
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
September 20th, 2011

Lecture - VII

Project - I Discussion

An HTTP Request

• <command> <argument> <HTTP version>
• <optional arguments>
• <blank line>

• GET /index.html HTTP/1.0

2

Server Response

• <HTTP version> <status code> <status message>
• <additional information>
• <a blank line>
• <content>

• HTTP/1.1 200 OK

Date: Thu, 06 Nov 2008 18:27:13 GMT

Server: Apache
Content-length:

<HTML><HEAD><BODY>

3

Example
$ telnet www.cnn.com 80

Trying 64.236.90.21...

Connected to www.cnn.com.
Escape character is '^]'.

GET /index.html HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 06 Nov 2008 18:27:13 GMT
Server: Apache

Accept-Ranges: bytes
Cache-Control: max-age=60, private

Expires: Thu, 06 Nov 2008 18:28:14 GMT

Content-Type: text/html
Vary: Accept-Encoding,User-Agent

Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://
www.w3.org/TR/html4/loose.dtd"><html lang="en"><head><title>CNN.com - 4

Basics of a Server (Web, FTP ..etc)

1. Listen to a Network port
2. Interpret incoming messages (requests)
3. Serve requests

a. Read requested files
b. Send them over network

4. Run consistently in the background (daemon process)

5

Network Communication

6

http
Client

http
Server

• TCP Client-Server view
• Connection-oriented

socket connections

7

Sockets

– A Socket is comprised of:
• a 32-bit node address (IP address)
• a 16-bit port number (like 7, 21, 13242)

– Example: 192.168.31.52:1051
• The 192.168.31.52 host address is in “IPv4 dotted-

quad” format, and is a decimal representation of the hex
network address 0xc0a81f34

– First developed at UC-Berkeley in 1983, Berkeley Socket
API part of BSD 4.2

8

Server Side Socket Details

9

Client Side Socket Details

10

Simple Web Server

11

Logic of a Web Server

• 1. Setup the server
– socket, bind, listen

• 2. Accept a connection
– accept, fdopen

• 3. Read a request
– fread

• 4. Handle the request
– a. directory --> list it
– b. regular file --> cat the file

– c. not exist --> error message

• 5. Send a reply
– fwrite

12

1. Setup the Server

int init_socket(int portnum)

{ ...

 gethostname(hostname , 256); /* where am I ? */
 hp = gethostbyname(hostname); /* get info about host */
 ...
 bzero((void *)&saddr, sizeof(saddr)); /* zero struct & fill host addr*/
 bcopy((void *)hp->h_addr, (void *)&saddr.sin_addr, hp->h_length);
 saddr.sin_family = AF_INET ; /* fill in socket type */
 saddr.sin_port = htons(portnum); /* fill in socket port */

 sock_id = socket(AF_INET, SOCK_STREAM, 0); /* get a socket */
 ...
! rv = setsockopt(sock_id, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
! ...! ! ! ! !
 bind(sock_id, (struct sockaddr *) &saddr, sizeof(saddr));
 ...

 listen(sock_id, 1) != 0);
 ...
! return sock_id;
 }

13

int main(int ac, char *av[])
 {
 ...
! sock = init_socket(portnum);
 ...
! /* main loop here */
! while(1){
! ! /* take a call and buffer it */
! ! fd = accept(sock, NULL, NULL);
 ...
! ! fpin = fdopen(fd, "r");
! ! fpout = fdopen(fd, "w");

! ! /* read request */
! ! fgets(request,BUFSIZ,fpin);
! ! ...
 while(fgets(buf,BUFSIZ,fp) != NULL && strcmp(buf,"\r\n") != 0) ;
! !
 /* do what client asks */
! ! process_rq(request, fpout);
 ...
! ! fclose(fpin);
! ! fclose(fpout);
! }
! return 0;
! /* never end */
 }

14

2. Accept Connections

3. Read Requests

void process_rq(char *rq, FILE *fp)
{
! ...

! /* create a new process and return if not the child */
! if (fork() != 0) return;

! if (sscanf(rq, "%s%s", cmd, arg) != 2) return;

 ...

! if (strcmp(cmd,"GET") == 0)
 {
! if (not_exist(item))
! ! do_404(item, fp);
! else if (isadir(item))
! ! do_ls(item, fp);
! else
! ! do_cat(item, fp);
 }
 ...
 exit(0);
}

15

void do_cat(char *f, FILE *fpsock)
{
! char!*extension = file_type(f);
! char!*content = "text/plain";
! FILE!*fpfile;
! int! c;

! if (strcmp(extension,"html") == 0)
! ! content = "text/html";
! else if (strcmp(extension, "gif") == 0)
! ! content = "image/gif";
! else if (strcmp(extension, "jpeg") == 0)
! ! content = "image/jpeg";

! fpfile = fopen(f , "r");
! if (fpfile != NULL)
! {

 fprintf(fpsock, "HTTP/1.0 200 OK\r\n");
! ! fprintf(fpsock, "Content-type: %s\r\n", content);
! ! fprintf(fpsock, "\r\n");
! ! while((c = getc(fpfile)) != EOF)
! ! ! putc(c, fpsock);
! ! fclose(fpfile);
! }
}

16

4.b Cat File

17

Acknowledgments

• Advanced Programming in the Unix Environment by R.
Stevens

• The C Programming Language by B. Kernighan and D.
Ritchie

• Understanding Unix/Linux Programming by B. Molay
• Lecture notes from B. Molay (Harvard), T. Kuo (UT-

Austin), G. Pierre (Vrije), M. Matthews (SC), B. Knicki
(WPI), M. Shacklette (UChicago), J. Kim (KAIST), A. Dix
(Hiraeth), and J. Schaumann (SIT).

