
MGLAIR Agents in a Virtual Reality Drama
CSE Technical Report 2005-08

Stuart C. Shapiro∗ Josephine Anstey† David E. Pape† Trupti Devdas Nayak∗

Michael Kandefer∗

Orkan Telhan†

University at Buffalo, The State University of New York
Buffalo, NY 14260

{shapiro|jranstey|depape|td23|mwk3|otelhan }@buffalo.edu

March 30, 2005

Abstract

We provide an overview of the use of intelligent agents, implemented in the new MGLAIR architecture, in a
virtual reality drama. For us, a virtual reality drama is a scripted play in which the computational agents are actors
who have copies of the script, and one human audience member has been drafted to be a participant, but doesn’t have
a copy of the script. The computational actors must improvise reactions to the human partpicipant’s actions, but keep
the play moving along in as close agreement to the script as possible. The goal is to provide the human participant with
a specific emotional experience. We explicate this philosophy; outline the previously described GLAIR architecture;
explain the introduction of an organization into modalities that results in the new MGLAIR architecture; describe our
current VR drama,The Trial, The Trail; and discuss the implementation of our actor-agents. Our discussion of the
actor-agents focuses on their abilities to react to triggers (cues), their performance of contingent actions that are off
the main-line arc of the script, their use of timers to pace the drama, and the organization of the cast of actor-agents
into a multi-agent system.

1 Virtual Reality Drama

Our goal is to produce immersive virtual reality experiences that engage a participant as a central protagonist in
compelling interactive dramas. We use a passive stereo system to project life-sized three dimensional images onto a
large screen in front of the participant, who has tracking sensors on her head and both hands.

Virtual reality and mixed reality have been shown to be powerful presentation media for interactive fiction (Bobick,
Intille, Davis, Baird, Pinhanez, Campbell, Ivanov, Schutte, and Wilson 1999; Laurel, Strickland, and Tow 1998;
Shaw, Staff, Farr, Adams, vom Lehm, Heath, Rinman, Taylor, and Benford 2000), and using artificial intelligence for
the construction of interactive narrative is considered by many to be a sine qua non. However, how one defines an
interactive story determines how AI is used. Some define an interactive story as one in which the user’s interventions
must substantially effect the story-line (Szilas 2003). Following structural analyses of narrative such as (Barthes
1974; Propp 1968), they base their AI system around narrative rules that will allow them to generate storylines on
the fly (Charles, Lozano, Mead, Bisquerra, and Cavazza 2003). We do not believe that a user-controlled structural
organization or a semi-autonomous organization is required for an emotionally powerful interactive work. Instead, we
view our virtual reality drama as a scripted play in which the computational agents are actors who have copies of the
script, and one human audience member has been drafted to be a participant, but doesn’t have a copy of the script.
The computational actors must improvise reactions to the human participant’s actions, but keep the play moving along
in as close agreement to the script as possible. The goal is to provide the human participant with a specific emotional
∗Department of Computer Science and Engineering
†Department of Media Study

1

experience. The participant’s engagement with the story-line is increased if other entities, real or computer-controlled,
are “co-present” in the virtual world (Ibanez, Aylett, and Ruiz-Rodarte 2003; Fencott 2003).

Our intelligent agents work co-operatively with our basic interactive dramatic structure, the snare, as discussed by
Anstey et al. (2004). Each snare explicitly attempts to move the user from one emotional state to the next along a
psychological arc. Like a novel, play or film, we use the narrative context to evoke an emotional response. The role of
the actor-agents is to support this context with their actions and dialog, and more importantly to stimulate the user’s
emotions by simulating emotions of their own. In each snare the user is explicitly or implicitly encouraged to perform
an activity or activities that we can detect with our tracking system. The agents and the virtual environment itself may
respond immediately to the user’s actions, but we also use the data we collect to interpret the user’s state of mind,
given the current narrative context.

The snare has some similarity to the concept of “beats” described by Mateas and Stern (2004). Both beat and snare
have a dramatic goal for a short period of interaction, start with an assumption about how the user will respond, include
checks on the user’s reaction, and plans to handle deviations from that response. There is a difference of emphasis
between beat and snare, the beat organises and communicates a short dramatic event, the snare maneuver’s the user
into the performance of some action that will be revealing of her psychological state. Whatever the apparent dramatic
goal, the snare always has an underlying psychological goal. While snares may be as short as beats, they may also
be built up into snare sequences designed to create psychological reversals. They may be much longer, with shorter
snares nested inside longer snares. Longer snares are more akin to the acts and scenes of conventional drama.

