
The SNePS Family�Stuart C. Shapiro and William J. RapaportDepartment of Computer Scienceand Center for Cognitive Science226 Bell HallBu�alo, NY 14260-7022(716) 636-3180shapiro@cs.bu�alo.edu rapaport@cs.bu�alo.eduSeptember 11, 19901 MotivationSNePS, the Semantic Network Processing System [45, 54], has been designed to be a system for representingthe beliefs of a natural-language-using intelligent system (a \cognitive agent"). It has always been theintention that a SNePS-based \knowledge base" would ultimately be built, not by a programmer or knowledgeengineer entering representations of knowledge in some formal language or data entry system, but by a humaninforming it using a natural language (NL) (generally supposed to be English), or by the system readingbooks or articles that had been prepared for human readers. Because of this motivation, the criteria for thedevelopment of SNePS have included: it should be able to represent anything and everything expressible inNL; it should be able to represent generic, as well as speci�c information; it should be able to use the genericand the speci�c information to reason and infer information implied by what it has been told; it cannotcount on any particular order among the pieces of information it is given; it must continue to act reasonablyeven if the information it is given includes circular de�nitions, recursive rules, and inconsistent information.�This is a preprint version (missing some �gures) of S. C. Shapiro and W. J. Rapaport, The SNePS family. Computers &Mathematics with Applications 23, 2{5 (January{March, 1992), 243{275. Reprinted in F. Lehmann, Ed. Semantic Networksin Arti�cial Intelligence. Pergamon Press, Oxford, 1992, 243{275. All quotes should be taken from and all citations should beto one of these published versions. 1



2 Main ConceptsThe entities to be represented in SNePS include all entities a cognitive agent can think about or have beliefsabout. This includes individual objects, classes of objects, people, properties, abstractions, actions, times,and propositions, both speci�c and generic (generic propositions being rules). This set of entities is not thesame as the set of objects in the world, nor can the entities be mapped one-to-one onto the set of objectsin the world. An agent may believe in the existence of two entities that, in fact, are the same object in theworld; an agent may believe that what are, in fact, two objects in the world are one entity; an agent may havebeliefs about non-existent, �ctional, and even impossible entities. In the past, we have called such entities\intensions," \intensional entities," \intensional objects," and even \concepts" and \intensional concepts."Henceforth, we will call them \entities," or, for emphasis, \mental entities" (Cf. [54, 55]).The SNePS representation formalism consists of nodes and labeled, directed arcs. Nodes comprise theterms of the formalism; arcs are grammatical punctuation like the parentheses and commas in the standardsyntax of predicate calculus. Every entity represented in SNePS is represented by a node. Even nodes thatrepresent propositions and nodes that represent rules are terms, so that SNePS can represent beliefs aboutbeliefs and rules about rules without limit.There are four types of nodes in SNePS: base nodes, variable nodes, molecular nodes, and pattern nodes.Base nodes and variable nodes have no arcs emanating from them. A base node represents some particularentity that is conceptually di�erent from the entity represented by any other node. Additional properties ofthe entity are assertionally determined (see [66]) by the rest of the network connected to its node. (Isolatednodes cannot be created.) Variable nodes also have no arcs emanating from them, and represent arbitraryindividuals, propositions, etc., again as determined by the rest of the network. Molecular and pattern nodeshave arcs emanating from them and are structurally determined (see [66]) by those arcs, the nodes they go to,the arcs emanating from them, etc. Molecular nodes represent propositions, including rules, or \structuredindividuals." Pattern nodes are similar to open sentences or functional terms with free variables in standardpredicate logic. Every node has an identi�er, which uniquely identi�es it. Base nodes may have identi�ersdetermined by the user. All other nodes have identi�ers created by the system.The current version of SNePS, SNePS 2.1, contains SNeBR, the SNePS Belief Revision system [19] asa standard feature. Therefore, there is always a \current context" speci�ed, which consists of a set ofhypotheses asserted to the system by the user, and a \current belief space," consisting of the current contextand all propositions so far derived from them. Nodes representing propositions currently asserted in the2



current belief space (either hypotheses or derived propositions), are indicated by the system's printing anexclamation mark at the end of their identi�ers. These represent the current beliefs of the cognitive agent.The set of arc labels used to structure the network is determined by the user, so that SNePS can be usedto experiment with di�erent conceptual structures. However, since SNIP, the SNePS Inference Package, is astandard part of SNePS, and SNIP must be able to interpret rules properly, the arc labels used to representrules, and the speci�c representation of rules have been determined by the designers.Examples of the 2D notation of SNePS are postponed until additional concepts are introduced in thenext section.3 History and Variants3.1 SAMENLAQThe earliest antecedent of SNePS was SAMENLAQ [59, 58]. The key ideas are listed in the abstract of [59]:The system is capable of three types of learning: by being explicitly told facts; by deducingfacts implied by a number of previously stored facts; by induction from a given set of examples.The memory structure is a net built up of binary relations, a relation being a label on the edgejoining two nodes. The relations, however, are also nodes and so can be related to other nodeswhich may also be used as relations. Most signi�cantly, a relation can be related to one or morealternate de�nitions in terms of compositions of other relations and restrictions on intermediatenodes.As indicated by this quote, both entities and relations were represented in SAMENLAQ by nodes. Theinformation stored about relations was mostly information putting them in relational classes, and a connec-tion to rules by which instances of the relationship could be deduced. The rules were not as general as allowedby predicate calculus, rather being from the relational calculus and forming a subset of the \path-based"inference rules later allowed in SNePS [50].SAMENLAQ II [58] di�ered from the earlier version mainly in allowing the rules to be recursive, andallowing all instances of a relationship to be found even when some of them were explicitly stored in the netwhile others had to be deduced. 3
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Figure 1: A 2D picture of a SAMENLAQ network showing the information that Max, John, and Davidare male, that Max is the parent of John and David, and that the parent-of relation is the converse of thechild-of relation. Based on [59, p. 49].The 2D notation for SAMENLAQ is shown in Figure 1. The nodes are MAX, JOHN, DAVID, MALE,EQUIV, HAS.GENDER, IS.PARENT.OF, and IS.CHILD.OF(INV), the �rst three representing individuals, MALErepresenting a property, and the last four representing relations. The ovals labeled /1, /2, /3, /4, and/5 are just collectors of sets of nodes, so that, for example, the arc going from MAX through IS.PARENT.OFto /2, together with the arcs from /2 to JOHN and DAVID represent the two relationships, Max is the parentof John and Max is the parent of David. The arc from IS.PARENT.OF through EQUIV to /5 together withthe arc from /5 to IS.CHILD.OF(INV) represents the fact that the parent-of relation is the converse of thechild-of relation. Actually, this piece of information was only used in the direction x IS:CHILD:OF y )y IS:PARENT:OF x. Therefore, in SAMENLAQ II, EQUIV was changed to IMPLBY. There was no 2Dnotation for the relationship between IS.CHILD.OF(INV) and IS.CHILD.OF.Neither was there a 2D notationfor the rest of the rule syntax. 4



