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Abstract. This paper provides an introduction to SNePS 3, the latest
entry in the SNePS family of knowledge representation and reasoning
(KRR) systems. The emphasis is on SNePS 3 as an example of a logic-
based network KRR system.

1 Introduction

SNePS 3 is the latest entry in the SNePS family [1] of knowledge representation
and reasoning (KRR) systems.1 It is based on SNePS 2.5 [2] and ANALOG
[3,4], and is currently being implemented in CLOS, the Common Lisp Object
System [5]. This paper provides an introduction to SNePS 3 as an example of
a logic-based network KRR system. In the rest of this paper, I will use the
term “SNePS” when discussing features that are generally true of formalisms
in the SNePS family, and “SNePS 3” when discussing features that distinguish
SNePS 3 from other family members.

Due to space considerations, I will only be able to provide an informal and
incomplete introduction to SNePS 3. Section 6 will be a more formal, but still
incomplete, introduction to the syntax of the SNePS 3 language.

Informally, information is represented in SNePS as a network of nodes and la-
beled directed arcs. An arc label may be used on arbitrarily many different arcs,
but each node has a unique identifier. For example, Fig. 1, based on a project in
which Cassie, a SNePS-based agent [6], is embodied as a Foveal Extra-Vehicular
Activity Helper-Retriever (FEVAHR) robot [7], represents the following infor-
mation:2

Cassie is talking to and looking at Stu. Cassie is a FEVAHR. FEVAHRs
are robots. Stu and Bill are people. People and robots are agents.

How the network of Fig. 1 represents this information, i.e., the syntax and
semantics of SNePS networks, will be explained below.
1 “SNePS” originally stood for “Semantic Network Processing System.” Now, I would
prefer it be thought of as a name in its own right.

2 Fig. 1 shows only a small part of the FEVAHR knowledge base, chosen to illustrate
the issues discussed in this paper.
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Fig. 1. A SNePS network representing the information that: Cassie is talking to Stu
(M12!); Cassie is looking at Stu (M16!); Cassie is a FEVAHR (M7!); FEVAHRs are
robots (M31!); Stu and Bill are people (M20!); people and robots are agents (M33!).
Tables 1–4 give the intended semantics of each node.

2 KRR Systems as Logics

Every KRR system is a logic, in the sense that it has, or should have, a well-
defined syntax, compositional semantics, and inference procedure. SNePS has
been designed specifically as a logic to support natural language (NL) compe-
tent agents [3,4,6,8,9]. SNePS constitutes the “language of thought” of a SNePS-
based agent. The domain of discourse of that language, the set of entities that
are denoted by well-formed SNePS expressions, is the domain of all mental en-
tities conceivable by the agent. Adding a new expression to a SNePS network
implements the agent’s conceiving of the entity represented by that expression.
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The basic SNePS principles are

Propositional Semantic Network: The only well-formed SNePS ex-
pressions are nodes.

Term Logic: Every well-formed SNePS expression is a term.
Intensional Representation: Every SNePS term represents (denotes)

an intensional (mental) entity.
Uniqueness Principle: No two SNePS terms denote the same entity.
Paraconsistent Logic: A contradiction does not imply anything what-

soever.

The significance of SNePS being a propositional semantic network is that
only nodes are well-formed expressions having semantics, whereas in many other
network-based KRR systems, including many semantic networks, arcs denote
propositions—relations that are asserted to hold between entities. (See [10] for
a discussion of assertional vs. structural information.)

The significance of SNePS being a term logic is that proposition-denoting
terms may be arguments of other terms without leaving first-order logic [11].

The significance of SNePS using intensional representation is that cogni-
tively distinct mental entities are denoted by distinct terms even if they are
co-extensional—the entire network forms an opaque context in which there is
no substitution of equals, because no two terms are fully equal [12,13,14,15].
This principle can also be read as “Every SNePS term denotes a mental entity,”
which means that no terms are created for purely technical reasons, and that
even the analogue of logical variables, “variable nodes”, have consistent com-
positional semantics denoting mental entities. Variable nodes did not have such
semantics in earlier versions of SNePS [16]. Supplying that was a main motivator
of ANALOG [3,4] and SNePS 3.

The Uniqueness Principle supports intensional representation, and imposes
a requirement of structure-sharing on the implementation—no two distinct but
structurally equal terms exist in a network.

SNePS being a paraconsistent logic means that a contradiction in one area
of the knowledge base would not “corrupt” the information in another area of
the knowledge base.

