
Conditional SNeRE Policies
SNeRG Technical Note 39

Stuart C. Shapiro
Department of Computer Science and Engineering

and Center for Cognitive Science
201 Bell Hall

University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

December 15, 2005

1 Introduction

This is an investigation into the techniques of writing conditionalwheneverdo andwhendo policies in SNeRE. For
each policy, we will state the correct behaviors for a conditional policy, show SNePSLOG interactions testing each
technique on each behavior, and point out which technique performed the behavior correctly. Finally, for each policy,
we will state succinctly the proper technique for implementing conditional policies.

In each test run

• the following prologue will be used, but not shown

set-mode-3
untrace inference acting
define-frame say (action line)
define-frame InState (nil instate)
define-frame P (nil p)
ˆˆ
(define-primaction say (line)

(format t "˜&˜A˜%" (sneps:choose.ns line)))
(attach-primaction believe believe disbelieve disbelieve say say)
ˆˆ

• the SNePSLOG line echoing each assertion will not be shown.

• list-asserted-wffs will be done before the triggering proposition isadded, so it can be seen what
propositions are believed and what policies are adopted.

2 An Investigation into Conditional wheneverdo Policies

We will investigate two techniques for conditionalwheneverdo policies, namely for some states , propositionp,
and acta:

1. s => wheneverdo(p, a)

2. wheneverdo(s , believe(wheneverdo(p, a)))

1

We will refer to these as the implication technique, and the nested policy technique, respectively.
The behaviors we want from a conditionalwheneverdo policy are:

1. Whens doesn’t hold, butp is added,a shouldn’t be done.

2. Whens does hold, andp is added,a should be done.

3. After a is done once, as long ass continues to hold, whenp is added,a should be done.

4. Whens ceases to hold, and thenp is added,a should not be done.

5. Whens ceases to hold, but is thenadded again, and thenp is added,a should be done.

We will test each technique on each of the behaviors.

1. Whens doesn’t hold, butp is added,a shouldn’t be done.

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))

: P(1)!
P(1)

:

Both techniques performed this behavior correctly.

2. Whens does hold, andp is added,a should be done.

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
wheneverdo(P(1),say(Act triggered by =>))
InState(s1)

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

:

Again, both techniques performed this behavior correctly.

2

3. After a is done once, as long ass continues to hold, whenp is added,a should be done.

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
wheneverdo(P(1),say(Act triggered by =>))
P(1)
InState(s1)

: P(1)!
P(1)

:

This did not work because the message-passing processes that implement SNePS inference will not send the
exact same message, thatp has beenadded, twice.

3

One fix is to do aclear-infer before the secondadd of p:

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

: clear-infer
Node activation cleared. Some register information retained.

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
wheneverdo(P(1),say(Act triggered by =>))
P(1)
InState(s1)

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

:

4

A second way to get the correct behavior is to do adisbelieve(p) before subsequentadds.

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

: perform disbelieve(P(1))

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
wheneverdo(P(1),say(Act triggered by =>))
InState(s1)

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

:

5

A third way to get the correct behavior is to addp for the second and subsequent times by performingbelieve(p) :

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: P(1)!
Act triggered by =>
Act triggered by wheneverdo

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
wheneverdo(P(1),say(Act triggered by =>))
P(1)
InState(s1)

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

:

Both the implication technique and the nested policy technique perform this behavior correctly as long as ei-
ther: aclear-infer is done before second and subsequentadds of p; disbelieve(p) is performed
before second and subsequentadds of p; or p is added for the second and subsequent times by performing
believe(p) . In the remaining tests, we will always addp by performingbelieve(p) .

6

4. Whens ceases to hold, and thenp is added,a should not be done.

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: perform disbelieve(InState(s1))

: list-asserted-wffs
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
P(1)

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

:

The fact that the implication technique behaves incorrectly is a mystery, and is probably a bug in SNePS. Note
that its policy was not currently adopted.

The fact that the nested policy technique behaves incorrectly is understandable. Note that its policy is still
adopted. The policy was adopted when the state was entered, and remained adopted when the state was
disbelieve d. This is the desired behavior forwheneverdo(s , believe(p)) .

