CSE 421/521 - Operating Systems
Fall 2011

LECTURE - IV

THREADS

Tevfik Kosar

University at Buffalo
September 8th, 2011

Concurrent Programming

« In certain cases, a single application may need to run
several tasks at the same time

o

concurrent

<O

202020

sequential

Roadmap

o Threads
- Why do we need them?
- Threads vs Processes
- Threading Examples
- Threading Implementation & Multi-threading Models
- Other Threading Issues
o Thread cancellation
« Signal handling
« Thread pools
« Thread specific data

Serial vs Parallel

COUNTER COUNTER 2

Motivation

« Increase the performance by running more than one
tasks at a time.

- divide the program to n smaller pieces, and run it n times
faster using n processors

» To cope with independent physical devices.

- do not wait for a blocked device, perform other operations at
the background

Divide and Compute

X1 + X2 + X3 + x4 + x5 + x6 + x7 + x8

How many operations with sequential programming?
7

Step 1: x1 +x2

Step 2: x1 +x2 + x3

Step 3: x1 +x2 +x3 + x4

Step 4: x1 +x2 + x3 + x4 + x5

Step 5: x1 + x2 + x3 + x4 + x5 + x6

Step 6: x1 +x2 + x3 + x4 + x5 + x6 + x7
Step 7: x1 + X2 + X3 + x4 + x5 + x6 + X7 + x8

Divide and Compute

x1+x2 + x3+x4 + xX5+x6 + X7 +x8

[NE—; [NE—; [NE—; [—;
|:| |:| |:| |:| Step 1: parallelism = 4
-

|:| |:| Step 2: parallelism = 2
|:| Step 3: parallelism = 1

Concurrent Programming

» Implementation of concurrent tasks:
- as separate programs
- as a set of processes or threads created by a single program

» Execution of concurrent tasks:
- on a single processor (can be multiple cores)
= Multithreaded programming
- on several processors in close proximity
=> Parallel computing
- on several processors distributed across a network
=> Distributed computing

Gain from parallelism

In theory:

» dividing a program into n smaller parts and running on n
processors results in n time speedup

In practice:
« This is not true, due to
- Communication costs

- Dependencies between different program parts
« Eg. the addition example can run only in log(n) time not 1/n

Ownership vs Execution

» A process embodies two independent concepts:
1. resource ownership
2. execution & scheduling

1. Resource ownership

v' aprocess is allocated address space to hold the image, and is granted
control of I/O devices and files

V" the OfS prevents interference among processes while they make use of
resources (multiplexing)

2. Execution & scheduling
v"aprocess follows an execution path through a program --> Thread
v" it has an execution state and is scheduled for dispatching

Why Threads?

» In certain cases, a single application may need to run
several tasks at the same time
- Creating a new process for each task is time consuming
- Use a single process with multiple threads
« faster
« less overhead for creation, switching, and termination
« share the same address space

Multi-threading

> The execution part is a “thread” that can be multiplied
\;I ;= same CPU working

= Seyve.

Program

Single and Multithreaded Processes

code		data		files ‘	code		data ‘	files
stack ‘	registers		regislers‘	regisiers				
stack		stack H stack						
thread —> ; g ; ;«—— thread
single-threaded process multithreaded process

New Process Description Model
> Multithreading requires changes in the process description

mOde| e esYeane) process control
v each thread of execution receives| ' biock (rcs) L)
its own control block and stack stack]
= own execution state data thread 1 stack
(‘Running”, “Blocked”, etc.) thread 2 control
f CPU . t block (TCB 2)
L
own copy ol . registers program S
= own execution history (stack) | code
v the process keeps a global aEi
control block listing resources
currently used program
code
New process image

Per-process vs per-thread items

> Per-process items and per-thread items in the control
block structures

v process identification data [+ thread identifiers

= numeric identifiers of the process, the
parent process, the user, etc.

v CPU state information
= user-visible, control & status registers
= stack pointers

v process control information
= scheduling: state, priority, awaited event
= used memory and /O, opened files, etc.
= pointer to next PCB

Multi-process model

Process Spawning:

Process creation involves the following four main actions:
- setting up the process control block,

- allocation of an address space and

« loading the program into the allocated address space and
- passing on the process control block to the scheduler

Parent process

B c Child processes

) [

Multi-thread model

Thread Spawning:

- Threads are created within and belonging to processes

« All the threads created within one process share the resources of the
process including the address space

« Scheduling is performed on a per-thread basis.