3 Levels

To a large extent, SNePS is a logical-level semantic network [17]. Just as a Prolog
programmer must choose the predicates to be used in a Prolog program, a SNePS
user must choose the arc labels and other representational techniques to use in a
SNePS-based application. This person is called a “knowledge engineer”, and the
job of a knowledge engineer has been referred to as “conceptualization” [18, p.
9]. For example, Figures 2 and 3 show two possible ways of representing Cassie
is a FEVAHR, and another is shown in Fig. 1.

However, just as the syntax, semantics, and inference mechanism of Horn
clauses is built into Prolog, there is a level at which syntax, semantics, and an
inference mechanism is built into SNePS. These will be discussed below.
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Fig. 2. A possible representation of Cassie is a FEVAHR.

Fig. 3. Another possible representation of Cassie is a FEVAHR.

simple proposition generic proposition rule

act individualproposition

entity

Fig. 4. The initial taxonomy of SNePS semantic classes.

4 Semantics

Every SNePS 3 node must be given a semantic class recognized by the sys-
tem. The initial semantic taxonomy, which may be extended by the knowledge
engineer, is shown in Fig 4.

Proposition nodes have an assertional status that is recognized by the infer-
ence mechanism (see Sect. 5 below). Rule nodes are proposition nodes that can
be used for node-based inference. An example is shown in Fig. 5. Generic propo-
sition nodes, such as M89! in Fig. 6, can be used for subsumption-based inference.
Simple proposition nodes are proposition nodes that are neither generic propo-
sitions nor rules. Act nodes may be performed by the SNeRE acting executive
[19,20], [2, Chap. 4].3 Individual nodes are nodes that are neither proposition
nodes nor act nodes.

3 Due to space limitations, act nodes and the acting executive will not be discussed
in this paper.
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Fig. 5. M88! is a rule node denoting the proposition, If Cassie is a robot that talks,
then Cassie is intelligent.

The SNePS 3 node classes and the categories of entities represented by those
nodes as expressed in the SNePS formalism may be redundant, but this is because
we, as SNePS 3 designers, did not want to specify a priori how the knowledge
engineers could choose to represent categories. For example, node M6 of Fig. 1,
node FEVAHR of Fig. 2, and node B2 of Fig. 3 might each represent the category of
FEVAHR robots in different conceptualizations. When necessary to distinguish
these two levels of semantics, I shall use the terms “SNePS semantics” and
“domain semantics.”

The intended domain semantics (intended by me, the knowledge engineer of
this project) of the nodes in Fig. 1 are shown in Tables 1–4.4 There, [[n]] is used
to refer to the denotation of the SNePS term n. Lexemes, agents, times, cate-
gories, actions, acts, events, and propositions are all assumed to be entities in the
domain of discourse, which, in this case, is the universe of Cassie’s mental enti-
ties. Act-denoting terms are nodes in the SNePS act class, proposition-denoting
terms are nodes in the SNePS proposition class, and all other terms are nodes
in the SNePS individual class.

4 Table 2 gives the semantics of B2 as “an interval of time.” Cassie/FEVAHR contains
a variable, NOW, whose value is the term denoting the current time, and which changes
as time moves [21]. At the time of the snapshot of Fig. 1, B2 is the value of NOW,
which is why Cassie’s talking and looking is expressed in the present tense.
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Table 1. The semantics of lexeme-denoting terms from Fig. 1

.

agent: The English lexeme “agent”.
Bill: The English lexeme “Bill”.
Cassie: The English lexeme “Cassie”.
FEVAHR: The English lexeme “FEVAHR”.
look: The English lexeme “look”.
person: The English lexeme “person”.
robot: The English lexeme “robot”.
Stu: The English lexeme “Stu”.
talk: The English lexeme “talk”.

Table 2. The semantics of agent-, time-, and category-denoting terms from Fig. 1

.

B1: Cassie. B2: An interval of time. M6: The category of FEVAHRs.
B5: Stu. B3: An interval of time. M19: The category of people.
B6: Bill. B4: An interval of time. M22: The category of robots.

M32: The category of agents.

Table 3. The semantics of action-, act-, and event-denoting terms from Fig. 1

.

M1: The action of talking.
M13: The action of looking.

M10: The act of talking to Stu.
M14: The act of looking at Stu.

M11: The event of Cassie’s talking to Stu.
M15: The event of Cassie’s looking at Stu.

Table 4. The semantics of proposition-denoting terms from Fig. 1

.