7

What we need is a companion, cancelling policy when the states definitely doesn’t holds:

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).
: wheneverdo(˜InState(s1),

disbelieve(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: InState(s1)!
wheneverdo(P(1),say(Act triggered by wheneverdo))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: perform believe(˜InState(s1))

: list-asserted-wffs
wheneverdo(˜InState(s1),

disbelieve(wheneverdo(P(1),say(Act triggered by wheneverdo))))
˜InState(s1)
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
P(1)

: perform believe(P(1))
Act triggered by =>

:

Now the implication technique still, mysteriously, performed incorrectly, but the nested policy technique did per-
form correctly. In all subsequent tests, we will add and removes by performingbelieve(s) andbelieve(∼s) .

8

5. Whens ceases to hold, but is thenadded again, and thenp is added,a should be done.

: InState(s1) => wheneverdo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(wheneverdo(P(1), say("Act triggered by wheneverdo")))).
: wheneverdo(˜InState(s1),

disbelieve(wheneverdo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: perform believe(˜InState(s1))

: perform believe(P(1))
Act triggered by =>

: perform believe(InState(s1))
Act triggered by wheneverdo

: list-asserted-wffs
wheneverdo(˜InState(s1),

disbelieve(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(InState(s1),

believe(wheneverdo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(P(1),say(Act triggered by wheneverdo))
InState(s1) => wheneverdo(P(1),say(Act triggered by =>))
wheneverdo(P(1),say(Act triggered by =>))
P(1)
InState(s1)

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

:

Both techniques performed this behavior correctly.

9

3 Conclusion: Conditionalwheneverdo Policies

If you want to say that while states holds, the agent should have the policy that whenever propositionp, is added, it
should perform acta, you should express this as

wheneverdo(s , believe(wheneverdo(p, a)))
wheneverdo(∼s , disbelieve(wheneverdo(p, a)))

You should enter and leave the states by performing

believe(s)
andbelieve(∼s)

You should addp by either:

• always performingbelieve(p) ;

• performingclear-infer before the second and subsequent adds ofp;

• or performingdisbelieve(p) before the second and subsequent adds ofp.

4 An Investigation into Conditional whendo Policies

We will investigate two techniques for conditionalwhendo policies, namely for some states , propositionp, and act
a:

1. s => whendo(p, a)

2. wheneverdo(s , believe(whendo(p, a)))

The behaviors we want from a conditionalwhendo policy are:

1. Whens doesn’t hold, butp is added,a shouldn’t be done.

2. Whens does hold, andp is added,a should be done.

3. After a is done once, even thoughs continues to hold, whenp is added,a should not be done.

4. Whens ceases to hold, and thenp is added,a should not be done.

5. Whens ceases to hold, but is thenadded again, and thenp is added,a should be done.

We will test the two techniques on each of the behaviors.

1. Whens doesn’t hold, butp is added,a shouldn’t be done.

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).

: list-asserted-wffs
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
InState(s1) => whendo(P(1),say(Act triggered by =>))

: perform believe(P(1))

:

So, both techniques perform this behavior correctly.

10

2. Whens does hold, andp is added,a should be done.

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: list-asserted-wffs
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
whendo(P(1),say(Act triggered by wheneverdo))
InState(s1) => whendo(P(1),say(Act triggered by =>))
whendo(P(1),say(Act triggered by =>))
InState(s1)

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

:

So, again, both techniques perform this behavior correctly.

3. After a is done once, even thoughs continues to hold, whenp is added,a should not be done.

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: list-asserted-wffs
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
InState(s1) => whendo(P(1),say(Act triggered by =>))
whendo(P(1),say(Act triggered by =>))
P(1)
InState(s1)

: perform believe(P(1))
Act triggered by =>

:

Here, the implication technique still, and incorrectly, performed the act for a second consecutive time. Note that
its policy is still adopted. It cannot be unadopted because it is considered a derived belief whose support set is
still believed. This is an indication that the implication technique is semantically incorrect. We do not want the
adoption of the policy to logically depend on the state, but want the policy to be adopted when the state starts to
hold, and be unadopted when it is first triggered.

