CSE 421/521 - Operating Systems
Fall 2011

LECTURE - VI

CPU SCHEDULING - 1]

Tevfik Kosar

University at Buffalo
September 15t 2011

Roadmap

Multilevel Feedback Queues
Estimating CPU bursts
System Calls

Virtual Machines

Multilevel Queue

» Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

« Each queue has its own scheduling algorithm

- foreground - RR
- background - FCFS

e Scheduling must be done between the queues
- Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.
- Time slice - each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR, 20% to background in FCFS

Multilevel Queue Scheduling

Righest priority

l:#‘ system processes l:*
l:—" interactive processes }:—’
l:»i interactive editing processes }:*
I:*{ batch processes }:’
I:»i student processes):*
lowest priority

Multilevel Feedback Queue

« A process can move between the various queues;
aging can be implemented this way

« Multilevel-feedback-queue scheduler defined by
the following parameters:
- number of queues
- scheduling algorithms for each queue
- method used to determine when to upgrade a process
- method used to determine when to demote a process

- method used to determine which queue a process will
enter when that process needs service

Example of Multilevel Feedback Queue

» Three queues:
- @, - RR with time quantum 8 milliseconds
- @, - RR time quantum 16 milliseconds
- Q, - FCFS

» Scheduling

- Anew job enters queue Q, which is served FCFS. When it gains
CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q,.

- At Q, job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and
moved to queue Q,.

Multilevel Feedback Queues

>

Y

quantum = 8

\ 4

quantum = 16

- FCFS

Determining Length of Next CPU Burst

« Can only estimate the length

« Can be done by using the length of previous CPU bursts,
using exponential averaging

T, =0t +(1-ak,.

1. t, = actual lenght of n” CPU burst

2. T, =predicted value for the next CPU burst
3.0,0<sa <1

4. Define:

Examples of Exponential Averaging

e a=0

= The1 T Ty

- Recent history does not count
e o =1

- Ty A tn

- Only the actual last CPU burst counts
« If we expand the formula, we get:
T =0t +(1-a)a b, -1+ ...
+1-ayat, ;+
+(1 - o)n +1 T

n+1

« Since both a and (1 - a) are less than or equal to 1,
each successive term has less weight than its
predecessor

Exercise

Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. a=0and Ty = 100milliseconds

b. a=0.99 and 19 = 10milliseconds

Answer: When a = 0 and 7y = 100milliseconds, the formula always
makes a prediction of 100 milliseconds for the next CPU burst. When a =
0.99 and 79 = 10milliseconds, the most recent behavior of the process
is given much higher weight than the past history associated with the
process. Consequently, the scheduling algorithm is almost memory-less,
and simply predicts the length of the previous burst for the next quantum
of CPU execution.

10

Prediction of the Length of the Next CPU Burst

12 —
P
t 10 -
/
8 /
6 /
4
_-—-/
4
2
fime ———
CPU burst (t) 6 4 6 4 13 13 13
'guess” (1) 10 8 6 6 5 9 11 12

Alpha =1/2, T0=10
1

OS APIL SYSTEM CALLS

12

System Calls

> Location of the system calls in the Computing System

Banking Airline Web Avillesiion Bronrais
system reservation browser PP prog
, , Command
user space | Compilers Eglters interpreter System
----- l System calls | programs
kernel space Operating system
Machine language
Microarchitecture r Hardware
Physical devices

The system calls are the mandatory interface between the user programs and the O/S

13

System Calls

« Programming interface to the services provided by the
0S

« Typically written in a high-level language (C or C++)

» Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct
system call use

- Ease of programming
- portability

e Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

14

> Al

System Calls

rograms needing resources must use system calls

user space

User programs

Library functions & programs
. . . fputs, getchar, Is, pwd, more . . .