2 The MGLAIR Architecture

The actor-agents are implemented according to the MGLAIR architecture, which is a modification of the GLAIR
(Grounded Layered Architecture with Integrated Reasoning) architecture (Hexmoor, Lammens, and Shapiro 1993;
Hexmoor and Shapiro 1997; Shapiro and Ismail 2003). Although there are other layered agent architectures, few if
any have the same layers as (M)GLAIR:

The Knowledge Layer (KL) is the layer at which “conscious” reasoning takes place. The KL is implemented
by the SNePS knowledge representation and reasoning system (Shapiro and Rapaport 1992; Shapiro and The SNePS
Implementation Group 2004), and its SNeRE (SNePS Rational Engine) acting subsystem (Kumar and Shapiro 1994a;
Kumar and Shapiro 1994b; Kumar 1996; Shapiro and The SNePS Implementation Group 2004). SNePS, in turn, is
implemented in Common Lisp.

The Perceptuo-Motor Layer, Sublayer a (PMLa)Contains the Common Lisp implementation of the actions that
are primitive at the KL. PMLa is implemented in a way that takes into account the top-level design of the agents, but
is independent of the implementation of the agents’ bodies.

The Perceptuo-Motor Layer, Sublayer b (PMLb) Implements the functions of PMLa taking into account the
particular implementation of the agents’ bodies. PMLb uses IP sockets to communicate with the PMLc (see the below
section on Modalities).

The Perceptuo-Motor Layer, Sublayer c (PMLc) is on the other end of the IP sockets from the PMLb. Here,
messages from the PMLb are passed to the appropriate SAL object, and sensory messages are passed back to the
PMLb.

The Sensori-Actuator Layer (SAL) controls the sensors and effectors of the agent’s virtual body.
The Environment is built using the Ygdrasil (Pape, Anstey, Dolinsky, and Dambik 2003) virtual reality authoring

system. Ygdrasil is a plugin-based framework for VR applications that is based on SGI’s OpenGL Performer toolkit
(Rohlf and Helman 1994) and the CAVE library (VRCO, Inc. 2005). A virtual world in this system is a scene graph
containing models, constructed in a 3D modelling package, sounds, and nodes that contain behaviors for objects in the
world. New, application-specific behaviors are implemented as plugins written in C++, or dynamically loaded scripts
written in Python. The combined scene graph and plugin/script approach allows a complete world to be constructed
piece by piece, tying together many simpler elements. Real-time dynamic behaviors and interaction make use of an
event-based structure; messages are passed between nodes in response to events. Messages include actions such as
loading models, playing sounds, and moving objects.

2

3 The Trial The Trail

Our current project isThe Trial The Trail, an interactive drama designed for an immersive VR system, and built on
techniques used inThe Thing Growing(Anstey, Pape, and Sandin 2000). Imagine Tarkovsky’s Stalker, crossed with
Alice Through the Looking Glass, crossed with Monty Python and the Holy Grail. Now imagine embarking on a
guided journey through this warped yet familiar landscape. As you proceed your actions and interactions are logged,
interpreted psychologically, and used to determine the outcome of your quest.

The two main characters inThe Trial The Trailare Patofil and Filopat. As they explain the quest and introduce and
take part in a series of absurdist challenges, they take up positions relevant to the psychological terrain of the drama.
Patofil is reckless and insouciant, believes the journey is more important that the arrival, and is dubious about the
quest’s goal—to obtain one’s heart’s desire. Filopat follows rules, adheres to duty and fervently believes in the quest.
Patofil stimulates the participant to disobey. Filopat represents authority and security. The participant is encouraged to
side with one, then the other. These alliances implicitly include an adherence to the particular philosophical position
of that agent.

While we have a complete storyboard mapped out, we have started production in the middle of the drama, act 3, in
which Patofil and the participant have been told by Filopat that they must stand all night in a vigil at a ruined chapel.
In scene 1, Patofil and the participant are teleported to the mound where the chapel stands. After a short time one or
the other tires of the vigil. At first they play with whisps that float through the air, and climb the ruins. Then they leave
the mound in direct defiance of Filopat’s injunctions. At this point they become separated. The scene ends with the
participant hearing Patofil scream. In scene 2, the participant sees Patofil running, pursued by five bad guys. Three
of these guys break off and surround the participant, taunting and pushing her. The sun rises (night only lasts a few
minutes in this virtual world!). Filopat can be heard calling. The bad guys disappear.