The nested policy technique performed correctly.

11

4. Whens ceases to hold, and thenp is added,a should not be done.

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: perform disbelieve(InState(s1))

: list-asserted-wffs
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
whendo(P(1),say(Act triggered by wheneverdo))
InState(s1) => whendo(P(1),say(Act triggered by =>))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo
:

The fact that the implication technique behaves incorrectly is a mystery, and is probably a bug in SNePS.

The fact that the nested policy technique behaves incorrectly is understandable. Note that its policy is still
adopted. The policy was adopted when the state was entered, and remained adopted when the state was
disbelieve d. This is the desired behavior forwheneverdo(s , believe(p)) .

What we need is a companion, cancelling policy when the states definitely doesn’t holds:

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).
: wheneverdo(˜InState(s1),

disbelieve(whendo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: perform believe(˜InState(s1))

: list-asserted-wffs
wheneverdo(˜InState(s1),

disbelieve(whendo(P(1),say(Act triggered by wheneverdo))))
˜InState(s1)
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
InState(s1) => whendo(P(1),say(Act triggered by =>))

: perform believe(P(1))
Act triggered by =>

:

The implication technique still mysteriously doesn’t behave correctly, but the nested policy technique now does
behave correctly.

12

5. Whens ceases to hold, but is thenadded again, and thenp is added,a should be done.

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).
: wheneverdo(˜InState(s1),

disbelieve(whendo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: perform believe(˜InState(s1))

: perform believe(P(1))
Act triggered by =>

: list-asserted-wffs
wheneverdo(˜InState(s1),

disbelieve(whendo(P(1),say(Act triggered by wheneverdo))))
˜InState(s1)
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
InState(s1) => whendo(P(1),say(Act triggered by =>))
P(1)

: perform believe(InState(s1))
Act triggered by wheneverdo

: perform believe(P(1))
Act triggered by =>

:

Again the implication technique mysteriously behaves incorrectly.

This time the nested policy technique leads toa being done as soon as thes is reentered becausep is believed
at that time.

13

What we wanted was toadd p afters is reentered. We’ll do this by performing adisbelieve on p before
reenterings :

: InState(s1) => whendo(P(1), say("Act triggered by =>")).
: wheneverdo(InState(s1),

believe(whendo(P(1), say("Act triggered by wheneverdo")))).
: wheneverdo(˜InState(s1),

disbelieve(whendo(P(1), say("Act triggered by wheneverdo")))).

: perform believe(InState(s1))

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: perform believe(˜InState(s1))

: perform believe(P(1))
Act triggered by =>

: perform disbelieve(P(1))

: perform believe(InState(s1))

: list-asserted-wffs
wheneverdo(˜InState(s1),

disbelieve(whendo(P(1),say(Act triggered by wheneverdo))))
wheneverdo(InState(s1),

believe(whendo(P(1),say(Act triggered by wheneverdo))))
whendo(P(1),say(Act triggered by wheneverdo))
InState(s1) => whendo(P(1),say(Act triggered by =>))
whendo(P(1),say(Act triggered by =>))
InState(s1)

: perform believe(P(1))
Act triggered by =>
Act triggered by wheneverdo

: perform believe(P(1))
Act triggered by =>

:

Again, the implication technique mysteriously behaves incorrectly whens does not hold, and whens does hold
andp is added for the second time in a row. It does perform correctly immediately afters is reentered. The
nested policy technique, however, behaves correctly in all cases.

14

5 Conclusion: Conditionalwhendo Policies

If you want to say that while states holds, the agent should have the policy that when propositionp, is nextadded, it
should perform acta, you should express this as

wheneverdo(s , believe(whendo(p, a)))
wheneverdo(∼s , disbelieve(whendo(p, a)))

You should enter and leave the states by performing

believe(s)
andbelieve(∼s)

You should addp by either:

• always performingbelieve(p) ;

• performingclear-infer before the second and subsequent adds ofp;

• or performingdisbelieve(p) before the second and subsequent adds ofp.

15