SAMENLAQ and SAMENLAQ II were implemented in SNOBOL3.3.2 MENTAL3.2.1 Shapiro's VersionMENTAL [40, 41] was a question answering system that used the MENS knowledge representation formalism,and was part of the MIND system [12]. The two major advances of MENS over SAMENLAQ were therepresentation of statements (relationships, propositions) by nodes, and the representation of rules by nodes.SAMENLAQ had statements represented by three nodes and an arc that tied them together in thecorrect order. The move that allowed the representation of statements in MENS was to use one node forthe statement, and three di�erently labeled arcs from the statement node to the three SAMENLAQ nodes.Following to a suggestion from Martin Kay, Fillmore's Case Grammar Theory [6] was used as a model, andthe number of labeled arcs was increased from three to an arbitrary number, one for the verb and one foreach case.Figure 2 shows an example MENS network for the information in the sentences(1) Jane saw (2) John hit Henry.(3) Henry loves Jane.(4) John loves Jane.(5) Narcissus loves himself.(6) Jane loves John.The nodes (which were called \items" in the original papers) labeled with numbers, a simpli�cation of theoriginal node labeling scheme, represent the corresponding propositions. Each arc has two labels, one foreach direction. For example, the arc from node 1 to node 2 is labeled O, while the arc from node 2 to node1 is labeled *O.Since one proposition can be the object of another, it is necessary to have some means of noting whichnodes represent propositions that are asserted (as opposed to merely used) in the system. This was done bythe \independent statement ag", which \is a single pointer which, when present, always points to the sameitem : : : [it] indicates that the item it is attached to represents some information that has been alleged to betrue. Two other cases are possible|the information may have been alleged to be false : : :or no allegation5
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Figure 2: A MENS network based on [41, Figs. 2{4].6



may have been made as to its truth value" [40, p 106].A conscious decision was made not to use class membership or any other particular relation for thebasic structure of the network, but to allow rules as representationally complete as the predicate calculusto be represented and used. This required techniques for representing variables, logical connectives, andquanti�ers. It was decided to use nodes to represent variables, even though this would seem counter to thenotion that every node represents some conceptual entity. (The representation and semantics of variables inSNePS remains a research topic to this day.) It was also decided to use nodes to represent quanti�ers andconnectives, even though their conceptual status was unclear. (This was changed in the next version. Seebelow.)Variables were allowed to range over all entities represented by nodes, but not over relations representedby arcs, because, \As Quine says, `The ontology to which one's use of language commits him comprisessimply the objects that he treats as falling : : :within the range of values of his variables.' [33, p. 118]" [41,p. 518], and, although this allows the representation of Russell's and other paradoxes, \this possibility willbe accepted. We make no type distinctions among the items and impose no restraints in item existence,leaving the avoidance of paradoxes the responsibility of the human informant" [ibid.].The logical connectives included were: NOT, IMPLIES, IFF, AND, OR, and MUTIMP. \MUTIMPstands for mutual implication. It is a predicate with an arbitrary number of arguments and says thatits arguments mutually imply each other by pairs (are pairwise equivalent)" [41, footnote, p. 519]. A noderepresenting a non-atomic proposition had an arc labeled OP to the connective node, and one of the followingsets of arcs: an arc labeled ARG to the one argument of NOT; arcs labeled ARG1 and ARG2 to the twoarguments of IMPLIES and IFF; an arc labeled MARG to each of the arbitrary number of arguments ofAND, OR, and MUTIMP.Restricted quanti�cation was used to represent quanti�ed propositions. A node representing a quanti�edproposition had an arc labeled Q to the quanti�er node, an arc labeled VB to the variable being bound,an arc labeled R to the restriction, and an arc labeled S to the scope. Both the restriction and the scopecould be arbitrary propositions with the variable free. Thus, this was more general than the usual notion ofrestricted quanti�cation, which allows restriction only by class (a unary predicate). Restricted quanti�cationactually obviates most uses of IMPLIES.Propositions containing either quanti�ers or connectives were termed \deduction rules" because they actlike derived rules of inference in other inference schemes. Figure 3 shows the MENS representation of the7
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Figure 3: MENS representations of \If a male is a child of someone, he is the son of that person" (Based on[41, p. 519{520].) 8