4 Modalities

The difference between MGLAIR (Modal GLAIR) and GLAIR is that in MGLAIR, the PML is organized into modal-
ities.

A modality is a hardware or software resource utilized by an intelligent agent for either sensing or acting. A single
modality can support only a small number of behaviors at a time. For example an agent can typically use a speech
modality to say only one thing at a time. However, behaviors that occupy different modalities can be simultaneous.
For example, an agent may use a speech modality to say something while simultaneously using a navigation modality
to change its location. A modality may be afferent (sensory), or efferent.

The actor-agents inThe Trial The Trailhave the following modalities.

Animation: Animation is a efferent modality that controls the movement of the actor-agent’s body (its body language)
independently of the location of the agent within the virtual world. Patofil and Filopat are particularly expressive,
each having a head and a body with wing shaped arms and feet.

Hearing: Hearing is an afferent modality by which the agent “hears” what she, herself, says, and what the other
actor-agents say. In the future we intend to include what the human participant says.

Mood: Instead of a realistic face, each character wears a mask. Controlled by this modality, the mask morphs between
expressions conveying the agent’s mood: happiness, sadness, anger, fear, etc.

Navigation: Movement of the agent from one point to another is controlled by the navigation modality. Obstacle
avoidance and path planning are handled at the SAL.

Speech: Speech is an efferent modality by which the actor-agents deliver lines of speech. This is their main mode
of interaction with the participant. We currently use prerecorded human speech, because we have not found
computer-generated speech to be expressive enough of emotion.

Vision: Vision is an afferent modality by which the agents are made aware of the actions of the participant, themselves,
and the other actor-agents, and of other changes and events in the world.

3

Several of the modalities provide feedback about what the agent, itself, says or does. This keeps the agent from starting
to use an efferent modality while its body is still performing the previous action. For example, Patofil’s hearing her
own lines prevents her from starting to say something while she is still delivering her previous lines.

The Trial, The Trailruns on several computers. The KL, PMLa, and PMLb layers of each actor-agent run on
computers in UB’s Department of Computer Science and Engineering, (a separate program image for each agent),
while the PMLc and SAL layers, as well as the environment, run on computers in UB’s Department of Media Study.
(one program image for all). Communication is via IP sockets organized by modality, one socket for each modality.
The sockets essentially provide the “neural” mind-body connection of each actor-agent, with the “mind” running on
one computer, and the “body” on another. Each socket-equipped modality runs in a separate process thread, providing
for the parallel performance of actions, as long as they are in different modalities.

5 Triggers

Just as a stage actor uses various cues to know when to take some actions or deliver some lines, the actor-agents of
our drama make use of triggers that are implemented in the world-model to identify the actions and locations of the
virtual objects, agents, and the participant during their interaction in the world. We also make use of the concept of a
stage direction agent, similar to a set manager, that is in charge of such procedural tasks as initiating the beginning and
ending of each scene, starting and ending the action of other interactive objects (e.g. the flow of whisps), controlling
the lighting of the scene (setting the sun, raising the moon).

6 The Scripts

Each actor-agent is provided with a script written in SNePSLOG (Shapiro and The SNePS Implementation Group
2004), a symbolic-logic-like interface language to SNePS, which is used for the examples in the rest of this paper. The
agent internalizes its script as a set of beliefs in its KL. It decides how and when it should say its lines and perform
its actions by reasoning over those beliefs, making use of the integrated reasoning/acting facilities of SNePS/SNeRE
(Kumar 1990; Kumar and Shapiro 1994a). This is the major difference between SNeRE-based agents and those
driven by acting languages like ABL (Mateas and Stern 2004) which are viewed as programming languages. Goals
and behaviors are determined for ABL-agents by a kind of method call, and goal and behavior definitions are not
represented in the same working memory as are facts about the current situation in the agents’ environment. SNeRE,
as an acting language, is closer to other logic-based acting languages such as Golog (Levesque, Reiter, Lespérance,
Lin, and Scherl 1997) and the event calculus (Shanahan 1999), but there is not enough room in this paper to discuss
the differences.

In the following discussion of SNeRE constructs, variablesp, p1, . . . range over propositions and policies, anda,
a1, . . . range over acts.