. . fork, open, read System calls rm, chmod, kill . .

kernel space
v

v

Operating system

the "middleman’s
counter”

system calls are the only entry points into the kernel and system

most UNIX commands are actually library functions and utility
programs (e.g., shell interpreter) built on top of the system calls

however, the distinction between library functions and system
calls is not critical to the programmer, only to the O/S designer

15

Example of System Calls

» System call sequence to copy the contents of one file
to another file

I source file

>
>

destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

S

16

System Call Implementation

» Typically, a number associated with each system call
- System-call interface maintains a table indexed according to
these numbers
» The system call interface invokes intended system call
in OS kernel and returns status of the system call and
any return values

» The caller need know nothing about how the system
call is implemented

- Just needs to obey API and understand what OS will do as a
result call

- Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

17

Dual-Mode Operation

« Dual-mode operation allows OS to protect itself and
other system components
- User mode and kernel mode
- Mode bit provided by hardware

» Provides ability to distinguish when system is running user code or
kernel code

« Protects OS from errant users, and errant users from each other

» Some instructions designated as privileged, only executable in
kernel mode

» System call changes mode to kernel, return from call resets it to
user

18

Transition from User to Kernel Mode

» How to prevent user program getting stuck in an
infinite loop / process hogging resources
=» Timer: Set interrupt after specific period (1ms to 1sec)
- Operating system decrements counter
- When counter zero generate an interrupt

- Set up before scheduling process to regain control or terminate
program that exceeds allotted time

user process
user mogie
‘ user process executing H calls system call ‘ ‘ return from system call (mode bit = 1
1 7
\ 7
K | trap return
i mode bit=0 mode bit = 1
/ kernel mode
execute system call [(mode bit = 0)
19

Standard C Library Example

» C program invoking printf() library call, which calls
write() system call

#include <stdio.h>
int main ()

{

+— printf ("Greetings");

return o;

}

user
mode

standard C library

kernel

mode
erite ()
write ()
system call
20

Solaris System Call Tracing

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
0 -> XEventsQueued
0 -> _XEventsQueued
-> _XllTransBytesReadable
<- _XllTransBytesReadable
-> _XllTransSocketBytesReadable
<- _XllTransSocketBytesreadable
-> iloctl
-> iloctl
-> getf
-> set_active_ fd
<- set_active_ fd
<- getf
-> get_udatamodel
<- get_udatamodel

OC0O0O0OO0O0O0O0O0O0O0O
AR ARRARRACGCCACAaC

-> releasef
-> clear_active_fd
<- clear_active_fd
-> cv_broadcast
<- cv_broadcast
<— releasef
<- loctl
<- ioctl
<- _XEventsQueued
<- XEventsQueued

coocooo0O0O0O0 O
CcadrRARAARRARR

21

VIRTUAL MACHINES

22

Virtual Machines

« Avirtual machine takes the layered approach
to its logical conclusion. It treats hardware
and the operating system kernel as though
they were all hardware

« Avirtual machine provides an interface
identical to the underlying bare hardware

« The virtual machine creates the illusion of
multiple processes, each executing on its own
processor with its own (virtual) memory

23

Virtual Machines (Cont.)

» The resources of the physical computer are shared to
create the virtual machines

- CPU scheduling can create the appearance that users have
their own processor

- Spooling and a file system can provide virtual card readers and
virtual line printers

- A normal user time-sharing terminal serves as the virtual
machine operator’s console

24

Virtual Machines (Cont.)

processes

processes

processes processes

‘1

kernel kernel kernel

programming/
v »~ interface

kernel

VM1 VM2 VM3

virtual-machine
implementation

hardware

hardware

(a) (b)

(a) Nonvirtual machine (b) Virtual machine

25

Virtual Machines (Cont.)

» The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing
of resources.

« Avirtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and so
does not disrupt normal system operation.

» The virtual machine concept is difficult to
implement due to the effort required to provide an
exact duplicate to the underlying machine

26

VMware Architecture

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices
virtualization layer
host operating system
(Linux)
hardware
CPU memory 1/0 devices
27
Summary
e Multilevel Feedback Queues
« Estimating CPU bursts =
« System Calls 2L
 Virtual Machines o

* Next Lecture: Project-1 Discussion

28

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

29