deduction rule, \If a male is a child of someone, he is the son of that person."MENTAL was partially implemented in PL/I, and ran interactively on an IBM System/360. The imple-mentation included \all the procedures for storing information into the data structure, as well as all thosefor explicit retrieval and some of those for implicit retrieval [inference]" [41, p 512].3.2.2 Kay's VersionAlthough discussing the same project, Kay [12] gave a description of the semantic network of the MINDsystem that di�ered in some details from that given above, and di�ered even more in the look of the 2Dnotation. Figure 4 shows this notation for the representation of the information in the sentence \Jane sawJohn hit Henry." The arcs labeled TV pointing to node 4 are the independent statement ags mentionedabove. Note that Kay distinguished the proposition that John hit Henry from the act of John's hittingHenry, and made the latter the object of Jane's seeing.Instead of representing quanti�ers explicitly, Kay used a Sk�olem function technique where free variableswere assumed to be universally quanti�ed, and existentially quanti�ed variables had an arc labeled F to theuniversally quanti�ed variables they depended on. For example, Figure 5 shows how he would represent therule, \Every boy owns a dog." Notice that both the dog and the particular owning act are represented asSk�olem functions of the boy.3.3 SNePS 79When a revised version of MENS/MENTAL was implemented in Lisp, its name was changed to SNePS(Semantic Network Processing System), and, when SNePS was later revised, the original version was retroac-tively named SNePS 79 in honor of the date of publication of [45], the main reference for SNePS.SNePS 79 had \three kinds of arcs: descending, ascending, and auxiliary. For each relation representedby descending arcs, there is a converse relation represented by ascending arcs and vice versa : : :Auxiliaryarcs are used for hanging nonnodal information on nodes and for typing the nodes" [45, p 180]. Besidesbase, variable, molecular, and pattern nodes, SNePS 79 had auxiliary nodes, which \are connected to eachother and to other nodes only by auxiliary arcs. Auxiliary nodes do not represent concepts but are usedby the SNePS system or the SNePS user to type nonauxiliary nodes or to maintain a reference to one ormore nonauxiliary nodes" [ibid]. Additionally, there were temporary variable, molecular, and pattern nodes.9
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Figure 4: The MIND semantic network representation of \Jane saw John hit Henry" as based on [12, Figures6,8]. 10
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of arcs emanating from the node representing the non-atomic formula. The logical connectives used in SNePS79 all took one or two sets of propositions as arguments. They are:or-entailment: fA1; : : : ; Ang_! fC1; : : : ; Cmg is true just in case each Ai entails each Cj. It is representedby an ANT arc to each Ai and a CQ arc to each Cj.and-entailment: fA1; : : : ; Ang^! fC1; : : : ; Cmg is true just in case each Cj is entailed by the conjunctionof all the Ai. It is represented by an &ANT arc to each Ai and a CQ arc to each Cj.and-or: nWVjifP1; : : : ; Png is true just in case at least i and at most j of the P are true. It is represented bya MIN auxiliary arc to the auxiliary node i, a MAX auxiliary arc to the auxiliary node j, and ARG arcsto each of the P s.thresh: n�ifP1; : : : ; Png is true just in case either fewer than i of the P are true, or else they all are. It isrepresented by a THRESH auxiliary arc to the auxiliary node i, and ARG arcs to each of the P s.The Universal (Existential) Quanti�er was represented by an arc labeled AVB (EVB) from the node representingthe scope of the quanti�er to the variable node being bound. Restricted quanti�cation was eliminated becauseit was felt to be unnecessary, an opinion since reversed.SNIP [20, 42, 53], the SNePS Inference Package included as a part of SNePS 79, implemented theelimination rules for all of the quanti�ers and connectives (deriving either a positive or a negative proposition),and the introduction rule for and-or. SNIP could use any rule either for backwards chaining, or for forwardchaining, depending on whether the user asked a question or added new data (see [52]).Later, the numerical quanti�er (see [44]), path-based inference (see [43, 61, 50]), function nodes (see [47]),and default rules (see [46] and [54, p 285{287]) were added. The numerical quanti�er is a way of storingand reasoning with statements of the form \Between 3 and 5 people are in the meeting" or \Every personhas exactly one mother and exactly one father." Path-based inference is a way of specifying and using rulesthat infer an arc between two nodes from the existence of a path of arcs between those two nodes, andallows inheritance rules to be speci�ed. Function nodes were a form of procedural (semantic) attachment,where the instances of a proposition were computed rather than being inferred, and where forward inferencecould trigger action. Default rules were representing by allowing default consequences on and-entailmentand or-entailment rules, and were implemented by having SNIP try to derive the negation of the defaultconsequent, and assert the consequent only if the negation were not derivable.13
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Figure 7: A SNePS 79 representation of \Jane believes that John didn't hit Henry, but he did," based on[45, Figure 17]Since 1WV11fPg means the assertion of P , the independent statement pointer was no longer needed.Instead, every propositional node (a molecular node representing a proposition) with no descending arccoming into it was taken to represent a proposition asserted in the network (believed by the cognitive agent).For example, Figure 7 shows the SNePS 79 representation of \Jane believes that John didn't hit Henry, buthe did," using the representation of atomic propositions used in [45]. Node M1 represents the propositionthat John hit Henry, node M2 uses and-or to represent the proposition that John didn't hit Henry, while nodeM4 uses and-or to represent the proposition that, indeed, John hit Henry. Node M3 represents the propositionthat Jane believes the proposition represented by node M2. The technique whereby the asserted nodes areprecisely the non-dominated nodes speci�es that the cognitive agent believes the propositions representedby nodes M3 and M4.In [45], it was explicitly stated that one could reuse a molecular node, as node M1 is being used both bynode M2 and node M4, or one could duplicate it by having another node with the same set of arcs to the same14



set of nodes. Later experience and thought convinced us that such node duplication should not be done, butSNePS 79 never enforced that decision.SNePS 79 was implemented in a series of dialects of Lisp running on a series of di�erent computers atIndiana University and SUNY at Bu�alo.3.4 SNePS 2.0SNePS 2.0 was a complete redesign and reimplementation of SNePS in Common Lisp using an abstractdata type approach explicated in [21]. It also incorporated theoretical decisions that had been made duringexperiments with SNePS 79. Some of the prominent di�erences of SNePS 2.0 from SNePS 79 were:� Auxiliary nodes and function nodes were eliminated as not making conceptual sense. Function nodesare being replaced by a new theory of acting [13, 14, 51].� An assertion tag was added to each node. The assertions of the system (beliefs of the cognitive agent)were now the set of nodes with the assertion tags set on. This eliminated much use of the and-or assertion operator, which had the additional problem of it's not being clear what the conceptualdi�erence was between, e.g., nodes M1 and M4 in Figure 7. Figure 8 shows the Sneps 2.0 version ofFigure 7. Asserted nodes are indicated by their identi�ers being printed with \!" appended. Becauseof the elimination of auxiliary nodes, the parameters of the and-or are now regular nodes, but this willbe changed in the future.� Temporary nodes were eliminated, since an unasserted permanent node could be used to represent aproposition the cognitive agent is contemplating.� The system will not build a new node that dominates the same structure as an already extant node,thus enforcing the Uniqueness Principle.� The Unique Variable Binding Rule, according to which two variables in one rule cannot be instantiatedto the same term (see [48]), was implemented and enforced by SNIP 2.0.� The Universal Quanti�er is only supported if on a proposition whose main connective is one of theentailments, thus enforcing a kind of restricted quanti�er. (The Existential Quanti�er has not yet beenreimplemented.) The arc used to represent the Universal Quanti�er is FORALL instead of AVB.15
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� Thresh was given an additional parameter. n�jifP1; : : : ; Png is true just in case either fewer than i ormore than j of the P are true, The arc THRESHMAX goes to j.� Auxiliary arcs were eliminated. Ascending arcs are no longer discussed|they are just considered tobe following descending arcs backwards.� Default consequences, the Existential Quanti�er, and the Numerical Quanti�er were not yet reimple-mented.3.5 SNePS 2.1SNePS 2.1 is SNePS 2.0 with the inclusion of SNeBR, the SNePS Belief Revision System [19]. The signi�canceof this was discussed above in Section 2. In brief summary, the assertion ag was replaced by a pointer tothe context in which the proposition is either an hypothesis or a derived proposition, so the appearance ofthe \!" su�x becomes dependent on the current context, which can be changed by the user.If a contradiction ever arises in SNePS 2.1, by the assertion of a proposition and its negation in the samecontext, the system will engage the user in a dialogue to identify the culprit and remove it from the context.SNePS 2.1 can use the hypothetical reasoning facilities of SNeBR [17] to implement the entailmentintroduction rules and the rule of Universal Generalization.4 Examples of Use4.1 \Standard Tricky" ExampleProbably because so much linguistic work was done by missionaries working to translate the Christian Bibleinto \native" languages, the Christian \Lord's Prayer" is often taken to be a \standard tricky" example oflinguistic analysis. In this section, we show a possible representation of that example using SNePS/CASSIEcase frames. For those unfamiliar with it, one version of the \Lord's Prayer" is the following:Our Father which art in heaven,Hallowed be thy name.Thy kingdom come. 17



