO END))) 

(END (POP STRING T)) ; Return the string that has been built. 

Figure 13. ATN Grammar (continued). 
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clause. The third arc uses the phrase "a  < c l a s s > "  if * 
is known to be a member  of some class, and if that  
fact is not the main clause of the sentence.  Both arcs 
first call ADJS to form an adjective string to be in- 
cluded in the noun phrase. 

The ne twork  star t ing at ADJS (Figure 14) is 
C A L L e d  to generate a string of adjectives. For  this 
purpose,  it is "pas sed"  the set of proper ty  assert ion 
nodes, and its D O N E  register is set. Let  us consider 
the four cases in which a noun phrase is being generat-  
ed to describe M4. In sentences (1) and (2), the input 
buf fer  at state ADJS is (M5) and D O N E  contains 
(M12). In sentence (3), the input buffer  is (M15 M5) 
and D O N E  is (M15).  In sentence (4), the input buff-  
er is (M15 M5) and D O N E  contains  (M12) .  The 
C A L L  arc in state ADJS calls the NP network to gen- 
erate a description of the proper ty  at the end of the 
ADJ arc f rom the node in * (the first node in the in- 
put buffer )  as long as the node in * is not also in 
D O N E .  It  adds this descript ion to the register 
S T R I N G  and loops back  T O  ADJS,  consuming the 
node in * f rom the input buffer.  We have already 
seen how the NP network will generate  SWEET for 
M14 and Y O U N G  for M1. The second arc in state 
ADJS consumes  the first node in the input buf fer  
without generating a description for its property.  The 
third arc POPs back to the CALLing  arc, returning the 
constructed adjective string in STRING.  If  we view 
the ATN as a non-determinist ic  machine,  the result of 
the ADJS network is a string of zero or more of the 
adject ives that  describe the individual of the noun 
phrase, but not the adjective, if any, in the predicate 
of the higher clause. Viewed deterministically, since 
most  A T N  interpreters  try arcs in strict order,  the 
network will generate a string of all appropr ia te  adjec- 
tives. 

Returning to our main example of sentence (1), the 
string Y O U N G  is POPped  into the R E G  register on 
the first C A L L  arc in state NP, where it is added to 
the end of the register S T R I N G  (previously empty) .  
The parser  then jumps TO state NPGA,  and, because 
of the form in the terminal action, the input buffer  is 
changed f rom (M4) to (M2). At state NPGA,  the 
parser  PUSHes  to state NP where, as we have seen, 
L U C Y  will be generated and POPped  back into the * 
register. This is added to STRING,  forming ( Y O U N G  
LUCY) ,  and the parser goes TO state END,  emptying 

the input buffer.  At  END,  the contents  of STRING,  
( Y O U N G  L U C Y )  is POPped  to the register R E G  in 
the C A L L  arc of state GS1 (Figure 12), and added to 
the top level of STRING,  which is now (I U N D E R -  
STAND T H A T  Y O U N G  L U C Y ) .  The parser  then 
JUMPs  to state SVB with the input buffer  restored to 
(M12).  

At state SVB (Figure 15), the ne twork  beginning at 
state PRED is CALLed.  At  that  level the input buffer  
is (M12),  * contains M12,  N U M B R  contains SING, 
VC contains A C T  (PASS in the case of sentence 4), 
and VB contains SEE. Notice that  if the main propo-  
sition node has no VERB arc, BE is placed in VB. 
This is the situation in the case of sentence (3), re- 
flecting the theory that  in copulative sentences BE is 
only a dummy verb used to carry tense, mood,  and 
aspect. 

The arcs at state PRED (Figure 15) determine and 
place in the T E N S E  register the tense of the sentence 
being generated.  For  simplicity in this example,  we 
only consider simple present,  past,  and future. This is 
one of the most  interesting sections of this generat ion 
grammar ,  because  it is a g rammar  that  analyzes 
(parses) a piece of the semantic  network.  The first 
C A L L  arc of  state PRED calls a ne twork that  recog- 
nizes the temporal  structure indicating past  tense. The 
second C A L L  arc calls a ne twork  that  recognizes the 
temporal  structure indicating future tense. The third, 
TO,  arc chooses  present  tense as the default .  The 
C A L L  arcs pass to the lower network the appropr ia te  
semantic  temporal  nodes. Since past  tense is indicated 
by the action ending before  *NOW, the first arc pas- 
ses the node at the end of the E T I M E  arc f rom the 
proposi t ion node. Since future tense is indicated by 
the action starting af ter  *NOW, the second arc passes 
the node at the end of the STIME arc. In our case, 
the tense will be past, so we turn to the PAST sub- 
network (Figure 16). 

