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Roadmap

• Multilevel Feedback Queues
• Estimating CPU bursts
• System Calls
• Virtual Machines
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Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm
– foreground – RR
– background – FCFS

• Scheduling must be done between the queues
– Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR, 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

• A process can move between the various queues; 
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by 
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will 

enter when that process needs service
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Example of Multilevel Feedback Queue

• Three queues: 
– Q

0
 – RR with time quantum 8 milliseconds

– Q
1
 – RR time quantum 16 milliseconds

– Q
2
 – FCFS

• Scheduling
– A new job enters queue Q

0
 which is served FCFS. When it gains 

CPU, job receives 8 milliseconds.  If it does not finish in 8 
milliseconds, job is moved to queue Q

1
.

– At Q
1
 job is again served FCFS and receives 16 additional 

milliseconds.  If it still does not complete, it is preempted and 
moved to queue Q

2
.
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Multilevel Feedback Queues
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Determining Length of Next CPU Burst

• Can only estimate the length
• Can be done by using the length of previous CPU bursts, 

using exponential averaging

+
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Examples of Exponential Averaging

• α =0
– τ

n+1
 = τ

n

– Recent history does not count

• α =1
–  τ

n+1
 = α t

n

– Only the actual last CPU burst counts

• If we expand the formula, we get:
τ

n+1
 = α t

n
+(1 - α)α t

n
 -1 + …

            +(1 - α )j α t
n
 
-j
 + …

            +(1 - α )n +1 τ
0

• Since both α and (1 - α) are less than or equal to 1, 
each successive term has less weight than its 
predecessor

Exercise
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Prediction of the Length of the Next CPU Burst

Alpha = 1/2, T0 = 10
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OS API: System  Calls
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System Calls

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 

user space

kernel space

The system calls are the mandatory interface between the user programs and the O/S

! Location of the system calls in the Computing System

System calls
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System Calls
• Programming interface to the services provided by the 

OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs via a high-level 

Application Program Interface (API) rather than direct 
system call use
– Ease of programming
– portability

• Three most common APIs are Win32 API for Windows, 
POSIX API for POSIX-based systems (including virtually 
all versions of UNIX, Linux, and Mac OS X), and Java API 
for the Java virtual machine (JVM)
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System Calls

! All programs needing resources must use system calls

Operating system

User programs

Library functions & programs
. . . fputs, getchar, ls, pwd, more . . .

. . . fork, open, read  System calls  rm, chmod, kill . . . 

user space

kernel space
the “middleman’s

counter”

" system calls are the only entry points into the kernel and system

" most UNIX commands are actually library functions and utility 
programs (e.g., shell interpreter) built on top of the system calls

" however, the distinction between library functions and system 
calls is not critical to the programmer, only to the O/S designer
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Example of System Calls
• System call sequence to copy the contents of one file 

to another file
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System Call Implementation

• Typically, a number associated with each system call
– System-call interface maintains a table indexed according to 

these numbers

• The system call interface invokes intended system call 
in OS kernel and returns status of the system call and 
any return values

• The caller need know nothing about how the system 
call is implemented
– Just needs to obey API and understand what OS will do as a 

result call
– Most details of  OS interface hidden from programmer by API  

• Managed by run-time support library (set of functions built into 
libraries included with compiler)
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Dual-Mode Operation

• Dual-mode operation allows OS to protect itself and 
other system components
– User mode and kernel mode 
– Mode bit provided by hardware

• Provides ability to distinguish when system is running user code or 
kernel code

• Protects OS from errant users, and errant users from each other
• Some instructions designated as privileged, only executable in 

kernel mode
• System call changes mode to kernel, return from call resets it to 

user
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Transition from User to Kernel Mode

• How to prevent user program getting stuck in an 
infinite loop / process hogging resources
# Timer: Set interrupt after specific period (1ms to 1sec)
– Operating system decrements counter
– When counter zero generate an interrupt
– Set up before scheduling process to regain control or terminate 

program that exceeds allotted time
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Standard C Library Example

• C program invoking printf() library call, which calls 
write() system call
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Solaris System Call Tracing
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Virtual Machines
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Virtual Machines

• A virtual machine takes the layered approach 
to its logical conclusion.  It treats hardware 
and the operating system kernel as though 
they were all hardware

• A virtual machine provides an interface 
identical to the underlying bare hardware

• The virtual machine creates the illusion of 
multiple processes, each executing on its own 
processor with its own (virtual) memory
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Virtual Machines (Cont.)

• The resources of the physical computer are shared to 
create the virtual machines
– CPU scheduling can create the appearance that users have 

their own processor
– Spooling and a file system can provide virtual card readers and 

virtual line printers
– A normal user time-sharing terminal serves as the virtual 

machine operator’s console
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Virtual Machines (Cont.)

       (a) Nonvirtual machine                 (b) Virtual machine       

Non-virtual Machine Virtual Machine
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Virtual Machines (Cont.)

• The virtual-machine concept provides complete 
protection of system resources since each virtual 
machine is isolated from all other virtual machines.  
This isolation, however, permits no direct sharing 
of resources.

• A virtual-machine system is a perfect vehicle for 
operating-systems research and development.  
System development is done on the virtual 
machine, instead of on a physical machine and so 
does not disrupt normal system operation.

• The virtual machine concept is difficult to 
implement due to the effort required to provide an 
exact duplicate to the underlying machine
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VMware Architecture
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Summary

Hmm.
.

• Next Lecture: Project-1 Discussion

• Multilevel Feedback Queues
• Estimating CPU bursts
• System Calls
• Virtual Machines
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