M7!: The proposition that Cassie is a FEVAHR.
M8!: The proposition that Cassie’s name is “Cassie”.
M9!: The proposition that [[B2]] is a subinterval of [[B3]] and [[B4]].
M12!: The proposition that Cassie is talking to Stu throughout [[B3]].
M16!: The proposition that Cassie is looking at Stu throughout [[B4]].
M17!: The proposition that Bill’s name is “Bill”.
M18!: The proposition that Stu’s name is “Stu”.
M20!: The proposition that Stu and Bill are people.
M31!: The proposition that FEVAHRs are robots.
M33!: The proposition that robots and people are agents.
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Fig. 6. M89! is a generic proposition node denoting the proposition that Any robot that
talks, is intelligent.

5 Inference Methods

A SNePS-based agent might believe only some of the propositions represented
in the network. For example, Cassie might believe that Bill believes that Stu
is tall, without herself believing it. We notate believed propositions by append-
ing an exclamation mark (!) to the identifiers of nodes that denote believed
propositions, and we refer to such nodes as asserted. All the proposition nodes
of Figures 1–3 are asserted. In Fig. 5, nodes M82, M85, and M87 are unasserted
proposition nodes, and node M88! is an asserted proposition node.

Inference in SNePS is a method of computing newly asserted nodes from
previously asserted nodes. Thus, inference causes the agent to have new beliefs.
The newly asserted nodes might previously have been in the network, denoting
then unbelieved propositions, or they might be created by the inference engine.

There are four inference methods in SNePS, the first two of which distinguish
SNePS from logic-based but non-network-based KRR systems. Briefly, and in-
formally, these are:
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Fig. 7. Node M20!, denoting the proposition that Stu and Bill are people, implies M59!,
denoting the proposition that Stu is a person, by wire-based inference.

Wire-based inference, referred to as “reduction inference” in pre-
vious versions of SNePS (notably in [22]), is an inference method
whereby a proposition node m1 implies a proposition node m2 with a
subset or a superset of m1’s arcs. (See Secs. 6.1 and 6.2.) For exam-
ple, node M20! in Fig. 7, repeated from Fig. 1, implies node M59! by
wire-based inference.

Path-based inference [22,23,24] is an inference method whereby a
path of arcs from a proposition node m1 to a node m2 (of any class)
may imply a proposition node m3 with all of m1’s arcs plus an addi-
tional one to m2. Path-based inference must be sanctioned by path-
based inference rules that are given to the SNePS system, but not
represented in the SNePS object language. (See [2, Sect. 2.5.2] for the
syntax and semantics of paths.) One possible path-based inference
rule is
(define-path class

(compose class
(kstar (compose subclass- ! superclass))))

Given this rule, node M60! of Fig. 8, denoting the proposition that
Stu is an agent, may be inferred from M59!, denoting the proposition
that Stu is a person, and the path of arcs from M59! to M32 by path-
based inference followed by wire-based inference so that there is only
one class arc emanating from M60!.

Node-based inference uses nodes that are the analogue of non-atomic
formulas in first-order predicate logic to represent domain rules that
SNePS can use to infer newly asserted proposition nodes from previ-
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Fig. 8. Node M60!, denoting the proposition that Stu is an agent, may be inferred from
M59!, denoting the proposition that Stu is a person, and the path of arcs from M59! to
M32 by path-based inference followed by wire-based inference.

ously asserted proposition nodes. For example, in Fig. 5, node M88!
is an “and-entailment”—a kind of entailment with M82 and M85 as
conjoined antecedents and M87 as a consequent. M88! denotes the
domain rule, If Cassie is a robot that talks, then Cassie is intelli-
gent. Since M82 follows from Fig. 1’s M7! by path-based inference,
and M85 follows from Fig. 1’s M12! by wire-based inference, M87 may
be inferred by node-based inference.

Subsumption inference is an inference method in SNePS 3 that is
not available in earlier versions of SNePS, and uses the ANALOG
[3,4] technique of representing variables. For example, Fig. 6 shows
a SNePS 3 representation of the generic proposition, Any robot that
talks, is intelligent. V1 is a structured variable that denotes the arbi-
trary talking robot [25], R1 and R3 are restrictions on V1, and M89!
denotes the asserted generic proposition. Since R1 subsumes Fig. 5’s
M82 and R3 subsumes Fig. 5’s M85 and those nodes follow from Fig. 1
as explained above, therefore V1 subsumes Fig. 1’s (and Fig. 5’s) B1,
M89! subsumes Fig. 5’s M87, and M87 follows from M89! by subsump-
tion inference.