Act 3, scene 1 begins when the stage direction agent teleports the participant and Patofil to the mound where they
are to spend the night in a silent vigil. Patofil’s script says,

whendo(Location(I, On Mound) and Location(User, On Mound),
do-all({believe(doing(Act3Scene1Plan1)),

do(Act3Scene1Plan1) })) .

This says that when Patofil believes that she and the participant are both on the mound, she should believe that she is
performing the first plan of act 3, scene 1, and actually perform it. The policywhendo(p,a) , the control actdo-
all({a1,...,ak }) , and the mental actbelieve(p) are part of SNeRE. The actdo(a) is a standard technique
we have adopted to specify the performance of an action that takes no arguments. The other symbols are specific to
these agents. Once awhendo(p,a) policy is adopted, it acts like a demon. Afferent modalities perform abelieve
on a proposition that the agent has sensed something, andbelieve triggers forward inferencing. When this results
in p’s being believed,a is performed.

The way Patofil is to perform the first plan of act 3, scene 1 is specified in the script as,

ActPlan(do(Act3Scene1Plan1),
csequence(performAct(InitialSilence, Reverent, In Front Of User, Neutral),

4

believe({whendo(said(I, InitialSilence), do(ConductVigil1)),
whendo(said(I, NoTalking), do(ConductVigil2)),
whendo(said(I, StandStraight), do(ConductVigil3)),
whendo(said(I, ContemplateTheInf), do(ConductVigil4)) }))).

ActPlan(a1,a2) is a SNeRE construct that denotes the proposition that a way to perform the acta1 is by perform-
ing the acta2 . If an act has multiple plans, one is chosen randomly. SinceActPlan is a proposition-valued function
symbol (Shapiro 1993), it is easy to specify conditions under which certain plans are applicable (Kumar and Shapiro
1993). The control actcsequence is one we recently developed that takes two acts and does them in reverse order.
In this, a paradigm use ofcsequence , Patofil is first to believe (adopt) four policies, and then perform a four-part
act, explained to her as:

all(u,a,n,m)(ActPlan(performAct(u,a,n,m),
do-all({say(u), animate(a), navigate(n), mood(m) })))

That is, simultaneously speak the linesu, perform the animationa, and perform the navigationn, while expressing
the moodm. These four acts are primitive, and are implemented at the PMLa layer, each in its own modality.

The four policies adopted as part ofAct3Scene1Plan1 make use of Patofil’s ability to hear her lines after she
speaks them so that she performs the four-step vigil in order.

7 Timers

Patofil performs the fourth step of the vigil as specified in the script as,

ActPlan(do(ConductVigil4),
performAct(DontLeaveTheHill, Reverent,

Stand Still, Eyes Closed))

That is, say “Don’t leave the hill”, stand in a reverent manner without moving, and wear the “eyes closed” mask. But
if the participant is obedient, for how long should Patofil just stand there doing nothing? The following policy is that
it should be for a maximum of 14 seconds:

whendo(said(I, DontLeaveTheHill),
start timer(14, Giggle, Laugh, Stand Still, Happy, Act3Scene1Plan1))

An arbitrary number of timers may be started with the primitive actstart timer(t,u,a,n,m,p) , which asso-
ciates a new timer with the planp, sets it to expire int seconds, and adopts the policy that when the timer expires,
Patofil shouldperformAct(u,a,n,m) . So, after 14 seconds of neither Patofil nor the participant doing anything,
Patofil should giggle, act like she’s laughing, and wear the happy mask, but still not move. This is just one example of
a timer being used to limit an activity that is not being done in order to achieve some detectable goal.

Timers may also be paused, restarted, and cancelled.

8 Contingencies

If the participant moves during the first part of act 3, scene 1, when Patofil is encouraging her to maintain a silent
vigil, this will be detected by the VR equipment, and the environment modeler will send a “user fidgeting” message to
Patofil via the socket in her vision modality. Following this policy,

wheneverdo(Location(I, On Mound)
and Location(User, On Mound) and AgentAct(User, Fidgeting),
snif({if(doing(Act3Scene1Plan1),

snsequence(pause timer(Act3Scene1Plan1),
do(ReprimandFidgeting))) }))

5

Patofil will pause theAct3Scene1Plan1 timer and reprimand the participant. Once the timer is restarted, Patofil
will resume her 14 seconds silence.

