CSE 421/521 - Operating Systems
Fall 2011

LECTURE - Il

PROCESSES

Tevfik Kosar

University at Buffalo
September 6th, 2011

Roadmap

» Processes

Basic Concepts

Process Creation

Process Termination

Context Switching

Process Queues

Process Scheduling
Interprocess Communication

space

Process Concept
» a Process is a program in execution;

Main Processor
» A process image consists of ——
three components — o=
e e
veor 1. an execut?ble program ; '
padress < 2, the associated data éli!f;{ :
needed by the program R =
3. the execution context of the Proe= Data
process, which contains all T
information the O/S needs
to manage the process (ID, Context
state, CPU registers, stack, "5/ | ™=@
etc.) eaia

Typical process image implementation

Process Control Block

> 4(_)_“16 Process Control Block PCB Typical process image implementation

v isincluded in the context,

process
i control block
?Iong with the”stack . context | —- bl
v’ is a “snapshot’ that contains -
all necessary and sufficient
data to restart a process data
where it left off (ID, state,
CPU registers, etc.)
user
v' is one entry in the operating address | —
system’s process table space program
code

(array or linked list)

— — .
PCB 1 PCB2 PCB3

Process Control Block

> Example of process and PCB location in memory

process identification « numeric identifier
: control block CPU state info N Pareﬂéidf:rfmﬂer
/ el « user identifier
oIS / context (PCB) control info ot
stack stack 1
« user-visible registers
« control & status
registers
data data data * program counter
+ schedulg & state info
\ | links to other proc’s
process 1 \ |+ memory limits
\\ « open files
- etc
program program program
process 2 code code code
stack
A

lllustrative contents of a process image in
(virtual) memory

Process State

» As a process executes, it changes state
- new: The process is being created
- ready: The process is waiting to be assigned to a processor
- running: Instructions are being executed
- waiting: The process is waiting for some event to occur
- terminated: The process has finished execution

admitted interrupt

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

terminated

Process Creation

> Some events that lead to process creation (enter)
(v the system boots

= when a system is initialized, several background
processes or “daemons” are started (email, logon, etc.)

v’ auser requests to run an application

= by typing a command in the CLI shell or double-clicking in
the GUI shell, the user can launch a new process

v" an existing process spawns a child process

= for example, a server process (print, file) may create a
new process for each request it handles

= the init daemon waits for user login and spawns a shell
\v" abatch system takes on the next job in line

all cases of process spawning
A

Process Creation

> Process creation by spawning

I "]
‘pagedaemon' | swapper l

]
o)
I
[[1

| user 1 l ‘ user2 . l user 3 '

A tree of processes on a typical
UNIX system

Process Creation

Impl ting a shell cc d interpreter by process spawning

int main(...)

if ((f // create a process

{ -~
fprintf (stdout, "Child pid: %i\n", getpid());

err = execvp(command, arguments); // execute child

// process

fprintf (stderr, "Child error: %i\n", errno);

exit(err);

}

else if (pid > 0) // we are in the

{ // parent process
fprintf (stdout, "Parent pid: %i\n", getpid());
pid2 = waitpid(pid, &status, 0); // wait for child
ce // process

return 0;

Process Creation

1. Clone child process
v pid = fork()

2. Replace child’s image

v execve (name,

9
Fork Example 1
#include <stdio.h>
main()
{
int ret_from fork, mypid;
mypid = getpid(); /* who am i? */
printf("Before: my pid is %d\n", mypid); /* tell pid */

ret_from_fork = fork();

sleep(l);
printf("After: my fork returns pid : %d, said %d\n",
ret_from fork, getpid());

0o/s o/s 0o/s
2
©
o
o
a \
\ . 2 P2 context
=0 < I - - - -- - - -n - P2 data
I
o P2 program
A A
10
Fork Example 2

#include <stdio.h>
main()
{

fork();

fork();

fork();

printf("my pid is %d\n", getpid());
}

How many lines of output will this produce?