Thy will be done in earth, as it is in heaven.Now, CASSIE is not yet a poet, so let us instead consider the following, more prosaic, version:Our Father, who is in heaven,[I pray that] your name [will] be hallowed,[I pray that] your kingdom [will] come,[I pray that] your will [will] be done on earth [in the same way that] it is [done] in heaven.Note that in this version we have interpolated some phrases to clarify (or make more understandable) thesyntax. Clearly, some of these interpolations are, in fact, interpretations. An even more streamlined version,which is the one we choose to represent, is this:I pray that our Father (who is in heaven)'s name will be hallowed, kingdom will come, and willwill be done on earth in the same way that it is done in heaven.The representation is shown in Figure 9, and a key to the �gure is given in Figure 10. The representationis incomplete: we have used the linguist's triangles to hide the structure of node m16, about which we shallsay more, and there would also be rules such as those in Figure 11. Also, the representation of `in heaven' is avastly oversimpli�ed version of the representation described in Yuhan (forthcoming). Yuhan's theory wouldinterpret the sentence `My Father is in heaven' by a semantic network containing the following information:Due to the existing act of my Father,the Figure Object, individual b2whereb2 is the Father of b1andb2 is named Jehovahwas BE-LOCatedat a place that has a Spatial Relation of \in"to the Ground Object, individual m8where m8 is named heaven.In Figure A, we have represented the phrase `thy will be done on earth as it is in heaven' as if it wereinterpreted to mean \the manner in which thy will is done on earth be the same as the manner in which18



Figure 9: SNePS/CASSIE representation of the Lord's Prayer.19



Figure 10: Interpretation of the nodes in Figure 9.
20



Figure 11: Sample rule node for Lord's Prayer network: For all v1, v2, v3, if v3 is a v2 of v1, then v3 is av2.thy will is done in heaven" (and we have omitted the details of the representation of \the manner in whichthy will is done hat place Xi"). There are a myriad of hermeneutic, representational, and methodologicalissues here. On the hermeneutic side, there is the question of how best to interpret the original phrase. Forinstance, the interpretation we have outlined is that the phrase asserts an equivalence. But that loses acertain asymmetry in the original. Perhaps a better alternative would be one of the following:1. : : : that all properties of the way in which our Father's will is done in heaven be properties of the wayin which it is done on earth.2. : : : that 8x[x is our Father's will in heaven ! x is our Father's will on earth]3. it is the case that our Father's will is done in heaven, and I pray that it be done on earth, and I praythat hone of the abovei.But this leads to the methodological issue, which is the most important: it is not the job of the knowledge-representation researcher to do Biblical exegesis. Once an interpretation is chosen, however, the KR re-searcher can decide how best to represent it. Perhaps it can be represented using already existing case21



frames; but perhaps new case frames, and attendant rules characterizing their inferential behavior, need tobe developed (with the help of linguists and philosophers).5 Some Current Uses of SNePSIn this section, we briey summarize some current research projects that are using SNePS.5.1 Planning and Acting.SNACTor, the SNePS acting system [14, 49, 51, 60], is being developed to model in SNePS rational cognitiveagents who can also plan and act. The modeled agent should be able to understand natural language; reasonabout beliefs; act rationally based on its beliefs; plan; recognize plans; and discuss its plans, acts, andbeliefs. Doing all these tasks in a single coherent framework poses severe constraints. We have designed andimplemented intensional propositional representations for plans.We treat acts and plans as mental objects. This enables the modeled agent to discuss, formulate, use, rec-ognize, and reason about acts and plans, which is a major advance over operator-based descriptions of plans.Operator-based formulations of actions tend to alienate the discussion of operators themselves. Operatorsare usually speci�ed in a di�erent language from that used for representing beliefs about states. Moreover,plans (or procedural networks) constructed from these operators can only be accessed by specialized pro-grams (critics, executors) and, like operators, are represented in still another formalism. Our representationsfor acts, actions, goals, and plans build upon and add to the intensional propositional representations ofSNePS. This framework enables us to tackle various tasks mentioned above in a uniform and coherent fash-ion. Figure 5.1 shows an example of our representations of plans in SNePS. The node M19 represents theproposition \M18 is a plan to perform the act represented by M17." M17 represents the act of performingthe action \stack" on A (which is represented by node M15) and B (which is represented by node M12). M18is the act (\snsequene") of sequencing two acts M11 followed by M14. M11 represents the act of performing\put" on B and the TABLE, and M14 is the act of performing \put" on A and B. Thus M19 is believed bythe agent as \A plan to stack A on B is to �rst put B on the table and then put A on B."Beliefs are stored as SNePS propositions in the agent's belief space (called a SNeBR context, see [19]).SNeBR (the SNePS system for Belief Revision), an assumption-based truth maintenance system [18, 17, 19],ensures that the agent's belief space is always consistent. In SNACTor, all interaction with the agent is done22
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using a domain-speci�c (blocks-world) natural language component. Sentences are parsed by a grammar(written in an ATN) and translated into SNePSUL (the SNePS User Language) commands that form beliefsin the agent's belief space. World-model rules for reasoning in the agent's belief space are also translatedand represented as agent's beliefs.The system is currently being advanced in several directions. See [13, 15] for further information.5.2 Combining Linguistic and Pictorial Information.There are many situations where words and pictures are combined to form a communicative unit; examplesin the print media include pictures with captions, annotated diagrams, and weather charts. In order for acomputer system to synthesize the information from these two diverse sources of information, it is necessaryto perform the preliminary operations of natural-language processing of the text and image interpretationof the associated picture. This would result in an initial interpretation of the text and image, followingwhich an attempt at consolidation of the information could be made. Although vision and natural-languageprocessing are challenging tasks, since they are severely under-constrained, natural-language processingcan more easily exploit constraints posed by the syntax of the language than vision systems can exploitconstraints about the physical world. This fact, combined with the observation that the text often describessalient features of the accompanying picture in joint communicative units, leads to the idea of using theinformation contained in the text as a guide to interpreting the picture. This research focuses on a methodof extracting visual information from text, which results in a relational graph describing the hypothesizedstructure of the accompanying picture (in terms of the objects present and their spatial relationships). Therelational graph is subsequently used by a vision system to guide the interpretation of the picture. A systemhas been implemented that labels human faces in a newspaper photograph, based on information obtainedfrom parsing the caption. A common representation in SNePS is used for the knowledge contained in boththe picture and the caption. The theory is general enough to permit construction of a picture when givenarbitrary descriptive text (without an accompanying picture).Newspaper photographs have all the elements required for a true integration of linguistic and visualinformation. Accompanying captions usually identify objects and provide background information whichthe photograph alone cannot. Photographs, on the other hand, provide visual detail which the captionsdo not. Newspaper captions often identify people in a picture through visual detail such as \Tom Jones,wearing sunglasses : : :". In order for a computer system to be able to identify Tom Jones, it is necessary24