The SNeRE actsnif({if(p1,a1), ..., if(pk,ak) }) will nondeterministically perform one of theai
acts whose propositionpi Patofil believes. In this casek = 1. The SNeRE control actsnsequence(a1,a2)
will perform the two actsa1 anda2 in order. The SNeRE policywheneverdo(p,a) is like thewhendo(p,a)
policy, but once awhendo is adopted it will automatically be cancelled (disbelieved) after its first triggering, whereas
a wheneverdo can be triggered repeatedly. So Patofil will repeatedly reprimand the participant if the participant
repeatedly fidgets.

Since Patofil might reprimand the participant multiple times, she has multiple ways to do so:

ActPlan(do(ReprimandFidgeting),
do-all({do-one({say(Concentrate), say(StopFidgeting),

say(Meditate), say(YoureMeantToStayS) }),
animate(Reverent),
navigate(Stand Still),
mood(Eyes Closed) }))

The SNeRE actdo-one({a1, ..., ak }) performs one of the argumentai acts randomly. So each time Patofil
reprimands the participant, she might do so by saying a different line.

In general, contingincies are handled by the demons set up bywhendo or wheneverdo policies, that, in turn,
pause timers or otherwise interrupt main-line plans.

9 The Cast as a Multi-Agent System

The cast of computational actor-agents constitutes a multi-agent system. This is especially the case in act 3, scene
2, in which three bad guy agents are required to cooperatively harass the human participant while another two chase
Patofil off stage. Thus, this scene contains six actor-agents in three groups: Patofil; two agents who chase Patofil; and
three agents who cooperatively taunt and push the human participant. The most interesting group from a multi-agent
perspective is the last one. These agents must react to each other as well as to the human participant.

We employ what Mateas and Stern (2004) call the “many-minds” approach to multi-agent systems, as opposed to
the “one-mind” approach, or their “joint goals” approach. The act an agent performs is determined by reasoning at its
Knowledge Layer (its “mind”), running on one computer system. The act is sent to the agent’s “body”, a collection of
Ygdrasil nodes running on another computer system, as a message across the socket contained in the act’s modality.
A socket node receives the message and uses the Ygdrasil message handling system to pass it on to the appropriate
node or nodes that can parse the message and react. The message handling system also prepends the agent’s identifier
to the message, and broadcasts it to the appropriate socket of all the agents in perceptual range, including the one that
first sent the message. The PMLa of each perceiving agent then parses the message into the acting agent and the act,
and performs abelieve on the proposition that that agent has performed that act.

For example, if bad guy agent one performs the act of jostling the participant, he sends a “Jostle” message across
the socket to the Ygdrasil navigation socket node, which sends the message on to a navigation/travel manager node that
handles the navigation of the agent’s body model in the world. The Ygdrasil message handling system then prepends
BG1 to the message, and broadcasts to all the agents in perceptual range the messageBG1 Jostle across their
visual sockets. All those agents then believe that bad guy one is performing the act of jostling.

This message passing format, unlike others (Finin, Labrou, and Mayfield 1997), does not include a receiver for the
message. The primary reason is that these are not peer-to-peer messages, but messages broadcast to the environment,
and received by all agents in sensory proximity.

The bad guys engage in two types of cooperative behavior: sequential actions and blocking actions. Sequential
actions are used during the dialogue portions of the drama and follow a strict script. The approach used for this
is the same used by Patofil in the previous scene to order her utterances. However, instead of one individual agent
perceiving its own utterances to establish a scripted order, these agents perceive their own and other agent utterances
to accomplish the same task. For example, the script given to bad guy one says,

whendo(AgentSaid(Patofil, HelpMe),
performAct(LookAnotherOne, Fierce, Surround User, Happy))

6

while the script given to bad guy two says,

whendo(AgentSaid(BadGuy1, LookAnotherOne),
performAct(HalloLittleOne, Menacing, Surround User, Angry))

According to these policies, bad guy one will say, “Look another one”, and move to surround the participant when
Patofil says “Help Me”. Bad guy two will then continue the dialogue upon hearing bad guy one’s utterance by saying
“Hallo little one” and moving to help surround the participant.

Blocking actions are actions that must not be interfered with by the other agents during the action’s performance.
For this scene, such actions include blocking the user’s movement, jostling the user, and pushing the user. Whenever
an agent perceives that another agent is performing one of these actions, it believes that that agent is performing an
action block. The script for every agent says,

all(x)({AgentAct(x, Jostle User), AgentAct(x, Push User), AgentAct(x, Block User) }
v=> {ActionBlock(x) })

The SNePSLOG formula{p1, ..., pn } v=> {q1, ..., qm } says that if any of thepi is believed, then
belief is justified in any of theqj .

