
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
September 15th, 2011

Lecture - VI

CPU Scheduling - II

2

Roadmap

• Multilevel Feedback Queues
• Estimating CPU bursts
• System Calls
• Virtual Machines

3

Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm
– foreground – RR
– background – FCFS

• Scheduling must be done between the queues
– Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR, 20% to background in FCFS

4

Multilevel Queue Scheduling

5

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will

enter when that process needs service

6

Example of Multilevel Feedback Queue

• Three queues:
– Q

0
 – RR with time quantum 8 milliseconds

– Q
1
 – RR time quantum 16 milliseconds

– Q
2
 – FCFS

• Scheduling
– A new job enters queue Q

0
 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q

1
.

– At Q
1
 job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and
moved to queue Q

2
.

7

Multilevel Feedback Queues

8

Determining Length of Next CPU Burst

• Can only estimate the length
• Can be done by using the length of previous CPU bursts,

using exponential averaging

+

9

Examples of Exponential Averaging

• α =0
– τ

n+1
 = τ

n

– Recent history does not count

• α =1
– τ

n+1
 = α t

n

– Only the actual last CPU burst counts

• If we expand the formula, we get:
τ

n+1
 = α t

n
+(1 - α)α t

n
 -1 + …

 +(1 - α)j α t
n

-j
 + …

 +(1 - α)n +1 τ
0

• Since both α and (1 - α) are less than or equal to 1,
each successive term has less weight than its
predecessor

Exercise

10

11

Prediction of the Length of the Next CPU Burst

Alpha = 1/2, T0 = 10

12

OS API: System Calls

13

System Calls

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

user space

kernel space

The system calls are the mandatory interface between the user programs and the O/S

! Location of the system calls in the Computing System

System calls

14

System Calls
• Programming interface to the services provided by the

OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs via a high-level

Application Program Interface (API) rather than direct
system call use
– Ease of programming
– portability

• Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

15

System Calls

! All programs needing resources must use system calls

Operating system

User programs

Library functions & programs
. . . fputs, getchar, ls, pwd, more . . .

. . . fork, open, read System calls rm, chmod, kill . . .

user space

kernel space
the “middleman’s

counter”

" system calls are the only entry points into the kernel and system

" most UNIX commands are actually library functions and utility
programs (e.g., shell interpreter) built on top of the system calls

" however, the distinction between library functions and system
calls is not critical to the programmer, only to the O/S designer

16

Example of System Calls
• System call sequence to copy the contents of one file

to another file

17

System Call Implementation

• Typically, a number associated with each system call
– System-call interface maintains a table indexed according to

these numbers

• The system call interface invokes intended system call
in OS kernel and returns status of the system call and
any return values

• The caller need know nothing about how the system
call is implemented
– Just needs to obey API and understand what OS will do as a

result call
– Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into
libraries included with compiler)

18

Dual-Mode Operation

• Dual-mode operation allows OS to protect itself and
other system components
– User mode and kernel mode
– Mode bit provided by hardware

• Provides ability to distinguish when system is running user code or
kernel code

• Protects OS from errant users, and errant users from each other
• Some instructions designated as privileged, only executable in

kernel mode
• System call changes mode to kernel, return from call resets it to

user

19

Transition from User to Kernel Mode

• How to prevent user program getting stuck in an
infinite loop / process hogging resources
Timer: Set interrupt after specific period (1ms to 1sec)
– Operating system decrements counter
– When counter zero generate an interrupt
– Set up before scheduling process to regain control or terminate

program that exceeds allotted time

20

Standard C Library Example

• C program invoking printf() library call, which calls
write() system call

21

Solaris System Call Tracing

22

Virtual Machines

23

Virtual Machines

• A virtual machine takes the layered approach
to its logical conclusion. It treats hardware
and the operating system kernel as though
they were all hardware

• A virtual machine provides an interface
identical to the underlying bare hardware

• The virtual machine creates the illusion of
multiple processes, each executing on its own
processor with its own (virtual) memory

24

Virtual Machines (Cont.)

• The resources of the physical computer are shared to
create the virtual machines
– CPU scheduling can create the appearance that users have

their own processor
– Spooling and a file system can provide virtual card readers and

virtual line printers
– A normal user time-sharing terminal serves as the virtual

machine operator’s console

25

Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) Virtual machine

Non-virtual Machine Virtual Machine

26

Virtual Machines (Cont.)

• The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing
of resources.

• A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and so
does not disrupt normal system operation.

• The virtual machine concept is difficult to
implement due to the effort required to provide an
exact duplicate to the underlying machine

27

VMware Architecture

28

Summary

Hmm.
.

• Next Lecture: Project-1 Discussion

• Multilevel Feedback Queues
• Estimating CPU bursts
• System Calls
• Virtual Machines

29

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