to understand the visual implication of the phrase \wearing sunglasses". The face satisfying all the impliedvisual constraints could then be labeled accordingly.The system uses a three-stage process to identify human faces in newspaper photographs. Only thosephotographs whose captions are factual but sometimes incomplete in their description of the photographare considered. In the �rst stage, information pertaining to the story is extracted from the caption, and astructure of the picture in terms of the objects present and spatial relationships between them is predicted.The information contained in this structure would be su�cient for generating a picture representing themeaning of the caption. Using this information to label faces in an existing picture, however, entails furtherprocessing. The second stage, which constitutes the vision component, calls on a procedure to locate humanfaces in photographs when the number of faces and their approximate sizes are known. Although the secondstage locates faces, it does not know whose they are. The last stage establishes a unique correlation betweennames mentioned in the caption and their corresponding areas in the image. These associations are recordedin a SNePS network and enable us to selectively view human faces as well as obtain information about them.Input to the system is a digitized image of a newspaper photograph with a caption, as in Figure 14.Figure 13 illustrates the partial output of the parser on the caption of Figure 14. It postulates thatfour humans, namely Joseph Crowley, Paul Cotter, John Webb, and David Buck, are present in the picture(nodes m38, m42, m46, and m50). Furthermore, it postulates that Joseph Crowley appears above theother three in the picture (since he is \standing"), as represented by nodes m51,m52, andm53. The left toright ordering of the remaining three members is represented by the \left-of" relationship in nodes m54 andm55. Factual information obtained from the caption (m31) is separated from derived visual information(b12). The hypothesized presence of an object in the picture is represented by a node (e.g., m38) withthree arcs: COLLECTION, referring to the visual model it is part of; TYPE, indicating whether the objectis explicitly mentioned in the caption or inferred to be present; and MEMBER, pointing to a detailed modelof this object (e.g., b10). A node such as m37 provides the link between the visual model of an object andthe proper name it is associated with (in this case, `Paul Cotter'). Hypothesized spatial relations betweenobjects are represented by a node (e.g.,m52) with 3 arcs pointing to (a) the type of spatial relation and (b)the nodes representing the two arguments to this binary relation. The system returns a labeling of parts ofthe image corresponding to the faces of the people mentioned in the caption, as in Figures 15a and b. See[62] and [63] for further details. 25



Figure 13: Partial output of the parser on caption of Figure 14.26



Figure 14: A newspaper photograph with caption \Wearing their new Celtics sunglasses are Joseph Crowley,standing with pennant, and seated from left, Paul Cotter, John Webb and David Buck."5.3 Graphical Deep Knowledge.During work on the interface of the Versatile Maintenance Expert System (VMES; cf. [56, 57]), a theory ofGraphical Deep Knowledge was developed. This representation is not pixel-oriented but combines iconic,meaningful, graphical primitives with propositional information about classes, attributes, positions, inheri-tability, reference frames, etc. Of special interest in this research is the use of part hierarchies. In [9, 11], asystem of three di�erent part hierarchies was developed, namely real parts, subassemblies, and subclusters.This system of part hierarchies was extended in [10]. In this latest version, parts may either be additive,constituting, or replacing. These di�erent part hierarchies di�er in their behavior when a graphical represen-tation containing a small amount of detail is extended to contain a large amount of detail. An additive partis simply added to the previous picture. A set of replacing parts forces the removal of the original pictureand replaces it with a diagram of all its parts. Finally, constituting parts describe an object that has noform icon of its own. In this case, there is no distinction between the two pictures. For more details of thisanalysis and for details of the SNePS representation of these di�erent part hierarchies, the reader is referredto [10]. 27



Figure 15: (a) output of system when asked to display Joseph Crowley (b) output of system when asked todisplay Paul Cotter 28



Figure 16: The ship.The power of Graphical Deep Knowledge is derived from the fact that most of the graphical informationis integrated in the normal propositional representation mode of SNePS, so that it is possible to performreasoning tasks about the graphical appearance of the represented objects. On the other hand, becausethe system generates diagrams from the propositional representation (and the icons), most changes to theknowledge state of the system can be immediately reected in changes of the graphical appearance of thedescribed objects on the screen. Graphical Deep Knowledge therefore permits the easy integration of naturallanguage processing and graphics, because a common knowledge representation is used.Figure 16 shows an example from [9]. This �gure was generated from a knowledge base containing theSNePS network shown in Figure 17. This picture of the network, in turn, was generated according to naturallanguage commands (minimally edited for better understanding).The structure under m1 asserts that ship-1 is a ship in the functional display modality. (Objects can bedisplayed in di�erent modalities, e.g., functional or structural. For details, see [9].) The structure under m2asserts that a ship has (in the functional modality) the form ship-form. The node ship-form has a link to aLISP function that, if executed, draws an icon that looks like a ship.The node m12 de�nes a coordinate system that is Cartesian, is on the screen, is called system-1, and29



Figure 17: Knowledge base required to generate Figure 1630



has two axes called s-x and s-y. Node m7 and all the nodes that are logically under it (even if they aredrawn above it!) de�ne the position of ship-1 in the coordinate system system-1 as (200 pixels, 300 pixels)in the directions de�ned by s-x and s-y. The system makes the simplifying assumption that any \�rst axis"speci�ed by the user is parallel to the screen x axis.Nodem3 and the nodes (logically) under it assert that ship-1 is faulty. Nodem5 and the nodes (logically)under it assert that faultiness is expressed by a rotation of 180 degrees. This is the reason why the ship isdisplayed upside down. The node rotate-jg, similar to the node ship-form, has a functional attachmentthat rotates an icon by the speci�ed angle.It should be pointed out that except for the special meaning of the node SCREEN and for the prede�nedrotation function, all information in this network has been created on the y, either by natural languageor by a simple, built-in, icon editor. Display requests addressed to this system in natural language are notparsed into a network representation, but immediately executed, resulting in a �gure like Figure 16.5.4 Knowledge Based Lexicons.AI systems that involve natural language usually have at least three di�erent knowledge bases: one fordomain information, one for language rules, and one for information about words. Especially in comparisonwith domain information, knowledge about words tends to be isolated, fragmented, and impoverished. Itis isolated, in that much of the information lies in specialized structures to which the system's reasoningmechanisms have little or no access, and which must be manipulated by specialized (and usually verylimited) algorithms. It is fragmented, in that most on-line lexicons represent primarily syntactic information.Semantic information, when it is present at all, is usually in a separate representation scheme, accessible bydi�erent techniques. Information which requires both syntax and semantics for its representation usuallyfalls through the cracks, as does information which is at least in part semantic, but which is less about theworld than about the words. It is impoverished, in that all kinds of information tend to be representedsketchily, with little apparent concern for giving systems the kinds of information about words to whichhumans have routine access.The work discussed in this section involves developing representation schemes for lexical information, inwhich all lexical information is represented in a single, uni�ed SNePS network, accessible to the same retrievaland inference mechanisms as domain information. The lexicons under discussion are being built using semi-automated techniques from machine readable dictionaries; the representation is intended to support medium31



