CSE 421/521 - Operating Systems
Fall 2011

LECTURE - VII

PROJECT - | DISCUSSION

Tevfik Kosar

University at Buffalo
September 20th, 2011

An HTTP Request

<command> <argument> <HTTP version>
<optional arguments>
<blank line>

GET /index.html HTTP/1.0

Server Response

« <HTTP version> <status code> <status message>
» <additional information>

» <ablank line>

s <content>

e HTTP/1.1 200 OK
Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache
Content-length:

<HTML><HEAD><BODY>

Example

$ telnet www.cnn.com 80
Trying 64.236.90.21...
Connected to www.cnn.com.
Escape character is "]

GET /index.html HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache

Accept-Ranges: bytes

Cache-Control: max-age=60, private
Expires: Thu, 06 Nov 2008 18:28:14 GMT
Content-Type: text/html

Vary: Accept-Encoding,User-Agent
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"http://
www.w3.org/TR/html4/loose.dtd"><html lang="en"><head><title>CNN.com -4

Basics of a Server (Web, FTP ..etc)

1. Listen to a Network port
2. Interpret incoming messages (requests)

3. Serve requests
a. Read requested files
b. Send them over network

4. Run consistently in the background (daemon process)

Network Communication

http http
Client Server
TCP Transport TCP Transport
IP Layer, IPv4 IP Layer, IPv4
Eternet Controller, Eternet Controller,
3Com Etherlink 3 3Com Etherlink 3
Driver Driver

Router

SERVER

Create socket
bind a port to the
socket

listen for incoming
connections

L |

‘ accept an

e TCP Client-Server view

» Connection-oriented
socket connections

CLIENT

Create socket ‘

connect to server's
incoming
port

connection

read from the write to the
connection < connection }\
write to the p| readfrom the },/
connection connection
7
Server Side Socket Details
SERVER

Greste socket int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

int bind(int sockfd, struct sockaddr *server_addr, socklen_t length)
bind(sockfd, &server, sizeof(server));

int listen(int sockfd, int num_queued_requests)
connections listen(sockfd, 5);

bind a port to the
socket

accept an
incoming

connection newfd = accept(sockfd, &client, sizeof(client)); /* BLOCKS */

int accept(int sockfd, struct sockaddr *incoming_address, socklen_t length)

int read(int sockfd, void * buffer, size_t buffer_size)
connection read(newfd, buffer, sizeof(buffer));

int write(int sockfd, void * buffer, size_t buffer_size)
connection write(newfd, buffer, sizeof(buffer));

Sockets

— A Socket is comprised of:
* a 32-bit node address (IP address)
* a 16-bit port number (like 7, 21, 13242)

— Example: 192.168.31.52:1051

* The 192.168.31.52 host address is in “IPv4 dotted-
quad” format, and is a decimal representation of the hex
network address 0xc0a81{34

— First developed at UC-Berkeley in 1983, Berkeley Socket
API part of BSD 4.2

Simple Web Server

Client Side Socket Details

CLIENT

Create sockel int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

connect to Server

int connect(int sockfd, struct sockaddr *server_address, socklen_t length)
connect(sockfd, &server, sizeof(server));

int write(int sockfd, void * buffer, size_t buffer_size)
connection write(sockfd, buffer, sizeof(buffer));

int read(int sockfd, void * buffer, size_t buffer_size)
connection read(sockfd, buffer, sizeof(buffer));

socket

Logic of a Web Server

1. Setup the server

- socket, bind, listen

2. Accept a connection

- accept, fdopen

3. Read a request

- fread
4. Handle the request

- a. directory --> list it

- b. regular file --> cat the file
- C. not exist --> error message
5. Send a reply

- fwrite

1. Setup the Server

int init_socket(int portnum)

{

int main(int ac, char *av[])

2. Accept Connections

sock = init_socket(portnum);

/* main loop here */

while(1){
/* take a call and buffer it */
fd = accept(sock, NULL, NULL);
fpin fdopen(£d, "r");

fpout = fdopen(fd, "w");
/+ read request +/ 3. Read Requests
fgets (request,BUFSIZ,fpin);

while(fgets(buf,BUFSIZ,fp) != NULL && strcmp(buf,”\r\n") != 0) ;

/* do what client asks */
process_rq(request, fpout);

fclose(fpin);
fclose(fpout);
}
return 0;
/* never end */

}

void do_cat(char *f, FILE *fpsock)

char *extension = file_type(f);

4.b Cat File

char *content = "text/plain";

FILE *fpfile;

int c;

if (strcmp(extension,"html") == 0)
content = "text/html";

else if (strcmp(extension, "gif") == 0)
content = "image/gif";

else if (strcmp(extension, "jpeg") == 0)
content = "image/jpeg";

fpfile = fopen(£ , "r");
if (fpfile != NULL)

fprintf(fpsock, "HTTP/1.0 200 OK\r\n");
fprintf(fpsock, "Content-type: %s\r\n", content);
fprintf(fpsock, "\r\n");
while((c = getc(fpfile)) != EOF)

putc(c, fpsock);
fclose(fpfile);

{
gethostname(hostname , 256); /* where am I ? */
hp = gethostbyname(hostname); /* get info about host */
bzero((void *)&saddr, sizeof(saddr)); /* zero struct & fill host addr*/
bcopy((void *)hp->h_addr, (void *)&saddr.sin_addr, hp->h_length);
saddr.sin_family = AF_INET ; /* £ill in socket type */
saddr.sin_port = htons(portnum); /* £ill in socket port */
sock_id = socket(AF_INET, SOCK_STREAM, 0); /* get a socket */
rv = setsockopt(sock_id, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
bind(sock_id, (struct sockaddr *) &saddr, sizeof(saddr));
listen(sock_id, 1) !=0);
return sock_id;
}
13
void process_rq(char *rq, FILE *fp)
{
/* create a new process and return if not the child */
if (fork() != 0) return;
if (sscanf(rq, "$s%s", cmd, arg) != 2) return;
if (strcmp(emd,"GET") == 0)
{
if (not_exist(item))
do_404(item, fp);
else if (isadir(item))
do_1s(item, fp);
else
do_cat(item, fp);
}
exit(0);
}
15
Acknowledgments
» Advanced Programming in the Unix Environment by R.
Stevens
» The C Programming Language by B. Kernighan and D.
Ritchie
» Understanding Unix/Linux Programming by B. Molay
o Lecture notes from B. Molay (Harvard), T. Kuo (UT-

Austin), G. Pierre (Vrije), M. Matthews (SC), B. Knicki
(WPI), M. Shacklette (UChicago), J. Kim (KAIST), A. Dix
(Hiraeth), and J. Schaumann (SIT).