« The thread model is a finer grain scheduling model than the process
model

- Threads have a similar lifecycle as the processes and will be managed
mainly in the same way as processes are

Process

m Threads

Threads vs Processes

« A common terminology:
- Heavyweight Process = Process
- Lightweight Process = Thread

Advantages (Thread vs. Process):
* Much quicker to create a thread than a process
- spawning a new thread only involves allocating a new stack and a new
PU state block
« Much quicker to switch between threads than to switch between processes
« Threads share data easily

Disadvantages (Thread vs. Process):

« Processes are more flexible
- They don’t have to run on the same processor

. 210 security between threads: One thread can stomp on another thread's
ata

. Eor threads which are supported by user thread package instead of the
ernel:
- If one thread blocks, all threads in task block.

Thread Creation

- pthread_create
// creates a new thread executing start_routine
int pthread create(pthread t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

« pthread_join

// suspends execution of the calling thread until the target
// thread terminates

int pthread join(pthread_t thread, void **value_ptr);

Thread Example

int main()

pthread_t threadl, thread2; /* thread variables */

pthread create (&threadl, NULL, (void *) &print_message function,
(void*)”hello “);

pthread create (&thread2, NULL, (void *) &print_message_function,

(void*)”world!\n");

pthread_join(threadl, NULL);
pthread_join(thread2, NULL);

exit(0);

Why use pthread_join?
To force main block to wait for both threads to terminate, before it exits.
If main block exits, both threads exit, even if the threads have not
finished their work.

20

Exercise

Consider a process with two concurrent threads T1 and T2. The code being
executed by T1 and T2 is as follows:

Shared Data:

X:=5;Y:=10;

I I

Y = X+1; U=Y-1;
X=Y; Y=U;
Write X; Write Y;

Assume that each assignment statement on its own is executed as an
atomic operation. What are the possible outputs of this process?

21

Solution

All six statements can be executed in any order. Possible outputs are:

1
2
3

o B

6

) 65
) 56
) 55
)99
) 66
) 69
7) 96

22

Threading Examples

> Web server

v'as each new request comes in, a “dispatcher thread” spawns a
new “worker thread” to read the requested file (worker threads
may be discarded or recycled in a “thread pool”)

Web server process

Dispatcher thread

Worker thread | User

[space
Web page cache

Kernel
Kernel 7 space

Network
connection

A multithreaded Web server
23

Threading Examples

» Word processor
v" one thread listens continuously to keyboard and mouse events
to refresh the GUI; a second thread reformats the document (to
prepare page 600); a third thread writes to disk periodically

Kemel
Keyboard Disk

A word processor with three threads
24

Threading Benefits

> Patterns of multithreading usage across applications
v" perform foreground and background work in parallel

= jllusion of full-time interactivity toward the user while
performing other tasks (same principle as time-sharing)

v' allow asynchronous processing

= separate and desynchronize the execution streams of
independent tasks that don’t need to communicate

= handle external, surprise events such as client requests
v'increase speed of execution

= “stagger” and overlap CPU execution time and I/O wait
time (same principle as multiprogramming)

25

Thread Implementation

> Two broad categories of thread implementation
v" User-Level Threads (ULTs)
v' Kernel-Level Threads (KLTs)

fo8d L B B

Threads User
Library Space

User ‘ Threads ‘ User

Library Space

Thread Implementation
» User-Level Threads (ULTs)

v' the kernel is not aware of the existence of threads, it knows
only processes with one thread of execution (one PC)
v' each user process manages its own private thread table

Process Thread

& light thread switching: does not
need kernel mode privileges

\
\
¢ cross-platform: ULTs can run Lot é % é é
on any underlying O/S —a/\ g
+ if a thread blocks, the entire i
=

process is blocked, including all Z;;"fe‘{ Kenel
other threads in it

Runtme Thread Process
system table table

A user-level thread package
27

Kernel Kernel Kernel
Space Space Space

D G
® ONO,
° P

Pure user-level (ULT), pure kernel-level (KLT) and combined-level (ULT/KLT) threads