6 Syntax

The syntax of the SNePS 3 language is defined in terms of nodes, relations, wires,
cables, and cablesets (see also [3,4,22]). Informally, a node is what I have been
calling a node heretofore, and a relation is an arc label. A wire is a pair, 〈r, n〉,
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of a relation r and a node n. A cable is a pair, 〈r, ns〉 of a relation r and a set of
nodes (or “nodeset”) ns. A cableset is a set of cables, {〈r1, ns1〉, . . . , 〈rk, nsk〉},
such that no two ri are the same. A set of wires all of which have the same
relation forms a cable. A set of wires with different relations forms a cableset.
Nodes that I have been informally presenting as labeled circles or ovals with arcs
emanating from them formally are cablesets.

With the previous paragraph as introductory, and the foregoing sections as
motivational, I can now give a more formal presentation of SNePS 3 syntax.

6.1 Relations

A SNePS 3 relation is a four-tuple, 〈name, type, adjust , limit〉, where the four
constituents are:

name: A symbolic name of the relation. No two relations may have the same
name. Relation names were used in Figures 1–8 as labels on directed arcs.

type: The SNePS semantic class of the nodes in the range of this relation, i.e.,
of the nodes pointed to by arcs labeled with this relation.

adjust : Either expand, reduce, or none. This specifies how wire-based inference
treats instances of this relation. For example, Fig. 7 illustrates the reducibil-
ity of the relation named member. However, the relation named &ant, shown
in Fig. 5 is expandable. A value of none means that this relation is not
subject to wire-based inference.

limit: The minimal size of a nodeset that can be paired with this relation in a
cable. If adjust is reduce, then limit is the minimal allowed reduction. For
example, to prevent Fig. 7’s node M20! from implying a node with only a
class arc and no member arcs, the limit of the relation named member is 1.
If adjust is expand, then limit is the minimal nodeset-size of a cable that
allows more wires to be added. For example, it does not make sense to add
&ant arcs to a node that is not a kind of entailment.

Assuming that the knowledge engineer has declared the classes category,
event, and time to be subclasses of the SNePS class of individual nodes, some
example relations would be:

〈member, entity, reduce, 1〉 〈class, category, reduce, 1〉
〈event, event, reduce, 1〉 〈time, time, reduce, 0〉
〈&ant, proposition, expand, 1〉 〈cq, proposition, reduce, 1〉

6.2 Case Frames

A case frame is a pair, 〈c, ρ〉, where c is a SNePS semantic class and ρ is set of
relations. Informally, c is the class of all nodes that have the given set of arcs
emanating from them. A more formal explanation is given below.

Case frames are partially ordered by the relation adjustable (�adj ). Case
frame 〈c1, ρ1〉 is adjustable to case frame 〈c2, ρ2〉 (〈c1, ρ1〉 �adj 〈c2, ρ2〉) iff
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universal existential atomic non-atomic

variable restriction closed

base molecular

and-entailment ...

node

Fig. 9. Part of the hierarchy of the syntactic classes of SNePS nodes.

1. c1 = c2;
2. every relation in ρ1 − ρ2 is reducible and has limit=0;
3. every relation in ρ2 − ρ1 is expandable and has limit=0.

For example, the fact that Fig. 5’s M85 follows from Fig. 1’s M12! by wire-based
inference is partially justified by the fact that
〈proposition, {〈event, event, reduce, 1〉, 〈time, time, reduce, 0〉}〉
�adj
〈proposition, {〈event, event, reduce, 1〉}〉

6.3 Nodes

Before entering nodes into a SNePS 3 network, the knowledge engineer must
declare the case frames to be used. The system will check that relations are being
used consistently. The knowledge engineer may also add additional semantic
classes to the SNePS 3 class hierarchy, and use these new classes in the case
frames.

A valid SNePS 3 node must be in one of the syntactic classes in the SNePS 3
syntactic hierarchy, part of which is shown in Fig. 9.

A base node consists only of an identifier. A base node identifier may be
created by a SNePS 3 user. Some examples of these in Fig. 1 are Cassie, robot,
and look. Other base nodes may be created and named by the system. Examples
of these in Fig. 1 are B1 and B2. When a base node is created, it must be given
a SNePS 3 semantic class.

