CSE 421/521 - Operating Systems
Fall 2011

LECTURE - Il

OS STRUCTURES

Tevfik Kosar

University at Buffalo
September 1st; 2011

Roadmap

e OS Design and Implementation
- Different Design Approaches
e Major OS Components

Processes

Memory management
CPU Scheduling

I/0O Management

OS DESIGN APPROACHES

Operating System Design and Implementation

Start by defining goals and specifications

Affected by choice of hardware, type of system
- Batch, time shared, single user, multi user, distributed

User goals and System goals

- User goals - operating system should be convenient to use, easy
to learn, reliable, safe, and fast

- System goals - operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-
free, and efficient

No unique solution for defining the requirements of an
0S

—> Large variety of solutions

—> Large variety of OS

Operating System Desigh and Implementation (Cont.)

Important principle: to separate policies and
mechanisms

Policy: What will be done?
Mechanism: How to do something?

Eg. to ensure CPU protection
- Use Timer construct (mechanism)
- How long to set the timer (policy)

The separation of policy from mechanism allows
maximum flexibility if policy decisions are to be
changed later

OS Design Approaches

Simple Structure (Monolithic)
Layered Approach
Microkernels

Modules

Simple Structure

Monolithic

No well defined structure

Start as small, simple, limited systems, and then grow
No Layers, not divided into modules

Simple Structure

> Example: MS-DOS

V' initially written to provide
the most functionality in
the least space

V' started small and grew
beyond its original scope

V" levels not well separated:
programs could access I/0
devices directly

v excuse: the hardware of
that time was limited (no
dual user/kernel mode)

application program

resident system program

MS-DOS device drivers

ROM BIOS device drivers

MS-DOS pseudolayer structure

Layered Approach

» Monolithic operating systems
v"no one had experience in building truly large software systems

v" the problems caused by mutual dependence and interaction
were grossly underestimated

v" such lack of structure became unsustainable as O/S grew

» Enter hierarchical layers and information abstraction

v"each layer is implemented exclusively using operations
provided by lower layers

v" it does not need to know how they are implemented

v"hence, lower layers hide the existence of certain data

structures, private operations and hardware from upper layers

9

Simple Layered Approach

» The original UNIX

v

enormous amount of
functionality crammed
into the kernel -
everything below
system call interface

"The Big Mess": a
collection of
procedures that can
call any of the other
procedures whenever
they need to

no encapsulation, total
visibility across the
system

very minimal layering
made of thick,
monolithic layers

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal
handling

character I/O system

terminal drivers

file system
swapping block /0
system
disk and tape drivers

kernel interface to the hardware

CPU scheduling
page replacement
demand paging
virtual memory

terminal controllers
terminals

device controllers
disks and tapes

memory controllers
physical memory

UNIX system structure

10

Layered Approach

« The operating system is divided e
into a number of layers (levels), e :
each built on top of lower :
layers.

- The bottom layer (layer 0), is the
hardware;

- The highest (layer N) is the user
interface.

« With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

- GLUnix, Multics, VAX/VMS

11

Layered Approach

> Layers can be debugged and replaced independently
without bothering the other layers above and below

v" famous example of
strictly layered
architecture: the
TCP/IP networking
stack

N+1

offers services

uses services

(N

N
N-1

12

Layered Approach

Theoretical model of operating system design hierarchy

Level Name Objects Example Operations
s h e” 13 Shell User programming Statements in shell language
environment
(12 User processes User processes Quit, kill, suspend, resume
11 Directories Directories Create, destroy, attach,
.. detach, search, list
10 Devices External devices, such as Open, close, read, write
printers, displays, and
keyboards
O / S 9 File system Files Create, destroy, open, close,
read, write

8 Communications Pipes Create, destroy, open, close,
read, write

7 Virtual memory Segments, pages Read, write, fetch
6 Local secondary store Blocks of data, device channels Read, write, allocate, free
5 Primitive processes Primitive processes, | Suspend, resume, wait, signal
K semaphores, ready list
4 Interrupts Interrupt-handling programs Invoke, mask, unmask, retry
3 Procedures Procedures, call stack, display =~ Mark stack, call. return
2 Instruction set Evaluation stack, Load, store, add, subtract,
h a rdwa re microprogram interpreter, branch
scalar and array data
1 Electronic circuits Registers, gates, buses, etc. Clear, transfer, activate,
complement

13

Layered Approach

» Major difficulty with layering
v’ ... appropriately defining the various layers!

v" layering is only possible if all function dependencies can be
sorted out into a Directed Acyclic Graph (DAG)

v"however there might be conflicts in the form of circular
dependencies (“cycles”)