26

Different Multi-threading Models

* Many-to-One
e One-to-One
* Many-to-Many
o Hybrid

29

Thread Implementation

> Kernel-Level Threads

v" the kerel knows about and manages the threads: creating and
destroying threads are system calls

Process Thread

fine-grain scheduling, done on

a thread basis \

if a thread blocks, another one

can be scheduled without

blocking the whole process

heavy thread switching Kernel = g
[

involving mode switch i

Process Thread
table table

A kernel-level thread package

28

Many-to-One Model

« Several user-level threads

mapped to single kernel ; ;
; 34— user thread

thread
« Thread management in
user space -> efficient
« If a thread blocks, entire
process blocks
« One thread can access the
kernel at a time - limits
parallelism
o Examples:
- Solaris Green Threads
- GNU Portable Threads k) <—kemel thread

30

One-to-One Model

o Each user-level thread maps to a kernel thread
« Ablocking thread does not block other threads
« Multiple threads can access kernel concurrently - increased parallelism

« Drawback: Creating a user level thread requires creating a kernel level
thread - increased overhead and limited number of threads

« Examples: Windows NT/XP/2000, Linux, Solaris 9 and later

<«—— user thread

T 3 3
DO O @

31

Two-level Model

« Similar to M:M, except that it allows a user thread to be
bound to kernel thread

« Examples: IRIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

S g

; ; «— user thread

@ <——kernel thread

33

Many-to-Many Model

Allows many user level threads to
be mapped to a smaller number

of kernel threads

34— user threa
Allows the operating system to

create a sufficient number of
kernel threads

Increased parallelism as well as
efficiency

Solaris prior to version 9
Windows NT/2000 with the
ThreadFiber package

k k k) «—kemel thread

32

Semantics of fork() and exec()

« Semantics of fork() and exec() system calls change in a
multithreaded program
- Eg. if one thread in a multithreaded program calls fork()
« Should the new process duplicate all threads?
« Or should it be single-threaded?
- Some UNIX systems implement two versions of fork()

- If a thread executes exec() system call
« Entire process will be replaced, including all threads

35

Threading Issues

» Semantics of fork() and exec() system calls
» Thread cancellation

« Signal handling

« Thread pools

» Thread specific data

34

Thread Cancellation

« Terminating a thread before it has finished

- If one thread finishes the searching a database,
others may be terminated

- If user presses a button on a web browser, web
page can be stopped from loading further
» Two approaches to cancel the target thread

- Asynchronous cancellation terminates the target
thread immediately
- Deferred cancellation allows the target thread
to periodically check if it should be cancelled
« More controlled and safe

36

Signal Handling

» Signals are used in UNIX systems to notify a
process that a particular event has occurred

« All signals follow this pattern:
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Once delivered, a signal must be handled

« In multithreaded systems, there are 4 options:
- Deliver the signal to the thread to which the signal
applies
- Deliver the signal to every thread in the process
- Deliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the
process

37

Thread Specific Data

» Threads belonging to the same process share
the data of the process

« In some cases, each thread needs to have its
own copy of data - thread specific

» Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

39

Thread Pools

« Threads come with some overhead as well
« Unlimited threads can exhaust system resources, such as CPU

or memory

« Create a number of threads at plzocess startup) and put them

in a pool, where they await worl

« When a server receives a request, it awakens a thread from

this pool

« Advantages:

- Usually faster to service a request with an existing thread than
create a new threa

- Allows the number of threads in the application(s) to be bound
to the size of the pool

« Number of threads in the pool can be setup according to:

- Number of CPUs, memory, expected number of concurrent
requests

38

Acknowledgements

» “Operating Systems Concepts” book and supplementary

material by A. Silberschatz, P. Galvin and G. Gagne

« “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

» “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

o R. Doursat and M. Yuksel from UNR

41

Summary

- Why do we need them?

- Threads vs Processes A
- Threading Examples b H mm.
- Threading Implementation & Multi-threadiné ! O
- Other Threading Issues =
« Thread cancellation
« Signal handling E\

« Thread pools
« Thread specific data

HW1 out today; due next Thursday, Sept 15th!
Next Lecture: CPU Scheduling
Reading Assignment: Chapter 4 from Silberschatz.

40

