CSE 421/521 - Operating Systems
Fall 2011

LECTURE - VII

PROJECT - | DISCUSSION

Tevfik Kosar

University at Buffalo
September 20th, 2011

An HTTP Request

<command> <argument> <HTTP version>
<optional arguments>
<blank line>

GET /index.html HTTP/1.0

Server Response

<HTTP version> <status code> <status message>
<additional information>

<a blank line>

<content>

HTTP/1.1 200 OK

Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache

Content-length:

<HTML><HEAD><BODY>

Example

$ telnet www.cnn.com 80
Trying 64.236.90.21...
Connected to www.cnn.com.
Escape character is "*]'.

GET /index.html HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache

Accept-Ranges: bytes

Cache-Control: max-age=60, private
Expires: Thu, 06 Nov 2008 18:28:14 GMT
Content-Type: text/html

Vary: Accept-Encoding,User-Agent
Connection: close

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://
www.w3.org/TR/html4/loose.dtd"><html lang="en"><head><title>CNN.com -4

Basics of a Server (Web, FTP ..etc)

1. Listen to a Network port
2. Interpret incoming messages (requests)

3. Serve requests
a. Read requested files
b. Send them over network

4. Run consistently in the background (daemon process)

Network Communication

.

http http
Client Server
TCP Transport TCP Transport
IP Layer, IPv4 A IP Layer, IPv4
Eternet Controller, Eternet Controller,
3Com Etherlink 3 3Com Etherlink 3
Driver Driver

HUB

JEH

Router

HUB

loop

\\ write to the >

SERVER

Create socket

v

bind a port to the
socket

v

CLIENT

TCP Client-Server view

Connection-oriented
socket connections

listen for incoming
connections

Create socket

!

I

accept an

incoming €

connection

connect to server's

port

.

.

read from the <

connection

write to the
connection

.

loop

connection

read from the
connection

Lclose Connection4

Sockets

— A Socket is comprised of:
* a 32-bit node address (IP address)
* a 16-bit port number (like 7, 21, 13242)

— Example: 192.168.31.52:1051

» The 192.168.31.52 host address is in “IPv4 dotted-
quad” format, and is a decimal representation of the hex
network address Oxc0a81f34

— First developed at UC-Berkeley in 1983, Berkeley Socket

API part of BSD 4.2

SERVER

Create socket

v

bind a port to the

Server Side Socket Details

int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

int bind(int sockfd, struct sockaddr *server_addr, socklen_t length)

socket bind(sockfd, &server, sizeof(server));
4
listen for incoming int listen(int sockfd, int num_queued_requests)
connections listen(sockfd, 5);
A
?ﬁfgﬁ;:g int accept(int sockfd, struct sockaddr *incoming_address, socklen_t length)
connection newfd = accept(sockfd, &client, sizeof(client)); /* BLOCKS */
4
read from the int read(int sockfd, void * buffer, size_t buffer_size)
connection read(newfd, buffer, sizeof(buffer));
write to the int write(int sockfd, void * buffer, size_t buffer_size)
connection write(newfd, buffer, sizeof(buffer));
9
Client Side Socket Details
CLIENT
Create socket int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);
A
connect to Server int connect(int sockfd, struct sockaddr *server_address, socklen_t length)
socket connect(sockfd, &server, sizeof(server));
write to the int write(int sockfd, void * buffer, size_t buffer_size)
connection write(sockfd, buffer, sizeof(buffer));
v
read from the int read(int sockfd, void * buffer, size_t buffer_size)
connection read(sockfd, buffer, sizeof(buffer));

10

Simple Web Server

11

Logic of a Web Server

. Setup the server

- socket, bind, listen

. Accept a connection

- accept, fdopen

. Read a request

- fread

. Handle the request

- a. directory --> list it

- b. regular file --> cat the file
- C. not exist --> error message
. Send a reply

- fwrite

12

1. Setup the Server

int init_socket(int portnum)

{ .o
gethostname(hostname , 256); /* where am I ? */
hp = gethostbyname(hostname); /* get info about host */
bzero((void *)&saddr, sizeof(saddr)); /* zero struct & fill host addr*/
bcopy((void *)hp->h addr, (void *)&saddr.sin_addr, hp->h_length);
saddr.sin_family = AF INET ; /* £ill in socket type */
saddr.sin_port = htons(portnum); /* £ill in socket port */
sock_id = socket(AF_INET, SOCK_STREAM, 0); /* get a socket */
rv = setsockopt(sock id, SOL_SOCKET, SO _REUSEADDR, &on, sizeof(on));
bind(sock_id, (struct sockaddr *) &saddr, sizeof(saddr));
listen(sock_id, 1) != 0);
return sock_id;

}

13

int main(int ac, char *av[])

{ 2. Accept Connections

sock = init_socket (portnum);

/* main loop here */

while(1){
/* take a call and buffer it */
fd = accept(sock, NULL, NULL);
fpin = fdopen(fd, "r");

fpout = fdopen(fd, "w");

/* read request +/ 3. Read Requests
fgets(request,BUFSIZ, fpin);

while(fgets(buf,BUFSIZ,fp) != NULL && strcmp(buf,"\r\n") != 0)

)

/* do what client asks */
process_rqg(request, fpout);
fclose(fpin);
fclose(fpout);

}

return 0;

/* never end */

14

void process _rq(char *rq, FILE *fp)

/* create a new process and return if not the child */
if (fork() != 0) return;

if (sscanf(rq, "%s%s", cmd, arg) != 2) return;
if (strcmp(cmd, "GET") == 0)
{

if (not_exist(item))
do_404(item, fp);
else if (isadir(item))
do 1ls(item, fp);
else
do_cat(item, fp);
}

exit(0);

15

void do_cat(char *f, FILE *fpsock)

char *extension = file type(f); S
char *content = "text/plain"; , 4.b Cat F] le
FILE *fpfile;

int c;

if (strcmp(extension,"html") == 0)
content = "text/html";

else if (strcmp(extension, "gif") == 0)
content = "image/gif";

else if (strcmp(extension, "jpeg") == 0)
content = "image/jpeg";

fpfile = fopen(£ , "r");
if (fpfile != NULL)

{
fprintf (fpsock, "HTTP/1.0 200 OK\r\n");
fprintf (fpsock, "Content-type: %s\r\n", content);
fprintf (fpsock, "\r\n");
while((¢ = getc(fpfile)) != EOF)
putc(c, fpsock);
fclose(fpfile);
}

16

Acknowledgments

Advanced Programming in the Unix Environment by R.
Stevens

The C Programming Language by B. Kernighan and D.
Ritchie
Understanding Unix/Linux Programming by B. Molay

Lecture notes from B. Molay (Harvard), T. Kuo (UT-
Austin), G. Pierre (Vrije), M. Matthews (SC), B. Knicki
(WPI), M. Shacklette (UChicago), J. Kim (KAIST), A. Dix
(Hiraeth), and J. Schaumann (SIT).

17