scale (semi-realistic) lexicons for a wide range of purposes. (Full, realistic sized lexicons require substantialback-end support because of problems of scale.)This research is based on the linguistic theory of the relational lexicon [1]. Lexical relations providea formal mechanism for expressing relations among concepts. Traditionally, lexical relations have beenapproached as a means for representing semantic information about words. Our approach extends thetheory of lexical relations to embrace syntactic and morphological as well as semantic relations. The resultinghierarchy of lexical relations may be thought of as a kind of structural primitives, which represent cognitiverelations among lexical items. Information about the lexical relation hierarchy is represented in a SNePSnetwork. Information about speci�c words is integrated into the hierarchy network, resulting in a largenetwork containing a (potentially dynamic) lexicon, with syntactic, semantic, and morphological informationall readily available. The resulting representation distinguishes among homonym labels, words, stringsrepresenting word spellings, and word senses, allowing the kinds of reasoning about words that peopleroutinely make. The representation used has several unusual features, among them the clear importance ofpath-based inference.The relational hierarchy is a fairly straightforward instance of a hierarchical knowledge structure. At thepresent level of development, the most common hierarchical relationships involved are most obviously viewedas set membership and subset/superset relations. The one trap to avoid lies in representing the hierarchicalinformation in the same way as one would represent, for instance, the information (derived from whateversource, but construed as part of the lexicon) that dogs are mammals.There is, however, a relatively simple problem of recursion in representation. Since lexical relations arethemselves objects of knowledge, within the SNePS formalism, they should be represented by nodes, notarcs. Now say that we represent the relation between `Mt. Rushmore' and `mountain' by something likean arg1-arg2-rel frame, with a rel arc to a node called something like `member', which represents the lexicalrelation which holds between `Mt. Rushmore' and `mountain'. Now how do we say that the lexical relation`member' belongs to the class of taxonomic lexical relations? If we try to use the same `member' node asthe �rst argument and also as the relation, we wind up with a pathological proposition node.The reason this is a problem, and not a blunder, is that the lexical relation is not really the same thingthat holds between itself and its parent class. The problem here is one of distinguishing metalevel informationabout the lexical relation hierarchy from object level information which we use it to represent. We can seethe importance of distinguishing them if we look at the consequences of trying to use path-based inference toimplement inheritance down hierarchical subtrees. When we construct a path-based rule to make all object32



Figure 18: Representation of Hierarchical Facts.property markers behave alike in some respect, we don't want to have to �lter for instances of membershiplike `Mt. Rushmore' to `mountain', or of subset like `dog' to `mammal'.Figure 5.4 shows the SNePS representation for a fragment of the lexical relation hierarchy. Throughoutthe examples, we adopt several node naming conventions for simplicity. Node names in all capitals representmembers of the lexical relations hierarchy. Proposition nodes are numbered beginning with m1 as in otherSNePS networks. Other node names in lower case represent word sense nodes.Information about words takes several forms. The �rst, and simplest, is lexical relation instances. Thisinformation encodes everything from taxonomic classi�cation relations (including relations like TAXON,which closely corresponds to the traditional IS-A link, but also synonymy relations, antonymy relations, andothers) to generic role relations (for instance the Act/Actor relation, which holds, e.g., between \bake" and\baker") to morphological and syntactic relations such as the State/Verb relation which holds between anominalized verb and its verb. The second kind of information could be viewed as collapsed lexical relations,and covers such relatively simple markers as part of speech (associated with sense nodes), alternate spellings(relation between a headword node and a string node), and the like. The third reects information aboutthe sense-subsense hierarchy. This is the familiar dictionary de�nition hierarchy, under which a word mayhave more speci�c senses which represent re�nements on more general ones.We now integrate all three kinds of information about words into the hierarchy network in the obviousway. Figure 5.4 represents a digested form of the information about some words related to the most commonsense of \sheep" as derived from de�nitions inWebster's Seventh Collegiate Dictionary. Note that this senseof \sheep" has a subsense, which covers only a single species. We have omitted all nodes and arcs above the33
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classFigure 19: Representation of Lexical Information.sense level (i.e., headword and string nodes and their associated frames) for simplicity, and collapsed partsof the lexical relation hierarchy (especially in nodes m4 and m5) to make the �gure more readable.The resulting lexicon can be used either as stand-alone support for some external activity (such asautomated query expansion for information retrieval) or as an integral part of the knowledge base for anatural language system. For the second option, which is the more interesting, the remaining information in34



the knowledge base is integrated into the lexicon representation, with semantic information relating to senseshanging o� the appropriate nodes. The result is a knowledge base which not only has ideas and knows whatwords are typically used to represent them (the e�ect of using something like lex arcs in a more traditionalSNePS-ish representation), but knows about those words and can reason on the basis of its knowledge. (Moredetailed descriptions of this research are [7, 25, 24, 27], and [26].5.5 Kinds of Opacity and Their Representations.Examinations of referential opacity (the failure of certain linguistic contexts to be \transparent" to sub-stitution of equivalents) have almost invariably focused on propositional attitudes, and even more speci�cally,on belief sentences. This focus has obscured the fact that there are a number of other kinds of sentencesin which the logical-linguistic phenomenon of referential opacity occurs. In addition to the propositionalattitudes, which express an agent's attitude towards some proposition or another, such as(1) John believes that the Morning Star is blue,there are other kinds of referentially opaque sentences. One of these is attributive adverbs, like quickly in(2) John swam the river quickly.We have proposed a new treatment of attributive adverbs as generating opacity resting on the general theoryof action proposed by the philosopher Donald Davidson [5], though he himself holds that such adverbs mustbe excluded from his theory.According to Davidson, a verb of action refers to an event, an act. In (2), John performed a certain act,a swimming of the river. As far as swimmings of the river go, his swimming of it was quick. If the time ittook John to swim the river is compared to the times it has taken others to swim the river, John's time wasamong the fastest. John's act of swimming the river may, however, also be described as a crossing of theriver. Thus, we may add the identity statement(3) John's swimming of the river is a crossing of the river.But though his swimming is a crossing, it does not follow that(4) John crossed the river quickly.On the contrary, it is very likely that he crossed the river slowly. If the time it took John to cross the riveris compared to the times it has taken others to cross the river, which will perhaps include such modes of35