0 () (3
i @ (8)
O 8w

Circular dependency on top of a DAG

14

Layered Approach

» Circular dependencies in an O/S organization
v example: disk driver routines vs. CPU scheduler routines

= the device driver for the backing store (disk space used by
virtual memory) may need to wait for I/O, thus invoke the
CPU-scheduling layer

= the CPU scheduler may need the backing store driver for
swapping in and out parts of the table of active processes

» Other difficulty: efficiency

v"the more layers, the more indirections from function to function
and the bigger the overhead in function calls

v" backlash against strict layering: return to fewer layers with

more functionality
15

Microkernel System Structure

» The microkernel approach

v"amicrokernel is a reduced operating system core that contains
only essential O/S functions

v" the idea is to minimize the kernel by moving up as much
functionality as possible from the kernel into user space

v"many services traditionally included in the O/S are now external
subsystems running as user processes

= device drivers
= file systems
= virtual memory manager
= windowing system
= security services, etc.
o Examples: QNX, Trué4 UNIX, Mach (CMU), Windows NT 16

Layered OS vs Microkernel

User

Tsers
Mode Users

File System

Interprocess Communication

Kernel

Mode I/O and Device Management

Virtual Memory

Primitive Process Management

(a) Layered kernel

=1

o

Bl

User
Mode

[
Eaol -
==

M amon D s oy

DDA DA
D oa D n nwunmon o

- - o

Kernel
Mode

HARDWARE

(b) Microkernel

17

Microkernel System Structure

> Benefits of the microkernel approach

v" extensibility — it is easier to extend a microkernel-based O/S as new
services are added in user space, not in the kernel

v" portability — it is easier to port to a new CPU, as changes are needed only
in the microkernel, not in the other services

V" reliability & security — much less code is running in kernel mode; failures
in user-space services don't affect kernel space

» Detriments of the microkernel approach

v"again, performance overhead due to communication from user space to

kernel space

v not always realistic: some functions (I/O) must remain in kernel space,
forcing a separation between “policy” and “mechanism”

18

Modular Approach

» The modular approach
v many modern operating systems implement kernel modules
v" this is similar to the object-oriented approach:
= each core component is separate
= each talks to the others over known interfaces
= each is loadable as needed within the kernel
v"overall, modules are similar to layers but with more flexibility

v modules are also similar to the microkernel approach, except
they are inside the kernel and don’t need message passing

19

Modular Approach

> Modules are used in Solaris, Linux and Mac OS X

scheduling
device and classes
bus drivers

core solaris
miscellaneous kernel
modules
STRE AMS E xecutable
modules formats

The Solaris loadable modules

loadable
system calls

20

Mac OS X Structure - Hybrid

application environments
and common services

b

BSD

kernel
environment

Mach

« BSD: provides support for command line interface, networking, file
system, POSIX API and threads

« Mach: memory management, RPC, IPC, message passing

21

MAJOR OS COMPONENTS

22

Major OS Components

Processes

Memory management
CPU Scheduling

I/0 Management

23

Processes

> A process is the activity of executing a program

Pastalfor six

- boil 1 qlaut salty

water)
thread of execution

- stir invtie pasta

- cook on medivm
wn it “al dente”’

- sexve

Program Process

24

Processes

> It can be interrupted to let the CPU execute a higher-priority
process
ﬂ First\aid CPU (changes hat to “doctor”)

- boil — Get the first aid kit
— Check puI read of execution

- stir| — Clean wou with
alcohol

input data
undtl — Apply band aid

- e
Process
Program
25
Processes

> ...and then resumed exactly where the CPU left of f
.‘:. hmm... now

Pma:.}ﬁ).l/ é’{/x/ where was

- bodl 1 quart salty

: CPVU (back t
waler :‘thr‘ead of execution U (back to

“chef")
- stir inth pastov

- cook ow

until “al & \ input data

- sexve

Process

Program
26

Processes

> Multitasking gives the illusion of parallel processing
(independent virtual program counters) on one CPU

« | job 1

job 2

job 3

job 1
job 2

job 4

job 3

job 1

(a) Multitasking from the CPU’s viewpoint

job 1 % process 1
N N
3 ‘ ey process 2

l job 4 process 4

(b) Multitasking from the processes’ viewpoint = 4 virtual program counters

Pseudoparallelism in multitasking
27

Processes

« Timesharing is logical extension in which CPU switches
jobs so frequently that users can interact with each job
while it is running, creating interactive computing

- Response time should be < 1 second

- Each user has at least one program loaded in memory and
executing = process

28

Processes

> Operating System Responsibilities:

The O/S is responsible for managing processes

v the O/S creates & deletes processes
the O/S suspends & resumes processes

v

v" the O/S schedules processes

V" the O/S provides mechanisms for process synchronization
v

the O/S provides mechanisms for interprocess
communication

V' the O/S provides mechanisms for deadlock handling

29

Memory Management

> Operating System Responsibilities:

The O/S is responsible for an efficient and orderly
control of storage allocation

v

ensures process isolation: it keeps track of which parts of
memory are currently being used and by whom

allocates and deallocates memory space as needed: it
decides which processes to load or swap out

regulates how different processes and users can
sometimes share the same portions of memory

transfers data between main memory and disk and ensures
long-term storage

30

Memory Management

> Main memory

v

large array of
words or bytes,
each with its own
address

repository of
quickly accessible
data shared by
the CPU and I/0
devices

volatile storage
that loses its
contents in case
of system failure

v

registers j

‘ cache

I
i

v
‘ main memory

Il

AN
Il

v
‘ electronic disk
N Il
I v
‘ magnetic disk
A |
11 YV
‘ optical disk
]
11 vV

magnetic tapes

The storage hierarchy

31

Performance of Various Levels of Storage

« Movement between levels of storage hierarchy can be
explicit or implicit

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB > 16 MB > 16 GB > 100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-0.5 0.5-25 80 - 250 5,000.000
Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20-150
Managed by compiler hardware operating system | operating system
Backed by cache main memory disk CD or tape

32

Caching

« Important principle, performed at many levels in a
computer (in hardware, operating system, software)

» Information in use copied from slower to faster storage
temporarily

» Faster storage (cache) checked first to determine if
information is there
- If it is, information used directly from the cache (fast)
- If not, data copied to cache and used there

 If cache is smaller than storage being cached
- Cache management - important design problem
- Cache size and replacement policy

33

Migration of Integer A from Disk to Register

e Multitasking environments must be careful to use most
recent value, not matter where it is stored in the
storage hierarchy

magnetic main hardware
disk memory register

e Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have the
most recent value in their cache

 Distributed environment situation even more complex
- Several copies of a datum can exist

34

CPU Scheduling

> Operating System Responsibilities:
The O/S is responsible for efficiently using the CPU
and providing the user with short response times

v" decides which available processes in memory are to be
executed by the processor

v" decides what process is executed when and for how long,
also reacting to external events such as I/0 interrupts

v' relies on a scheduling algorithm that attempts to optimize
CPU utilization, throughput, latency, and/or response time,
depending on the system requirements

35

OS Scheduling
> Long-term scheduling

V' the decision to add a program to the pool of
processes o be executed (job scheduling)

» Medium-term scheduli

V' the decision to add to the number of processes that
are partially or fully in main memory (“swapping")

fine- to coarse-grain level

» Short-term scheduling = CPU scheduling
v" the decision as to which available processes in

memory are to be executed by the processor
("dispatching”)

» I/0 scheduling

V" the decision to handle a process's pending I/0
request

frequency of intervention

|/0 Management

> Operating System Responsibilities:

The O/S is responsible for controlling access to all
the I/0 devices

v

v

hides the peculiarities of specific hardware devices from

the user

issues the low-level commands to the devices, catches
interrupts and handles errors

relies on software modules called “device drivers"

provides a device-independent API fo the user programs,

which includes buffering

37

|/0 Management

User process
/

User
space

4

User
program

Kernel

Rest of the operating system

Device-independent software

space \ l l l
Printer Camcorder CD-ROM
driver driver driver
| I |
Y
Hardware l Printer controller ”Camcorder controllerl ICD»ROM controllerl
—»
s
Devices @@
- =

Layers of the I/O subsystem

38

Two |/0 Methods

o After I/0 starts, control returns to user program only

upon |/0 completion = synchronous
- Wait instruction idles the CPU until the next interrupt
- Wait loop (contention for memory access).

- At most one I/0 request is outstanding at a time, no
simultaneous |I/0 processing.

o After |I/0 starts, control returns to user program

without waiting for I/0 completion =»asynchronous
- System call - request to the operating system to allow user

to wait for I/0 completion.
- Device-status table contains entry for each |/0 device

39

Two |/0 Methods

Synchronous Asynchronous
user { requestmg process requesting process } user
waiting A \ 4
s N
device driver device driver
1 o
fkernel < 1 interrupt handler 1 1 interrupt handler r kerneld
1 A T J
y 2
hardware J- hardware
— data transfer e = = data transfer mm
~ Y
time ———» time ——»

(a) (b)

40

Summary

e OS Design Approaches
- Monolithic Systems, —

- Layered Approach, Microkernels, Modules =,
e Major OS Components 3
Processes

Memory management
CPU Scheduling
I/O Management

« Reading Assighment: Chapter 2 from Silberschatz.

Acknowledgements

» “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

» “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

o “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

42