Whenever an agent believes that another agent is blocking, it will only perform those actions that will not interfere
with the blocking action. For example, this script segment provides several ways to push the user, but says that if some
agent is blocking, then instead of pushing, just keep surrounding the participant, not saying anything, but looking
angry and menacing:

ActPlan(do(pushUser),
withsome(?x,

ActionBlock(?x),
performAct(Silent, Menacing, Surround User, Angry),
do-one({performAct(WeJustWantToHave, Push, Push User, Happy),

...,
performAct(YeeHaa, Push, Push User, Happy) })))

The SNeRE control actwithsome(?x, p(?x), a(?x), da) attempts to find some individuali that satisfies
the propositionp(?x) , and if it finds one, performs the acta(?x) {i/?x }, otherwise, it performs the actda .

This restriction is only lifted when the blocking action is finished, as indicated by anaction Finished message
from the virtual world via the agent’s vision modality. The following policy, which all the bad guys have, lifts the
blocking action when jostling is finished:

all(x)(wheneverdo(AgentAct(x,Jostling Finished),
disbelieve(AgentAct(x,Jostle User))))

The SNeRE mental actdisbelieve(p) results in the agent no longer believing the propositionp. SNeBR (Martins
and Shapiro 1988), the SNePS Belief Revision (Assumption-Based Truth Maintenance) System, causes the agent to
no longer believeActionBlock(x) onceAgentAct(x ,Jostle User) is disbelieved.

10 Implementation Status

Everything described in this paper has been implemented. Act 3 ofThe Trial, The Trailhas been presented privately
to a number of participants from our institution, but not yet publicly to a general audience.

11 Conclusions

The MGLAIR architecture, along with the SNePS/SNeRE integrated knowledge representation, reasoning, and acting
system are proving to be valuable approaches to the building of intelligent agent-actors in virtual reality dramas.
Modalities simplify the organization of acts, especially those that can be performed simultaneously. Incorporating

7

IP sockets with modalities facilitates the organization when the “mind” and the “body” of the agent are running on
different machines. Self-perception via the afferent modalities allows the “mind” to pace its acting properly. Timers
are used for activities, that don’t have goals. Contingincies are handled by demons that pause timers and interrupt
main-line plans. Each agent-actor is an independent intelligent agent that cooperates with others via sensing and
communication in accordance with the script it has been given.

References

Anstey, J., D. Pape, and D. Sandin (2000). The Thing Growing: Autonomous characters in virtual reality interactive
fiction. In IEEE Virtual Reality 2000. IEEE.

Anstey, J., D. Pape, S. C. Shapiro, O. Telhan, and T. D. Nayak (2004). Psycho-drama in VR. InProceedings of The
Fourth Conference on Computation Semiotics (COSIGN 2004), Croatia, pp. 5–13. University of Split.

Barthes, R. (1974).S/Z. New York: Hill and Wang.

Bobick, A., S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell, Y. Ivanov, A. Schutte, and A. Wilson (1999,
August). The Kidsroom: A perceptually-based interactive and immersive story.Presence 8(4), 367–391.

Charles, F., M. Lozano, S. J. Mead, A. F. Bisquerra, and M. Cavazza (2003). Planning formalisms and authoring in
interactive storytelling. InTechnologies for Interactive Digital Storytelling and Entertainment Conference, pp.
216–225. Fraunhofer IRB Verlag.

Fencott, C. (2003). Agencies of interactive digital storytelling. InTechnologies for Interactive Digital Storytelling
and Entertainment Conference, pp. 152–163. Fraunhofer IRB Verlag.

Finin, T., Y. Labrou, and J. Mayfield (1997). KQML as an agent communication language. In J. M. Bradshaw (Ed.),
Software Agents, pp. 291–316. Menlo Park, CA: AAAI Press/The MIT Press.

Hexmoor, H., J. Lammens, and S. C. Shapiro (1993, April). Embodiment in GLAIR: a grounded layered architec-
ture with integrated reasoning for autonomous agents. In D. D. Dankel II and J. Stewman (Eds.),Proceedings
of The Sixth Florida AI Research Symposium (FLAIRS 93), pp. 325–329. The Florida AI Research Society.