crossing as rowing, swinging (on a rope), and driving (on a bridge), John's time would no doubt be amongthe slowest . In other words, when we describe John's act as a swimming, it is quick, but when we describeit as a crossing, it is slow. If we accept that the one act cannot be both quick and slow, then the swimmingand the crossing cannot be identi�ed with the act. In an intensional system, a natural approach to exploreis to treat the swimming and the crossing as di�erent intensional objects.The intensional objects to be used in our representations are called aspects, which are reminiscent ofFrege's senses [8]. Given a description, d, the Fregean sense associated with it is the meaning of d. Theaspect associated with d, however, is the result of conceiving of the thing d refers to as, or qua, a thing towhich the description d applies. Aspects are objects, albeit intensional, abstract objects. The general formof an aspect is: aspect := object , qua description true of the objectIn [67] this intuitive notion of \qua" is replaced formally using Church's �{abstraction [4].The sentence containing an attributive adverb(2) John swam the river quickly,is understood as having the logical form(5) There is someone b1 named John, there is an action b2 that is a swimming,and there is an object b3 that is a member of the class of rivers, such thatb1 is the agent of b2, and b2 has b3 as its direct object, and there is anaspect a1 | b2, qua m1 | which is quick.Assuming that John's swimming of the river is the same event as his crossing of the river, and that(6) John crossed the river slowly,the representations of (2) and (6) are as in Figure 20No inferences from the properties of an aspect to properties of the object the aspect is an aspect of, arepermitted. Thus, nothing is said to be both quick and slow, since a1 (i.e., b2, qua being a swimming) is adi�erent aspect from a2 (i.e., b2, qua being a crossing). (Details are in [67]; cf. also [68].)36



Figure 20: Representation of (2) and (6).5.6 Representing Fiction in SNePS.As part of the SUNY Bu�alo Center for Cognitive Science's project on Cognitive and Computer Systems forUnderstanding Narrative Text, we are constructing a computational cognitive agent, Cassie, implementedin SNePS, who will be able to read a narrative and comprehend the indexical information in it, speci�cally,where the events in the narrative are taking place (in the world of the narrative), when they take place (inthe time-line of the narrative), who the participants in these events are (the characters in the world of thenarrative), and from whose point of view the events and characters are described [3, 38, 39].In order to do this, Cassie has to be able to (1) read a narrative (in particular, a �ctional narrative),(2) build a mental-model representation of the story and the story-world, and (3) use that mental modelto understand and to answer questions about the narrative. To build the mental model, she will needto contribute something to her understanding of the story. One contribution is in the form of a \deicticcenter"|a data structure that contains the indexical information needed to track the who, when, and where.Another contribution is background knowledge about the real world. For instance, if Cassie is reading37



a novel about the Civil War, she would presumably bring to her understanding of it some knowledge ofthe Civil War, such as that Abraham Lincoln was the 16th president and was assassinated in 1865, even ifthat information is not explicitly stated in the novel. The novel might go on to make other claims aboutLincoln, such as that he had a particular conversation with General Grant on a particular day in 1860 (evenif, in fact, they never talked on that day|this is a novel, after all). Such a claim would probably not beinconsistent with anything Cassie antecedently believed about Lincoln. But some claims in the novel mightbe thus inconsistent, e.g., if she read that Lincoln was re-elected to a third term in 1868. So Cassie has to beable to represent the information presented in the narrative, keep it suitably segregated from her backgroundknowledge, yet be able to have information from her antecedent beliefs \migrate" into her model of the storyworld as well as have information from the story world \migrate" back into her store of beliefs about thereal world.There have been a number of theories in philosophy about the nature of �ctional objects. All of theseare ontological theories concerned with such questions as: What are �ctional objects? How can they haveproperties? How are they related to non-�ctional entities? However, for the purposes of our project, weneed to be more concerned with \epistemological" or processing/computational/interpretive issues: Howdoes a reader understand a (�ctional) narrative? How does a reader decide whether and to what extent itis �ctional? How does a reader construct a mental model of the story world? How does a reader represent�ctional entities and their properties? How does a reader integrate his or her knowledge of the real worldwith what s/he reads in the narrative? And so on. Some of these are, indeed, ontological issues, butthey are what we have elsewhere termed issues in \epistemological ontology" [34]: Corresponding to thepurely or metaphysically ontological question, \What are �ctional objects?", we ask the epistemologicallyontological question, \How does a cognitive agent represent �ctional objects?". And corresponding to thepurely ontological question, \How are properties predicated of �ctional objects?", we ask the epistemologicallyontological question, \How does a cognitive agent represent the properties of �ctional objects?"In order for Cassie to read a narrative, the knowledge representations she should construct will include astory operator (like [16] or [64]), only one mode of predication of properties to (�ctional) objects (like [28]),and only one kind of property (like [22, 23]). It must be kept in mind that all entities represented in Cassie'smind are just that|entities in her mind|not entities some of which are real and some of which are �ctional.The story operator will set up a \story space" that is formally equivalent to a belief space (cf. [35, 55,65]). It will allow Cassie to distinguish her own beliefs about London from (her beliefs about) claims madeabout London in a story in precisely the same way that belief spaces allow Cassie to distinguish her own38



beliefs about Lucy from her beliefs about John's beliefs about Lucy (cf. [35, 54]).But how should this be handled? Consider Figure 21. Suppose that one of Cassie's background beliefs isthat Lincoln died in 1865 and that she reads in a narrative that Lincoln was re-elected in 1868. There is aprocessing problem: Cassie is faced with an inconsistency. There are two solutions. First, the SNePS BeliefRevision system (SNeBR; [19]) can be invoked. The detection of the inconsistency will cause a split to bemade into two (consistent) contexts. But note that the net e�ect of this is to embed the second statement(the re-election in 1868) in a story operator. So why not start with a story operator in the �rst place? Thisis the second solution, as shown in Figure 22.But now let's complicate the data a bit. Consider Figure 23. Suppose that Cassie's background beliefsinclude both that Lincoln was the 16th president and that Lincoln died in 1865, and suppose once againthat Cassie reads in a narrative that Lincoln was re-elected in 1868. The processing \problem" here (it isnot really a problem) is that we want the �rst of Cassie's two background beliefs to \migrate into" the storyworld. The reason that this is not a problem is that those �rst two background beliefs are Cassie's beliefsand the third is not. The �rst one (that Lincoln was 16th president) is both believed by Cassie and is in thestory world.Consider Figure 24. If Cassie knows that she is reading a narrative, we want it to be the case that shebelieves (1) (that Washington was the �rst president), and we want both (1) and (2) (that he chopped downthe cherry tree) to be in the story world. How do we accomplish this? By starting with a story operator on(2). In general, we will put a story operator on all narrative predications.But then we face two problems: Background beliefs of the reader are normally brought to bear onunderstanding the story, as we saw in Figure 21 and Figure 22 (cf. [38]). And we often come to learn (or,at least, come to have beliefs) about the real world from reading �ctional narratives. Thus, we need to havetwo rules:(R1) Propositions outside the story space established by the story operator (i.e., antecedently believed bythe reader) are assumed, when necessary , to hold within that story space by default and defeasibly .(R2) Propositions inside the story space are assumed, when necessary , to hold outside the that story spaceby default and defeasibly .Some comments: The \when necessary" clause is there to prevent an explosion in the size of belief andstory spaces; the migrations permitted by these two rules would only take place on an as-needed basis for39