An atomic closed molecular node is a cableset {〈r1, ns1〉, . . . , 〈rk, nsk〉} such
that:

1. the set {r1, . . . rk} is the relation set of some declared case frame 〈c, ρ〉;
2. for each i, each node in nsi is of the semantic class which is the type of ri;
3. for each i, the cardinality of nsi is at least the limit of ri.

If a cableset satisfies these three conditions, it is considered to be an instance of
the case frame 〈c, ρ〉, and is entered into the network as a node in the semantic
class c. Closed molecular nodes are given identifiers of the form Mn by the system.
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We can refer to a cableset either by using the cableset notation, using just
its identifier, or using both. For example, node M20! of Figures 1 and 7 may be
referred to as M20! : {〈member, {B5, B6}〉, 〈class, {M19 : {〈lex, {person}〉}}〉}.

SNePS 3 knowledge engineers may create any case frames they desire to
form atomic closed molecular nodes. The syntax of non-atomic, variable, and
restriction nodes, however, are fixed.

Non-atomic molecular nodes are used to represent rules used for node-based
inference. For example, node M88! of Figure 5 is an and-entailment, the case
frame for which is

〈rule, {〈&ant, proposition, expand, 1〉, 〈cq, proposition, reduce, 1〉}〉
See [2, Chap. 3] for the syntax of the other non-atomic nodes.

A universal variable node is an instance of one of the case-frame schemata

〈c, {〈any, restriction, expand, 1〉}〉
and an existential variable node is an instance of one of the case frame schemata

〈c, {〈some, restriction, none, 1〉, 〈depends, universal , none, 0〉}〉
where c is any semantic class, restriction is any restriction node, and universal
is any universal variable node. Variable nodes are given identifiers of the form
Vn by the system.

A restriction node is an instance of any case frame declared by the knowledge
engineer, except that every restriction node must dominate at least one variable
node. Thus, variable nodes and restriction nodes form cycles in the SNePS 3
network. Two such cycles are illustrated in Fig. 6: V1-R1-V1 and V1-R3-R2-V1.
Restriction nodes are given identifiers of the form Rn by the system.

One more relation is needed for the SNePS 3 syntax of generic propositions:
〈close, universal, none, 0〉. Nodes from which close arcs emanate are taken to
form the scope of universal variable nodes that the close arcs point to, as well
as all existential variable nodes dependent on them. An example of the need for
this is to distinguish Any talking robot is not intelligent. from It is not the case
that any talking robot is intelligent. A close arc is shown in Fig. 6.

7 Summary

SNePS 3, the latest version of the SNePS family of propositional semantic net-
works, is a logic- and network- based knowledge representation, reasoning, and
acting system, based on a paraconsistent, first-order term logic, with composi-
tional intensional semantics.

SNePS 3 differs from earlier versions of SNePS by having the following fea-
tures:

1. formal SNePS semantic classes of nodes
2. formal definition of relations
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3. formal definition of case frames
4. structured variables
5. wire-based inference, including expansion as well as reduction, and limits on

adjustment
6. subsumption inference

8 Availability and Use

SNePS 3 is currently being implemented. SNePS 2.5 has been implemented in
ANSI Common Lisp and runs on any platform where that language is installed.
SNePS 2.5 is useable for research and experimentation, and can currently handle
knowledge bases on the order of about 1,000 SNePS nodes. It and other versions
of SNePS are currently in use at various sites around the world, including the
U.S., Portugal, Italy, and Japan.

The SNePS 2.5 source code and manual may be freely downloaded from the
SNePS Research Group web pages at http://www.cse.buffalo.edu/sneps/,
along with a tutorial, sample demonstration runs, and a bibliography.

9 Benchmarks and Comparisons

SNePS comes with a suite of demonstration problems and applications that can
be used to familiarize oneself with how to use it, and may be used for comparison
with other systems. Demonstrations that were taken from other sources include
The Jobs Puzzle from [26, Chapter 3.2], Schubert’s steamroller problem (see
[27]), and a database management system example from [28].

Schubert’s steamroller problem was run on a 1993 version of SNePS [29], and
the results compared with those reported in [27]. The SNePS version produced
fewer unifications and was faster than most unsorted logic solutions, but was
outperformed by sorted logic solutions. The current version of SNePS is much
faster on this problem than the 1993 version, partially due to improvements in
SNePS, and partially due to faster, bigger computers.

The SNePS representation of the Jobs Puzzle is much simpler and closer to
the English version of the puzzle than the clause form representation presented
in [26, p. 58ff].
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