

LECTURE - I
INTRODUCTION

Tevfik Koşar

University at Buffalo
August 30th, 2011

Contact Information

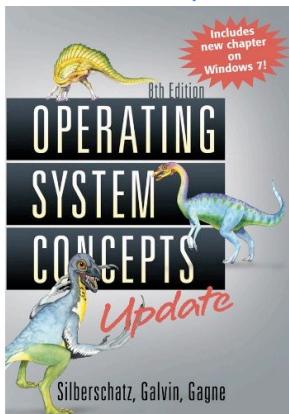
- Instructor: Prof. Tevfik Koşar**
 - Office: 245 Bell Hall
 - Phone: 645-2323
 - Email: tkosar@buffalo.edu
 - Web: <http://www.cse.buffalo.edu/~tkosar>
 - Office hours: Tue noon - 1:00pm, Wed 11:00am - noon
(Or anytime by appointment)
- Teaching Assistants:**
 - Suxin Guo <suxinguo@buffalo.edu>
 - Yuan Zhang <yuanzhan@buffalo.edu>
 - Enes Yıldız <enesyild@buffalo.edu>

2

Recitations

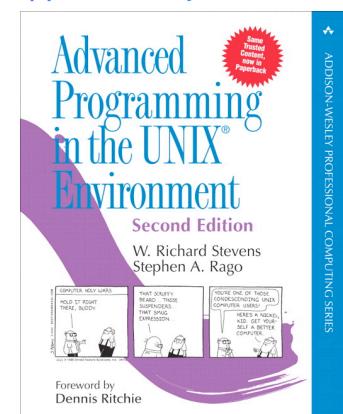
- You need to attend one of the following recitations:
 - Tue 10:00am-11:50am (Talbert 115)
 - Wed 10:00am-10:50am (Copen 10)
 - Fri 3:00pm-3:50pm (Knox 04)
- Recitations will include:
 - Clarification of some important course material
 - Solutions of some exercise questions
 - Project & HW guidance
 - Programming tips

3

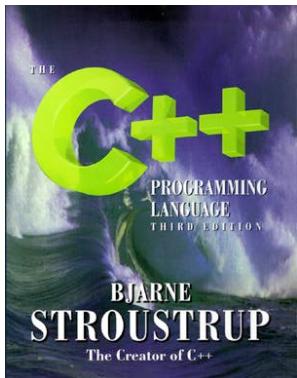

Course Web Page

- Course web page:
 - <http://www.cse.buffalo.edu/faculty/tkosar/cse421-521/>
 - All lecture notes will be available online
 - As well as homework assignments, projects and other important course information

Date	Lect.	Title	Notes
Aug 30	1	Introduction	Read Ch. 1
Sep 1	2	Operating System Structures	
Sep 6	3	Processes	
Sep 8	4	Threads	
Sep 13	5	CPU Scheduling - I	
Sep 15	6	CPU Scheduling - II	
Sep 20	7	Project-I Discussion	
Sep 22	8	Process Synchronization - I	
Sep 27	9	Process Synchronization - II	
Sep 29			Rosh Hashanah
Oct 4	10	Deadlocks - I	
Oct 6	11	Deadlocks - II	
Oct 11	12	Main Memory - I	
Oct 13	13	Main Memory - II	
Oct 18	14	Midterm Review	
Oct 20		MIDTERM EXAM	@ 9:30am-10:50am
Oct 25	15	Project-II Discussion	
Oct 27	16	Virtual Memory - I	


4

Textbook: Required



5

Recommended Supplementary Text

Recommended Supplementary Text

7

Grade Components

- The end-of-semester grades will be composed of:

- Pop Quizzes	:	5%	(4-5)
- Homework	:	10%	(4)
- Projects	:	30%	(3)
- Midterm	:	25%	(1)
- Final	:	30%	(1)

You are expected to attend the classes and actively contribute via asking and/or answering questions.

8

Grading Scale

- Final grades will be given according to this scale:

Point Range	Letter Grade
95.00-100	A
90.00-94.99	A-
85.00-89.99	B+
80.00-84.99	B
75.00-79.99	B-
70.00-74.99	C+
65.00-69.99	C
60.00-64.99	C-
55.00-59.99	D+
50.00-54.99	D
0-49.99	F

I may use a “curve” to adjust grades to this scale.

9

Rules

- No late homework/project submissions accepted!
- Exams will be closed book.
- You are only responsible from material covered in the class, homework, and projects.
- Academic dishonesty will be treated “very” seriously!

10

Passive vs Active Learning

Passive learning: learning through **reading, hearing & seeing**

Active learning: learning through **saying and doing**

After 2 weeks, we tend to remember:

Passive learning

- 10% of what we read
- 20% of what we hear
- 30% of what we see (i.e. pictures)
- 50% of what we hear and see

Active learning

- 70% of what we say
- 90% of what we say and do

11

How to Become an Active Learner

- Recall prior materials
- Answer a question
- Guess the solution first (even guessing wrong will help you to remember the right approach)
- Work out the next step before you have to read on
- Think of an application
- Imagine that you were the professor and think about how you would give a test on the subject material so that key concepts and results will be checked.
- Summarize a lecture, a set of homework or a lab in your own words concisely.

12

What Expect to Learn?

- Key Concepts of Operating Systems
 - Design, Implementation, and Optimization
- Topics will include:
 - Processes, Threads and Concurrency
 - CPU and I/O Scheduling
 - Memory and Storage Management
 - File System Structures
 - Synchronization and Deadlocks
 - Protection and Security
 - Distributed Computing & Related Issues

13

INTRODUCTION

14

What is an Operating System?