Figure 21: Example 1a40



Figure 22: Example 1b41



Figure 23: Example 242



Figure 24: Example 343



understanding the story or for understanding the world around us. The \by default" clause is there forobvious reasons: we wouldn't want to have Lincoln's dying in 1865 migrate into a narrative in which he isre-elected in 1868. The \defeasibly" clause is there to undo any damage that might be done at a later pointin the narrative if such a migration had taken place, innocently, at an earlier point. Rule (R1) aids in ourunderstanding of the story. Rule (R2) allows us to enlarge our views of the world from reading literature,while also allowing us to segregate our real-world beliefs from our story-world beliefs.In the Examples, we have used the linguist's triangle to hide irrelevant details, but it is worth showinghow the story operator looks in detail. This is shown in Figure 25.For more details, see [36] and [37].5.7 Natural Category Systems.We have developed representations for natural category systems based on a Roschian model of categoriesthat has been extended to accommodate the recent categorization research of Barsalou (1982, 1987, 1988),Keil (1987), Medin (1986, 1987), Murphy (1986, 1988), Neisser (1987), and Lako� (1987). We take issuewith the assumption, implicit in most arti�cial intelligence (AI), natural language processing (NLP) systemsthat generic concepts can be viewed simply as collections of attributes. Rather, richer representations areneeded to explain conceptual coherence and the richness of conceptual structure (Barsalou 1988; Lako� 1987;Keil 1987; Medin 1987; Murphy 1987, 1988). I.e., categories are further structured by deeper conceptualrelations and organized by core principles; lists of attributes fail to capture interproperty (intraconcept) andinterconcept relations. We believe that these deeper conceptual relations encode commonsense knowledgeabout the world necessary to support natural language understanding.Our system uses default generalizations to represent facts about the typical exemplars or members ofa category. Thus, a basic level category in our semantic network is, in part, a collection of default gener-alizations about part/whole structure, image schematic structure, additional percepts, and functional andinteractional properties. Figure 26 shows the default rule that can be paraphrased as For all x, if x is a car,then typically x has an engine or more simply as Typically, cars have engines.We build many such default generalizations about the basic level category car ; i.e., generalizations abouttypical parts and other attributes. It may seem cumbersome to build such a default rule to represent a genericsentence such as: cars have engines; why not just build a prototypical car that has an engine? Althoughwe want to capture prototype e�ects in our representations, we agree with Rosch (1978) and Lako� (1987)44



Figure 25: The story operator45



Figure 26: The following de�nes a path to �nd all the parts of basic-level objects:(def-path parts (compose arg2- arg1 part- whole forall- ant class))
46



Figure 27: Engines are interior parts of carsthat the existence of these e�ects merely indicates that prototypes must have some place in theories ofrepresentation, processing, and learning of categories.As people's knowledge increases, they come to reject mere collections of surface attributes and othertypical features as being adequate to specify concepts (Barsalou 1988; Keil 1987; Medin & Wattenmaker1987; Murphy & Medin 1985). Our current hypothesis is that basic level categories start out as percep-tual categories; in this stage of development the knowledge associated with categories consists of defaultgeneralizations about surface parts and other perceptual attributes. As learning and development proceed,additional conceptual relations based on theories and causal mental models further structure these categoriesand attributes. I.e., our knowledge becomes organized by core principles.We build additional default rules for these \deeper" conceptual relations. Thus, in addition to part-wholerelations (m5 in Figure 26) and relations about other percepts, we structure basic level categories such as carwith enabling, functional, and spatial relations such as those shown in Figures 27{29. (We have not shownthe entire default rules, just the additional conceptual relations. I.e., m8, m9, and m11 would replace m5,the part-whole relation, in the default rule of Figure 26, creating three additional, similar default rules.)Figure 27 shows a spatial relation that further structures the parts of car , which can be paraphrased asengines are inside (or interior parts) of cars. We structure the external parts of car similarly. Figure 28is used to further structure or cluster mechanical parts of cars, such as the brakes and engine, and canbe paraphrased as engines are mechanical parts of cars (together with m7). Figure 29 shows an enablingrelation: engines enable cars to run/go. Thus, in our system, there will be many assertions linking carand engine: the knowledge associated with a basic level category such as car is highly interconnected and47



Figure 28: Engines are mechanical parts of cars

Figure 29: Engines enable cars to run48



organized by spatial, temporal, causal, explanatory, and enabling relations.In our system, concepts are not invariant structures retrieved intact from long-term memory (LTM), butrather are constructed in working memory (WM), tailored to a particular linguistic context on a particularoccasion. I.e., di�erent information associated with a category in LTM is incorporated in the temporaryconcept constructed in WM in di�erent contexts. Categorizing an entity provides access to a large amountof information; however, only a small subset of the information associated with a category in LTM isincorporated in a temporary concept constructed in WM. Category knowledge in our system is relativelyunorganized, interrelated knowledge that can be used to construct temporary concepts in WM, appropriateto the current task and context.When a new individual identi�ed by its basic level name (e.g., a car) or a generic basic level category(e.g., the type car) is encountered in input, the context-independent and context-dependent satellite entitiesimplicitly evoked by hearing/reading the category name are placed in WM. We believe that these reex, orsubconscious, inferences are made at the time of reading/hearing the central basic level category name. TheSNePS path-based inference package provides the subconscious reasoning that is required for implicit focusingof satellite entities. The de�nition of appropriate paths in the network enables the automatic retrieval ofthe relevant satellite concepts of basic level concepts. Thus, we use the additional structure provided bythe intraconcept and interconcept relations, de�ning paths in the network that retrieve external parts afterprocessing input such as Lucy washed her car, interior, mechanical parts after processing input such as Themechanic repaired the car, and enabling satellite entities (e.g., a mortgage) after processing Lucy bought anew house.For additional information on this topic, see [29, 30, 31, 32].6 Current Availability and RequirementsSNePS 2.1 is implemented in Common Lisp, and has run on a variety of platforms, including Symbolics LispMachines, Texas Instruments Explorer Lisp Machines, SUN workstations, an Aliant Multimax, and DECVAXes running VMS.SNePS 2.1 is currently available via a license agreement with the Research Foundation of State Universityof New York. There is a minimal handling fee for non-pro�t research labs and educational institutions. Thelicense fee for for-pro�t organizations in negotiable. For information and a copy of the license agreement,49
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