The first are in state PAST transfers TO state PAS- 
TEND,  which simply POPs the a tom PAST if the con- 
tents of * O V E R L A P s  the value of *NOW, that  is, if 
the * register contains the semantic  node represent ing 
now. If it doesn ' t ,  the second arc in PRED replaces 
the first node in the input buffer  by the node(s)  repre-  
senting times known to be after  it, and loops back to 
PRED.  This sub-ne twork  can only succeed, returning 

(ADJS 

; Generate a string of adjectives, one for each WHICH-ADJ node in *. 

(CALL NP (GETA ADJ) (DISJOINT * DONE) (SENDR DONE) * 

(ADDR STRING *) (TO ADJS)) 

(TO (ADJS) T) 

(POP STRING T)) 

Figure 14. ATN Grammar (continued). 
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(SVB (CALL PRED * T 

; Generate a verb group. Use "be" if no other verb. 

(SENDR NUMBR) (SENDR VC) 

(SENDR VB (OR (GETA LEX (GETA VERB)) 'BE)) 

REG (ADDR STRING REG) (JUMP SUROBJ))) 

(SUROBJ (CALL NP OBJ OBJ 

; Generate a NP to express the OBJ if there is one. 

(SENDR DONE) * (ADDR STRING PREP *) (TO END)) 

(TO (END) T)) 

(PRED ; Figure out the proper tense. 

(CALL PAST (GETA ETIME) T TENSE (TO GENVB)) 

; Past tense depends on ending time. 

(CALL FUTR (GETA STIME) T TENSE (TO GENVB)) 

; Future tense depends on starting time. 

(TO (GENVB) T (SETR TENSE 'PRES))) ; Present tense is the default. 

(GENVB ; Return the verb group. 

(POP (VERBIZE (GETR NUMBR) (GETR TENSE) (GETR VC) (GETR VB)) T)) 

Figure 15. ATN Grammar (continued). 

(PAST ; If we can get to *NOW by BEFORE arcs, 

(TO (PASTEND) (OVERLAP * *NOW)) 

(TO (PAST (GETA BEFORE)) T)) 

(PASTEND (POP 'PAST T)) 

it is past tense. 

(FUTR ; If we can get to *NOW by AFTER arcs, 

(TO (FUTREND) (OVERLAP * *NOW)) 

(TO (FUTR (GETA AFTER)) T)) 

(FUTREND (POP 'FUTR T)) 

it is future tense. 

Figure 16. ATN Grammar (continued). 

PAST, if there is a path of B E F O R E  arcs from the 
node representing the ending time of the action to 
*NOW. If there isn't, the sub-network will eventually 
block, causing the C A L L  PAST arc in state PRED to 
fail. The F U T R  sub-network works in a similar fash- 
ion. Similar sub-networks can easily be written to 
recognize the temporal  structure of future perfect  
( "Lucy  will have seen a saw."),  which is a path of 
B E F O R E  arcs followed by a path of A F T E R  arcs 
from the ending time to now, and the temporal struc- 
tures of other tenses. 

In our example, the C A L L  PAST arc succeeds, 
TENSE is set to PAST, and the parser transfers TO 
state GENVB (Figure 15), where the appropriate verb 
group is generated and POPped to the C A L L  arc in 
state SVB. The verb group is constructed by VER-  
BIZE, which is a LISP function that does morphologi- 

cal synthesis on verbs. Its arguments are the number, 
tense, voice, and verb to be used. 

Back on the C A L L  arc in state SVB (Figure 15), 
the verb group POPped into the register REG is added 
to the STRING,  which is now (I U N D E R S T A N D  
T H A T  Y O U N G  L U C Y  SAW), and the parser JUMPs 
to state SUROBJ. There, the NP sub-network (Figure 
13) is C A L L e d  to generate a noun phrase for the con- 
tents of OBJ ( M l l ) .  Since M l l  has neither a L E X  
arc nor a name, but does have a class, the third arc is 
used, and (A SAW) is generated and POPped.  This 
noun phrase is added to STRING preceded by the 
contents of PRED,  which is empty in sentences (1), 
(2), and (3), but which contains BY in sentence (4). 
The C A L L  arc then transfers TO state END, emptying 
the input buffer at the top level. The POP arc at state 
END POPs the contents of STRING, which is finally 
printed by the system, and the interaction is complete. 
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7. Conc lus ions  

A generalization of the ATN formalism has been 
presented which allows grammars to be writ ten for 
generating surface sentences from semantic networks. 
The generalization has involved: adding an optional 
argument to the TO terminal act; reintroducing the 
JUMP terminal act; introducing a TO arc similar to 
the JUMP arc; introducing a CALL arc that is a gen- 
eralization of the PUSH arc; introducing a G E T A  
form; clarifying the management  of the input buffer.  
The benefits of these few changes are that parsing and 
generating grammars may be written in the same fa- 
miliar notation, may be interpreted (or compiled) by a 
single program, and may use each other  in the same 
parser-generator  network grammar. 
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