- A program that manages the computer hardware.
- An intermediary between the computer user and the computer hardware.
- Manages hardware and software resources of a computer.

15

Computer System Overview

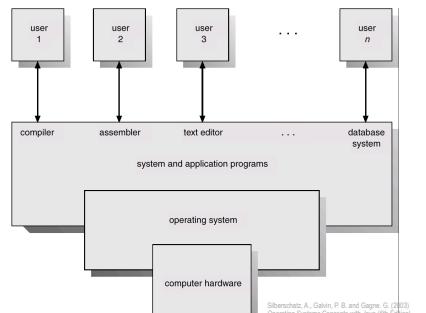
- **A computer system consists of (bottom-up):**
 1. hardware
 2. firmware (BIOS)
 3. operating system
 4. system programs
 5. application programs
 6. users

16

Computer System Overview

1. **Hardware**
 - ✓ provides basic computing resources
 - ✓ CPU, memory, disk, other I/O devices
2. **Firmware (BIOS)**
 - ✓ software permanently stored on chip (but upgradable)
 - ✓ loads the operating system during boot
3. **Operating system**
 - ✓ controls and coordinates the use of the hardware among the various application programs for the various users

17

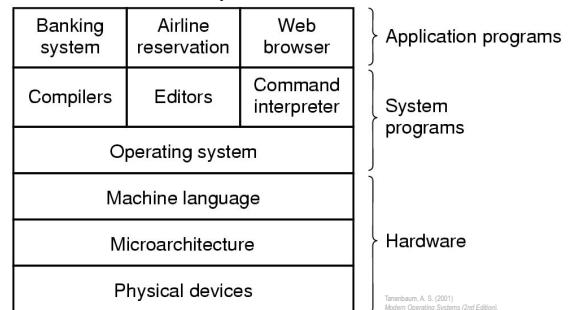

Computer System Overview

4. **System programs**
 - ✓ basic development tools (shells, compilers, editors, etc.)
 - ✓ not strictly part of the core of the operating system
5. **Application programs**
 - ✓ define the logic in which the system resources are used to solve the computing problems of the users
 - ✓ database systems, video games, business programs, etc.
6. **Users**
 - ✓ people, other computers, machines, etc.

18

Role of an Operating System

The Silberschatz "pyramid" view

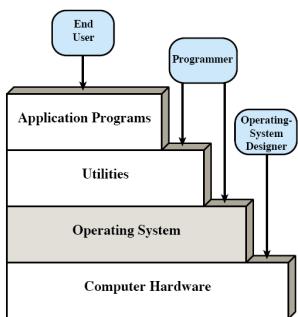


Abstract view of the components of a computer system

19

Role of an Operating System

The Tanenbaum "layered" view

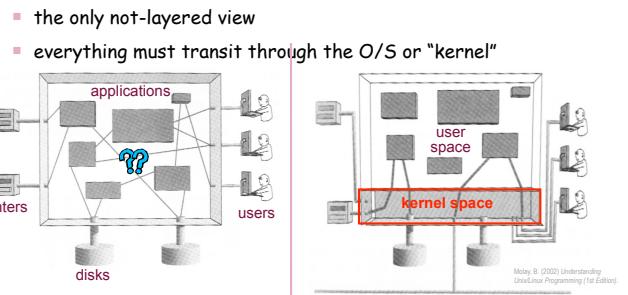


A computer system consists of hardware, system programs and application programs

20

Role of an Operating System

The Stallings "layered & stairs" view



Layers and views of a computer system

21

Role of an Operating System

The Molay "aquarium" view

How are they all connected?

The kernel manages all connections

22

Key Point

- An operating system is a program that acts as an **intermediary** between **users/applications** and the **computer hardware**.

23

Operating System Goals

- From the user perspective:**
 - Executes user programs and make solving user problems easier
 - Makes the computer system convenient to use
 - hides the messy details which must be performed
 - presents user with a virtual machine easier to use
- From the System/HW Perspective:**
 - Manages the resources
 - Uses the computer hardware in an efficient manner
 - time sharing: each program gets some time to use a resource
 - resource sharing: each program gets a portion of a resource

24

OS Services for Users

- Program Execution
 - The OS loads programs and data into memory, initializes I/O devices and files, schedules the execution of programs
- Access to I/O Devices
 - The OS hides I/O device details from applications (direct I/O access is forbidden) and offers a simplified I/O interface
- Controlled Access to Files & Directories
 - The OS organizes data into files and directories, controls access to them (i.e. create, delete, read, write) and preserves their integrity

25

OS Services for Users

- Communications
 - The OS allows exchange of information between processes, which are possibly executing on different computers
- Error Detection and Response
 - The OS properly handles HW failures and SW errors with the least impact to running applications (i.e. terminating, retrying, or reporting)

26

OS Services for System/HW

- Resource Allocation
 - The OS allocates resources to multiple users and multiple jobs running at the same time
- Operation Control
 - The OS controls the execution of user programs and operations of I/O devices
- System Access
 - The OS ensures that all access to resources is protected, including authorization, conflict resolution etc.
- Accounting and Usage Statistics
 - The OS keeps performance monitoring data

27

Summary

- What is an OS?
- Role of an OS
- Operating System Goals
 - User View vs System View
- Operating System Services
 - For Users and HW

- **Reading Assignment: Chapter 1 from Silberschatz.**

28

Acknowledgements

- “Operating Systems Concepts” book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- “Operating Systems: Internals and Design Principles” book and supplementary material by W. Stallings
- “Modern Operating Systems” book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR

29