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An HTTP Request

<command> <argument> <HTTP version>
<optional arguments>
<blank line>

GET /index.html HTTP/1.0

Server Response

« <HTTP version> <status code> <status message>
» <additional information>

» <ablank line>

s <content>

e HTTP/1.1 200 OK
Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache
Content-length: ......

<HTML><HEAD><BODY> ....

Example

$ telnet www.cnn.com 80
Trying 64.236.90.21...
Connected to www.cnn.com.
Escape character is "]

GET /index.html HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache

Accept-Ranges: bytes

Cache-Control: max-age=60, private
Expires: Thu, 06 Nov 2008 18:28:14 GMT
Content-Type: text/html

Vary: Accept-Encoding,User-Agent
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"http://
www.w3.org/TR/html4/loose.dtd"><html lang="en"><head><title>CNN.com -4

Basics of a Server (Web, FTP ..etc)

1. Listen to a Network port
2. Interpret incoming messages (requests)

3. Serve requests
a. Read requested files
b. Send them over network

4. Run consistently in the background (daemon process)
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Server Side Socket Details
SERVER

Greste socket int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

int bind(int sockfd, struct sockaddr *server_addr, socklen_t length)
bind(sockfd, &server, sizeof(server));

int listen( int sockfd, int num_queued_requests)
connections listen( sockfd, 5);

bind a port to the
socket

accept an
incoming

connection newfd = accept(sockfd, &client, sizeof(client)); /* BLOCKS */

int accept(int sockfd, struct sockaddr *incoming_address, socklen_t length)

int read(int sockfd, void * buffer, size_t buffer_size)
connection read(newfd, buffer, sizeof(buffer));

int write(int sockfd, void * buffer, size_t buffer_size)
connection write(newfd, buffer, sizeof(buffer));

Sockets

— A Socket is comprised of:
* a 32-bit node address (IP address)
* a 16-bit port number (like 7, 21, 13242)

— Example: 192.168.31.52:1051

* The 192.168.31.52 host address is in “IPv4 dotted-
quad” format, and is a decimal representation of the hex
network address 0xc0a81{34

— First developed at UC-Berkeley in 1983, Berkeley Socket
API part of BSD 4.2

Simple Web Server

Client Side Socket Details

CLIENT

Create sockel int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

connect to Server

int connect(int sockfd, struct sockaddr *server_address, socklen_t length)
connect(sockfd, &server, sizeof(server));

int write(int sockfd, void * buffer, size_t buffer_size)
connection write(sockfd, buffer, sizeof(buffer));

int read(int sockfd, void * buffer, size_t buffer_size)
connection read(sockfd, buffer, sizeof(buffer));

socket

Logic of a Web Server

1. Setup the server

- socket, bind, listen

2. Accept a connection

- accept, fdopen

3. Read a request

- fread
4. Handle the request

- a. directory --> list it

- b. regular file --> cat the file
- C. not exist --> error message
5. Send a reply

- fwrite




1. Setup the Server

int init_socket(int portnum)

{

int main(int ac, char *av[])

2. Accept Connections

sock = init_socket(portnum);

/* main loop here */

while(1){
/* take a call and buffer it */
fd = accept( sock, NULL, NULL );
fpin fdopen(£d, "r" );

fpout = fdopen(fd, "w" );
/+ read request +/ 3. Read Requests
fgets (request,BUFSIZ,fpin);

while( fgets(buf,BUFSIZ,fp) != NULL && strcmp(buf,”\r\n") != 0 ) ;

/* do what client asks */
process_rq(request, fpout);

fclose(fpin);
fclose(fpout);
}
return 0;
/* never end */

}

void do_cat(char *f, FILE *fpsock)

char *extension = file_type(f);

4.b Cat File

char *content = "text/plain";

FILE *fpfile;

int c;

if ( strcmp(extension,"html") == 0 )
content = "text/html";

else if ( strcmp(extension, "gif") == 0 )
content = "image/gif";

else if ( strcmp(extension, "jpeg") == 0 )
content = "image/jpeg";

fpfile = fopen( £ , "r");
if ( fpfile != NULL )

fprintf(fpsock, "HTTP/1.0 200 OK\r\n");
fprintf(fpsock, "Content-type: %s\r\n", content );
fprintf(fpsock, "\r\n");
while( (c = getc(fpfile) ) != EOF )

putc(c, fpsock);
fclose(fpfile);

{
gethostname( hostname , 256 ); /* where am I ? */
hp = gethostbyname( hostname ); /* get info about host */
bzero( (void *)&saddr, sizeof(saddr) ); /* zero struct & fill host addr*/
bcopy( (void *)hp->h_addr, (void *)&saddr.sin_addr, hp->h_length);
saddr.sin_family = AF_INET ; /* £ill in socket type */
saddr.sin_port = htons(portnum); /* £ill in socket port */
sock_id = socket( AF_INET, SOCK_STREAM, 0 ); /* get a socket */
rv = setsockopt(sock_id, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
bind(sock_id, (struct sockaddr *) &saddr, sizeof(saddr));
listen(sock_id, 1) !=0 );
return sock_id;
}
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void process_rq( char *rq, FILE *fp)
{
/* create a new process and return if not the child */
if ( fork() != 0 ) return;
if ( sscanf(rq, "$s%s", cmd, arg) != 2 ) return;
if ( strcmp(emd,"GET") == 0 )
{
if ( not_exist( item ) )
do_404(item, fp );
else if ( isadir( item ) )
do_1s( item, fp );
else
do_cat( item, fp );
}
exit(0);
}
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