Hexmoor, H. and S. C. Shapiro (1997). Integrating skill and knowledge in expert agents. In P. J. Feltovich, K. M.
Ford, and R. R. Hoffman (Eds.),Expertise in Context, pp. 383–404. Cambridge, MA: AAAI Press/MIT Press.

Ibanez, J., R. Aylett, and R. Ruiz-Rodarte (2003). Storytelling in virtual environments from a virtual guide perspec-
tive. Virtual Reality, Special Edition on Storytelling in Virtual Environments 7(1), 30–42.

Kumar, D. (1990). An integrated model of acting and inference. In D. Kumar (Ed.),Current Trends in SNePS,
Number 1600 in Lecture Notes in Artificial Intelligence, pp. 55–65. Berlin: Springer-Verlag.

Kumar, D. (1996, January). The SNePS BDI architecture.Decision Support Systems 16(1), 3–19.

Kumar, D. and S. C. Shapiro (1993, April–September). Deductive efficiency, belief revision and acting.Journal of
Experimental and Theoretical Artificial Intelligence (JETAI) 5(2&3), 167–177.

Kumar, D. and S. C. Shapiro (1994a, May). Acting in service of inference (andvice versa). In D. D. Dankel II (Ed.),
Proc. FLAIRS 94, pp. 207–211. The Florida AI Research Society.

Kumar, D. and S. C. Shapiro (1994b, March). The OK BDI architecture.Int. J. on AI Tools 3(3), 349–366.

Laurel, B., R. Strickland, and R. Tow (1998). Placeholder: Landscape and narrative in virtual environments. In
C. Dodsworth (Ed.),Digital Illusion, pp. 181– 208. New York, New York: ACM Press.

Levesque, H. J., R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl (1997, April–June). GOLOG: A logic program-
ming language for dynamic domains.The Journal of Logic Programming 31(1–3), 59–83.

Martins, J. P. and S. C. Shapiro (1988). A model for belief revision.Artificial Intelligence 35, 25–79.

Mateas, M. and A. Stern (2004). A behavior language: Joint action and behavioral idioms. In H. Prendinger and
M. Ishizuka (Eds.),Life-Like Characters: Tools, Affective Functions, and Applications, pp. 135–161. Springer.

Pape, D., J. Anstey, M. Dolinsky, and E. J. Dambik (2003, August). Ygdrasil—a framework for composing shared
virtual worlds.Future Generation Computer Systems 19(6), 1041–1049.

8

Propp, V. A. (1968).Morphology of the Folktale. Austin and London: University of Texas Press.

Rohlf, J. and J. Helman (1994). IRIS Performer: A high performance multiprocessing toolkit for real-time 3D
graphics. InSIGGRAPH 94, pp. 381–394. SIGGRAPH: ACM Press.

Shanahan, M. P. (1999). The event calculus explained. In M. J. Wooldridge and M. Veloso (Eds.),Artificial Intelli-
gence Today, Number 1600 in Lecture Notes in Artificial Intelligence, pp. 409–430. Berlin: Springer-Verlag.

Shapiro, S. C. (1993, April–September). Belief spaces as sets of propositions.Journal of Experimental and Theo-
retical Artificial Intelligence (JETAI) 5(2&3), 225–235.

Shapiro, S. C. and H. O. Ismail (2003, May). Anchoring in a grounded layered architecture with integrated reason-
ing. Robotics and Autonomous Systems 43(2–3), 97–108.

Shapiro, S. C. and W. J. Rapaport (1992, January–March). The SNePS family.Computers & Mathematics with
Applications 23(2–5), 243–275.

Shapiro, S. C. and The SNePS Implementation Group (2004).SNePS 2.6.1 User’s Manual. Buffalo, NY: Depart-
ment of Computer Science and Engineering, University at Buffalo, The State University of New York.

Shaw, J., H. Staff, J. R. Farr, M. Adams, D. vom Lehm, C. Heath, M.-L. Rinman, I. Tay-
lor, and S. Benford (2000). Staged mixed reality performance ”Desert Rain” by Blast Theory.
http://www.nada.kth.se/erena/doc/aD7b3.html.

Szilas, N. (2003). Idtension: a narrative engine for interactive drama. InTechnologies for Interactive Digital Story-
telling and Entertainment Conference, pp. 187–203. Fraunhofer IRB Verlag.

VRCO, Inc. (2005). CAVELib: Overview. http://www.vrco.com/CAVELib/OverviewCAVELib.html.

9