Process Termination

> Some events that lead to process termination (exit
v" regular completion, with or without error code

process-

wiggered ™ the process voluntarily executes an exit (err)
system call to indicate to the O/S that it has finished
v fatal error (uncatchable or uncaught)
service errors: no memory left for allocation, 1/O error, etc.
= total time limit exceeded
hardv{v”agrge‘?ézwmr = arithmetic error, out-of-bounds memory access, etc.
v" killed by another process via the kernel
software interrupt- w - the process receives a SIGKILL signal

triggered
= in some systems the parent takes down its children with it

O/S-triggered g
(following system
call or preemption)

13

Process “Context” Switching

« When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process

» Context-switch time is overhead; the system does no
useful work while switching

» Switching time is dependent on hardware support

Process Pause/Dispatch

» Some events that lead to process pause / dispatch
v' /0 wait
o/s-triggered ® @ process invokes an 1/0 system call that blocks waiting
(following system call) - for the |/O device: the O/S puts the process in “Waiting”
mode and dispatches another process to the CPU
v’ preemptive timeout
= the process receives a timer interrupt and relinquishes
hordware in control back to the O/S dispatcher: the O/S puts the
ardware interrupt- . N
triggered (timer) process in “Ready” mode and dispatches another process
to the CPU
= not to be confused with “total time limit exceeded”, which
leads to process termination

Process “Context” Switching

> How does a full process switch happen, step by step?

1. save CPU context, including PC and registers (the only step
needed in a simple mode switch)

2. update process state (to “Ready”, “Blocked”, etc.) and other
related fields of the PCB

3. move the PCB to the appropriate queue

4. select another process for execution: this decision is made by the
CPU scheduling algorithm of the O/S

5. update the PCB of the selected process (state = “Running”)
6. update memory management structures
7. restore CPU context to the values contained in the new PCB

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing Jl
T save state into PCB,
N idle
.
reload state from PCB,

idle interrupt or system call executing

save state into PCB;

.
.
reload state from PCB,,
oxecuting l[\

idle

Process “Context” Switching

> What events trigger the O/S to switch processes?

v"interrupts — external, asynchronous events, independent of the
currently executed process instructions

= clock interrupt — O/S checks time and may block process
= |/O interrupt — data has come, O/S may unblock process

= memory fault — O/S may block process that must wait for
a missing page in memory to be swapped in
v' exceptions — internal, synchronous (but involuntary) events
caused by instructions — O/S may terminate or recover process
traps< ¥~ system calls — voluntary synchronous events calling a specific
OIS service — after service completed, O/S may either resume
or block the calling process, depending on I/O, priorities, etc.

18

Process Scheduling Queues

Job queue - set of all jobs in the system

Ready queue - set of all processes residing in main

memory, ready and waiting to execute

Device queues - set of processes waiting for an
170 device

Processes migrate among the various queues

>

Process Queues

The process table can be split into per-state queues
v PCBs can be linked together if they contain a pointer field

Process
Control Block

Running

Ready.

Blocked
D__I]
|:I’|:I__I:|

Structure of process lists or queues

Ready Queue And Various I/0 Device Queues

queue header PCB, PCB,

ready ‘ head

queue ‘ tail registers registers
g g
. .
. .

tape
unit 0

{:Sg% PCB, PCB PCB,
wnitt [@il - - -

disk head
unit 0 tail

PCB,

erminal head =
unit 0 tail

—_—

21

Representation of Process Scheduling

: ready queue CPU

1/0 queue |<—< 1/0 request |<—
time slice
expired
md\ fork a
W child

m wait for an
\\occurs/ ‘ interrupt

Arriving
job

(o]

Three Level CPU Scheduling

CPU O
~— CPU scheduler |
| SHORT-TERM |
Input 00000
queue

Main
[T Ioolo[o] ——> Memory <>

!

Admission Memory
scheduler scheduler
LONG-TERM MID-TERM

Three-level scheduling

Disk

23

Schedulers

» Long-term scheduler (or job scheduler) -
selects which processes should be brought into
the ready queue

« Short-term scheduler (or CPU scheduler) -
selects which process should be executed next
and allocates CPU

Schedulers (Cont.)

Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow)

The long-term scheduler controls the degree of
multiprogramming

Processes can be described as either:

- 1/0-bound process - spends more time doing I/0 than
computations, many short CPU bursts

- CPU-bound process - spends more time doing computations;
few very long CPU bursts

=>long-term schedulers need to make careful decision

25

Addition of Medium Term Scheduling

» In time-sharing systems: remove processes from
memory “temporarily” to reduce degree of
multiprogramming.

» Later, these processes are resumed = Swapping

swap in partially executed swap out
swapped-out processes

ready queue CPU end

@ 10 wai;:/‘j

queues

26

Cooperating Processes

Independent process cannot affect or be affected by
the execution of another process
Cooperating process can affect or be affected by the
execution of another process
Advantages of process cooperation

- Information sharing

- Computation speed-up

- Modularity

- Convenience

Disadvantage

- Synchronization issues and race conditions

27

Interprocess Communication (IPC)

» Mechanism for processes to communicate and to
synchronize their actions

« Shared Memory: by using the same address space and
shared variables

» Message Passing: processes communicate with each
other without resorting to shared variables

28

Communications Models

process A process A

|1

shared =
2

process B process B =

2 1
kernel kernel
(a) (b)

a) Message Passing b) Shared Memory

29

Message Passing

» Message Passing facility provides two operations:
- send(message) - message size fixed or variable
- receive(message)

« If P.and Q wish to communicate, they need to:
- establish a communication link between them
- exchange messages via send/receive

« Two types of Message Passing

- direct communication
- indirect communication

30

Message Passing - direct communication

« Processes must name each other explicitly:
- send (P, message) - send a message to process P
receive(Q, message) - receive a message from process Q
o Properties of communication link
Links are established automatically
- Alink is associated with exactly one pair of communicating processes
- Between each pair there exists exactly one link
- The link may be unidirectional, but is usually bi-directional
« Symmetrical vs Asymmetrical direct communication
- send (P, message) - send a message to process P
receive(id, message) - receive a message from any process
« Disadvantage of both: limited modularity, hardcoded

31

Indirect Communication (cont.)

» Operations
- create a new mailbox
- send and receive messages through mailbox
- destroy a mailbox

» Properties of communication link

- Link established only if processes share a common
mailbox

- Alink may be associated with many processes

- Each pair of processes may share several communication
links

- Link may be unidirectional or bi-directional

33

Message Passing - indirect communication

» Messages are directed and received from mailboxes
(also referred to as ports)
- Each mailbox has a unique id
- Processes can communicate only if they share a mailbox
 Primitives are defined as:
send(A, message) - send a message to mailbox A
receive(A, message) - receive a message from mailbox A

32

Synchronization

» Message passing may be either blocking or non-blocking
» Blocking is considered synchronous

- Blocking send has the sender block until the message is
received

- Blocking receive has the receiver block until a message is
available

» Non-blocking is considered asynchronous

Non-blocking send has the sender send the message and
continue

- Non-blocking receive has the receiver receive a valid message
or null

35

Indirect Communication (cont.)

» Mailbox sharing
P,, P,, and P; share mailbox A
- Py, sends; P, and P; receive
- Who gets the message?
« Solutions
Allow a link to be associated with at most two processes

- Allow only one process at a time to execute a receive
operation

- Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

34

Buffering

» Queue of messages attached to the link; implemented
in one of three ways

1. Zero capacity - 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity - finite length of n messages
Sender must wait if link full

3. Unbounded capacity - infinite length
Sender never waits

36

» Processes
- Basic Concepts
- Process Creation
- Process Termination
- Context Switching
- Process Queues
- Process Scheduling

Summary

- Interprocess Communication

e Next Lecture: Threads

» Reading Assignment: Chapter 3 from Silberschatz.

 HW 1 will be out next class, due 1 week

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

38

